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Abstract: The application of nanohybrids based on 

polyoxomolybdates, reduced graphene oxide (rGO) and/or 

metal nanoparticles (NPs) high-performance electrode ma-

terials in electrocatalysis and energy storage devices is 

promising but still limited due to the complexity and the cost 

of the synthesis. Here we introduce a simple 

polyoxomolybdate, [MoV4O8(OH)2(H2O)2(C4O4)2]2- (MoS), as 

reducing and stabilizing agent for the facile and one-pot 

syntheses of large quantity of highly stable MoS/rGO and 

MoS/Au NPs nanohybrids in aqueous solution without any 

catalyst or toxic co-solvent. They were characterized by var-

ious physical techniques and electrochemistry which con-

firm strong interaction between MoS and rGO sheets. We 

also used DFT calculations to investigate the affinity between 

MoS or its neutral form with graphene. The adsorption en-

ergy for the most stable configuration is -1.97 eV, indicating 

a strong adsorption process of MoS, which can also be con-

firmed by the distance (3.04 Å) and the charge transfer (0.86 

e) between MoS and graphene. These observations are also 

consistent with the electrochemical results which under-

score the excellent redox properties and high stability of 

MoS/rGO. Importantly, the MoS/rGO nanohybrids are excel-

lent noble metal-free electrocatalysts for hydrogen peroxide 

reduction with high sensitivity, large detection range and 

low detection limit. Finally, the preliminary tests reveal that 

the electrode materials based on MoS/rGO and a low-cost 

carbon cloth (CC) composite MoS/rGO/CC may have a po-

tential for an application in energy storage as performant 

and flexible supercapacitor, showing specific capacitance as 

high as 870 F g-1 at 10 mV s-1 and excellent stability after 

5,000 cycles. 

Keywords: multifunction materials, reduced graphene 
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oxide, polyoxomolybdate, sensor for hydrogen peroxide, 

flexible supercapacitor electrodes. 

 

Introduction 
Recently, nanohybrid materials based on 

polyoxometalates (POMs), reduced graphene oxide 

(rGO) and/or metal (Ag, Au, Pd or Pt) nano-objects 

have attracted considerable attention owing to their 

promising applications in various fields such as pho-

to-electro-catalysis, energy conversion and storage, 

molecular sensors and electronics [1-8]. POMs are a 

vast class of early transition metal–oxygen clusters 

built from the connection of {MOx} polyhedra, M being 

an early d-block element in high oxidation state, usu-

ally VIV,V, MoVI or WVI and characterised by a broad di-

versity of physical and chemical properties [9-25]. A 

large variety of POMs undergo fast and chemically re-

versible multi-electron processes without decomposi-

tion and thus can act as effective electron transfer cat-

alysts in the homogeneous liquid phase [20, 24]. Due 

to the low electrical conductivity and the high solubil-

ity of many POMs in various media, a prerequisite for 

their applications as effective heterogeneous 

electrocatalysts is that they must be appropriately 

immobilised onto highly conductive supports with 

large specific surface areas, such as rGO and metal 

nanoparticles (NPs). POM/metal NPs, POM/rGO and 

metal NPs/POM/rGO nanohybrids were fabricated by 

using various methods such as high-power UV 

photoreduction, hydrazine assisted reduction, 

electroreduction or via hydrothermal reactions [1-8]. 

Mostly, the reduced form of the POMs served as effec-

tive reductants of GO and/or of the metallic salt but 

also as capping and stabilising agent of the resulting 

rGO and/or metal nano-objects [1-5]. The high elec-

trochemical and photo-electro-catalytic performances 

of these nanohybrids were attributed to the synergis-

tic effect of the rGO used as excellent conducting sup-

port and the recognised electrochemical and pho-

to-electro-catalytic properties of the POMs and the 

metal nano-objects. A large number of these hybrids 

are based on molybdenum-containing POMs because 

they have excellent redox properties and great poten-

tial as electrocatalysts for challenging applications 

such as sensors and energy storage materials [2-4, 6, 7, 

26-29]. Most of the purely molybdic POM-based hy-

brids are obtained with the classical Keggin-type POM 

[PMo12O40]3-(PMo12) associated or not with cationic 

polymers. Recently, we introduced a one-step and 

green method for the assembly of rGO with 

POM-based metal organic framework (POMOF/rGO), 

the POMOFs used being based on 

{-PMoV
8MoVI

4O40-x(OH)xZn4} (0 ≤ x ≤ 4) Keggin-type 
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polyoxomolybdate building units. Indeed, the synthe-

sis of these POMOF/rGO hybrids was carried out in 

pure water, at room temperature and without any ad-

ditive [30]. POMOFs serve as efficient reductants for 

GO as well as stabilising agents for the resulting 

POMOF/rGO hybrids which revealed to present high 

quality rGO, remarkable electrochemical properties 

and very high stability in aqueous media. However, 

besides this effective green method to assemble rGO 

and POMOF, the development of milder synthetic pro-

tocols of such polyoxomolybdate nanohybrids remains 

a challenge. 

