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Abstract—This paper presents a Credal algorithm to perform
land cover classification from a pair of optical and radar
remote sensing images. SAR (Synthetic Aperture Radar) /optical
multispectral information fusion is investigated in this study for
making the joint classification. The approach consists of two main
steps: 1) relevant features extraction applied to each sensor in
order to model the sources of information and 2) a Kohonen map-
based estimation of Basic Belief Assignments (BBA) dedicated
to heterogeneous data. This framework deals with co-registered
images and is able to handle complete optical data as well as
optical data affected by missing value due to the presence of
clouds and shadows during observation. A pair of SPOT-5 and
RADARSAT-2 real images is used in the evaluation, and the
proposed experiment in a farming area shows very promising
results in terms of classification accuracy and missing optical
data reconstruction when some data are hidden by clouds.

Keywords: Land cover classification, remote sensing, image
fusion, Kohonen map, belief functions.

I. INTRODUCTION

In this paper we consider the problem of the joint clas-
sification of farming landscape images from a multispectral
optical image denoted IMS and a Synthetic Aperture Radar
(SAR) image denoted ISAR. We assume the image registration
problems resolved in a pre-processing step and we focus only
on the classification problem. Classically, the classification is
obtained from an information fusion approach which can be
addressed at distinct levels [1]:
• A pixel level (low level fusion) [2]: Ideally, the images

should be fused at this pixel information level, in which
raw data extracted from each pixel, such as spectral or
temporal information of the considered sources, are used.
However, the design of efficient techniques for achieving
this fusion is very difficult due to the complexity of
joint processing of heterogeneous data, such as optical
and radar data. This pixel-based heterogeneous fusion
requires the use of accurate co-registered images that
are often derived from a resampling process in a pre-
processing step. The fusion techniques at this level re-
quire high computational resources and time.

• At feature level (mid level fusion) [3]: The feature (objet)
level fusion is a mid (intermediary) level fusion approach.
It is mainly based on the extraction of one, or more,
feature maps by computing the relevant descriptors of

objects from each input image under analysis. Then, a
fusion strategy must be applied to combine attributes
from different images related to a same spatial area. This
approach induces a loss of information in the processing
due to the replacement of original raw data by the
attributes extracted which usually are not 100% reliable.

• At decision level (high level fusion) [4]: The decision
level operates directly on individual decisions found by
applying a proper processing for each image analyzed
separately. Although this level is considered the most
robust among the three, the fusion solution solution is not
globally optimal since it seeks to optimize each source
individually at first. There is no joint image processing
for making the classification.

Due to the complexity of development of efficient low level
fusion methods and their high computational resource require-
ment, most of users working in remote sensing prefer to work
at mid level fusion or high level fusion. In this paper, we
propose a new method for joint classification from optical
and radar images developed at the mid fusion level exploiting
features information being a good compromise between low
level and high level fusion techniques. Our main contribution
lies in the joint use of images to extract the features in each
image before making their fusion for the classification. For
this, Kohonen’s unsupervised map classification framework
[5], [6] is used to provide an effective way for dealing with
the heterogeneity of the data sources. Our technique is based
on the belief functions because they offer a mathematical
framework for modeling epistemic or subjective uncertainty
(i.e., uncertainty resulting from imperfect knowledge), as well
as stochastic uncertainty (i.e., uncertainty resulting from data
diversity). In the context of this work, the multispectral optical
image IMS is considered as reliable if no clouds or shadows
affect the data. The SAR image ISAR is known to be noisy
[7] due to unavoidable speckle noise effects. Moreover, with
no polarimetric capability (which is the case in this study),
the information that can be extracted from the SAR image is
much less reliable than the one from the optical data. Different
features are extracted from ISAR and IMS. For ISAR, we use
six local texture descriptors [8], [9] to take into account the
information computed from the neighborhoods surrounding



