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The aim of this paper is to propose a model of bonded interface including nonlocal damage and

unilateral conditions. The model is derived from the problem of a composite structure made by
two adherents and a thin adhesive. The adhesive is damaged at microscopic level and is sub-

jected to two regimes, one in traction and one in compression. The model of interface is derived

by matched asymptotic expansions. In this paper, two cases corresponding to the two regimes

are discussed. Moreover, this model can be considered as a model of contact with adhesion and
unilateral constraint. At the end of the paper, a simple numerical example is presented to show

the evolution of the model.

Keywords: Matched asymptotic expansions; nonlocal damage; soft imperfect interface.

1. Introduction

In recent years, scientists and engineers have been interested in the structural as-

sembly of materials, giving rise to the study of interfaces, in particular in presence of

damage between matrix and ¯bers. It is very important to control and to predict the

damage in the interface in order to propose models which are useful to design robust

and stable structures. Moreover, adhesive bonding technology is now widely

employed in engineering structural assembly and especially in aeronautics industry,

where the use of composite materials is necessary to lighten structures. For further

research on strati¯ed composite materials and interface modeling, one can refer to,

e.g., Refs. 1–15. Due to the presence of the adhesive layer, adhesive bonding joints are

subjected to a complex state of stress with high stress concentrations and, conse-

quently, accurate analysis and modeling of adhesive materials and bonded joints are
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required. Because the adhesive layer is often soft and usually very thin when com-

pared with the characteristic dimensions of the structure, a relatively large number of

elements in the thickness direction is necessary to achieve su±ciently accurate cal-

culations in standard existing ¯nite element codes. This gives rise to a large number

of degrees of freedom and high simulation costs. To successfully deal with this dif-

¯culty, interphase's modeling has to precede the computation of the numerical so-

lution. A classical modeling approach consists in describing the adhesive as a distinct

lower-dimensional continuum, i.e., a surface material. To obtain this surface mate-

rial, a classical methodology consists in the study of the convergence towards zero of

one or more small parameters (the thickness of the bond, its mechanical character-

istics, etc.) in the PDEs describing the equilibrium of the structure. Furthermore,

when the adhesive layer is cracked at the micro scale, it is possible to take into

account in the model as a damage parameter the local average length of the cracks.

The procedure adopted in this paper is a generalization of the study proposed in

Bonetti et al.16 In our analysis, two models of damaged composite structures have

been introduced. The ¯rst model, which is classical, is based on the study of two

adherents and an adhesive which is cracked at the microscopic level. The second

model which is an imperfect interface model has been derived by asymptotic analysis

from the ¯rst one. Moreover, the asymptotic analysis gives some justi¯cation to

adhesive contact models studied in Bonetti et al.17,18 In this paper, we are investi-

gating the damage in an adhesive at microscopic level, which allows the use of Phase

¯eld theory. Therefore, in the light of literature the crack length given by Bonetti

et al.16 can be interpreted as a damage parameter and its limit as an intensity of

adhesion parameter Bonetti et al.17,18 In this paper, a more general approach is

proposed. The idea is to put forward a general methodology able to derive, in the

nonlocal case, adhesion models.

In this paper, a model of damaged isotropic composite materials with nonlocal

damage is studied. In this model, two adherents and an adhesive are considered. The

adhesive which is cracked at microscopic level is subjected by two regimes, one in

traction, in which the material is considered soft, and one in compression, in which

the bulk parameter is taken as hard. Moreover, the damage in adhesive is evolutive

and nonlocal. The interface model is derived from the ¯rst one by using the Matched

Asymptotic Expansions method (see Refs. 15, 19–25). A model of soft imperfect

interface (the interphase is replaced by an interface) with nonlocal damage and

unilateral conditions is obtained.

This paper is divided in three sections, in the ¯rst section, the damage model for a

composite structure is presented which includes two adherents and one adhesive. In

the second section, the asymptotic method is applied to derive the model of imperfect

interface. Furthermore, in the imperfect interface model, the damage e®ect is

obtained as nonlocal. It is also obtained that there is no penetration between

adherents. At the end of the paper, a simple one dimensional example is proposed to

show the behavior of the model.
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2. The Mechanical Model

We consider a composite body made of three di®erent materials, two elastic materials

which are known as adherents and the third one which is the adhesive and has a

nonlinear behavior. The adhesive is very thin in dimension as compared to the

adherents, which posses thickness " > 0, and is also called interphase. The body

occupies the total bounded smooth domain �" 2 R3 and is assumed to be perfectly

bonded. We introduce an orthogonal frame of reference ðO; e1; e2; e3Þ. Let ðx1;x2;x3Þ
denote the position of a particle in the three dimensional frame. The center of the

interphase mid-plane denotes the origin of the frame of reference and x3-axis runs

perpendicular to the open bounded set S, where S ¼ fðx1;x2;x3Þ 2 �";x3 ¼ 0g as

shown in Fig. 1 (left).

