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A semiclassical phase-space model is used to study the ultrafast charge and spin dynamics in thin ferromagnetic
films. Both itinerant and localized magnetism are taken into account. It is shown that an oscillating spin current
can be generated in the film via the application of a femtosecond laser pulse in the visible range.
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I. INTRODUCTION

Ultrafast magnetism has become a topical research area
since the pioneering work of Beaurepaire et al. [1], who
first observed the demagnetization of thin nickel films ir-
radiated with femtosecond laser pulses. In spite of intense
investigations (see the recent reviews [2,3]) the precise nature
of such ultrafast demagnetization is still elusive. Suggested
mechanisms include Elliott-Yafet electron-phonon spin-flip
scattering [4,5], ultrafast magnon generation [6], and superdif-
fusive spin transport [7–9]. A recent theoretical approach based
on time-dependent density functional theory (TD-DFT), which
can potentially describe the exact charge and spin dynamics,
has highlighted the role of the spin-orbit coupling in the
demagnetization process [10,11].

Understanding and controlling the magnetic properties of
nano-objects on the subpicosecond time scale is an outstanding
challenge of modern ultrafast science [12]. Spin currents have
been recently shown to play a key role in the demagnetization
process [13,14]. Here we show that an ultrafast spin current can
be generated in a ferromagnetic nickel film via a femtosec-
ond laser pulse of modest amplitude, for which the electric
component of the pulse plays a preponderant role. In spite of
this, a significant spin current can still be launched within the
film and possibly observed through its emitted magnetic dipole
radiation.

The results are obtained with a novel method [15,16] based
on the semiclassical evolution of a spin-dependent distribution
function in the phase space, which models the dynamics of the
conduction electrons and the associated itinerant magnetism,
coupled to a Landau-Lifschitz equation for the fixed ion
magnetism. The electron orbital motion is treated classically,
whereas the spin is a fully quantum variable. All coupling con-
stants are deduced from experimental results or first-principles
considerations. This framework is intrinsically different from
recent theoretical investigations of spin current generation
[17], which employ a thermodynamic approach that assumes
thermal equilibrium. In contrast, our approach is capable of
dealing with the highly nonequilibrium scenarios that are
expected to occur at such ultrafast time scales.

*giovanni.manfredi@ipcms.unistra.fr

II. MODEL

We consider a thin film of nanometric thickness L much
smaller than its transverse dimensions. In this configuration,
it is appropriate to use a one-dimensional (1D) model, where
only the longitudinal coordinate x, normal to the film surfaces,
plays a role [Fig. 1(a)]. For the charge distribution of the
ions, we use a jellium model with continuous ion density:
ni(x) = n0{1 + exp [(|x| − L/2)/σ ]}−1, where σ is a diffuse-
ness parameter (σ ≈ 1 Å), n0 = (4πrs/3)−1 is the ion density
of the bulk metal, and rs is the Wigner-Seitz radius (for nickel,
rs = 2.6 a0, where a0 is the Bohr radius).

Overall, our model is based on the distinction between
itinerant magnetism (carried by the conduction electrons) and
localized magnetism (carried by the fixed ions). The electronic
structure of nickel is Ni = [Ar] 3d8 4s2. The 4s electrons are
assumed to be at the origin of the itinerant magnetism, whereas
the 3d electrons are localized around their nuclei to form ionic
spins that are responsible for the localized magnetism [18]. The
total magnetic moment of nickel M tot = M i + Me is equal to
0.606 μB per atom [19]. The magnetic moment of the localized
ions is equal to M i = 0.54 μB per atom at zero temperature
[20], hence the magnetic moment of the itinerant 4s electrons
is Me = 0.066 μB per atom. In the following we will refer to
the itinerant 4s electrons simply as the “electrons,” and to the
localized 3d electrons and their nuclei as the “ions.”

We take into account all the magnetic exchange interactions
between the different spins. The exchange interaction between
the ion spins is modeled using a Heisenberg exchange term
[21] with coupling constant J between nearest neighbors.
The electron-ion exchange interaction is modeled by the
Rundermann-Kittel-Kasuya-Yosida (RKKY) interaction [22],
which is also a Heisenberg-type approach, with coupling
constant K . The latter was originally developed in the Zener
model [23] to describe the magnetism of transition metals, and
was used in recent years to study the ultrafast magnetization
dynamics in diluted magnetic semiconductors [24]. Finally, the
electron-electron exchange interactions are modeled through
appropriate exchange and correlation functionals Exc[ne]. A
sketch of the above-mentioned magnetic interactions is shown
in Fig. 1(b).