the SAR pixel under concern. At the feature level, each pixel
(i, j) of the SAR image is characterized by a 6-tuple1 denoted
κ(i, j). The featured-SAR image is denoted IκSAR . The surface
reflectance of the different bands of the multispectral optical
image IMS are used directly as features. To guarantee that
the classes are defined in a homogeneous fashion both from
the optical and from the SAR observations, a first coarse joint
classification is performed to link the spectral signatures of IMS
and the SAR texture descriptors of IκSAR . For this, a simple
K-means classifier is used with an appropriate distance that
accounts for the heterogeneity of the joint observation and
cross-calibration factor, which in turn accounts for the relative
dynamics between the two observations. Once this coarse joint
classification is done, at each pixel (i, j) of both registered
images the fusion is achieved thanks to belief functions. This
of course requires the construction of BBAs mMS(·) and
mκMS(·) defined with respect to a common classification frame
of discernment, and a decision-making strategy for making the
classification. This paper is organized as follows. Sections II
and III recall respectively the basics of belief functions, and
Kohonen’s map technique. Section IV proposes a technique of
estimation of belief functions from heterogeneous data in the
case of complete and missing optical data. Section IV. Some
results obtained from real remote sensing images are presented
in Section V, followed by a conclusion with perspectives in
the last section.

II. BASICS OF BELIEF FUNCTIONS

Shafer introduced Belief Functions (BF) [10] to model
the epistemic uncertainty, to reason under uncertainty and
to combine distinct sources of evidence. BF are based on
preliminary Dempster’s works [11], [12]. We consider a finite
discrete frame of discernement (FoD) Θ = {θ1, θ2, . . . , θn},
with n > 1, and where all exhaustive and exclusive elements
of Θ represent the set of the potential solutions of the problem
under concern. The set of all subsets of Θ is the power-set of Θ
denoted by 2Θ. The number of elements (i.e. the cardinality)
of 2Θ is 2|Θ|. A basic belief assignment (BBA) associated
with a given source of evidence is defined as the mapping
m(·) : 2Θ → [0, 1] satisfying the conditions m(∅) = 0 and∑
A∈2Θ m(A) = 1. The quantity m(A) is the mass of belief

of subset A committed by the source of evidence (SoE). A
focal element X of a BBA m(·) is an element of 2Θ such that
m(X) > 0. The set of all focal elements of m(·) is denoted
FΘ(m) , {X ⊆ Θ|m(X) > 0} = {X ∈ 2Θ|m(X) > 0}.

The belief and plausibility functions are defined by

Bel(A) =
∑
X∈2Θ

X⊆A

m(X) and Pl(A) =
∑
X∈2Θ

X∩A6=∅

m(X). (1)

The width Pl(A) − Bel(A) of the belief interval
[Bel(A), P l(A)] is called the uncertainty on A committed
by the SoE. It represents the imprecision on the (subjective)

1More precisely, κ(i, j) , (µ, σ, β1, β2, f6, f5), i.e the mean, standard
deviation, skewness, kurtosis, sum-average and inverse different moment -
see [9] for details and their definitions in appendix.

probability of A granted by the SoE which provides the BBA
m(·). When all elements of FΘ(m) are only singletons, m(·)
is called a Bayesian BBA [10] and its corresponding Bel(·)
and Pl(·) functions are homogeneous to a same (subjective)
probability measure P (·). The functions m(·), Bel(·) and
Pl(·) are one-to-one [10]. If a source of evidence is known
reliable at some degree with a reliability factor2 α ∈ [0, 1],
then its BBA m(·) must be discounted (modified) to work
with a new BBA defined by m′(X) = α ·m(X) for X 6= Θ,
and by m′(Θ) = α · m(Θ) + (1 − α). This is the classical
Shafer’s discounting method [10]. A more refined reliability
discounting technique called contextual discounting can be
found in [13]. In the combination of BBAs, one can also
take into account (if one wants) the importance factor of each
source. The importance level of the sources enters in many
multi-criteria decision-making problems involving BF. For
this, one commits to each source a priority factor3 β ∈ [0, 1]
and we apply the importance discounting method proposed
in [14]. More precisely, we have to work with a new (non
normalized) BBA defined by m′′(X) = β ·m(X) for X 6= ∅,
and by m′′(∅) = β ·m(∅) + (1− β) = 1− β. Of course, after
the combination of BBAs a normalization step is necessary
before making the final decision.