The domains of the adhesive, adherents, interfaces between adhesive and

adherents, respectively, are given below.

B" ¼ ðx1;x2;x3Þ 2 �" jx3j <
"

2

n o
;

� "
� ¼ ðx1;x2;x3Þ 2 �" � x3 >

"

2

n o
;

S "
� ¼ ðx1;x2;x3Þ 2 �" x3 ¼ � "

2

n o
:

We apply some external force g on some part of surface boundary @�" of the domain

�" which is denoted by Sg. One another part of the surface boundary @�" is denoted

by Su. We consider that Su has a strictly positive measure and a zero displacement

¯eld. Moreover, both parts of surface boundary are disjoint, i.e., Sg \ Su ¼ ;. Fur-
ther, it is also assumed that both parts, i.e., Sg and Su, are located far away from the

adhesive or interphase. It is considered that body force f is acting on �"nB" only.

Moreover u" and �" denotes, respectively the displacement ¯eld and the Cauchy

stress tensor ¯eld. Under the small deformation assumption the strain tensor can be

written as eij ¼ 1
2 ðu "i;j þ u "j;iÞ, where \," denotes partial derivative.

As we took adherents as elastic then the stress tensor can be written as

�"ij ¼ a�
ijhkehkðu"Þ; ð1Þ

(a) (b)

Fig. 1. Assembled composite structure. Left: Initial. Right: Rescaled.
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which is taken from the classical constitutive equation

�" ¼  �
;eðeðu"ÞÞ; ð2Þ

where  � ¼ 1
2 a

�eðu"Þ : eðu"Þ denotes the free energy, and a� is the fourth-order

tensor of elasticity, which satis¯es both classical positivity and symmetry conditions.

It is assumed in the following that the adhesive is damaged, i.e., its mechanical

parameters depend on a damage parameter noted � with � 2 ½0; 1�. The case � ¼ 1

corresponds to a safe material and the case � ¼ 0 to a totally damaged material. For

example, using the Kachanov theory et al.,26,27,13 the damage parameter � can be

taken as Oð1=l2Þ, where l is an averaged crack length. In addition, the material is

assumed to be isotropic. Therefore, in three dimension Hooke's law can be written as

� ¼ �ð�ÞtrðeÞI2 þ 2�ð�ÞðeÞ; ð3Þ
where I2 is the second-order identity tensor, �; � are the Lam�e coe±cients and \tr"

indicates trace of a second-order tensor.

In addition, the material has two regimes, one in traction, one in compression. In

traction, � and � depend on the adhesive thickness and in compression we assume

that only � depends on the thickness. For traction, we take � ¼ "�0; � ¼ "�0 and for

compression � ¼ �1; � ¼ "�0. Then, the two regimes in the adhesive are de¯ned by

�" ¼ "�0ð�Þtr eðu"ÞI2 þ 2"�0ð�Þeðu"Þ if tr eðu"Þ � 0;

�" ¼ �1ð�Þtr eðu"ÞI2 þ 2"�0ð�Þeðu"Þ if tr eðu"Þ � 0:

�
ð4Þ

As in Fr�emond28 a pseudo-potential of dissipation � is introduced. In this paper,

we suppose the following form for �:

�ð�: Þ ¼ 1

2
�"�
:
2 þ I½�1;0�ð�: Þ; ð5Þ

where �" � 0 is a viscosity parameter and IA denotes the indicator function of the set

A, which says that IAðxÞ ¼ 0 if x 2 A and IðxÞ ¼ þ1 otherwise. The aim of the

indicator function I is to ensure that �
:
must be negative, which gives the irreversible

evolution of damage, i.e., the damage parameter is monotonically decreasing from 1

to 0. Note that the material is chosen as rate-dependent.16

The free energy related to the constitutive Eq. (4) is divided into two parts, one

concerning the strain and the other concerning the damage and is de¯ned by

"ðeðu"Þ; �Þ ¼ � "ðeðu"Þ; �Þ þ ~ 
"ð�Þ;

� "ðeðu"Þ; �Þ ¼ 1

2
½�ð�Þtr eðu"Þ2 þ 2�ð�Þeðu"Þ2�;

~ 
"ð�Þ ¼ �!"�þ 1

2
�"jr�j2 þ I½0;1�ð�Þ;

