Palaeoenvironments and prehistoric interactions in northern France from the Eemian Interglacial to the end of the Weichselian Middle Pleniglacial

Jean-luc Locht, Emilie Goval, Pierre Antoine, Sylvie Coutard, Patrick Auguste, Clément Paris, David Hérisson

To cite this version:
Jean-luc Locht, Emilie Goval, Pierre Antoine, Sylvie Coutard, Patrick Auguste, et al.. Palaeoenvironments and prehistoric interactions in northern France from the Eemian Interglacial to the end of the Weichselian Middle Pleniglacial. Frederick W. F. Foulds; Helen C. Drinkall; Angela R. Perri; David T. G. Clinnick. Wild Things: Recent advances in Palaeolithic and Mesolithic research, Oxbow Books, pp.70-78, 2014, 978-1782977469. hal-02335790

HAL Id: hal-02335790
https://hal.science/hal-02335790
Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Contents

Preface ... v
List of Contributors ... vi

1. Chronology of the Mid Upper Palaeolithic of European Russia: Problems and prospects 1
 Natasha Reynolds

2. Invisible Individuals, Visible Groups: On the evidence for individuals and groups
 at the Lower Palaeolithic site of Caddington, Bedfordshire, UK 12
 Frederick W. F. Foulds

3. Alpine ‘Hunters’ from the Middle Mesolithic to Early Neolithic: A contribution
 to the study of lithic industries from two high altitude loci (Gerland and La Mare)
 in Vercors, Northern French Alps .. 41
 Alexandre Angelin

4. The Phenomenon of Mesolithic Settlement within the Bohemian Paradise Area,
 Czech Republic .. 61
 Petr Šída, Marta Moravcová, Dagmar Vokounová Franzeová and Jan Prostředník

5. Palaeoenvironments and Prehistoric Interactions in Northern France from the Eemian
 Interglacial to the End of the Weichselian Middle Pleniglacial 70
 Jean-Luc Locht, Emilie Goual, Pierre Antoine, Sylvie Coutard, Patrick Auguste, Clément Paris
 and David Hérissón

6. The Feasibility of Reconstructing Neanderthal Demography as an Approach
 to Examining Extinction ... 79
 Danac Rebecca Dodge

7. Le Cuzoul De Gramat (Lot, France): A key sequence for the early Holocene
 in southwest France ... 94
 Nicolas Valdeyron, Aureade Henry, Benjamin Marquebielle, Bruno Bosc-Zanardo,
 Bernard Gassin, Sylvène Michel and Sylvie Philibert

8. Human Cranio metric Variation Supports Discontinuity at the Late Glacial
 Maximum in Europe .. 106
 Ciáran Brewster, Ron Pinhasi and Christopher Meiklejohn
9. Funerary Contexts: The case study of the Mesolithic shellmiddens of Muge (Portugal) 119
 Olivia Figueiredo, João Cascalheira, João Marreiros, Telmo Pereira, Cláudia Umbelino
 and Nuno Bicho

10. Fire as a Component of Mesolithic Funerary Rituals: Charcoal analyses from a burial
 in Cabeço da Amoreira (Muge, Portugal) ... 126
 Patrícia Diogo Monteiro, João Cascalheira, João Marreiros, Telmo Pereira and Nuno Bicho

11. Animal Magic: The discovery of Upper Palaeolithic Parietal art in Cathole Cave,
 Gower Peninsula, South Wales ... 133
 George Nash

12. Ideology of the Hunt and the End of the Epi-Palaeolithic ... 144
 Piotr Jacobsson

13. Animal Exploitation Strategies in Eastern Aquitaine (France) during the Last
 Glacial Maximum ... 160
 Jean-Christophe Castel, Myriam Boudadi-Maligne, Sylvain Ducasse, Caroline Renard,
 François-Xavier Chauvière, Delphine Kuntz and Jean-Baptiste Mallye

14. Locating Potential Mesolithic Fish Sites in Britain using Predictive Modelling:
 Applying the ‘fishing site model’ to British conditions .. 175
 Kris Hall

15. Foragers and Farmers in Mesolithic/Neolithic Europe, 5500–3900 cal. BC:
 Beyond the anthropological comfort zone .. 185
 Peter Rowley-Conwy
5. Palaeoenvironments and Prehistoric Interactions in Northern France from the Eemian Interglacial to the End of the Weichselian Middle Pleniglacial

Jean-Luc Locht, Emilie Goval, Pierre Antoine, Sylvie Coutard, Patrick Auguste, Clément Paris and David Hérisson

Abstract
The Upper Pleistocene in the north of France is characterised by discontinuous human presence, closely linked to climatic fluctuations. Human groups were mainly present during the Eemian interglacial and at the beginning of the Weichselian glacial period, as well as during the Late Glacial, in correlation with large mammal populations. Upper Pleistocene climatic fluctuations impacted on raw material access, which partly conditioned lithic production modalities. However, the influence of cultural traditions remains important, both for lithic production and subsistence strategies.

