Kohonen-Based Credal Fusion of Optical and Radar Images for Land Cover Classification
Résumé
This paper presents a Credal algorithm to perform land cover classification from a pair of optical and radar remote sensing images. SAR (Synthetic Aperture Radar) /optical multispectral information fusion is investigated in this study for making the joint classification. The approach consists of two main steps: 1) relevant features extraction applied to each sensor in order to model the sources of information and 2) a Kohonen map-based estimation of Basic Belief Assignments (BBA) dedicated to heterogeneous data. This framework deals with co-registered images and is able to handle complete optical data as well as optical data affected by missing value due to the presence of clouds and shadows during observation. A pair of SPOT-5 and RADARSAT-2 real images is used in the evaluation, and the proposed experiment in a farming area shows very promising results in terms of classification accuracy and missing optical data reconstruction when some data are hidden by clouds.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...