~ 
"ðeðu"Þ; �Þ ¼ 1

2
½"�0ð�Þtr eðu"Þ2 þ 2"�0ð�Þeðu"Þ2� if tr ðeðu"ÞÞ � 0;

~ 
"ðeðu"Þ; �Þ ¼ 1

2
½�1ð�Þtr eðu"Þ2 þ 2"�0ð�Þeðu"Þ2� if tr ðeðu"ÞÞ � 0;

ð6Þ
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where !" is a positive parameter close to a cohesion parameter as Dupr�e's energy,28,5

�" is an interaction coe±cient and r is the gradient operator. Moreover all three

parameters �"; �" and !" are supposed inversely proportional to ". In upcoming

section we will take �" ¼ �
" , �

" ¼ �
" and !

" ¼ !
" , where �; � and ! are positive para-

meters. Furthermore in Eq. (6), the indicator function I put physical constraint

which ensures that the damage parameter remains in the interval ½0; 1�. Moreover

with respect to the given pseudo-Potential (Eq. (5)) and the choice of �" � 0 leads to

write the following evolution equations in the damage parameter � with two regimes.

It is observed that the choice of a nonsymmetric behavior in both traction and

compression is similar to the choice taken by Mielke et al.29 It will be shown that this

choice will certify in the limit problem to have unilateral constraint on the interface.

Using classical thermodynamic considerations, the evolution equation is

�"�
: ¼ ð!" � �"��� 1

2 ½"�0
;�tr eðu"Þ2 þ 2"�0

;�eðu"Þ2�Þ� if tr ðeðu"ÞÞ � 0;

�"�
: ¼ ð!" � �"��� 1

2
½� 1

;�tr eðu"Þ2 þ 2"�0
;�eðu"Þ2�Þ� if tr ðeðu"ÞÞ � 0;

8><
>: ð7Þ

where � is Laplacian in space variable and ðÞ� is the negative part of a value.

Therefore, the equilibrium problem of the damaged composite body is given below,

�"ij;j þ fi ¼ 0 in � "
�;

�"ijnj ¼ gi on S "
g;

�"ij ¼ 0 in B";

½½�"i3�� ¼ 0 on S "
�;

½½u "i �� ¼ 0 on S "
�;

u "i ¼ 0 on Su;

�"ij ¼ a�
ijhkehkðu"Þ in � "

�;
�" ¼ "�0tr eðu"ÞI2 þ 2"�0eðu"Þ if tr eðu"Þ � 0 in B";

�" ¼ �1tr eðu"ÞI2 þ 2"�0eðu"Þ if tr eðu"Þ � 0 in B";

�"�
: ¼ !" þ �"��� 1

2 ½"�0
;�tr eðu"Þ2 þ 2"�0

;�eðu"Þ2�
� �

� if tr eðu"Þ � 0 in B";

�"�
: ¼ !" þ �"��� 1

2 ½� 1
;�tr eðu"Þ2 þ 2"�0

;�eðu"Þ2�
� �

� if tr eðu"Þ � 0 in B";

� 2 ½0; 1� in B";

�
: � 0 in B":

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
In Eq. (8) the symbol ½½’�� denotes the jump of a function ’ across S "

� i.e ’ðð�"=2Þ�Þ�
’ðð�"=2Þ�Þ, where ’ðaþÞ ¼ limx!a;x>a’ðxÞ and ’ða�Þ ¼ limx!a;x<a’ðxÞ

3. Asymptotic Method

In this section, we are interested to derive a model of interface for the composite

made by the adhesive and the adherents by using asymptotic methods from the
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system of equations Eq. (8). For more detail, one can refer to Refs. 30–37 and

references therein. The idea is to replace the interphase by an interface. The following

asymptotic expansions in both u" and �" are de¯ned:

u" ¼ u0 þ "u1 þ oð"Þ;
�" ¼ �0 þ "�1 þ oð"Þ:

�
ð9Þ

3.1. Rescaling

Let us bring change of variable in model given in Eq. (8) by using the idea of

Ciarlet.30 Complete illustration for such change of variable is shown in Fig. 1 (right).

