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Abstract: In this work an approach for the generation of a generalized state-space aeroser-
voelastic model based tangential interpolation, also known as Loewner rational interpolation,
is presented. The resulting differential algebraic system (DAE) system is reduced to a set of
ordinary differential equations (ODE) by residualization of the non-proper part of the transfer
function matrix. The generalized state-space is of minimal order and allows for the application
of the force summation method (FSM) for the aircraft loads recovery, which shows a superior
convergence when compared to the mode displacement method (MDM) for an increasing num-
ber of generalized coordinates for the cut loads recovery. Compared to the classical rational
function approximation (RFA) approach, the presented method provides a minimal order re-
alization with exact interpolation of the unsteady aerodynamic forces in tangential directions,
avoiding any selection of poles (lag states). After a demonstration of the tangential interpo-
lation techniques on the transcendental Theodorsen and Sears functions, the new approach is
applied to the generation of an aeroservoelastic model for loads evaluation of the NASA Com-
mon Research model under atmospheric disturbances, showing an excellent agreement with
the reference model in the frequency domain. Applications include the aerodynamic transfer
function matrices generated by either potential flow or linearized computational fluid dynamics
(CFD) solvers. The resulting aeroservoelastic model of minimal order is used for the design of
an H∞-optimal controller for gust loads alleviation (GLA).

1 INTRODUCTION

One of the major tasks for aircraft certification is the consideration of dynamic load cases,
in particular those caused by gust and continuous turbulence encounters, considered by the
regulatory agencies [1, 2]. In order to reduce the internal loads caused by these atmospheric
disturbances without compromising the structural weight different load alleviation schemes are
applied. To that aim, an accurate model suited for the design of advance control laws covering
the complete flight envelope is of most relevance. Thus the need arises for a precise but at the
same time efficient model description in order to develop suitable control laws for an efficient
load reduction when encountering atmospheric disturbances. Moreover, modern transport air-
craft are becoming more flexible and as a result the eigenfrequency values corresponding to the
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first flexible modes decrease and tend to interact with the rigid-body behaviour of the structure,
requiring thus a model description containing both the rigid and flexible effects for an effective
load alleviation.

Modern approaches of control theory require a description of the model in the time domain
of minimum size. However, the aerodynamic models describing the flow over the aircraft are
provided within the frequency domain in tabular form as they cannot usually be obtained in an
explicit form and if they do, they contain transcendental functions which cannot be transformed
in the time domain by a direct application of an inverse Laplace transform. Thus there is a need
of converting the frequency domain description into time domain models.

The method of Roger [3] and Abel [4] represents the three-dimensional unsteady subsonic aero-
dynamic flow by means of a least-squares technique with a series of poles which represent the
aerodynamic lags due to the presence of the wake. All elements of the transfer function ma-
trix share the same poles, which in turn have to be chosen in advance. Note that the least
squares fit is ill-conditioned when increasing the number of real poles and prone to numerical
instabilities [5, 6]. For the representation of a gust excitation additional issues related to the
time delay behaviour are encountered. In order to take into account the poles as parameters to
the least-squares fit they can be further considered in an optimization problem [7,8], ensuring a
minimum error of the least-squares for a fixed number of poles. Karpel presented the minimum-
state method [9], where an iterative least-squares process is applied to the aeroelastic system,
reducing the total number of augmented states. This iterative process leads to a significantly
increase of the computational effort which may be of up to three orders of magnitude [10].

In an effort to reduce the size of the aeroservoelastic systems formulated in the time domain,
modern techniques of the control theory have been commonly applied to aeroelastic systems
where the loads recovery is done by means of the mode displacement method (MDM) [11–14],
even though the force summation method (FSM) method has a superior convergence of the cut
loads values with respect to the number of structural modes considered. In this work the FSM
method is considered for the recovery of the cut loads acting over the airframe, both in the time
and in the frequency domains.

In general all the rational function approximation (RFA) methods introduce an error in the de-
scription of the aerodynamic loads due to the least squares fit. In order to avoid this error,
different techniques based on rational interpolation may be used. More recently, the eigensys-
tem realization algorithm (ERA) algorithm [15] has been widely used for system identification
and model reduction [16, 17] in the time domain, which presents two main limitations. Firstly,
its application is limited to systems with a proper transfer function matrix and thus only the
MDM method can be considered for the loads recovery. Secondly, if the system under consid-
eration has a large number of inputs and outputs then a big computational effort is required to
compute the singular value decomposition (SVD) of the dense Hankel matrix [18].

For the consideration of linear time invariant (LTI) multi-input multi-output (MIMO) systems
with non-proper transfer function matrix a more general setting, namely that of the linear de-
scriptor systems, is needed [19]. The approach presented in this work is based on the Loewner
framework for descriptor systems, which represents an extension of the rational interpolation at
infinite frequency to a set of frequencies available at particular values [20].

In this work an approach to generate an aeroservoelastic state-space model suited for loads
computation and control design which overcomes the above limitations and listed in Table 1
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Formulation Method Limitations
Roger (1977) [3] Rational functional

approximation (RFA)
with fixed real poles

-Use of real poles, lack of complex poles
to represent oscillatory fluid modes

typical in the transonic regime.
-Increasing the number of poles may
result in an ill-conditioned problem.

-Not appropriate for input delays (gust)
Karpel (1982) [9] Rational functional

approximation (RFA)
and nonlinear
optimization

-Use of real poles, lack of complex poles
to represent oscillatory fluid modes

typical in the transonic regime.
-Very high computational time.

-Not appropriate for input delays (gust)
Silva (2004) [16] Eigensystem

realization algorithm
(ERA)

-Rigid-body modes are not considered.
-It requires a proper aerodynamic

transfer function matrix.
-Computation of the Hankel matrix.

Brunton (2014) [21] Eigensystem
realization algorithm

(ERA)

-Non-proper part of the aerodynamic
transfer function matrix must be

explicitly known.
-Computation of the Hankel matrix.