In DST framework, Shafer [10] did propose to combine
s ≥ 2 distinct sources of evidence represented by BBAs
m1(.), . . . ,ms(.) over the same FoD with Dempster’s rule
(i.e. the normalized conjunctive rule) which is commutative
and associative. The justification and behavior of Dempster’s
rule have been strongly disputed from both theoretical and
practical standpoints as reported in [15]–[17]. In particular,
the high (or even very low) conflict level between the sources
can be totally ignored by Dempster’s rule which is a very
serious problem [18]. Also, Shafer’s conditioning (based on
Dempster’s rule) is inconsistent with the probabilistic con-
ditioning and Generalized Bayes’ Theorem [19]. We don’t
assume, nor claim, that there must be a single optimal belief
fusion method that fits all situations, but it is reasonable and it
makes sense to test and evaluate other combination techniques
in applications. In this work, we focus on the Proportional
Conflict Redistribution rule #6 (PCR6) developed in DSmT
(Dezert-Smarandache Theory [20]) because it preserves the
specificity of information through its conflict redistribution
principle and it usually provides better performances than
Dempster’s rule as reported by many researchers working in
different fields of applications. Of course, the price to pay
for using PCR6 is its higher computational complexity with
respect to Dempster’s rule. The decision-making from a BBA
can be done in many ways (max of belief, max of plausibility,
max of some approximate probability measure built from the
BBA, etc) [21].

2α = 1 means that the source is 100% reliable, whereas α = 0 means that
the source is totally unreliable.

3β = 1 means that the source is considered as 100% important for the
analyst, whereas β = 0 means that the source is considered as not important
at all.



III. KOHONEN’S MAP TO MODEL BF

Kohonen’s map, performs an unsupervised neural network-
based competitive learning [5]. It defines a non-linear mapping
from an input space (say Rp) onto a regular array of N ×M
nodes as illustrated in Fig. 1.

Figure 1. Schematic view of Kohonen’s Self-Organizing Map [22].

A reference vector, also called a weighting vector, w(i, j) ∈
R
p is associated with the node at each position (i, j) with

1 ≤ i ≤ N and 1 ≤ j ≤ M . During the projection of
x ∈ Rp to the map, the input vector is compared to each
w(i, j) by using an appropriate metric. The best match wx
(the node that minimizes this metric) is defined as the output
of the Self-Organizing Map (SOM): thus, the input data x is
mapped onto the SOM at location (ix, jx), where w(ix, jx) is
the most similar neuron to x (also called the winning neuron).
Thanks to its topology-preserving property, samples in Rp

which are not too far from each other are projected onto
the map in the same area. Thus, the neurons w are located
on the map according to their similarity. Moreover, it can be
considered that the SOM achieves a non-uniform quantization
that transforms x to wx by minimizing the given metric.

We present briefly the method for the construction of BBA
from Kohonen’s SOM. This method has been presented in de-
tails in [23], [24], and it has already been applied successfully
for SPOT images classification. In this paper we apply it for
joint classification of optical and SAR images.

We consider a given FoD Θ = {θ1, θ2, . . . , θK} which
correspond to the set of classes for the pixels in the images
under analysis. The aim is to classify each pixel into one of
these classes. Typically, θ1 may represent the cereal class,
θ2 the bare soil class, etc. The BBA construction requires
a SOM and an initial classification that defines the classes
θi, i = 1, . . . ,K. The class centers in Rp are denoted as
C1, . . . , CK while their projection onto the map are associated
with the weighting vectors {wC1 , . . . ,wCK}. The mass of the
class θi for i = 1, . . . ,K is defined directly on the map by

m(x ∈ θi) ∼ 1, if wx=wCi

m(x ∈ θi) ∼
dmap(wx,wCi)

−1∑K
`=1 dmap(wx,wC`)

−1
, otherwise

(2)

where dmap(·, ·) stands for the distance along Kohonen’s map.
It is mainly based on Euclidean norm, and it uses the index
that locates the two vectors on the map. That is

dmap(w1,w2) =

√
(iw1

− iw2
)
2

+ (jw1
− jw2

)
2 (3)

if w1 (resp. w2) is located at position (iw1
, jw1

) (resp.
(iw2 , jw2)) on the map.