At ¯rst stage, we will bring change of variable (rescaling) in the adhesive, if

ðx1;x2;x3Þ 2 B" then ðz1; z2; z3Þ 2 B such that z1 ¼ x1; z2 ¼ x2 and z3 ¼ x3

" . Further

change in displacement ¯eld and strain can, respectively, be expressed as u"ðx1;x2;

x3Þ ¼ û"ðz1; z2; z3Þ and �"ðx1;x2;x3Þ ¼ �̂"ðz1; z2; z3Þ, where B ¼ fðz1; z2; z3Þ 2 � :

jz3j < 1
2g which indicates the domain of the interphase after the change of variable. In

the adherents the change of variable (translation) is given as if ðx1;x2;x3Þ 2 � "
� then

ðz1; z2; z3Þ 2 �� such that ðz1; z2; z3Þ ¼ ðx1;x2;x3 � 1
2 ð1� "ÞÞ, where \þ" sign is

applied for �þ and \�" sign is applied for ��. Further change in displacement ¯eld

and strain can be, respectively, expressed as u"ðx1;x2;x3Þ ¼ �u"ðz1; z2; z3Þ and

�"ðx1;x2;x3Þ ¼ ��"ðz1; z2; z3Þ, where �� ¼ fðz1; z2; z3Þ 2 � : �z3 >
1
2g indicates the

domain of adherents after change of variables. As the loadings are acting on the

adherents only therefore, they are independent of ", i.e., the change of variable does

not a®ect them, therefore, �f ðz1; z2; z3Þ ¼ fðx1;x2;x3Þ and �gðz1; z2; z3Þ ¼ gðx1;x2;x3Þ.
Relations among the derivative of the rescaling are @

@x1
¼ @

@z1
, @

@x2
¼ @

@z2
and

@
@x3

¼ 1
"

@
@z3

. Moreover, the system of Eq. (8) rescaled can be written as

�� "ij;j þ �f i ¼ 0 in ��;

�� "ijnj ¼ gi on �Sg;

�̂ "ij ¼ 0 in B;

�� "i3 ¼ �̂ "i3 on S�;
�u "i ¼ û "i on S�;

�u "i ¼ 0 on �Su;

�� "ij ¼ a�
ijhk�ehkð�u"Þ in ��;

�̂" ¼ "�0ð�Þtr êðû"ÞI2 þ 2"�0ð�Þêðû"Þ if tr êðû"Þ � 0 in B;

�̂" ¼ �1ð�Þtr êðû"ÞI2 þ 2"�0ð�Þêðû"Þ if tr êðû"Þ � 0 in B;

�̂"�̂
: ¼ !̂" � �̂"��� 1

2 ½"�0
;�tr êðû"Þ2 þ 2"�0

;�êðû"Þ2�
� �

� if tr êðû"Þ � 0 in B;

�̂"�̂
: ¼ !̂" � �̂"��� 1

2 ½�1
;�tr êðû"Þ2 þ 2"�0

;�êðû"Þ2�
� �

� if tr êðû"Þ � 0 in B;

�̂ 2 ½0; 1� in B;

�̂
: � 0 in B;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð10Þ
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where :̂ and�: denotes, respectively the change of variable in adherents and adhesive

and S� ¼ fðz1; z2; z3Þ 2 � : z3 ¼ � 1
2g indicates the interface between B and ��.

Asymptotic expansion of displacement ¯eld and stress ¯eld, after rescaling can be

written as

û" ¼ û0 þ "û1 þ oð"Þ;
�̂" ¼ �̂0 þ "�̂1 þ oð"Þ;
�u" ¼ �u0 þ "�u1 þ oð"Þ;
��" ¼ ��0 þ "��1 þ oð"Þ:

8>>><
>>>:

ð11Þ

3.2. Asymptotic expansion for equilibrium model for adherents

In a similar way as done by Bonetti et al.,16 we substitute asymptotic expansion

Eq. (11) in ¯rst, second, sixth and seventh equation of Eq. (10) and obtain at ¯rst-

order (power 0) the problem given below,

�� 0
ij;j þ �f i ¼ 0 in ��;

�� 0
ijnj ¼ gi on �Sg;

�u 0
i ¼ 0 on �Su;

�� 0
ij ¼ a�

ijhk�ehkð�u0Þ in ��:

8>>>><
>>>>:

ð12Þ

At this level, we have to ¯nd conditions on the internal interface S to close the

problem.