Herein, we introduce highly effective energy saving 

synthetic routes for a new generation of 

polyoxomolybdate nanohybrids based on the simple 

polyanion [MoV
4O8(OH)2(H2O)2(C4O4)2]2-(MoS) [31] 

and rGO, with an option of associating with Au NPs. As 

for POMOFs, MoS can act as a reductant but its synthe-

sis is based on a one-pot procedure in water at room 

temperature, easier and quicker than the synthesis of 

POMOFs which is performed in an autoclave under 

hydrothermal conditions for several days with a puri-

fication step [30]. The reactants are relatively cheap, 

and the synthesis can be performed on a gram scale 

MoS thus possesses the properties required for low 

cost and effective largescale preparation and stabiliza-

tion of nanohybrids. The synthesis in pure water via 

green one-step synthetic routes as well as the charac-

terizations of the MoS/rGO and MoS/Au NPs compo-

sites are reported. In addition, PDDA/MoS/PDDA/GO 

(PDDA = poly(diallyldimethylammonium), PDDA/MoS 

and PDDA/GO layer by layer films were synthesized 

and studied in order to evidence potential synergistic 

effects between the components on the 

electrocatalytic properties of such hybrids. 

 

Scheme 1. Synthetic pathways for the various 
nanohybrids. 

 
DFT calculations of the interaction between MoS 

and graphene were also performed in order to appre-

hend the interaction between these components. The 

electrocatalytic performances for the reduction of hy-

drogen peroxide of the MoS/rGO nanohybrids as well 

as preliminary tests as supercapacitors are finally re-

ported.  

 
Experimental Section 

Materials 

Hydrochloric acid, ethanol, ether, sulfuric acid, lith-

ium chloride, potassium permanganate and sodium 

nitrate were purchased from Sinopharm Chemical Re-
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agent Co., Ltd.. Chloroauric acid, sodium borohydride, 

sodium molybdate dehydrate and ascorbic acid were 

obtained from Aladdin. 5% Nafion (purchased from 

Sigma Aldrich) were dissolved in isopropyl alcohol to 

get the 0.5% Nafion to use. The other reagents were of 

analytical purity and were used without further puri-

fication. 

Synthesis 

The synthetic pathways and the abbreviations of the 

various materials are shown in Scheme 1. 

Li0.5Na1.5[MoV
4O8(OH)2(H2O)2(C4O4)2]·9H2O 

(LiNa-MoS). LiNa-MoS was synthesized following a 

slight modification of the procedure reported previ-

ously by some of us [31]. Na2MoO4 · 2H2O (1.0 g, 4.15 

10-3 mol) was dissolved in 10 mL of water. NaBH4 

(0.080 g, 2.11×10-3 mol) was then added and the pH 

was adjusted to 7.0 with 1 M HCl. The resulting 

brownish solution with a dark precipitate was stirred 

for 5 min. A solution of H2C4O4 (0.228 g, 2.0×10-3 mol) 

in 10 mL of water was added which lead to the disso-

lution of the precipitate. The pH was adjusted to 2 with 

1M HCl and the solution stirred for another 15 min. 

LiCl (1.0 g, 23.6×10-3 mol) was then added and the 

solution was left at room temperature for 24 h. The 

orange solid was filtrated on a glass filter and washed 

with EtOH and Et2O (m = 0.270 g, yield 26% based on 

Mo). IR: (cm-1) = 1805 (m), 1643 (s), 1502 (s), 

1437 (s), 1091 (w), 1064 (w), 962 (m), 939 (m), 709 

(m), 613 (w), 476 (w). Anal. Calc. for 

C8H24Li0.5Mo4Na1.5O29 (F.W. 1006.0 g mol-1) (found): C 

9.55 (8.67), H 2.40 (1.73), Li 0.35 (0.55), Mo 38.18 

(38.97), Na 3.43 (3.51). The study of the stability of 

MoS in water was performed by dissolving LiNa-MoS 

(31 mg) in 10 mL of water. The solution was stirred in 

air at room temperature for 2 to 4 days. The solution 

was evaporated to dryness and the IR spectrum of the 

powder recorded. 