Introduction
The excavation of abundant Middle Palaeolithic sites over the past twenty years has provided invaluable chronological and environmental information on Upper Pleistocene human occupation in the north of France. This region is considered here to extend from the Seine to the Escourt Basins (Figure 5.1).

The study discussed in this paper is based on data from 47 excavated archaeological levels, representing a total surface area of about 55,952 m² (Table 5.1), combined with a unique frame of reference in Europe for Pleistocene sequences in loessic context. A total of 75,612 artefacts have been unearthed in these levels. From a chronological viewpoint, five of these levels are contemporary with the Eemian interglacial (Marine Isotope Stage 5e, see Table 5.1 and Figure 5.2), seven are attributed to MIS 5c, ten to MIS 5a and eight others, occurring in steppic soils, to the end of MIS 5a. Lastly, thirteen are contemporary with the end of the Lower Pleniglacial (MIS 4) or Middle Pleniglacial (MIS 3). This significant mass of information has enabled us to analyse interactions between climatic fluctuations, responsible for palaeoenvironmental modifications, and prehistoric occupations. Here we focus on four main themes: occupation density, raw materials, lithic industries and faunal remains.

Climatic changes and human occupations
During the Eemian, human occupations only appear to be preserved in fluvialite sediments (for example, at Caours – see Locht et al. 2010). At present, these are rare for taphonomic reasons (interglacial soil erosion from the first climatic deterioration at the beginning of the Glacial period onwards) (Locht 2004; Roebroeks and Speeles 2002), and do not expose a realistic record of the Neanderthal occupation of our regions during this interglacial (Figure 5.3). The climate and environment is comparable to that of the present temperate zone, with oceanic influence and deciduous woodlands. The forested landscape was closed, with abundant animal species represented by few specimens.

A slow climatic degradation and a progressive continentalisation of the climate in successive stages is observed from the beginning of the Weichselian glacial period (MIS 5d to 5a) (Antoine et al. 1994, 2003, 2011a, b). The faunal spectrum is less varied, but sizeable herds of herbivores were clearly present.
Sites are preserved in colluvial plateau sediments and especially on lower slopes where pedosedimentary activity is most developed. The high number of well-preserved sites due to favourable conditions seems to indicate that this type of environment was propitious to the implantation and subsistence of Middle Palaeolithic hunting groups.

During the Lower Weichselian glacial maximum (MIS 4), northern Europe seems to be abandoned by human populations. The recolonisation of these regions begins at the end of MIS 4 (Lochot 2004) and continues during the Middle Pleniglacial (MIS 3). Again, sites are preserved in loess sediments on slopes and plateaus. The climate, environment and animal communities are globally characteristic of ‘Mammoth steppe’ conditions (Guthrie 1982), but human occupation appears to occur during short phases of climate improvement (interstadials), during which one can note the formation of Boreal brown soil type horizons. As there are fewer sites for this period than during the early glacial Weichselian, it is probable that human occupation was less dense at this time.

At the end of the Middle Pleniglacial, the first Early Upper Palaeolithic occupations appear in the north of France. Thus, the Havrincourt human occupations (Sector 2, Level 1: early Gravettian) and Amiens-Renancourt 2 in the suburbs of Amiens (early Gravettian) occur at about 28,500 BP (around 34 ka cal. BP), in a phase of relative climatic improvement during MIS 3 (Goval and Hérisson 2012; Paris et al. 2013).

Climate changes and raw materials

Apart from a few rare exceptions, the lithic series are made in Cretaceous flint issued from chalk, available throughout the region. Raw material access appeared difficult during the Eemian, given that temperate forests were abundant that must have concealed flint outcrops. Raw materials, therefore, must only have been accessible at tree falls or riverbeds. The five occupation levels at Caours indicate that flint blocks of reduced dimensions were collected from coarse alluvial deposits in the nearby Scardon. An identical situation occurred during the early Weichselian glacial, characterised by a continental environment with a Boreal forest and open herbaceous areas (Antoine et al. 1994). The abundant lithic series contemporary with this phase of climatic degradation (MIS 5d to 5a) also show that smaller blocks, gathered from broken stones on the plateau, were selected for reduction.