Table 1: Summary of methods applied for the formulation of aerodynamic and aeroservoelastic models in the time
domain and current limitations.

is presented. The proposed approach shall overcome all the current limitations, avoiding any
selection of poles. Also, no iterative procedure is required for the precise formulation of the
aeroservoelastic model in the time domain.

Regarding the design of proper controllers for load reduction, several methods have been ap-
plied for the design of GLA techniques [22, 23]. In the present work a feedback controller
strategy based on measurements over the aircraft structure has been considered. The aeroser-
voelastic model presented in this work allows for the systematic consideration of the flexible
effects into the controller design, which have been shown to play a role due to the interaction
with the rigid-body behaviour of the aircraft [24, 25]. Aouf et al. [26] compared the effectiv-
ity of different controllers designed with H2, weighted-H2 and H∞ techniques, showing the
superiority of both the weighted-H2 and H∞ controllers when compared to a regular H2 de-
sign. Typically the available sensor measurements for the controller action are either structural
displacements, velocities or accelerations. The aim of this work concerns the generation of a
proper aeroservoelastic model and thus it is assumed that the wing root bending moment can be
directly measured, leading to the design of an optimal H∞ controller which makes use of the
outer ailerons for the load reduction strategy. Additional sensors and actuators can be readily
added to the developed model [27].

The paper is organized as follows. In Section 2 the Loewner realization in connection with
the theory of descriptor linear systems is presented and an application to the bidimensional
unsteady incompressible flow over an airfoil containing transcendental functions is shown. A
generalization to three-dimensional aeroservoelastic systems is then presented in Section 3. In
Section 4 applications to the NASA common research model (CRM) / flutter reduced order
assessment (FERMAT) model with aerodynamic models considering the doublet lattice (DLM)

3



IFASD-2019-066

potential method and high-fidelity CFD methods are presented. Additionally, an H∞-optimal
controller for a GLA strategy is developed. Finally conclusions and future work are pointed out
in Section 5.

2 GENERALIZED REALIZATION PROBLEM

2.1 Tangential interpolation

A descriptor linear system Σ is described in the time domain by a set of differential and alge-
braic equations (DAE), also denoted as generalized state-space system:

Σ : Eẋ (t) = Ax (t) + Bu (t) (1)
y (t) = Cx (t) + Du (t) ,

where x (t) ∈ Rn is the state vector, u (t) ∈ Rnu the input vector, E,A ∈ Rn×n, B ∈ Rn×nu ,
C ∈ Rny×n and D ∈ Rny×nu are constant with E possibly singular. In this work regular systems
are considered, that is, det (sE−A) 6= 0 except for a finite number of eigenvalues (which may
have an infinite value), denoted by the set σ (E,A). The resolvent set ρ (E,A) is given by
ρ (E,A) = C \ σ (E,A).

The transfer function matrix H (s) of the system Σ is:

H (s) = C (sE−A)−1 B + D,

and is said to be proper if lim
s→∞

H (s) is bounded (< ∞ for each of the its components) and

strictly proper if lim
s→∞

H (s) = 0. If the DAE system is split into the fast H∞ (s) (including

only the poles with infinite value) and slow subsystems Hp (s) (including only the finite poles)
and restricted system equivalence relations are applied so that H (s) = Hp (s) + H∞ (s), the
non-proper part of the transfer function matrix H∞ (s) can be written as a Neumann series
expansion [28]:

H∞ (s) = C (sN− I)−1 B + D = D−CB−
υ−1∑
j=1

sjCNjB,

where N is a nilpotent matrix with nilpotence index υ and coincides with the DAE index. This
provides a direct relation between the so called DAE index υ and the non-proper part of the
transfer function matrix H∞ (s), with the DAE index ν one order less than that of the highest
polynomial term.

The set (E,A,B,C,D) is called a realization of H (s). The realization is not unique and
the one of the smallest possible order n is called minimal. The minimal realization used here is
based on the rational interpolation for tangential data [19,29]. Tangential interpolation is a form
of rational interpolation where the data is interpolated along particular directions. In particular,
the data consist of the right interpolation data:{

λi, ri,wi | λi ∈ C, ri ∈ Cny×1,wi ∈ Cnu×1
}
,

for i = 1, ..., nr:
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Λ = diag [λ1, ..., λnr ] ∈ Cnr×nr

R = [r1, ..., rnr ] ∈ Cnu×nr

W = [w1, ...,wnr ] ∈ Cny×nr ,

and the left interpolation data:{
µj, lj,vj | µj ∈ C, lj ∈ C1×nu ,vj ∈ C1×ny

}
,

for j = 1, ..., nl:

M = diag [µ1, ..., µnl
] ∈ Cnl×nl

L =
[
lT1 , ..., l

T
nl

]T ∈ Cnl×ny

V =
[
vT1 , ...,v

T
nl

]T ∈ Cnl×nu .

The transfer function matrix is evaluated at the values λi, µj and ri, lj are referred to as right
and left tangential directions, while wi,vj are the right and left tangential data. The rational
interpolation problem for tangential data aims at finding a realization (E,A,B,C,D) such that
the associated transfer function H satisfies the right and left constraints,

H (λi) ri = wi, i = 1, ..., nr (2)
ljH (µj) = vj, j = 1, ..., nl

which is achieved by means of the Loewner and shifted Loewner matrices. Next the structure
of these two matrices is described.