The mass of compound hypotheses, say m(x ∈ θk ∪ θ`),
is defined directly in the feature space because our definition
of disjunctions of hypotheses expresses the lack of discrimi-
nation. We relate this mass value to a scaling effect between
the sample x under concern and the disjunction of classes θk
and θ` as follows

m(x ∈ θk ∪ θ`) ∼ 1− tanh(β · z) (4)

with

z =
dRp(Ck, C`)

dRp(x, Ck) + dRp(x, C`)
0 < k, ` 6 K, k 6= `.

and where the β parameter stands for the level of ambiguity.
dRp(·, ·) denotes a distance metric in Rp. It can be defined
through Euclidean norm L2 (Rp), but also through a spectral
perspective, such as the spectral angle mapper or the spectral
information divergence. It may also be based on Kullback-
Leibler divergence or mutual information, when dealing with
SAR [25].

The justification for modeling m(x ∈ θk ∪ θ`) by (4) is as
follows. If a sample x is very close to the class center Ck in
comparison with any other class center C`, then there is no
ambiguity in believing that x belongs to class θk, whereas if
the distances between x and the class centers Ck and C` are
of the same scale then it becomes uncertain to commit x with
the class θk or with the class θ`, and it is more prudent in this
case to commit x with the disjunction θk ∪ θ`.

The mass committed to the total ignorance Θ is based on
the distance of a sample x to the map. It therefore requires a
comparison of the distances in the feature space, as well as the
distances in Kohonen’s space. It can be expressed as follows:

m(x ∈ Θ) ∼ 1−min

(
dRp(x,wx)

dRp(Cx,wCx)
,
dRp(Cx,wCx)

dRp(x,wx)

)
(5)

where Cx is the class center of x, wCx is its projection on the
map. The formula (5) can be used as an outlier detector. In
order to work with normalized BBAs in the fusion process,
we apply a classical normalization step.

Ideally, if we consider that the both sources are totally
reliable, this BBA construction could be applied separately
with IMS (using a SOMMS and Euclidean distance metric)
to build mMS(·) for each pixel of IMS. Similarly, one could
apply this method with IκMS (using a SOMSAR and Euclidean
distance metric) to build mSAR(·) for each pixel of IκMS .
In practice however, the things are no so perfect and SAR
images appear as non-reliable source of information because
of speckle noise which makes their extracted features less
reliable. The optical images can also appear as partially



unreliable in the areas where there are clouds or cloud shadows
because the optical information can be missing at these pixel
locations. To overcome this serious problem a joint SOM is
defined through a hybrid neuron definition that takes into
account the p spectral signatures of the optical data, and the
six texture descriptors of the SAR data.

A. Joint and enslaved Kohonen’s SOM for BBA construction

In a general context, let x = {x1, x2, . . . , xp} ∈ R
p

and y = {y1, y2, . . . , yq} ∈ Rq be the two heterogeneous
observations provided by two heterogeneous sensors. The
input samples of the proposed hybrid SOM are done through
the co-located observations z = (x,y) with which a distance
must be associated. This (hybrid-joint) distance is a linear
combination of two metrics defined respectively in Rp and
in Rq , that is

d(z, z′) , dRp(x,x′) + α · dRq (y,y′), (6)

with z = (x,y) and z′ = (x′,y′) belong to Rp+q . The
parameter α is a cross-calibration factor, that accounts for the
relative dynamics between x and y. Since d(z, z′) is defined
though a cartesian product metric space and two distances
dRp(·, ·) and dRq (·, ·), it remains a distance.

According to this definition of a joint feature space and its
related distance metrics, it is possible to perform a training
of a joint SOM where the weighting vectors are defined with
wz = (wx,wy) ∈ Rp+q . Nevertheless, this joint processing
of our heterogeneous data does not take into account, at this
stage, the reliability of the sources. Optical and SAR data
interfere in the same manner in the location of each class
center on the map (the class center of winning neurons wCk ,
k ∈ {1, 2, . . . ,K}), while SAR data is much less reliable than
optical data in the land cover classification accuracy (but in
case of missing optical information due to cloud occultation
of course). Then, instead of a joint processing, an enslaved
processing is set up to perform SOM training and a SOM-
based BBA of the SAR data only.

Enslaved SOM training starts with a classical SOM training
of the optical data only, which generates a SOMMS. Then,
the neurons of SOMMS are concatenated by the q = 6
texture-based SAR feature components to fit the Rp+q of the
joint processing. The training of this hybrid map begins, but
only the last q-components (dedicated to the SAR data) are
modified. In this case, the optical part is preserved, while the
SAR part follows the optical part in the location of classes on
the map (locations of the winning neurons wCk ). This defines
SOMκSAR|MS from which the BBA mSAR(·) is built for each
pixel of the SAR image. The scheme of fusion of reliable4

multispectral optical and SAR image is given in Fig. 2.