When the Lower Pleniglacial climatic deterioration eroded the chalky slopes, good-quality flint nodules of large size became available. This period corresponds to recurring Mousterian occupations at the base of these chalk taluses at the end of MIS 4 (for example Fitz-James, Teheux, 2001; Ault, Antoine and Auguste,
<table>
<thead>
<tr>
<th>Site</th>
<th>Environment/stratigraphic position</th>
<th>Chronostratigraphy</th>
<th>MIS</th>
<th>Dating</th>
<th>Artefacts (no.)</th>
<th>Excavated Area (m²)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caours N4</td>
<td>Calcareous fluvial silts (overbank)</td>
<td>Eemian interglacial</td>
<td>5e</td>
<td>121±8 ka BP (TL heated flints, OSL)</td>
<td>1100</td>
<td>241</td>
<td>Antoine et al. 2006</td>
</tr>
<tr>
<td>Caours N3</td>
<td>Surface of past layer (L39)</td>
<td>Eemian interglacial</td>
<td>5e</td>
<td></td>
<td>319</td>
<td>241</td>
<td>Antoine et al. 2006</td>
</tr>
<tr>
<td>Caours N2</td>
<td>Tufa deposit</td>
<td>Eemian interglacial</td>
<td>5e</td>
<td></td>
<td>132</td>
<td>241</td>
<td>Antoine et al. 2006</td>
</tr>
<tr>
<td>Caours N1</td>
<td>Tufa deposit</td>
<td>Eemian interglacial</td>
<td>5e</td>
<td>123±3 (average / 10 U/Th TIMS dates from indurated tufa)</td>
<td>221</td>
<td>241</td>
<td>Antoine et al. 2006</td>
</tr>
<tr>
<td>Caours N C</td>
<td>Tufa deposit</td>
<td>Eemian interglacial</td>
<td>5e</td>
<td></td>
<td>1374</td>
<td>15</td>
<td>Antoine et al. 2006</td>
</tr>
<tr>
<td>Saint-Sauveur</td>
<td>Organic calcareous fluvial silts</td>
<td>Weichselian Early-glacial A</td>
<td>5d (7?)</td>
<td>95±4 ka (U/th / bone / minimum age)</td>
<td>4</td>
<td>4</td>
<td>Antoine et al. 1995</td>
</tr>
<tr>
<td>Bettencourt N3b</td>
<td>Bettencourt soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5d</td>
<td></td>
<td>1358</td>
<td>866</td>
<td>Locht (ed.) 2002</td>
</tr>
<tr>
<td>Bettencourt N2a</td>
<td>Bettencourt soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td></td>
<td>87</td>
<td>180</td>
<td>Locht (ed.) 2002</td>
</tr>
<tr>
<td>Fresnoy-au-Val 2</td>
<td>Bettencourt soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td>106.8±7.5 ka BP (TL heated flints)</td>
<td>1313</td>
<td>1300</td>
<td>Goval et Locht 2008</td>
</tr>
<tr>
<td>Villiers-Adam</td>
<td>Bettencourt soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td>110±11 ka BP (TL heated flints)</td>
<td>2175</td>
<td>2850</td>
<td>Locht et al. 2003</td>
</tr>
<tr>
<td>Saint-Hilaire-sur-Helpe</td>
<td>Bettencourt soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td>98.9±9.3 ka BP (TL heated flints)</td>
<td>119</td>
<td>2232</td>
<td>Lantoine and Feray 2006</td>
</tr>
<tr>
<td>Seclin D7</td>
<td>sandy organic fluvial silts</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td>91±11 (layer 4) ka to 95±11 ka BP (layer 7, TL heated flints)</td>
<td>952</td>
<td>47</td>
<td>Tuffreau et al. 1994</td>
</tr>
<tr>
<td>Seclin D6</td>
<td>sandy organic fluvial silts</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td></td>
<td>704</td>
<td>35</td>
<td>Tuffreau et al. 1994</td>
</tr>
<tr>
<td>Revelles ‘Le Camp Péron’</td>
<td>Bettencourt soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5c</td>