3.3. Asymptotic expansion for equilibrium equation for adhesive

In the same way, substituting asymptotic expansions Eq. (11) in the third equation

of Eq. (10), we can get oð"�1Þ-problem,

�̂ 0
i3;3 ¼ 0: ð13Þ

It shows that the stress vector �̂ 0
i3 does not depend on z3 then, Eq. (13) can be

written as

½�̂ 0
i3� ¼ 0; ð14Þ

where symbol ½:� is de¯ned as, ½f� ¼ fðz1; z2; 12Þ � fðz1; z2;� 1
2Þ, i.e., it indicates the

jumps between z3 ¼ þ 1
2 and z3 ¼ � 1

2. Strain ¯eld in the adhesive with respect to the

choice of Rizzoni et al.37 is used as

êðû"Þ ¼ "�1ê�1 þ ê0 þ "ê1 þ oð"Þ; ð15Þ
where

ê�1
33 ¼ û 0

3;3;

ê�1
b3 ¼ 1

2
û 0
b;3 for b ¼ 1; 2:

8<
: ð16Þ
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The trace of the strain in the adhesive is remarked as,

tr êðû"Þ ¼ "�1û 0
3;3 þ "0ðû 0

1;1 þ û 0
2;2 þ û 1

3;3Þ þ oð"Þ: ð17Þ

Thus,

û 0
3;3 � 0 ð18Þ

and

û 0
1;1 þ û 0

2;2 þ û 1
3;3 � 0: ð19Þ

Substituting Eq. (11) in eighth equation of Eq. (10), and collecting (power-0) gives

oð1Þ-problem,

�̂ 0
i3 ¼ �0ð�Þû 0

3;3�i;3 þ 2�0ð�Þê�1
i3 for i ¼ 1; 2; 3; ð20Þ

where �i;3 is the Kronecker symbol. Moreover integrating Eq. (20) along z3, we have

�̂ 0
b3 ¼ h�0ð�Þi�½û 0

i � for b ¼ 1; 2;

�̂ 0
33 ¼ h�0ð�Þ þ 2�0ð�Þi�½û 0

3�;

(
ð21Þ

where h�0ð�Þi� ¼
R 1

2
�1
2

dz3
�0ð�Þ

h i�1

and h�0ð�Þ þ 2�0ð�Þi� ¼
R 1

2
�1
2

dz3
�0ð�Þþ2�0ð�Þ

h i�1

.

For example, �̂ 0
13 ¼ �0ð�Þû 0

i;3. Then û 0
i;3 ¼ �̂ 0

13

�0ð�Þ and by integrating along z3, it is

obtained Eq. (21).

Equation (21) is the classical equation for soft interface for traction, i.e., when

½û 0
3� � 0:

For compression, substituting Eq. (11) in the ninth equation of Eq. (10) (order

oð"�1Þ), it is obtained,

0 ¼ �1ð�Þû 0
3;3; if û 0

3;3 � 0: ð22Þ

In other words, due to the positivity of �,1

û3;3 ¼ 0; if û3;3 � 0: ð23Þ

If û3;3 being independent of z3, then the jump can be written as

½û3� ¼ 0; if ½û3� � 0 ð24Þ
and

�̂ 0
33 ¼ �1ð�Þðû 0

1;1 þ û 0
2;2 þ û 1

3;3Þ � 0 ð25Þ
or

�̂ 0
33 � 0: ð26Þ

8



Equation (24) shows that in compression there is no jump on the interface in the

third direction and Eq. (25) indicates that in the compression case the third com-

ponent of the stress vector is negative along the interface (no adhesion).

In this paper we denote �2� ¼ �;11 þ �;22, the Laplacian in the plane ðz1; z2Þ.
Substituting Eq. (11) in the ninth equation of the Eq. (10), and collecting the same

powers (power-3) and (power-1), respectively gives

�;33 ¼ 0 ð27Þ

and

�̂�
: ¼ !̂ � �̂�2�� 1

2
ð�0

;�ð�Þ þ 2�0
;�ð�ÞÞðû 0

3;3Þ2 �
1

2
� 0
;�ð�Þfðû 0

1;3Þ2 þ ðû 0
2;3Þ2g

� �
�
:

ð28Þ

Similarly (for compression) substituting Eq. (11) in tenth equation of the Eq. (10)

and collecting the same powers (power-3), (power-2) and (power-1), receptively gives

following results:

�;33 ¼ 0; ð29Þ

0 ¼ � 1

2
� 1
;�ð�Þðû 0

3;3Þ2 ð30Þ

or

û 0
3;3 ¼ 0 ð31Þ

and

�̂�
: ¼ !̂ � �̂�1�2�� �0

;�ð�Þ
1

2
ðû 0

1;3Þ2 þ
1

2
ðû 0

2;3Þ2 þ ðû 0
3;3Þ2

� �
: ð32Þ

Substituting Eq. (31) in Eq. (32), we get

�̂�
: ¼ !̂ � �̂�2�� 1

2
�0
;�ð�Þfðû 0

1;3Þ2 þ ðû 0
2;3Þ2g

� �
�
: ð33Þ

3.3.1. Case 1: � does not depend on z3 and therefore, �;3 ¼ 0.

Equations (27) and (29) indicates that along z3 Laplacian component is equal to zero