The set Z of points in the complex plane Z = {z1, ...znr+nl
} and the corresponding values of

the transfer function matrix is partitioned into the left and right data:

Z = {λ1, ..., λnr} ∪ {µ1, ..., µnl
} , (3)

where the total number of sample points is nr + nl. The Loewner matrix is built as:

L =


v1r1−l1w1

µ1−λ1 · · · v1rnr−l1wnr

µ1−λnr... . . . ...
vnl

r1−lnl
w1

µnl
−λ1 · · · vnl

rnr−lpwnr

µnl
−λnr

 ,
The Loewner matrix can be also expressed in terms of the tangential controllability and ob-
servability matrices [29]. If the directions ri, lj are selected generically (random in practice)
the rank of the Loewner matrix L is equal to the rank of the underlying matrix E. The shifted
Loewner matrix is the Loewner matrix corresponding to sH (s) and is built as:

Lσ =


µ1v1r1−λ1l1w1

µ1−λ1 · · · µ1v1rnr−λnr l1wnr

µ1−λnr... . . . ...
µnl

vnl
r1−λ1lnl

w1

µnl
−λ1 · · · µnl

vnl
rnr−λnr lnl

wnr

µnl
−λnr

 ,

Assuming that nr = nl and that det (Lσ − sL) 6= 0 a minimal realization for the linear descrip-
tor system is given by [19, 30]:
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E = −L, A = −Lσ, B = V, C = W, D = 0, (4)

and the associated transfer function H (s) = W (Lσ − sL)−1 V satisfies the right and left
interpolation conditions of Eq. 2. An additional SVD factorization of the Loewner matrix
L allows for the further size reduction of the system, generating a reduced order model (ROM)
of the descriptor system:

L =
[

Y1 Y2

] [ S1 0
0 S2

] [
X∗1
X∗2

]
, (5)

where ∗ denotes the conjugate transpose, S1 ∈ Rr×r, S2 ∈ R(n−r)×(n−r) and X1,X2,Y1,Y2

are of appropriate dimensions. The reduced system of size r defined by (Er,Ar,Br,Cr,Dr)
is obtained by a Petrov-Galerkin projection and represents the best approximation to the full
Loewner matrix in the Frobenius or 2-norm:

Er = −Y∗1LX1, Ar = −X∗1LσX1, Br = Y∗1V, Cr = WX1, Dr = 0. (6)

Once the set (Er,Ar,Br,Cr,Dr) has been determined, this system may contain unstable poles.
Assuming that the aeroelastic system under consideration is stable, the system is then ap-
proximated by a stable one. This is done by means of an approximation in the Hardy space
H∞ [30, 31].

2.2 Application to transcendental aerodynamic transfer functions

The main task for the application of the FSM method for the cut loads recovery in an aeroser-
voelastic framework remains to properly describe the distributed unsteady aerodynamic forces
in the time domain. In order to show the convenience of the tangential interpolation method
described in Section 2.1 an application for the incompressible unsteady flow over a bidimen-
sional profile with heave and pitch degrees of freedom is presented. Based on this application,
a connection between the theory of DAE or descriptor systems and the unsteady aerodynamic
flow is shown. In Section 2.2.2 including atmospheric disturbances is considered.

The classical unsteady model of Theodorsen [32] provides the lift and pitch moment coefficient
(excluding the added-mass terms) to arbitrary input motions of the profile under the assumptions
of inviscid flow, incompressibility and planar wake. As described by Brunton [33], several au-
thors have constructed state-space models corresponding to the Theodorsen formulation. Note
that excluding the models obtained by Peters [34], which requires up to eight states for an ap-
propriate system representation, these state-space formulations do not include the added-mass
terms. In this section a time domain model including also the added-mass terms is presented.

The total local lift cl (positive upwards) and local pitch moment at the quarter chord cm (positive
nose up) can be described as function of the heave uz (positive down) and pitch uθ (positive nose
up) motion in the frequency domain by means of an aerodynamic transfer function matrix:[

cl (ω)
cm (ω)

]
= Ht (ω)

[
uz (ω)
uθ (ω)

]
,

where the system output is y =
[
cl cm

]T , the system input u =
[
uz uθ

]T and the transfer
function matrix is [35]:
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Ht (ω) =

 −ω2 πLref

U2
∞

+ iω 2π
U∞
C (k) ω2 πaL

2
ref

U2
∞

+ iω
πLref

U∞
(1 + (1− 2a)C (k)) + 2πC (k)

ω2 πLref

4U2
∞

ω2
(
1
8
− a

2

) πL2
ref

2U2
∞
− iω πLref

2U∞

 ,
(7)

with k the reduced frequency k = ωLref/U∞, where Lref is a reference length (the half-chord)
and U∞ the true airspeed. The parameter a represents the pitch axis location with respect to
the half-chord and ranges between −1 for the leading edge and 1 for the trailing edge. The
Theodorsen function C (k) is given by

C (k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

,

with H0 and H1 the Hankel functions of first and second kind [32]. Interestingly, the pitch
moment at the quarter chord position is independent of the Theodorsen function.

It is clear from Eq. 7 that the aerodynamic system is not proper, as the values lim
s→∞

H (s) are
not bounded. According to the description of Section 2.1 and to Eq. 7, the corresponding time
domain description must be in the form of a descriptor system of index υ = 3. In Quero et
al. [30] a strategy for the application of the Loewner realization to this aerodynamic system
together with a reduction of the DAE index in order to obtain a regular ODE system including
the time derivatives of the input has been presented.

In the case of bidimensional incompressible flow the DAE of index 3 can been reduced to a
regular ODE provided the time derivatives of first and second order of the input signal are
included. For compressible flow and due to the behaviour of the aerodynamic solvers at high
frequencies this cannot be done in a straightforward manner and thus the dependence of the
unsteady aerodynamic forces on the second time derivative resulting from the classical RFA
fit [3] for compressible flow may be seen as a low frequency residualization of its high frequency
behaviour [27].

Next the proposed Loewner realization is applied to two well-known transcendental aerody-
namic transfer functions corresponding to the unsteady motion-induced and gust-induced aero-
dynamic incompressible flow, namely the Theodorsen function in Section 2.2.1 and the Sears
function in Section 2.2.2.