Synthesis of GO. GO was formed by oxidation of nat-

ural graphite flakes by a modified Hummers method 

[32] using H2SO4, NaNO3 and KMnO4 in an ice bath [33]. 

The resulting homogeneous brown GO dispersion was 

tested to be stable for several months and used for 

reduction.  

Synthesis of MoS/rGO. In a typical experiment, MoS 

(26 mg) was dissolved in 20 mL of water and stirred 

until a yellow clear solution was obtained. Then, this 

solution was mixed to an aqueous suspension of GO 

(20 mL, 0.25 mg mL-1), and kept at room temperature 

for at least 4 hours, affording a dark blue suspension. 

The suspension was filtrated, washed thoroughly with 

pure water and dried. 

Synthesis of MoS /Au NPs. A HAuCl4 aqueous solu-
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tion (45 µL, 0.02 M) (Au acid) was added to an aque-

ous solution of MoS (6 mL, 1.5mM) (γ = n(MoS)/n(Au 

acid) = 10). The color changed from yellow to dark 

red, indicating the formation of MoS stabilized Au NPs 

(MoS/Au NPs) which was further characterized by 

UV-Vis spectra. The MoS/Au NPs were separated from 

the reaction mixture by centrifugation and washed 

three times with deionized water in order to remove 

the residual MoS. The collected MoS/Au NPs were 

re-dispersed in water using mild ultrasonication to 

generate a stable solution of MoS/Au NPs for analysis 

and further utilization.  

Preparation of the modified electrodes. The elec-

trode material was either a polished glassy carbon 

disk (GC) or a carbon cloth (CC) plate. Prior to the 

modification process the CC plate was pre-treated ac-

cording to the literature method to remove impurities 

on its surface [34]. CC was refluxed in concentrated 

HNO3 at 100 oC for 2 hours and then thoroughly 

washed with water and ethanol. Typically, MoS/rGO 

was dispersed in ethanol, and then grinded and 

sonicated to form a uniform catalyst ink (1.67 mg 

mL−1). The modified electrode was prepared by de-

positing 30 L per cm2 onto GC or CC (i.e., the MoS/rGO 

loading was 0.050 mg cm-2).  

Fabrication of the Multilayer Films Containing MoS, 

MoS/Au NPs and GO. The substrates (ITO-coated glass 

slides or quartz) were put in an aqueous solution con-

taining PDDA (PDDA = 

poly(diallyldimethylammonium), 8.0 wt%) for 20 min 

to obtain a positively charged surface of PDDA layer, 

which can adsorb the negatively charged species (ab-

breviated NCS) MoS, GO and/or MoS/Au NPs via elec-

trostatic interactions. The substrates with PDDA layer 

were transferred to solutions containing the NCS for 

20 min. After rinsing thoroughly with deionized water 

and drying with nitrogen the decorated substrates 

with a NCS layer were shifted to the PDDA solution 

(8.0 wt %) again, leading to the adsorption of another 

PDDA layer. When the obtained modified substrates 

were put in NCS and PDDA solutions alternately, the 

multilayer films containing NCS and PDDA were 

formed. The thickness of the multilayer films could be 

easily adjusted by the number of deposited layers. 

Physical Characterization Techniques. 

FT-IR spectra were performed on a Bruker Vertex 

80v FT-IR spectrometer equipped with a DTGS detec-

tor (32 scans) with a resolution of 4 cm-1 on KBr pel-

lets. X-ray photoelectron spectroscopy (XPS) spectra 

were measured on an ESCALAB-250 spectrometer 

with a monochromic X-ray source (Al Kα line, 1486.6 

eV). Powder X-ray diffraction (XRD) data were ac-

quired on a Rigaku X-ray diffractometer using Cu K 

radiation at a wavelength of 1.542 Å. Transmission 
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electron microscopy (TEM) images were recorded on a 

Hitachi H8100 electron microscope. Dynamic light 

scattering (DLS) experiments were performed on a 

DAWN Enhanced Optical System (DAWN EOS, Wyatt 

Technology Corporation). UV-vis absorption spectra 

were recorded on a Shimadzu UV-3100 spectrometer, 

and the slit width was set at 2 nm. Zeta potential 

measurements were recorded on a Nano-ZS instru-

ment, model ZEN 3600 (Malvern Instruments). 