in both traction and compression. Further in this case we assumed �;3 ¼ 0, inte-

grating Eq. (27) or Eq. (29) two times along z3 gives,

� ¼ c: ð34Þ
Further as we took negative evolution of damage, i.e., � never increases and in this

case as � does not depend on z3, therefore, we can write, h�0ð�Þi� ¼ �0ð�Þ and

h�0ð�Þ þ 2�0ð�Þi� ¼ �0ð�Þ þ 2�0ð�Þ, then integrating Eqs. (28) and (33) along z3 by

considering Eq. (21) in two steps we obtain the equation of motion in traction and

9



compression, respectively as follows:

�̂�
: ¼ !̂ � �̂�2�� 1

2
f�0

;�ð�Þ þ 2�0
;�ð�Þg½û 0

3�:½û 0
3�

�

� 1

2
�0
;�ð�Þf½û 0

1�:½û 0
1� þ ½û 0

2�:½û 0
2�g

�
�

if ½û3� � 0: ð35Þ

�̂�
: ¼ !̂ � �̂�2�� 1

2
�0
;�ð�Þf½û 0

1�:½û 0
1� þ ½û 0

2�:½û 0
2�g

� �
�

if ½û3� � 0: ð36Þ

3.3.2. Case 2: � depends on z3 and �;3 6¼ 0

As in this case we suppose that �;3 6¼ 0 then by integrating Eq. (27) or Eq. (29) two

times along z3 gives

� ¼ c1z3 þ c2; ð37Þ
where c1; c2 are constants of integration. Eq. (37) can also be written as

� ¼ ½��z3 þ hh�ii; ð38Þ

where c1 ¼ �ðz1; z2; 12Þ � �ðz1; z2; �1
2 Þ ¼ ½�� and c2 ¼ �ðz1;z2;12Þþ�ðz1;z2;�1

2 Þ
2 ¼ hh�ii. We

denote h:i ¼ R 1
2
�1
2

ð:Þdz3. Integrating Eq. (38) for �1
2 to 1

2 along z3 gives,

h�i ¼
Z 1

2

�1
2

�dz3 ¼ hh�ii: ð39Þ

By substituting Eq. (20) in Eq. (28) and in Eq. (32), equilibrium equation in traction

and compression, respectively reads as

�̂�
: ¼ !̂ � �̂�2�� 1

2

� 0
;�ð�Þ þ 2� 0

;�ð�Þ
�0ð�Þ þ 2�0ð�Þ

� �
�̂ 0

33û
0
3;3 �

1

2

� 0
;�ð�Þ
�0ð�Þ

� �
�̂ 0

13û
0
1;3

� 1

2

�0
;�ð�Þ
�0ð�Þ

� �
�̂ 0

23û
0
2;3: ð40Þ

�̂�
: ¼ !̂ � �̂�2�� 1

2

�0
;�ð�Þ
�0ð�Þ

� �
�̂ 0

13û
0
1;3 �

1

2

�0
;��

�0ð�Þ
� �

�̂ 0
23û

0
2;3: ð41Þ

Again substituting Eq. (20) in Eqs. (40) and (41) we can get following equations:

�̂�
: ¼ !̂ � �̂�2�� 1

2

�0
;�ð�Þ þ 2�0

;�ð�Þ
ð�0ð�Þ þ 2�0ð�ÞÞ2

� �
�̂ 0

33�̂
0
33 �

1

2

�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

�̂ 0
13�̂

0
13

� 1

2

�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

�̂ 0
23�̂

0
23: ð42Þ

�̂�
: ¼ !̂ � �̂�2�� 1

2

�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

�̂ 0
23�̂

0
33 �

1

2

�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

�̂ 0
23�̂

0
23: ð43Þ
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Integrating Eq. (42), which is the equation of motion in traction, along z3, and using

Eq. (21) gives,

�̂h�: i ¼ !̂ � �̂�2h�i �
1

2

� 0
;�ð�Þ þ 2�0

;�ð�Þ
ð�0ð�Þ þ 2�0ð�ÞÞ2

� �
h�0ð�Þ þ 2�0ð�Þi2�½û 0

3�:½û 0
3�

� 1

2

�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

h�0ð�Þi2�½û 0
1�:½û 0

1� þ
�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

h�0ð�Þi 2�½û 0
2�:½û 0

2�
� �

: ð44Þ

In order to simplify last expression, we introduce two results.