B. Dealing with missing optical data

When the optical sensor acquires a scene in the presence of
clouds, two kinds of missing data must be considered: the parts
of the data that are hidden by the clouds themselves, and the

4Here we assume that the information at a given pixel in the optical image
is not missing, i.e. there is no cloud occultation effect at this pixel.

Figure 2. Fusion framework between a reliable optical multispectral image
and a SAR image.

parts that are affected by the shadow of the clouds. In this case,
a binary mask allows the training of Kohonen’s map using
valid (reliable) optical data only. The BBA of pixels located
in occulted areas could be simply modeled by a vacuous BBA,
that is by mMS(Θ) = 1. However this standpoint ignores the
joint observation of optical and radar sensors. In fact, the
optical pixel may be recovered by using the joint Kohonen’s
map SOMκSAR|MS which reflects the links between optical and
radar parts in the observation. Based on this remark, when
a pixel xMS is considered missing in the optical image due
to the presence of clouds or shadow, the co-located radar
observation ySAR is considered. Its winning neuron in the radar
restriction of SOMκSAR|MS allows us to consider the optical part
of Kohonen’s map. This spectral signature is substituted for
xMS to recover the missing information.

IV. OPTICAL AND RADAR JOINT CLASSIFICATION

For each pixel of the fused image, the fusion process
consists in combining the BBAs mMS(·) and mSAR(·) built by
the method presented in the previous section. In order to take
into account the reliability of the optical and radar sources
in the fusion process, we apply a different discounting on
the BBA mMS(·) and on mSAR(·) before their combination.
We apply a contextual discounting [13] of mMS(·) and an
importance discounting [14] of mSAR(·) to better fuse the two
heterogeneous sources of information that do not yield the
same kind of physical information with a different level of
discrimination efficientcy. More precisely, before making the
combination of the two BBAs, we discount them as follows:
• Contextual discounting of mMS(·)

m′MS(X) =
∑

Y1,Y2∈2Θ|Y1∪Y2=X

mMS(Y1)mλi

θi
(Y2) (7)

where mλi

θi
(·) represents the BBA attributed to θi ∈ Θ

which enters in the contextual discounting method. λi ∈
[0, 1] is a tuning parameter associated with the class θi.
This BBA is defined by mλi

θi
(∅) = λi and mλi

θi
(θi) =

1− λi.



• Importance discounting of mSAR(·){
m′SAR(∅) = 1− β
m′SAR(X) = β ·mSAR(X), if X ∈ 2Θ \ {∅}

(8)

where β is a chosen importance factor in [0, 1].
The fusion is achieved by combining the discounted BBAs

m′MS(·) and m′SAR(·) with PCR6 rule [20], followed by a
normalization step as explained in [14]. The justification of
PCR6 rule comes from the fact this rule makes a rational
redistribution of partial conflict proportionally only to the
masses of propositions that are involved in the conflict.
Hence, PCR6 rule offers the preservation of the specificity
of the information in the fusion process. PCR6 is preferred
to Dempster’s rule because Dempster’s rule provides counter-
intuitive results [18], and it does not respond to importance
discounting as shown in [14]. The result of the combination
of m′MS(·) and m′SAR(·) with PCR6 is denoted symbolically
as mPCR6(·) = [m′MS ⊕ m′SAR](·). The normalization step
after applying PCR6 is necessary in our application because
m′MS(∅) > 0 implies mPCR6(∅) > 0. Therefore, after apply-
ing PCR6 rule we normalize all masses values mPCR6(X) for
X 6= ∅ by mPCR6(X)/(1−mPCR6(∅))→ mPCR6(X), and
we set mPCR6(∅) = 0 in order to get a fused and normalized
BBA from which the final decision will be made. In this
work, we adopt the classical maximum of betting probability,
denoted BetP (·), decision-making strategy introduced in [26].
We use this decision-making strategy because it is simple to
implement, and it offers a compromise between the pessimistic
(max of belief) and the optimistic (max of plausibility) deci-
sional attitudes. More precisely, we classify the pixel under
analysis in the class θi ∈ Θ, if BetP (θi) = maxj{BetP (θj)}.