2.2.1 Theodorsen function

In the case of bidimensional unsteady incompressible flow a general realization can be obtained
which is then valid for all values of the parameters involved in Eq. 7, namely U∞, Lref and a.
For a realization of the Theodorsen function the following strictly proper aerodynamic transfer
function is defined:

Hc (k) = C (k)− 1

2
,

where C (k) represents the Theodorsen function which depends on the reduced frequency k.
Next the Loewner and shifted Loewner matrices are built and a realization is carried out:

Ac = E−1cr Acr, Bc = E−1cr Bcr, Cc = E−1cr Ccr, Dc = E−1cr Dcr = 0,
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Figure 1: Theodorsen function in the complex plane and corresponding Jones and Loewner approximations.

where the system (Ecr,Acr,Bcr,Ccr,Dcr) is obtained after applying Eqs. 4 and 6 for a re-
duction on the number of states and a projection on the Hardy space H∞ for the suppression
of possible unstable poles on the aerodynamic transfer function Hc. The resulting generalized
state-space system is:

ẋc = Acxc + Bc
2π

U∞

[
0 U∞ 1 Lref

(
1
2
− a
)

0 0
]  u

u̇
ü


[
cl
cm

]
=

[
Cc

0

]
xc +

 0 π π
U∞

πLref

U∞

(
3
2
− a
) πLref

U2
∞

−πaL2
ref

U2
∞

0 0 0 −πLref

2U∞
−πLref

4U2
∞
−
(
1
8
− a

2

) πL2
ref

2U2
∞

 u
u̇
ü

 .
This generalized state-space form with a maximum time derivative term of order 2 for the in-
put vector u corresponds to a DAE of index 3 [36]. Fig. 1 shows different realizations of the
Theodorsen function C (k) in the complex plane for different values of the reduced frequency
k, where a comparison with the Jones approximation [37] involving two states is shown. For the
Loewner realization the cases corresponding to a number of states equal to that of Jones (n = 2)
and eight are depicted. It becomes clear that the Loewner realization for an increasing number
of poles is in agreement with the Theodorsen function computed directly in the frequency do-
main (FD). The number of poles in the Loewner realization is increased by simply modifying
the truncation after the SVD decomposition of Eq. 5. Note that unlike for the classical interpo-
lation techniques [38], the Loewner realization does not require the selection of any poles and
no iterative optimization is involved. The matrices Ac, Bc, Cc and Dc obtained for the case
where up to eight states are retained after the SVD decomposition of the Loewner matrix L are
provided in Quero et al. [30].

2.2.2 Sears function

When subjected to a vertical atmospheric gust wg, the incremental lift coefficient (at the quarter
chord position with no additional pitch moment) cl of the airfoil can be obtained in the frequency
domain by means of the Sears function S (k), which depends on the reduced frequency k [39]:
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S (k) =
2

πk
(
H

(2)
0 (k)− iH(2)

1 (k)
)

Thus the aerodynamic transfer function matrix for the lift and pitch moment coefficients (cl and
cm) at the airfoil quarter chord position is:

[
cl
cm

]
= Hs (ω)wg,

where:

Hs (ω) =

[
2πS (k) e−ik

0

]
.

The term S (k) e−ik is commonly referred to as the modified Sears function [40] and its inverse
Fourier transform provides the well-known Küssner function [41]. A Loewner realization with
3 and 12 states of the Sears function S (k) is shown in Fig. 2, where a comparison with the
three states approximation by Jones [37] is also plotted. There is a very good agreement of
the Loewner realization of 12 states with the reference data in the frequency domain (FD). The
resulting state-space system in the time domain is:

ẋs = Asxs +
2π

U∞
Bswg[

cl
cm

]
=

[
Cs

0

]
xc. (8)

As in Section 2.2.1, the system (Esr,Asr,Bsr,Csr,Dsr) is obtained after applying Eqs. 4 and
6 for a reduction on the number of states and a projection on the Hardy space H∞, this time on
the modified Sears function S (k) e−ik. Thus, the matrices:

As = E−1sr Asr, Bs = E−1sr Bsr, Cs = E−1sr Csr, Ds = E−1sr Dsr = 0

correspond to the realization of the modified Sears function including the complex exponential
factor e−ik. In Eq. 8 there is no need for an extended input vector including the time derivative
of the gust velocity wg, as the magnitude of the Sears function tends to zero for increasing
reduced frequencies.

3 AEROSERVOELASTIC SYSTEM FOR LOADS ANALYSIS

In this section the Loewner realization (tangential interpolation method) presented in Section
2.1 is applied to the more general case of an aircraft flying in compressible flow. Once the
aerodynamic system is described in generalized state-space form in Section 3.1, the structural
model is also considered and a coupled aeroservoelastic system for dynamic loads prediction
including the FSM method for the cut loads recovery is presented in Section 3.2.
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Figure 2: Sears function in the complex plane and corresponding Jones and Loewner approximations.

3.1 Loewner realization of the aerodynamic system

For the general case of three-dimensional unsteady compressible flow the transfer function ma-
trix describing the aerodynamic forces cannot be explicitly obtained as for the bidimensional
incompressible case, given by Eq. 7. A common technique for the computation of the subsonic
compressible aerodynamic forces for loads application is the doublet lattice method (DLM),
which provides the matrix of aerodynamic influence coefficients (AIC) at a set of particular fre-
quencies. Due to the assumption of linear and inviscid flow, the DLM method is not appropriate
to describe the transonic flow. In this region other methods such as the correction of the AIC
matrices [42] or linearized CFD solvers in the frequency domain can be used [43]. An applica-
tion including high-fidelity CFD data has been previously shown in Poussot-Vassal et al. [44].
In this work both DLM and high-fidelity linearized CFD methods are considered, see Section
4.

The input of the aerodynamic system is given by the vertical atmospheric disturbance wg at a
particular spatial location (the aircraft nose) and by a set of generalized coordinates correspond-
ing to the control surfaces uc and the structural modes uh of the aircraft structure (in vacuum)
including the rigid-body and flexible modes, as the aeroservoelastic system is reduced by pro-
jection on the eigenvalues of the structure (modal truncation). Within the usual assumptions for
aeroservoelastic modeling, the translational degrees of freedom ut of the aircraft structure do
not cause any change in the aerodynamic forces and thus their time derivatives u̇t are consid-
ered as input to the aerodynamic system. The vector urf contains the generalized coordinates
corresponding to rotational rigid-body motions and to the flexible modes.