Lemma 1. Let F 2 C1ð½0; 1�;RÞ, let G 2 C0ð½�1=2; 1=2�; ½0; 1�Þ such that Gðz3Þ ¼
az3 þ b then hF;GðGÞi ¼ hF;bðGÞi and hF ðGÞi;b ¼ hF;GðGÞi.
Proof.

hF;GðGÞi ¼ hF 0ðaz3 þ bÞi ¼ 1

a
ðFða=2þ bÞ � F ð�a=2þ bÞÞ;

hF;bðGÞi ¼ hF 0ðaz3 þ bÞi ¼ 1

a
ðFða=2þ bÞ � F ð�a=2þ bÞÞ;

hFðGÞi;b ¼ 1

a

Z
F

� �
ða=2þ bÞ �

Z
F

� �
ð�a=2þ bÞ

� �� �
;b

¼ 1

a
ðFða=2þ bÞ � F ð�a=2þ bÞÞ:

Lemma 2. Let F 2 C1ð½0; 1�;RÞ, let G 2 C0ð½�1=2; 1=2�; ½0; 1�Þ such that Gðz3Þ ¼
az3 þ b then hFðGÞi�;b ¼ hF ðGÞi2� F;GðGÞ

ðFðGÞÞ2
D E

Proof. Using Lemma 1

hF ðGÞi�;b ¼ hFðGÞi2�
F;bðGÞ
ðF ðGÞÞ2

� �
¼ hF ðGÞi 2�

F;GðGÞ
ðFðGÞÞ2

� �
: ð45Þ

Using the last lemma, it is obtained for example

h�0ð�Þi�;h�i ¼ h�0ð�Þi2�
�0
;�ð�Þ

ð�0ð�ÞÞ2
� �

: ð46Þ

Similarly, integrating Eq. (43) which is equation of motion in compression along

z3, and making the use of Eq. (21) result gives

�̂h�: i ¼ !̂ � �̂�2h�i �
1

2

�0
�ð�Þ

ð�0ð�ÞÞ2
� �

h�0ð�Þi2�½û 0
1�:½û 0

1�

� 1

2

�0
�ð�Þ

ð�0ð�ÞÞ2
� �

h�0ð�Þi2�½û 0
2�:½û 0

2�: ð47Þ
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Then by applying above lemmas, Eq. (44) and Eq. (47) can be re-read, receptively,

�̂h�: i ¼ !̂ � �̂�2h�i �
1

2
h�0ð�Þ þ 2�0ð�Þi�;h�i½û 0

3�:½û 0
3�

�

� 1

2
h�0ð�Þi�;h�i½û 0

1�:½û 0
1� þ h�0ð�Þi�;h�i½û 0

2�:½û 0
2�

	 
�
�

if ½û3� � 0 ð48Þ

and

�̂h�: i ¼ !̂ � �̂�2h�i �
1

2
h�0ð�Þi�;h�i½û 0

1�:½û 0
1�

	�

þ h�0ð�Þi�;h�i½û 0
2�:½û 0

2�

�

�
if ½û3� � 0: ð49Þ

3.4. Matching

The assumption of perfect bonding between adherents and adhesive allows us to use

the matching relationship to their stress and displacement ¯elds on the interface S�,
and such matching can be obtain by substitution of Eqs. (13) in fourth and ¯fth

equation of Eq. (10), we obtain the following relationships:

�̂ 0
i3 z1; z2;�

1

2

� �
¼ �� 0

i3 z1; z2;�
1

2

� �
¼ �0

i3 z1; z2;�
"

2

� �
� �0

i3ðx1;x2; 0Þ ð50Þ

and

û 0
i3 z1; z2;�

1

2

� �
¼ �u 0

i3 z1; z2;�
1

2

� �
¼ u 0

i3 z1; z2;�
"

2

� �
� u 0

i3ðx1;x2; 0
�Þ: ð51Þ

Finally, the following result is obtained:

�0
ij;j þ fi ¼ 0 in ��;

�0
ijnj ¼ gi on Sg;

u0
i ¼ 0 on Su;

�0
ij ¼ a�

ijhkehkðu0Þ in ��;

�0e3 ¼ K�ðh�iÞ½u0�þ þ p0e3 on S;

p0½u0
3� ¼ 0; ½u0

3� � 0; p0 � 0 on S;

�h�: i ¼ !� ��2h�i � 1
2 K

�
;h�i½u0�þ:½u0�þ

� �
� on S;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð52Þ

where

K� ¼
h�0i� 0 0

0 h�0i� 0

0 0 h�0 þ 2�0i�

0
B@

1
CA
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and

½u0�þ ¼ ð½u0
1�; ½u0

2�; ½u0
3�ÞT if ½u0

3� � 0;

½u0�þ ¼ ð½u0
1�; ½u0

2�; 0ÞT if ½u0
3� � 0:

(

It is obtained a model of imperfect interface with damage evolution and unilateral

constraints (Signorini's conditions). Note that \case 1" is a particular case of \case

2". It should also be noted that the proposed formulation is in the context of quasi-

static problems. In the following, the variable \t" represents the pseudo-time.