V. EXPERIMENTAL RESULTS

We present the results of joint classification obtained
with this new fusion method applied on real SPOT-5 and
RADARSAT-2 images taken at almost same period of time
(April 2015). Our study covers a 11.5 × 9km2 area of the
flat agricultural Beauce region, located in the south-west of
Paris, France which is characterized by very large fields
dominated by rape and cereal (wheat, barley, corn) crops. In
this experience, the multispectral image IMS is acquired by
the SPOT-5 French satellite, and the SAR iamage ISAR is
acquired by the RADARSAT-2 Canadian satellite in Ultra-
Fine mode. The SPOT-5 image is characterized by a size
of 1145 × 903 pixels, with a spatial resolution of 10m, and
has four bands (Green (G), Red (R), Near InfraRed (NIR)
and Medium InfraRed (MIR)). The RADARSAT-2 image is
composed of 3850 × 3010 pixels, with a spatial resolution
of 3m. Both HH and HV polarization channels are available
in the SAR image, but we did use only HH polarization
because it interacts more efficiently than HV-polarization with
agricultural crops. Fig. 3-(a) and Fig. 3-(b) show, respectively,
the false color composite of the SPOT image and its registered
SAR image. We distinguish five different land cover types
(classes) in Fig. 3(a):

• C1: The brown class C1 corresponds to wooded areas.
C1 appears in light grey on SAR image of Fig. 3(b).

• C2: The dark red field class C2 corresponds mainly
to durum wheat (planted in winter). This class has no
explicit signature in the SAR image.

(a) SPOT5/Take5 data acquired on April 20th, 2015. False color composite: RGB =
(NIR, R, G) c©CNES

(b) Registered RADARSAT-2 HH F5 mode Ascending acquired on April 23rd, 2015.
RADARSAT-2 Data ans Products c©MacDONALD, DETTWILER and ASSOCIATES

LTD – All Rights Reserved

Figure 3. Multispectal (a) and radar (b) used in the experiment (Beauce
region, France).

Figure 4. IκSAR image corresponding to the SAR texture information with
false color composition: RGB=(µ, σ, β1)



• C3: The light red fields class of Fig. 3 (a), corresponds
mainly to rape. Class C3 is in light grey on Fig. 3 (b).

• C4: The cyan fields class C4 corresponds to bare soils. C4

appears as dark in 3(b). In fact, they correspond mainly
to corn and cereal seedling.

• C5: The grey fields class C5 corresponds mainly to barley
(planted in early spring). This class has no significant
signature in the radar image.

A. Preprocessing of SAR image

The fusion process is achieved at the coarser resolution
of both images, that is at the resolution of SPOT5 image
(i.e. 10m). For this, the RADARSAT-2 image is first pro-
cessed in order to extract the local statistical parameters
(µ, σ, β1, β2, f6, f5)); the processing is done through a slid-
ing window of 51 × 51 for (µ, σ, β1, β2) and 15 × 15 for
the Haralick texture parameters (f6, f5) estimation. In order
to prevent bordering effects between parcels, a naive map
extracted from the multispectral image serves as a mask in
the local parameter estimation of radar data. This guarantees
a parameter estimation on effective homogeneous areas and
preserves the borders of each parcel. The choice of analysis
window size is based on our object dimensions of interest.
Therefore, our analysis windows size is proportional to those
field dimensions. The 3m-resolution SAR feature image is then
downsampled to a 10m-resolution SAR feature image, and
then registered to the SPOT geometry. Fig. 4 shows a false
color composition of the radar information at a 10m resolution.
The color composition is shown with RGB=(µ, σ, β1). In
comparing visually Fig. (4) with (3)(a), one sees that C1 class
(wooded area) appears in yellow in Fig. (4), C3 class (rape)
appears in light brown and C4 appears in dark magenta.

B. Fusion & joint classification results without missing data

Here we consider the simplest case where there is no
missing data in the optical image when there is no cloud nor
shadow effect. In order to merge the belief degrees associated
with each pixel from the two input images, a unified FoD is
required. The simple classes of this FoD are defined using the
K-means unsupervised classifier [28], where the parameter K
is set to 5. One applies the K-means classifier to a stack image
collecting the spectral information of the SPOT image IMS and
the texture information of the (downsampled and registered)
SAR image IκSAR . We have taken the cross-calibration factor
α = 5.10−3 in (6) because it corresponds to the average
ratio between the mean value of the optical and radar data.
The ground truth was collected in July 2015, while the data
were acquired in April, and as a result, any ambiguity between
different kinds of crops could not be resolved, as many fields
were still in the seedling state. Hence, it was decided that only
five classes could be discriminated. The results of the joint
classification are shown in Fig. 5. This classification is used
as reference image (the ground truth of classification result)
for the performance analysis of our fusion method.