The spin and charge dynamics of the itinerant electrons is
modeled using a phase-space semiclassical approach that was
developed in earlier works [15,16]. Several spin effects—such
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FIG. 1. (a) Geometry of a ferromagnetic thin film. (b) Schematic
view of the various magnetic exchange interactions between the ion
and electron spins. K and J are, respectively, the electron-ion and
ion-ion coupling constants.

as the Zeeman term, the spin-orbit coupling, and higher-order
relativistic corrections—can in principle be incorporated in this
model. Here we shall only keep the Zeeman term, which allows
us to reduce the phase space to 2D (x, v), and is sufficient
to account for the spin current generation described later in
this work. The electrons are described by a set of four phase-
space distribution functions f0(x,v) and fj (x,v) (j = {x,y,z})
which evolve according to the spin-Vlasov equations:
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The above equations can be seen as the semiclassical limit of
a fully quantum model where the electron dynamics is repre-
sented by a 2 × 2 matrix Wigner function. In this approach, the
orbital motion is treated classically (i.e., the electrons follow
the classical trajectories), whereas the spin is a fully quantum
variable [15,16].

The distribution function f0 represents the total electron
density in the phase space, whereas fj is related to the spin
polarization in the direction j . Indeed, integrating f0 and
fj over the velocity space gives, respectively, the electron
density ne = ∫

f0dv and the magnetization density Me =
−μB

n0

∫
f dv.

The electric potential V and the magnetic field B appearing
in Eqs. (1) and (2) can be written as the sum of different contri-
butions: V = −eVH + Vxc + Vext and B = Bsd + Bxc + Bext.
VH is the mean-field Hartree potential, solution to Poisson’s
equation:

ε0 ∂2
xVH = e(ne − 2ni), (3)

Bsd = −Kni Si/2μB is the local magnetic field due the
electron-ion exchange interactions, Vxc and Bxc represent
exchange-correlation effects in the local spin density ap-
proximation [25], while Vext and Bext denote the external
electromagnetic fields (laser pulse).

The ions are fixed, so that there is no charge dynamics
associated with them. The ion spin dynamics is reduced to the
precession of the spin vector Si(x,t), modeled by a continuous

Landau-Lifschitz (LL) equation [26]:

∂ Si

∂t
= a2J

h̄
Si × ∂2 Si

∂x2
− γ Si × Beff, (4)

where γ = gμB/h̄ is the gyromagnetic ratio, g is the Landé
factor, a = 2rs is the interatomic distance, and Beff = Bext +
Kn0 Me/2gμ2

B is an effective magnetic field which incorpo-
rates the electron-ion spin exchange interaction through the
coupling constant K . The ion magnetization density is then
defined as M i = −gμB Si .

Equations (1)–(4) constitute a complete model to describe
the charge and spin dynamics in ferromagnetic films. They are
self-consistent, inasmuch as the electric field inside the film is
the sum of two contributions: the laser field and the Hartree
field created by all the electrons in response to the excitation.

In the forthcoming simulations, energies are normalized
to the Fermi energy EF , time to the inverse plasma fre-
quency ωp =

√
e2n0/mε0, velocities to the Fermi speed vF =√

2EF /m, and lengths to LF = vF /ωp. For nickel one has
EF = 11.76 eV, ω−1

p = 0.058 fs, vF = 1.12 × 106 m s−1, and
LF = 0.12 nm.

III. FERROMAGNETIC GROUND STATE

Before attacking the time-dependent problem, we need to
compute the ground state of the system. For the electrons, the
stationary solutions of Eqs. (1) and (2) can be written as

f
(0)
0 = FD(H+) + FD(H−), f (0)

x = 0, (5)

f (0)
z = FD(H+) − FD(H−), f (0)

y = 0, (6)

where FD is the 1D Fermi-Dirac (FD) distribution

FD(H ) = 2πkBT

m

(
m

2πh̄

)3

ln {1 + exp [(μ − H )/kBT ]},

H± = m
2 v2 + V ± μBBz and μ is the chemical potential.

Equations (5) and (6) represent solutions for which the electron
spins are polarized in the direction z parallel to the film
surfaces.

For the ions, the stationary solution of the LL equation (4)
is given by the thermal average:

〈
Si

z

〉 = SBS

[
S

kBT

(
2J

〈
Si

z

〉 − Kn0

2μB

Me
z

)]
, (7)

where S = 0.54/g is the ion spin value at zero temperature and
BS is the Sth Brillouin function.