As output of the aerodynamic system the nodal forces and moments splined over the structural
grid Pag by means of the transpose of the spline matrix Hkg for the equivalence of work [45] is
chosen:

Pag = HT
kgPak.

The vector Pak represents the aerodynamic contribution to the nodal loads acting on the aerody-
namic grid corresponding to the body surface and the spline matrix Hkg transfers the structural
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displacements to the aerodynamic grid over the body surface. With the aerodynamic distri-
bution provided by Pag the cut loads distribution LFSM can be recovered over the load ref-
erence axis (LRA) by means of the FSM. The aerodynamic transfer function matrix of size
Na × (Nh +Nc + 1) relating the input and output vectors is given in the frequency domain as:

Pag (ω) =
[

Hg (ω) Ht (ω) Hrf (ω) Hc (ω)
] 

wg (ω)
iωut (ω)
urf (ω)
uc (ω)

 , (9)

where Ht (ω)) = THH (ω) /iω with TH a matrix selecting the columns from H (ω) corre-
sponding to the translational degrees of freedom ut. In this way the singularity caused by the
translational motion at frequency zero can be avoided. The number of aerodynamic degrees of
freedom is given by Na and Nh and Nc represent the number of structural modes and control
surfaces respectively.

First a realization on the aerodynamic transfer function matrix as provided in Eq. 4 is done.
Once the realization (Ê, Â, B̂, Ĉ, D̂) has been obtained the eigenvalues of the system are ob-
tained by solving det(sÊ−Â) = 0. Note that at this stage there is no need for a SVD decompo-
sition of the Loewner matrix as this realization is not the final one representing the aerodynamic
system. Similarly, no stabilization by projection into the Hardy space H∞ is enforced yet. The
possible infinite poles due to the non-properness are excluded by setting a tolerance value S∞
and the remaining finite poles are collected in the set Sf :

Sf =
{
s ∩ {|s| ≤ S∞} | det(sÊ− Â) = 0

}
. (10)

The column of the aerodynamic transfer function matrix in Eq. 9 corresponding to the gust input
Hg (ω) is proper and no split into proper and non-proper part is required here. Similarly, no
residualization is required when considering the gust disturbance as unique system input [44],
as will be shown in Section 4. In order to split the proper and non-proper parts for the rest of
the columns of the aerodynamic transfer function matrix H (ω) in a numerical stable way, a
least-squares fit of a rational proper transfer function together with a polynomial part is done
for each component of the transfer function matrix data:

Hij (ω) =

Np∑
k=1

Rij

iω + pk
+ P0,ij + P1,ijiω − P2,ijω

2, (11)

where pk, Rij can either be real or come in conjugate pairs, P0,ij, P1,ij, P2,ij ∈ R and the sum
runs over the number Np of finite poles pk given by Eq. 10 and which belong to the set Sf de-
fined in Eq. 10, pk ∈ Sf . Note that compared to the classical least-squares fit of the RFA tech-
nique which uses real coefficients [3, 9, 10], Eq. 11 is able represent peaks of the aerodynamic
transfer functions in the frequency domain which appear in the transonic flow regime [46] by the
presence of conjugate pair poles [5]. Also, the use of a number of poles Nc as done here would
lead to a prohibitive number of additional states if the classical approach of a least-squares fit
were directly transformed into the time domain [47].

In the next step the actual data after subtraction of the polynomial non-proper part instead
of the strictly proper part of the fit given by the first term of Eq. 11 is used. Thus, there
is no error introduced in the proper part of the aerodynamic transfer function matrix and the
representation of the non-proper part by the polynomial part can be seen as a residualization of
the high frequency behaviour of the aerodynamic transfer function matrix H (ω).

11
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Figure 3: Flow diagram for the Loewner realization of the aerodynamic transfer function matrix considering the
proper and non-proper parts.

Next the proper transfer function matrix Ha (ω) is obtained, Ha (ω) = H (ω) − P0 − P1iω +
P2ω

2. Similarly as done for the incompressible flow case, now the tangential interpolation
method is applied to the proper transfer function matrix Ha (ω) and the realization
(Ea = I,Aa = E−1r Ar,Ba = E−1r Br,Ca = Cr,Da = Dr) is obtained, where the SVD decom-
position and the projection on the Hardy space H∞ have been applied. For the sake of clarity,
the above described steps are represented in Fig. 3.

The matrices Ba and Da together with the input vector have to be properly completed to ac-
commodate the non-proper polynomial part, see Eq. 12. The matrices corresponding to the
polynomial part have been split in column blocks corresponding to the translational motion
(P0t,P1t,P2t), rotational and flexible generalized coordinates (P0rf ,P1rf ,P2rf ) and control
surface deflections (P0c,P1c,P2c). The term corresponding to the third time derivative of
the translational motion

...
ut is explicitly neglected by setting P2t = 0 and the submatrices in

[Bau1 Bah2 Bah1 Bau2 0 0 0 0 0 0] have been defined for convenience in a subsequent re-
ordering of terms.

ẋa = Aaxa +
[

Bau1 Bah2 Bah1 Bau2 0 0 0 0 0 0
]
ua (12)

Pag = Caxa +
[

0 P0t P0rf P0c P1t P1rf P1c 0 −P2rf −P2c

]
ua,

where ua = [wg u̇Tt uTrf uTc üTt u̇Trf u̇Tc
...
uT
t üTrf üTc ]

T . Dropping the terms corresponding to
zero submatrices and reordering, the generalized state-space model for the unsteady aerody-
namic loads is:

ẋa = Aaxa +
[

Bau1 Bau2 0 0
] 

wg
uc
u̇c
üc

+
[

Bah1 Bah2

] [ urf
u̇t

]
(13)

Pag = Caxa +
[

0 P0c P1c −P2c

] 
wg
uc
u̇c
üc

+
[

P0rf Dah2 Dah3

]  urf
u̇h
üh

 ,

12
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where uh = [uTt uTrf ]
T and:

Dah2 =
[

P0t P1rf

]
Dah3 =

[
P1t −P2rf

]
Note that some other approaches neglect the low frequency residualization of the non-proper
part of the transfer function matrix by neglecting the high frequency content instead. For in-
stance, Fonte [23] considers the loads only up to a defined frequency value, introducing a low-
pass filter with high bandwidth. In principle the time delay introduced by the casual filter would
have then to be taken into consideration.