Fig. 6 presents the Kohonen’s maps SOMMS and
SOMκSAR|MS trained with the optical and the SAR information.

Figure 5. Reference image built from Unsupervised K-means classification
(with K = 5 classes) applied jointly on multispectral and SAR information

These 65 × 65 neuron maps were trained with 5000 samples
per class. The initial learning rate and neighborhood size were
set respectively to 1 and 60.

(a) SOMMS
RGB=(NIR, R, G)

(b) SOMκSAR|MS
RGB=(µ, σ, β1)

Figure 6. SOM maps of size 65× 65 neurons. The map (a) has been trained
with the optical data only, while the map (b) has been enslaved to map (a)
and trained with radar data. Hence, co-located neurons bring the same ground
information between the 2 maps

SOMMS in Fig. 6-(a), shows essentially the distribution of
spectral signatures representing cover soils (in red) and bare
soils (in cyan) in this farming area. In the marginal dark
zone between these two types of spectral signatures, there is
a location dedicated to man-made structures (buildings and
roads) and a forest area (darker, at the bottom left area of
SOMMS). The enslaved map SOMκSAR|MS of Fig. 6-(b), shows
the same kind of neurons at the same location on the map,
viewed by the textural parameters extracted from SAR data.

One sees that the purple area in the middle of SOMκSAR|MS
map, appears quite homogeneous, while we have two very
different areas in SOMMS map. This illustrates the fact that the
optical sensor is mainly sensitive to the presence of chlorophyll
in this farming area, while the radar is sensitive to the surface
roughness. However, surface roughness may appear similar,
from a radar observation, in bare soil and also in cover fields,
depending on the plantation. Nevertheless, the wooded area



is clearly discriminated from SAR sensor. The wooded area
appears in brown-yellow in Fig. 4 and at the bottom left of
SOMκSAR|MS in Fig. 6-(b). The SAR sensor does not help in the
discrimination between bare soil and cover soil; nevertheless,
it easily discriminates the 2 kinds of cover fields that appear
in red from a SPOT point of view (e.g., Fig. 5), as an area
at the top right of the SOMκSAR|MS map appears in brown.
It helps to do discrimine between corn seed in winter and in
early spring. The use of the enslaved radar part of SOMκSAR|MS
allows the Credal classification to tackle this ambiguity in
order to improve the final joint classification.

From Kohonen’s maps SOMMS and SOMκSAR|MS, the esti-
mation of BBAs is then performed. The contextual discounting
factors λi involved in (7) were calculated using results given
by the confusion matrix [27] derived from the cross decisions
given by the optical source and the decisions of the reference
data only. Each λi is estimated using the percentage of correct
classifications of the target class θi. In our application, the
contextual reliability factors are: λ1 = 0.85, λ2 = 0.86,
λ3 = 0.52, λ4 = 0.9, and λ5 = 0.87. Based on the subjective
attribute of SAR source, we have taken β = 0.4 as importance
discounting factor for discounting the BBA mSAR(·) with (8).
It maximizes class discrimination of the overall process.

Fig. 7 shows the classification result drawn from the fusion
of optical and SAR information based on PCR6 rule and max
of BetP (·) decision-making strategy. The measure of perfor-
mance (i.e. confusion matrix) is established by comparing the
result of Fig. 7 with the classification ground truth of Fig.
(5). A Correct Classification Rate (CCR) of 77.25% has been
evaluated from Table I, and a Kappa Index of 0.74 which is
considered to a good agreement in [29].

Figure 7. Joint classification result with PCR6 and max of BetP strategy.

The accounting for source reliability for each class allows
the decision making to mitigate ambiguous fields such as those
which are slightly covered, but may still be considered as bare
soils, or the seedling fields which may not have the same
surface roughness. This impacts mainly the class C5 (fields
mainly barley), which can be classified as C2 or C3, depending
on the roughness signature and density of chlorophyll.