Equations (5)–(7) are formal solutions because they are ex-
pressed in terms of unknown quantities (VH ,Bsd,M

e), which
depend themselves on the distribution functions. To find actual
solutions, we employ an iterative procedure starting from an
initial guess. This procedure depends on the two exchange
constants K and J . To find K , we set the temperature of the
system to a low value (compared to the Curie temperature TC =
631 K). Thus, for reasonable values of J , the ion magnetization
is always maximal, i.e., 〈Si

z〉 = Sêz, and the magnetization of
the itinerant electrons can be tuned with the parameter K so
that it matches the experimental value Me = 0.066 μB/atom.
Then we increase the temperature of the system and adapt

014424-2



SPIN CURRENT GENERATION BY ULTRAFAST LASER … PHYSICAL REVIEW B 97, 014424 (2018)

-100 0 100

x / LF

-1

-0.5

0

Po
te

nt
ia

l V
± 

 (E
F)

200 400 600 800
Temperature (K)

0.01

0.1

1

M
ag

ne
tic

 m
om

en
t (

μ B
 / 

at
om

) 

IONS

ELECTRONS

FIG. 2. Ground state of a nickel film with L = 100LF and
σ = LF . Main plot: Ion (blue curve) and electron (black curve)
magnetizations as a function of the temperature. Inset: Effective
confinement potentials V± for spin-up (red curve) and spin-down
(green curve) electrons.

the parameter J to obtain the correct Curie temperature. This
procedure univocally determines the two exchange constants.

In Fig. 2 we plot the ground-state electron and ion magne-
tizations in a typical nickel film (L = 100LF , σ = LF ) as a
function of the temperature. The coupling constants are J =
0.022 eV and K = 0.014 eV nm3; these values will be used
throughout the rest of this work. The inset of Fig. 2 shows the
spin-up (V+) and spin-down (V−) potentials: V± = −eVH +
Vxc ± μB(Bsd + Bxc). The spin-up electrons are more strongly
confined than the spin-down electrons, by approximately
0.05 eV. This difference originates from the Zeeman interaction
and will be shown to be crucial in dephasing the dynamics of
the spin-up and spin-down electrons, leading to the net spin
current generation discussed in the next section.

IV. SPIN CURRENT GENERATION

After computing the ferromagnetic ground state, we perturb
it by shifting the distribution functions of a constant value
�v [27]. This excitation corresponds to the application of
an instantaneous electric field along the x direction. A more
realistic excitation (finite-duration laser pulse) will be analyzed
later.

In Fig. 3 we show results for �v = 0.05vF . As it was
observed in previous works [27,28], the electric dipole
〈X〉e = ∫

xf0dxdv oscillates at the plasma frequency and,
after few cycles, decays away because of Landau damp-
ing. What is more surprising is the creation of an oscil-
lating magnetic dipole 〈X〉m ≡ ∫

xfzdxdv. This is unex-
pected, because we used a purely electrical excitation that
perturbs both spin-up and spin-down electrons in the same
way. An oscillating magnetic dipole is equivalent to an ac
spin current, since d〈X〉m/dt = ∫

vxfzdxdv = ∫
vx(f↑↑ −

f↓↓)dxdv = J↑ − J↓ ≡ J S
xz, where J S

xz is a spin current that
propagates in the direction x and is polarized along z (in the
general case JS is a tensor, see [15]). This spin current is
progressively created during the first few plasmon oscillations
and then oscillates at a much lower frequency than the plasmon
(≈0.043ωp). This is close to the ballistic frequency ωb/2π =
vF /2L, i.e., the inverse of the time it takes to travel back and
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FIG. 3. Spin current generation in a nickel film with L = 50LF

and σ = LF , excited with a velocity shift �v = 0.05vF . Main plot:
Time evolution of the electric (black curve) and magnetic (blue curve)
dipoles. Inset (a) Fourier spectrum of the electric (black) and magnetic
(blue) dipoles. Inset (b) Spin-up (red curve) and spin-down (green
curve) dipoles in the early stages of the simulation (0–5 fs). Inset (c)
Same as (b) at later times (70–80 fs).

forth in the film at the Fermi velocity, which for L = 50LF

is equal to 0.063ωp [29]. Simulations using thicker films con-
firmed that the frequency of the spin current oscillations scales
ballistically as the inverse of L. Such spin oscillations persist
for much longer times (≈100 fs) after the electric dipole has
damped away. Note that low-frequency ballistic oscillations
were observed in earlier simulations on nonmagnetic films [27]
and later confirmed by experimental measurements [30].

In order to explain the mechanism of spin current gen-
eration, we consider separately the spin-up and spin-down
dipoles: 〈X〉± = 1