3.2 Aeroservoelastic system

In this section the interaction between the aerodynamic and structural parts are considered in
order to obtain a complete aeroservoelastic formulation. As in Section 3.1, the transfer of the
aerodynamic forces to the structural grid is done by the spline matrix HT

kg. The aeroservoelastic
problem can be formulated in the time domain as:

Mhhüh + Bhhu̇h + Khhuh

=φT
gh

Caxa +
[

0 P0c P1c −P2c

] 
wg
uc
u̇c
üc

+
[

P0rf Dah2 Dah3

]  urf
u̇h
üh


 ,

where Mhh, Bhh and Khh represent the generalized mass, damping and stiffness matrices re-
spectively. The matrix φgh contains a number Nh (due to modal truncation) of the aircraft
structural modes uh (in vacuum) including the rigid-body and flexible modes. As in Section
3.1, the vector uh = [uTt uTrf ]

T represents the total number of generalized coordinates (includ-
ing rigid-body and structural flexible modes) and uc the control surfaces. The subset ut ⊂ uh
represents the translational rigid-body degrees of freedom and the subset urf ⊂ uh the rota-
tional rigid-body degrees of freedom together with the flexible modes.

In order to include the translational motion in the system output, the state vector x is aug-
mented, x̂ = [uTt uTrf u̇Th xTa ]

T , and the following equation of first order in the time derivatives
is obtained:

d

dt




ut
urf
u̇h
xa


 =


0 0 Tt 0
0 0 Trf 0
0 Ah1 Ah2 Ah3

0 Bah1 Bah2Tt Aa




ut
urf
u̇h
xa

 (14)

+


0 0 0 0
0 0 0 0
0 α−1φT

ghP0c α−1φT
ghP1c −α−1φT

ghP2c

Bau1 Bau2 0 0



wg
uc
u̇c
üc

 ,
with:
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α = Mhh − φT
ghDah3

Ah1 = α−1
(
−khfTf + φT

ghP0rf

)
Ah2 = α−1

(
−Bhh + φT

ghDah2

)
Ah3 = α−1φT

ghCa.

The matrix Trf selects the non translational degrees of freedom urf from the generalized co-
ordinates uh (that is, excluding the subset ut corresponding to the translational motion) and the
matrix Tt selects the translational degrees of freedom from the vector of generalized coordi-
nates uh.

Once the aeroelastic system has been written in a generalized state-space form the loads can be
recovered by the equilibrium of forces (FSM) [48]:

LFSM = Tcg

(
−Mggφghüh + Pag

)
,

where the matrix Mgg represents the physical mass matrix and the summation matrix Tcg sums
up the nodal forces and moments acting to the cut loads distribution at the LRA locations.
Note that unlike for the MDM method, the FSM method requires not only the generalized
aerodynamic forces φT

ghPag but also the aerodynamic distribution Pag. In Eq. 15 the FSM
method has been included in the output of the aeroservoelastic system:

ut
urf
Pag

LFSM

 =


I 0 0 0
0 I 0 0
0 P0rf + Dah3Ah1 Dah2 + Dah3Ah2 Ca + Dah3Ah3

0 TcgP0rf + βAh1 TcgDah2 + βAh2 TcgCa + βAh3




ut
urf
u̇h
xa


(15)

+


0 0 0 0
0 0 0 0
0 P0c + Dah3α

−1φT
ghP0c P1c + Dah3α

−1φT
ghP1c −

(
P2c + Dah3α

−1φT
ghP2c

)
0 ΓP0c ΓP1c −ΓP2c



wg
uc
u̇c
üc

 ,
where:

β = −TcgMggφgh + TcgDah3

Γ = βα−1φT
gh + Tcg.

Eqs. 14 and 15 represent the generalized state-space and output equations for the aeroservoelas-
tic model description in the time domain and Fig. 4 depicts the corresponding aeroservoelastic
system including the cut loads obtained by the FSM. There, the matrix Th selects the subset uh
from the vector [wg uTc uTh ]

T .

4 APPLICATION TO THE NASA COMMON RESEARCH MODEL CONFIGURA-
TION

In this section the structural FERMAT model as created by Klimmek [49] for the NASA CRM
configuration [50] has been used. The mass case C2 corresponding to a 100 % of the fuel
mass with a mass equal to the maximum takeoff weight MTOW = 260000 (kg) and a center of
gravity position in x direction (see Fig. 5 for axes definition) with respect to the aircraft nose

14
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Figure 4: Aeroservoelastic system with the force summation method (FSM) for the cut loads recovery.

position x0 of xcg − x0 = 33.714 (m) is considered. For the DLM case both open-loop and
closed-loop configurations after the synthesis of an H∞-optimal controller are presented. Note
that the cut loads presented in this section are incremental and do not include the loads acting
at the 1g or level flight condition.

The aeroservoelastic system as described in Section 3.2 has been generated for the flightpoint
corresponding to a Mach number of M∞ = 0.86 and an altitude h = 9100 (m). The true
airspeed is U∞ = 260.892 (m/s) and the reference length for the reduced frequency definition
Lref = 7 (m). In Section 4.1 the aerodynamic loads as obtained by the DLM method are used,
whereas in Section 4.2 the high-fidelity linearized Reynolds-averaged Navier-Stokes (RANS)
equations are considered.

4.1 DLM

As stated in Section 3.2, the spline from the structural model deformation to the aerodynamic
grid is carried out by by the transpose of the spline matrix corresponding to a nearest-neighbour
force mapping. Neglecting the aerodynamic modeling of the fuselage component there are a
total of 1910 aerodynamic panels representing the complete configuration. The wing semi-span
is b/2 = 29.38 (m). A view of the right wing component is provided in Fig. 5. Note that a strip
can include panels from the wing component as well as from the aileron if they are topologically
connected. The ailerons are taken into account in Section 4.1.2, where the effect of a gust loads
alleviation (GLA) strategy is evaluated using the proposed aeroservoelastic model. In that case,
the control surface modes corresponding to the ailerons are modeled with the transpiration
approach as described in Section 3.1.