Table I
QUANTITATIVE RESULTS OBTAINED USING CONFUSION MATRIX

C1 C2 C3 C4 C5

C1 95.35 0.00 1.94 2.69 0.02
C2 0.02 60.65 34.83 0.11 4.39
C3 0.00 4.87 95.13 0.00 0.00
C4 4.59 0.00 0.04 95.36 0.01
C5 1.75 9.04 17.88 31.55 39.78

C. Fusion & joint classification results with missing data

The same analysis has been done with missing data in the
optical image. For this, we have applied artificial occultation
masks on SPOT5 image to simulate the presence of clouds
or shadows. Two masked regions, namely, zone 1 and zone
2, were selected in order to hide different kinds of ground
cover. The mask of zone 1 mainly covers a non-agricultural
area composed of 18,056 pixels, while the mask of zone 2
covers some covered and some bare soils composed of 6,300
pixels, as shown in Fig. 8(a). The joint classification result is
shown in Fig. 8(b).

(a) The original SPOT image with missing
data at the location of the mask.

(b) Classification of the heterogeneous
data with missing data.

Figure 8. Results for joint classification with simulated cloud cover. The
decision is performed by the maximum of pignistic probability over all simples
hypotheses

A quantitative analysis gives an overall classification accu-
racy of CCR = 73.94% which is very close to CCR = 77.25%
obtained when processing the cloud-free SPOT5 image with
SAR image.

VI. CONCLUSION

A new method has been proposed for combining comple-
mentary information drawn from optical and radar remote
sensing data for land cover classification in agricultural areas.
The proposed approach refers to the direct combination of
heterogeneous data at the pixel level in the features space,
and considers the image registration problems as resolved.
This new approach is based on hybrid training of Kohonen’s
map using heterogeneous data for mass functions estimation.
This step helps to deal with the heterogeneity of data sources
by representing those in the same semantic meaning through
co-located observations. The methodology benefits from this
joint training of heterogeneous data to restore missing parts of



optical data. It is worth noting that the enslaved processing is
relevant when one of two sources of information is considered
to be more accurate than the other. When the cloud coverage is
too significant, the related source of information can no longer
be considered as sufficiently accurate. In that case, a joint
processing should be preferred in order to recover missing
data. Our experimental tests on real images showed the benefit
of heterogeneous joint processing in the analysis of a complex
farming area, even in the case of missing data. A deeper
analysis should be performed to better link the heterogeneous
data fusion process with Credal theory and the hybrid training
of Kohonen map when joint training data is available.

APPENDIX - SAR TEXTURE DESCRIPTORS

Let p(i), i = 0, 1, ..., Ng − 1 be the pmf of the intensity
levels occurrence, where Ng is the number of gray levels. p(i)
is calculated by dividing the histogram value h(i) by the total
number of pixels of the odd sliding window of size w × w,
that is p(i) , h(i)/w.w. We use the following SAR texture
descriptors:
• The mean µ: It is the average level of intensity of the

region of texture

µ = E[i] =

Ng−1∑
i=0

i× p(i)

• The standard deviation σ: it describes the variation of
intensity around the mean

σ =
√
E[(i− µ)2] = [

Ng−1∑
i=0

(i− µ)2 × p(i)]−1/2

• The skewness β1: It describes how symmetric the inten-
sity distribution is around the mean

β1 = E
[( i− µ

σ

)3]
=

Ng−1∑
i=0

(i− µ)3

σ3
× p(i)

• The normalized kurtosis β2: It measures the flatness
excess of the intensity distribution

β2 = E
[( i− µ

σ

)4]
=

Ng−1∑
i=0

(i− µ)4

σ4
× p(i)− 3

• Haralick’s descriptor f5: It is the inverse difference mo-
ment which measures local similarities in the image

f5 =

Ng∑
i=1

Ng∑
j=1

1

1 + (i− j)2
× p(i, j)

where p(i, j) is the value of the Gray Level Cooccurrence
Matrix (GLCM) at the cell (i, j) [9].

• Haralick’s descriptor f6: It is the sum average descriptor
defined as

f6 =

2Ng∑
i=2

[
i×

Ng−1∑
k=0

Ng−1∑
`=0

k+`=i

p(k, `)
]
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