<td></td>
<td>62</td>
<td>722</td>
<td>Sellier-Ségard N. 2002</td>
</tr>
<tr>
<td>Mauquenchy, WA2</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td>83±7.6 ka BP (TL heated flints)</td>
<td>80</td>
<td>3058</td>
<td>Locht et al. 2013</td>
</tr>
<tr>
<td>Fresnoy-au-Val 1</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>4240</td>
<td>1500</td>
<td>Goval and Locht 2008</td>
</tr>
<tr>
<td>Mauquenchy, WA1</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td>77 ka±7.2 ka (TL heated flints)</td>
<td>189</td>
<td>123</td>
<td>Locht et al. 2013</td>
</tr>
<tr>
<td>Bettencourt N2b</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>6466</td>
<td>866</td>
<td>Locht (ed.) 2002</td>
</tr>
<tr>
<td>Riencourt CA</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>5000</td>
<td>4C</td>
<td>Tuffreau (ed.) 1993</td>
</tr>
<tr>
<td>Ploisy N1</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>33</td>
<td>386</td>
<td>Defaux 2004</td>
</tr>
<tr>
<td>Chavignon SGF</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>1164</td>
<td>5850</td>
<td>Sellier 2008</td>
</tr>
<tr>
<td>Hermies Champ Brucette rív. H</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>4800</td>
<td>160</td>
<td>Vallin and Masson, 2004</td>
</tr>
<tr>
<td>Savy N3</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial A</td>
<td>5a</td>
<td></td>
<td>39</td>
<td>330</td>
<td>Locht et al. 2006</td>
</tr>
<tr>
<td>Etricourt HU</td>
<td>Saint Saульie SS1 soil (grey forest soil)</td>
<td>Weichselian Early-glacial B</td>
<td>5a</td>
<td></td>
<td>250</td>
<td>900</td>
<td>Hérisson et al. en cours</td>
</tr>
<tr>
<td>Bettencourt N1</td>
<td>Steppic soil (Saint-Saульie SS2 soil)</td>
<td>Weichselian Early-glacial B</td>
<td>5a</td>
<td></td>
<td>438</td>
<td>866</td>
<td>Locht (ed.) 2002</td>
</tr>
<tr>
<td>Site</td>
<td>Type of Deposite</td>
<td>Age Range</td>
<td>Age</td>
<td>References</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* * Auteuil sup.</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>1549</td>
<td>3300</td>
<td>Swinnen et al. 1996</td>
<td></td>
</tr>
<tr>
<td>Chavignon LBG</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>438</td>
<td>5830</td>
<td>Sellier 2008</td>
<td></td>
</tr>
<tr>
<td>Gouy St André</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>491</td>
<td>430</td>
<td>Depaepe and Deschotd 2001</td>
<td></td>
</tr>
<tr>
<td>Villers Bretonneux</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>79</td>
<td>262</td>
<td>Depaepe et al. 1997</td>
<td></td>
</tr>
<tr>
<td>Villers Bretonneux</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>102</td>
<td>262</td>
<td>Depaepe et al. 1997</td>
<td></td>
</tr>
<tr>
<td>Blangy-Tronville inf.</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>337</td>
<td>2000</td>
<td>Depaepe et al. 1999</td>
<td></td>
</tr>
<tr>
<td>Blangy-tronville sup.</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>92</td>
<td>2000</td>
<td>Depaepe et al. 1999</td>
<td></td>
</tr>
<tr>
<td>Ploisy N2</td>
<td>Steppic soil SS2 / SS3</td>
<td>Weichselian Early-glacial B</td>
<td>5a final</td>
<td>8</td>
<td>398</td>
<td>Defaux 2004</td>