Regarding the dynamic structural model, two symmetric rigid-body modes corresponding to
the heave and pitch (around the center of gravity) motion together with the first symmetric
wing bending mode have been taken into account. The heave forms the vector ut and the
pitch together with the first symmetric mode form the vector urf in Eq. 15. The interpolation
of the precomputed AIC matrices to the set of reduced frequencies selected for the Loewner
realization is done using a special linear interpolation [51]. The tolerance in Eq. 10 has been
set to S∞ = 10 (U∞/Lref ).

Fig. 6 shows the element of the aerodynamic transfer function matrix corresponding to the
incremental lift coefficient over the strip element at the wing station y = 13.48 (m) in the
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Figure 5: DLM panels and corresponding control surfaces (red and orange) for the NASA CRM configuration.

complex plane due to a gust disturbance input for the different values of the reduced frequency
k. In Fig. 7 the pitch motion around the center of gravity is taken as input. For comparison
purposes the results obtained with six real poles applying the classical Roger’s approach (RFA)
is also shown. The data labeled as Loewner shows the present method and FD refers to the
reference data in the frequency domain. It is clear from Figs. 6 and 7 that the present approach
shows a better match compared to the Roger’s approach. Because of the finer resolution for
the low reduced frequency range in the set of reduced frequencies selected, this better match is
more evident in this region which is of significant importance for aeroelastic applications.

4.1.1 Open-loop

Two different aeroservoelastic models are generated. Both contain two symmetric rigid-body
modes corresponding to the heave and pitch motions but differ in the number of symmetric flex-
ible modes considered. The first one includes the first flexible mode corresponding to the wing
bending with a natural frequency of 1.0574 (Hz) resulting in a total of 96 states and the second
one includes 16 symmetric flexible modes contained in a frequency interval which ranges up
to a value of 16.3742 (Hz) with a total number of 231 states. These time-domain aeroservoe-
lastic modes are validated in open-loop against the reference aeroelastic model available in the
frequency domain. For the validation, the system is excited with a 1-cosine gust wg (t) in (m/s)
given by (at the aircraft nose) [1] of amplitude w0 (m/s), translational speed U∞ (m/s) and half
length H (m). For this application the gust amplitude has been set to αeq = w0/U∞ equivalent
to 1 (deg) and two different gust gradient values of H = 50 and H = 350 (ft) are considered.

The corresponding incremental bending4MX and torsional4MY moments obtained by the
FSM over the right wing component as predicted by both the aeroservoelastic model in the time
domain (labeled as TD) and the reference model in the frequency domain (labeled as FD) for a
gust gradientH = 50 (ft) are shown in Figs. 8 and 9 for the time instants at which the maximum
and minimum vales are reached at the wing root location. In Fig. 8 one flexible modes are
considered, whereas in Fig. 9 the model with 16 flexible modes is shown. As specified above,
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Figure 6: Element of the transfer function matrix
from the gust input to the lift coefficient
for the strip at wing station y = 13.48
(m).
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Figure 7: Element of the transfer function matrix
from the pitch input to the lift coefficient
for the strip at wing station y = 13.48
(m).

both include two symmetric rigid-body modes. In both cases the aeroservoelastic model is able
to reproduce the complete time history of the incremental cut loads distribution along the entire
wing component.
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Figure 8: Incremental bending moment 4MX
over the right wing component at differ-
ent time instants for M∞ = 0.86, h =
9100 (m), H = 50 (ft), αeq = 1 (deg).
Results obtained in the frequency domain
(FD) and with the generalized state-space
model in the time domain (TD) by the
FSM with one flexible mode. The num-
ber of states is 96.
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Figure 9: Incremental bending moment 4MX
over the right wing component at differ-
ent time instants for M∞ = 0.86, h =
9100 (m), H = 50 (ft), αeq = 1 (deg).
Results obtained in the frequency domain
(FD) and with the generalized state-space
model in the time domain (TD) by the
FSM with 16 flexible modes. The num-
ber of states is 231.

In Figs. 10 and 11 the corresponding results for a gust gradient value of H = 350 (ft) are
presented. Again, the aeroservoelastic model is able to reproduce the reference results in the
frequency domain (FD).
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Figure 10: Incremental bending moment 4MX
over the right wing component at dif-
ferent time instants for M∞ = 0.86,
h = 9100 (m), H = 350 (ft), αeq =
1 (deg). Results obtained in the fre-
quency domain (FD) and with the gener-
alized state-space model in the time do-
main (TD) by the FSM with one flexible
mode. The number of states is 96.
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Figure 11: Incremental bending moment 4MX
over the right wing component at dif-
ferent time instants for M∞ = 0.86,
h = 9100 (m), H = 350 (ft), αeq =
1 (deg). Results obtained in the fre-
quency domain (FD) and with the gener-
alized state-space model in the time do-
main (TD) by the FSM with 16 flexible
modes. The number of states is 231.

4.1.2 Closed-loop

Once the aeroservoelastic model has been validated in open-loop, the implementation of a GLA
strategy is shown. Here an H∞-optimal strategy for the controller synthesis [52, 53] including
the two rigid-body modes and the first flexible mode has been considered. The name H∞
makes reference to the Hardy space H∞ where the optimization takes place. The order of the
controller is NK = 7 and all controller parameters are set to free for the optimization problem.
Additionally, a loop-shaping by means of weighting performances has been applied [52]. The
H∞ controller synthesis is possible due to the generation of the complete aeroservoelastic model
with a number of states in the order of hundreds, which is an acceptable size for the open-loop
system [53]. The objective is to minimize the incremental bending moment at the wing root
position by means of a symmetric deflection of the outer ailerons.