2

∫
x(f0 ± fz)dxdv. In the ground state, the

spin-up electrons are more strongly confined than the spin-
down electrons (see the inset of Fig. 2). This is due to the
exchange interaction between the electron and the ion spins,
which acts as a strong local magnetic field. After the initial
electric excitation, both spin components are accelerated in
the x direction. The spin-down electrons, which are less deeply
confined, will arrive at the film surface earlier than the spin-up
electrons. At the surface, they experience a strong electric field
that accelerates them back inside the film. Soon afterwards,
the spin-up electrons will also reach the same surface, but
the electric field they feel is slightly different from the one
felt by the spin-down electrons, precisely because some of
the latter are already present near the surface. Because of
self-consistent electron-electron repulsion, the spin-up and
spin-down dipoles will gradually start dephasing. The early
stages of this dephasing can be seen in Fig. 3(b). This effect
is cumulative and is thus amplified after each plasmon cycle
until the two populations oscillate in antiphase [Fig. 3(c)],
which corresponds to a magnetic dipole oscillation since
〈X〉m = 〈X〉+ − 〈X〉−. Overall, the effect corresponds to a
transfer of momentum between the two spin populations, not
directly via collisions but indirectly via the self-consistent
Hartree field. It occurs near the surfaces because that is where
the self-consistent field is largest, due to the strong density
gradients.
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FIG. 4. Laser pulse excitation of a nickel film with L = 50LF

and σ = LF (the laser specifications are given in the main text).
(a) Time evolution of the electric (black curve) and magnetic (blue
curve) dipoles. (b) Fourier spectrum of the dipoles computed using
the full data 0 < t < 300 fs.

In summary, three key ingredients were needed to create
an oscillating magnetic dipole at the ballistic frequency with a
purely electric excitation: (i) A magnetic ground state for which
the spin-up and spin-down electrons are differently confined;
(ii) a finite system with metal-vacuum interfaces near which the
spin-up and spin-down dipoles are progressively dephased; and
(iii) a self-consistent electric field which mediates momentum
transfers between the two populations at such interfaces. If we
suppress any one of the above ingredients, no spin current is
generated.

V. FEMTOSECOND LASER PULSE EXCITATION

We now consider a more realistic scenario where the sample
is excited by an ultrashort laser pulse. The pulse must be
focused at an oblique angle of incidence with respect to the film
surface, in order for the electric field to possess a longitudinal
component [31,32]. Thus the electric field can be modeled as
follows: E(x) = E0 exp [−(t − t0)2/2�t2] cos (ωlt )̂ex , where
E0 is the amplitude of the field, �t and ωl are, respectively,
the duration and central frequency of the pulse, and t0 is the
time when the pulse reaches its maximal amplitude. The field
is constant in space as its wavelength is much longer than the
thickness of the film. Furthermore, the penetration depth of
an electric field in nickel is about 10 nm in the visible and
near-infrared range [33,34]. This is larger than the thickness
of the films considered here (6 nm).

We excite the system with a laser pulse in the visible
domain, with wavelength λl = 2πc/ωl = 800 nm, duration

2�t = 14 fs, t0 = 15 fs, and amplitude E0 = 1010 V/m (inten-
sity I ≈ 13 TW/cm2, fluence ≈80 mJ/cm2). In the frequency
domain, this type of pulse covers a relatively narrow spec-
trum in the range 175–575 THz, near the ballistic frequency
ωb/2π = 173 THz (for a nickel film of thickness L = 50LF =
6 nm) but far from the plasmon frequency ωp/2π = 2710 THz.

In Fig. 4(a) we show the time evolution of the electric and
the magnetic dipoles during the first 100 fs. During the action
of the laser pulse (t < 25 fs), the electric dipole unsurprisingly
oscillates at the laser frequency. At the same time, a magnetic
dipole is created. After the laser pulse, both the electric and the
magnetic dipoles carry on oscillating at the ballistic frequency,
signaling that the ballistic mode has been excited and persists
even without the external drive.

These three oscillation modes—laser, ballistic, and
plasmon—are seen as peaks in the frequency spectrum
[Fig. 4(b)], with the strongest contribution coming from the
ballistic mode. The plasmon mode is clearly, albeit weakly,
excited for the electric dipole but is absent in the magnetic
dipole spectrum, as expected. Its peak is significantly broader
than the ballistic peaks, indicating that the plasmon is heavily
Landau damped (see also Fig. 3) [35]. The plasmon mode could
not be excited directly by the laser pulse, because it lies outside
the laser spectrum, and must be due to the presence of nonlinear
couplings.

VI. CONCLUSION

We presented a realistic application of a semiclassical
phase-space model to study ultrafast spin and charge transport
in ferromagnetic thin films. The model combines both itinerant
and localized magnetism and their interplay through various
magnetic exchange mechanisms. Simulations of the interaction
of a femtosecond laser pulse with a nickel film revealed the
generation of spin currents propagating ballistically through
the film. These currents appear as a result of the dephas-
ing of the spin-up and spin-down itinerant electrons at the
film surfaces. Their production is driven by nonequilibrium
electrons, which is intrinsically different from the familiar
Seebeck effect [37,38], i.e., the generation of a spin voltage by a
temperature gradient. Our findings bear some similarities with
recent experiments [39,40] where spin currents were observed
in multilayer structures due to the difference in transmittance
between the spin-up and spin-down electrons at the Au/Fe
interface (“nonthermal Seebeck effect”).
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