Electrochemical Characterizations. The electro-

chemical setup was a CHI workstation driven by a PC 

with the CHI660E software. All experiments were 

performed at room temperature. The solutions were 

thoroughly deoxygenated for at least 30 min with pure 

argon and kept under a positive pressure of this gas 

during the experiments. The working electrode mate-

rial was either well-cleaned GC or CC. Potentials are 

quoted against a saturated calomel electrode (SCE), in 

a compartment separated from the test solution by a 

fine porosity glass frit. The counter electrode was a 

platinum plate with large surface area in a compart-

ment separated from the test solution by a medi-

um-porosity glass frit. The composition and pH of the 

media used for the electrochemical or 

electrocatalytical experiments were as follows: 0.5 M 

H2SO4 solution or 0.5 M Na2SO4/H2SO4 (pH 2). Static 

and dynamic light scattering (SLS and DLS) measure-

ments were performed by a Brookhaven Instruments 

Inc. light scattering spectrometer at 90 degree scat-

tering angle at room temperature. Zeta potential anal-

ysis was performed by a Brookhaven Instruments Inc. 

ZetaPALS analyser. Specific experimental details for 

the physical characterizations are provided in the 

Supporting Information. 

 

 
RESULTS AND DISCUSSION 
 

  Synthesis, physical and electrochemical character-

izations  

Synthesis and Characterization of LiNa-MoS.  

The synthesis of 

Li0.5Na1.5[MoV
4O8(OH)2(H2O)2(C4O4)2]·9H2O (LiNa-MoS) 

was performed by the reaction of sodium molybdate, 

sodium borohydride and squaric acid. NaBH4 is a 

green reducing agent compared to the highly toxic hy-

drazine which was used in our previous synthetic 

protocol [31]. A panel of techniques (see experimental 

section) evidenced that MoS is the analogue of 

LiNa[MoV
4O8(OH)2(H2O)2(C4O4)2]·2H2O and possesses 

a tetranuclear [MoV
4O8(OH)2(H2O)2(C4O4)2]2- core,  

(Figure 1). The tetranuclear anion is built up of four 

edge sharing MoV octahedra, separated in two pairs 

corresponding to MoV-MoV dimers with localized met-

al-metal bonds. Two squarate ligands bridge two Mo 
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3-O atoms are lo-

cated at the junction of three Mo octahedra leading to 

a compact and robust structure.  

 

 

Figure 1. a) Ball-and-stick and b) polyhedral repre-
sentations of the structure of the MoS anion; yellow 
sphere = Mo, red spheres = O, black spheres = C. 

 

The long-term stability of MoS in pure water as a 

function of time was studied by monitoring the evolu-

tion of its IR spectrum over several days (Figure S1). 

When MoS was dissolved in water and the solution 

stirred in air, the orange solution progressively turned 

blue. A blue precipitate was obtained by evaporation 

after 2 or 4 days respectively and its IR spectrum rec-

orded. The blue color indicates the partial oxidation of 

MoV ions and the formation of mixed-valenced species. 

However, while broadened, the position of the peaks in 

the IR spectra does not change compared to those of 

the MoS precursor, showing that the structure is glob-

ally maintained. It is noted that we didn’t observe the 

formation of POM-based colloids. Indeed, SLS and DLS 

measurements indicate that the MoS nanoclusters ex-

ist as single clusters in solution, as the scattered inten-

sity from MoS solutions (determined by the SLS) is 

very low (no supramolecular structure formation) and 

the DLS measurements do not detect any large struc-

tures in solution. From the Zeta potential analysis 

studies, in 1.0 mg mL-1 aqueous solution each MoS 

cluster carries -1.55 effective charges as the additional 

charges have been neutralized by closely-associated 

counterions. 

Synthesis and Characterization of MoS/rGO. Specific 

experimental details for GO and MoS/rGO are provid-

ed in the Experimental section. The synthesis of 

MoS/rGO hybrids was carried out by reaction of the 

desired amount of MoS with an aqueous exfoliated 

dispersion of GO at room temperature without the re-

quirement of any additive. During the reduction pro-

cess, the light brown-colored suspension turned 

blue-black after about 4 hours. These observations 

underscore the high efficiency of the reduction reac-

tion yielding the well-known black color of rGO 

nanosheets and the blue-colored MoV-MoVI 

mixed-valenced species resulting from partial oxida-

tion of MoS. These observations suggest that MoS/rGO 

nanohybrids were obtained, in line with the reported 

ones for various POM/rGO nanohybrids [2-7]. Figure 

S2a shows the UV/VIS-NIR spectra of GO, MoS and the 

as-prepared MoS/rGO in pure water. The comparison 

of these spectra evidences that after complete reduc-

b)a)
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tion, the spectrum of the sample exhibits the spectral 

fingerprint of the mixed-valenced species featured by a 

peak located at 775 nm followed by a shoulder at ca. 