4. Numerical Example

Consider an uniform one dimensional rod with negligible body force and with unit

cross sectional area. The rod is bonded with a glue on a left support and a traction f

is applied on the right of the rod along its cross section area as shown in Fig. 2.

The displacement ¯eld is governed by

uðxÞ ¼ fðtÞ
E

xþ u0; ð53Þ

where E is the Young's modulus and u0 is given by the following equation of interface

law:

� ¼ fðtÞ ¼ E�ð�Þu0; ð54Þ
where E�ð�Þ is the elastic modulus of the adhesive which is function of �. We are

going to analyse the damage behavior when time increases by assigning di®erent

values to the elastic modulus. We recall that it is considered that � ¼ 1 for safe

material and � ¼ 0 when the bond is completely damaged and intermediate state

when � 2 ½0; 1�. We choose some examples of E�ð�Þ such that
E�ð1Þ ¼ 1

E�ð0Þ ¼ 0

�
. Let E�ð�Þ ¼

E0F ð�Þ and the damage rate which is given by

��
: ¼ !� 1

2
E �
;�ð�Þu 2

0

� �
�
: ð55Þ

It is assumed that when ! � 1
2 E

�
;�ð�Þu2

0 then
� ¼ 1

�
: ¼ 0

�
. Let us study the behavior of

the damage when ! � 1
2 E

�
;�ð�Þu2

0. We use Eqs. (54) and (55) and suppose fðtÞ ¼ t

Fig. 2. A simple rod with damaged interface on its left end.
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which indicates an increasing traction when time increases. For E�ð�Þ ¼ E0Fð�Þ
critical time is obtained t0 ¼

ffiffiffiffiffiffiffiffiffi
2!E0

F 0ð�Þ
q

F ð�Þ, i.e., if t � t0 then bond is undamaged and if

t � t0 then bond starts damaging. Further, suppose that Fð�Þ ¼ 2� � 1, �2; �3,

� ¼ 1, E0 ¼ 1, initial condition �ðt0Þ ¼ �ð0Þ ¼ 1 and ! ¼ 0:01 then critical time for

these functions is given in Table 1.

Further using Explicit Euler scheme at �t ¼ 0:0005 through Matlab, complete

behavior of the interface is shown in Fig. 3 for t 2 ½0; 0:8�.
All three curves in Fig. 3 show that as force increases in time, damage in the bond

increases and tends to zero (totally damaged interface). The damage evolution

depends strongly on the Young modulus dependence in the damage function.

For Fð�Þ ¼ �2 let us see the relationship between the stress and the jump in the

displacements for various values of viscosity which is illustrated in Fig. 4 in time

t 2 ½0; 0:3�. We assume that before the critical time (0.1), i.e., when the stress and

jump of displacement are linear then slope in equal to 1(one). Moreover after the

critical time we assume ! ¼ 0:01001. Note that when � ¼ 0 then � ¼ !
½u0�2 . When � is

Table 1. Value of the critical time for

various damage functions.

F ð�Þ 2� � 1 �2 �3

Critical time t0 0.17 0.1 0.082

Note: Di®erent function F ð�Þ gives dif-

ferent critical time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time

0.5

0.6

0.7

0.8

0.9

1

1.1

E*( )=2 -1

E*( )= 2

E*( )= 3

Fig. 3. Evolution of damage.
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positive we used Euler Explicit scheme to solve the di®erential equation. It is ob-

served a large dependence of the displacement/stress relationship on this coe±cient.

5. Conclusion

By a technique of homogenization and using thermodynamics considerations at the

microscopic level we proposed nonlocal damaged mechanical model of composite

structure made by isotopic material. We derived imperfect interface model from the

damage mechanical model proposed initially by using the matching asymptotic

expansions method and considering perfect bonding conditions between the adher-

ents and the adhesive. Further, we discussed two cases according to dependency of

damage evolution along the interphase's thickness. A model of imperfect interface

with damage evolution and non penetration condition is obtained. We gave a nu-

merical example to study qualitatively the evolutions of the model.

In the future, we intend to develop the model and implement it considering

uncertainties and nonlinearities in the materials (adhesive and adherents).
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