<td></td>
</tr>
<tr>
<td>Beauvais 2</td>
<td>Eolian sands</td>
<td>Weichselian Lower Pleniglacial</td>
<td>4</td>
<td>55.6 ± 4 ka BP</td>
<td>11700</td>
<td>763</td>
<td>Locht 2004</td>
</tr>
<tr>
<td>Beauvais 1</td>
<td>Eolian sands</td>
<td>Weichselian Lower Pleniglacial</td>
<td>4</td>
<td>2000</td>
<td>763</td>
<td>Locht 2004</td>
<td></td>
</tr>
<tr>
<td>Fitz-James</td>
<td>Loess</td>
<td>Weichselian Lower Pleniglacial</td>
<td>4</td>
<td>1391</td>
<td>644</td>
<td>Guerlin 2001</td>
<td></td>
</tr>
<tr>
<td>Ault</td>
<td>Calcareous slope deposits (head)</td>
<td>Weichselian Lower Pleniglacial</td>
<td>4</td>
<td>55 ± 10 ka BP (RPE/U-Th bones)</td>
<td>-</td>
<td>-</td>
<td>Antoine and Auguste 2003</td>
</tr>
<tr>
<td>Savy N2</td>
<td>Brown loams</td>
<td>End isotopic stage 4/ beginning stage 3</td>
<td>48.7 ± 8.2/-6.9 (TL sediments), 51 ± 3 ka (U-Th bones)</td>
<td>36</td>
<td>330</td>
<td>Loch et al. 2006</td>
<td></td>
</tr>
<tr>
<td>Havrincourt sect. 1</td>
<td>Brown loams</td>
<td>End isotopic stage 4/ beginning stage 3</td>
<td>58 ± 7.2 (OSL)</td>
<td>73</td>
<td>2100</td>
<td>Goval et al. 2013</td>
<td></td>
</tr>
<tr>
<td>Havrincourt sect. 2, niv. 2</td>
<td>Brown loams</td>
<td>End isotopic stage 4/ beginning stage 3</td>
<td>58 ± 7.2 (OSL)</td>
<td>88</td>
<td>4100</td>
<td>Goval et al. 2013</td>
<td></td>
</tr>
<tr>
<td>Attilly 2</td>
<td>base of Saint-Acheul boreal brown soil</td>
<td>Transition between Lower and Middle pleniglacials</td>
<td>4/3</td>
<td>74</td>
<td>73</td>
<td>Locht and Guerlin 1997</td>
<td></td>
</tr>
<tr>
<td>Attilly 1</td>
<td>Saint-Acheul boreal brown soil</td>
<td>Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>452</td>
<td>292</td>
<td>Locht and Guerlin 1997</td>
<td></td>
</tr>
<tr>
<td>Hénin-sur-Cojeul G</td>
<td>Saint-Acheul boreal brown soil</td>
<td>Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>3500</td>
<td>175</td>
<td>Marcy et al. 1993</td>
<td></td>
</tr>
<tr>
<td>Hermies T'chou Marché niv. 1c</td>
<td>Saint-Acheul boreal brown soil</td>
<td>Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>790</td>
<td>3C</td>
<td>Vallin and Masson 2004</td>
<td></td>
</tr>
<tr>
<td>Ploisy N3</td>
<td>Saint-Acheul boreal brown soil</td>
<td>Transition between Lower and Middle pleniglacials</td>
<td>4/3</td>
<td>286</td>
<td>388</td>
<td>Defaux 2004</td>
<td></td>
</tr>
<tr>
<td>Gauville</td>
<td>Saint-Acheul boreal brown soil</td>
<td>Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>139</td>
<td>1555</td>
<td>Guerlin 2002</td>
<td></td>
</tr>
<tr>
<td>Saint-Amand-les-Eaux</td>
<td>Eolian sands</td>
<td>Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>49.2 ± 3.34 ka BP (OSL)</td>
<td>11500</td>
<td>277</td>
<td>Ferry et al. 2010</td>
</tr>
<tr>
<td>Havrincourt sect. 2, niv. 1</td>
<td>Arctic brown soil</td>
<td>Final part of Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>6453</td>
<td>4100</td>
<td>Goval and Hérisson 2012</td>
<td></td>
</tr>
<tr>
<td>Anières-Renancourt 2</td>
<td>Arctic brown soil</td>
<td>Final part of Weichselian Middle Pleniglacial</td>
<td>3</td>
<td>1415</td>
<td>709</td>
<td>Paris et al. 2013</td>
<td></td>
</tr>
</tbody>
</table>