As discussed in Section 3, the application of the FSM for the cut loads recovery results in a
non-proper part of the corresponding transfer function components. In this work the weight
performances applied to the H∞ controller synthesis consider the transfer function up to a cer-
tain frequency value and thus neglect the high frequency behaviour for the optimization prob-
lem to be solved for the controller design. For an extension including the non-proper part of
the transfer function caused by the time derivative of the aileron input see Poussot-Vassal et
al. [54].

In this case the first model of Section 4.1.1 including two symmetric rigid-body modes and
one flexible mode has been considered. The selected flightpoint remains unchanged and a
corresponding H∞-optimal controller is designed. The aeroelastic response to a gust input of
amplitude αeq = 1 (deg) and gust gradient H = 350 (ft) has been considered next. For this
specific gust input, the maximum outer aileron deflection produced by the controller is 1.93
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Figure 12: Time history of the incremental bending
moment 4MX at the wing root with
and without GLA strategy.
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Figure 13: Time history of the incremental tor-
sional moment 4MY at the wing root
with and without GLA strategy.

(deg). In Fig. 12 the incremental wing root bending moment is shown as a function of time
for both the open-loop (OL) and the closed-loop (H∞) cases. By deploying the outer ailerons
in a symmetric way, the controller is able to reduce the maximum value of the incremental
wing root bending moment caused by the gust 4MX in 5.6 % for the maximum peak and in
10.4 % for the minimum peak at the expense of increasing the incremental torsional moment
4MY in 3.8 % for its maximum peak value, see Fig. 13. Further, the proposed aeroservoelastic
model enables the evaluation of the effects of the applied GLA strategy on the cut loads over
the complete aircraft structure.

4.2 High-fidelity CFD

The aerodynamic half-model used for the high-fidelity computations is based on the publicly
available grid from the 4th AIAA Drag Prediction Workshop [50] and includes the wing, hori-
zontal tail plane and fuselage components. The hybrid unstructured and structured volume mesh
contains around 3.7 million points, of which 1000014 are located over the component surface.
The farfield boundary is a semisphere with a radius of 757 (m).

The aerodynamic shape corresponds to a cruise flight condition with a global lift coefficient of
CL = 0.5 at a Mach number of M∞ = 0.86, an altitude of h = 9100 (m) and a steady angle of
attack α0 = 1.641 (deg). The corresponding steady pressure coefficient distribution cp is shown
in Fig. 14, where a recompression shock wave is present at the upper wing surface. However,
the flow remains fully attached.

For the high-fidelity unsteady aerodynamic response the linear frequency domain (LFD) solver
for the RANS equations of the DLR TAU-Code has been chosen [43, 55]. The aircraft is con-
sidered rigid and thus only the aerodynamic contribution without the aeroelastic response is
considered, which is equivalent to setting all the terms to zero in the state-space vector except
for xa in Eqs. 14 and 15.

The same gust input with H = 350 (ft) as in Section 4.1.2 is considered. When considering
the high-fidelity modeling of the aerodynamic forces, a higher number of states are required
in the Loewner realization when compared to the aerodynamic forces predicted by the DLM
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Figure 14: Steady pressure coefficient distribution cp for M∞ = 0.86, h = 9100 (m) and α0 = 1.641 (deg).
NASA CRM model.

potential method from Section 4.1. In this case a total number of states of 300 has been selected,
which is shown to properly reproduce the reference results in the frequency domain (FD) as
produced by the LFD solver in the complex plane, see Fig. 15, where the aerodynamic transfer
function matrix for a node at position x = 30.1076 (m), y = 3.6521 (m), z = 3.9362 (m) is
depicted. In Fig. 16 the incremental bending moment along the wing right component for the
time values at which the maximum and minimum values at the wing root location are reached
are shown. Again, the time-domain aerodynamic model (TD) is able to represent the complete
cut loads distribution along the wing component when compared with the reference results in
the frequency domain (FD).
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Figure 15: Element of the aerodynamic transfer
function matrix from the gust input to
the the vertical force for a node at posi-
tion x = 30.1076 (m), y = 3.6521 (m),
z = 3.9362 (m).
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Figure 16: Incremental bending moment 4MX
over the right wing component at differ-
ent time instants for M∞ = 0.86, h =
9100 (m), α0 = 1.641 (deg), H = 350
(ft), αeq = 1 (deg). Results obtained by
LFD in the frequency domain (FD) and
with the generalized state-space model
in the time domain (TD) for a rigid air-
craft. The number of states is 300.
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5 CONCLUSIONS

In this work an aeroservoelastic model for the prediction of the aeroelastic response together
with the dynamic loads distribution over the complete aircraft structure has been presented. It
represents an interpolation instead of an approximation of the reference model in the frequency
domain and avoids any selection of poles as for the classical methods. Thus, the aerodynamic
forces distribution caused by the gust disturbance and induced by the aircraft motion can be
properly described in the time domain. Once the aerodynamic model has been obtained in
the time domain the structural model is taken into account and an aeroservoelastic state-space
model of first order in time which includes the effect of control surfaces deflection has been
derived.

Aerodynamic forces obtained in the frequency domain from solvers with different fidelity levels
have been considered for the NASA CRM / FERMAT configuration, showing that the number
of states required for a proper representation of the aerodynamic model increases with the level
of complexity. Additionally, the design of a H∞-optimal controller with the generated aeroser-
voelastic framework has been demonstrated, while at the same time the presented model is able
to assess the cut loads distribution over the complete aircraft.

Related future work includes:

• Generation of a complete aeroservoelastic framework for high-fidelity aerodynamic meth-
ods, as presented in this work for the case of DLM solvers.
• Application of the developed framework to flutter stability analysis.
• Inclusion of parametric generalized state-space aeroservoelastic models as an alternative

to the classical gain scheduling approach [56].
• Extension to nonlinear generalized state-space formulation of a nonlinear aeroservoelastic

system. In this case the Loewner framework in connection with a functional or Volterra
series expansion theory can be followed [57].
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