Total: 75612 5952

Table 5.1. List of concerned sites (fluvial sediments in grey).
The less abundant lithic series from the Middle Pleniglacial (MIS 3) show that these outcrops must still have been partly accessible (Gauville, Attily, Havrincourt Sector I) before being covered with Upper Pleniglacial loess.

Climatic changes and lithic production systems

Environmental changes do not seem to have had a direct impact on lithic reduction strategies. During the Eemian, the five occupation levels from Caours indicate discoidal reduction, sometimes associated with Levallois methods (Figure 5.4). Subsequently, during the early Weichselian, reduction strategies became more diversified and several systems coexist (blade core, Levallois, convergent unipolar and sometimes discoidal) with multiple production aims (blades, flakes, points, etc.). At the end of the Lower Pleniglacial, raw materials became accessible once again and lithic complexes are characterized by the exclusive presence of Levallois debitage. The site of Beauvais is an exception with two levels characterised by the sole presence of discoidal debitage (Locht 2004). Handaxe production is very poorly represented, thereby emphasising the specialised nature of sites with handaxes and mass handaxe production (Figure 5.4).
Figure 5.3. Chronostratigraphical position of the archaeological levels.

Figure 5.4. Characterisation of the main chaînes opératoires of the archaeological levels.
The impact of climatic changes on subsistence strategies

Faunal data are less abundant, exclusively due to taphonomic reasons. Out of 47 occupations ascribed to the recent Middle Palaeolithic (MIS 5e to 3), only fourteen have yielded fauna (Figure 5.5). The two Early Upper Palaeolithic occupations (Havrincourt Sector 2, Level 1 and Renancourt 2) have also yielded abundant bone remains. During the Eemian, the fauna is dominated by cervids (red deer and fallow deer), but aurochs are also present, as shown by the five Caours levels. Generally speaking, the faunal series are then dominated by large herbivores from the beginning of the Weichselian glacial period, particularly horse and Steppa bison, like at Hermies or Héninsur-Cojeul (Auguste 2009). Woolly mammoth and woolly rhinoceros are also present, though much less abundant. However, mammoth plays a central role at certain sites, such as Ault. During phases of climatic deterioration, reindeer is present in the spectrum, e.g. at Beauvais and Havrincourt. All these occupations are mainly characterised by the hunting of large herbivores, although are occasionally oriented towards smaller animals such as reindeer. The butchery activities that have been identified at these sites attest to the removal of meat, occasionally accompanied by the breakage of long bones, indicating diversified subsistence strategies that may be linked to the seasonality of occupation. In all of the sites younger than the Eemian, the environment is always open and dominated by grasslands during climatic phases, such as at Bettencourt-Saint-Ouen, and steppe during cold phases (Auguste 2012).

Discussion

Environmental changes had an impact on human access to flint, which was the main raw material during the Palaeolithic occupation of the north of France. Generally speaking, access to deposits was hampered by the presence of forests, which stimulated the procurement of flint from secondary sources. The flint nodules that were exploited are, therefore, relatively small in size and variable in quality. During the Lower Pleniglacial, slopes were eroded and flint bars became easily accessible on the chalky talus. Correspondingly, good-quality raw material was available in larger sized modules, propitious to the production of large preferential Levallois flakes.

Climatic change does not seem to have influenced the choice of lithic reduction strategies. The case of Bettencourt-Saint-Ouen is evocative and shows the persistence of similar needs (chaîne opératoires oriented towards the production of points, blades and flakes using identical technical schemas) for more than 40,000 years in the same area, across differing environments (forest at the base and steppe towards the top). This stability
in lithic reduction strategies underlines the importance of cultural traditions in the face of environmental modifications (Locht 2002; Antoine et al. 2003). Recurring occupations at the northern French sites suggests some kind of management of territory, as well as the transmission of technical traditions throughout time.

Climatic modifications do not appear to influence Neanderthal subsistence strategies other than varying their main herbivorous prey taxa. Similar behaviour can be observed at sites characterised by contrasting environments, e.g. interglacial (Caours) and Pleniglacial (Beauvais) where subsistence strategies were identical. Hunting preferentially targeted small or medium sized herbivores, although larger species are present. Transportable animal carcasses, such as those of red deer, fallow deer, and reindeer, were brought back whole to butchery sites, while larger animals (e.g. elephant, aurochs, mammoth, and rhinoceros) seem to have been butcheted at the kill site and brought back in quarters. At both sites, tools produced by discoidal reduction were mainly used for carcass processing. At other sites, however, large herbivores dominate, highlighting different subsistence strategies.

The occupations of both Neanderthals and the first anatomically humans in the north of France are correlated with phases of climatic amelioration. Both groups displayed the ability to adapt to their environment and their behaviour does not seem to have been very different. Thus, the animal and lithic procurement strategies demonstrate that subsistence behaviour and anticipation were similar during the Middle and Upper Palaeolithic (Locht 2004).

Bibliography