670 nm (Figure S2b). Moreover, the absorption of rGO 

should contribute to the observed absorption increase 

at higher wavelengths. 

To obtain pure MoS/rGO, the suspension was fil-

trated, washed with pure water, and dried. The black 

precipitate was characterized by various physical 

techniques and cyclic voltammetry (CV). Figure 2a 

exhibits the typical FESEM image of the MoS/rGO 

nanohybrid. As expected the image features rGO 

nanosheets looking like crumpled silk veil waves, 

which confirms the successful reduction of GO. The 

TEM (Figures 2b, 2c with different magnifications) and 

HRTEM (Figure 2d) images show that a majority of 

nanoclusters measuring 5 ± 1 nm in diameter are 

uniformly dispersed on transparent rGO nanosheet. 

The energy-dispersive X-ray spectrum (EDS) ele-

mental mapping images (Figures 2e, 2f, 2g) on carbon, 

oxygen, and molybdenum confirm their homogeneous 

distribution in MoS/rGO. The oxygen mainly comes 

from the residual oxygen containing groups in rGO and 

the oxygen of the POM. 

 

Figure 2. (a) Field-emission scanning electron mi-
croscopy (FESEM), (b, c) different magnifications of 
TEM and (d) HRTEM images of MoS/rGO; (e-g) ener-
gy-dispersive X-ray spectrum (EDS) elemental map-
ping images of MoS/rGO. 

 
The degree of GO reduction and the chemical com-

position of MoS/rGO were monitored by XPS. Figures 

3a and 3b feature the XPS C 1s spectra of GO and 

MoS/rGO respectively. Table S1 gathers the contents of 

the different types of carbon obtained with GO and 

MoS/rGO. The C 1s deconvolution spectrum of GO fea-

tures the well-known four types of carbon which ap-

pear at 284.8 eV (graphite-like C, C–C/C=C), 286.8 eV 

(C–O), 287.8 eV (C=O) and 289.0 eV (O–C=O) respec-

tively. The peak intensities of the C–O and C=O oxygen 

containing groups decreased after reduction of GO by 

MoS, indicating that most of these groups are removed. 

The increase of the graphitic-like C content (from 39.1% 

to 73.1%) is attributed to the expected restoration of 

sp2 carbon network after the reduction process. The 

XPS analysis also indicates the presence of molyb-
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denum in the valence states V and VI with the VI state 

representing the largest amount (Figure 3c). Altogeth-

er, these observations confirm that MoS serves for 

formation of MoS/rGO nanohybrids during the reduc-

tion of GO by MoS. 

 

 

Figure 3. C 1s XPS spectra of (a) GO and (b) 
MoS/rGO; (c) XPS spectra of Mo 3d in MoS/rGO. 

 
Raman Spectroscopy is one of the most appropriate 

techniques to probe the defects and structural proper-

ties of carbon materials [35]. Figure 4 shows the G and 

D bands of the Raman spectra of MoS/rGO, GO and 

natural G. The G band is attributed to the first-order 

scattering of the E2g vibration mode observed for the 

sp2 domains while the D band is a breathing mode of 

k-point phonons of A1g symmetry [35]. In particular, 

the intensity ratio of D and G bands (ID/IG) provides 

disorder degree and average size of the sp2 domains. 

As expected, the ID/IG intensity ratio of GO (0.949) is 

much higher than that of G (0.129) indicating the 

presence of defects and the diminution in size of the 

sp2 domains due to the extensive oxidation process. 

For MoS/rGO, the ID/IG intensity ratio increases to 

0.970 indicating a slight decrease in the average size of 

the small sp2 domains upon reduction of GO [36]. This 

observation and is usually attributed to the formation 

of a larger number of the small sp2 domains [36] 

 

Figure 4. Raman spectra of natural G, GO and 
MoS/rGO. 
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X-ray diffraction (XRD) measurements have been 

performed on GO and MoS/rGO (Figure S3). As ex-

pected, the XRD powder pattern of GO exhibits an in-

tense peak located at 2= 11.7° correlated to a layered 

structure with an interlayer distance of ca. 7.56 Å. The 

absence of this peak in MoS/rGO confirms the reduc-

tion of GO by the POM. The broad peak at ca. 2= 26° 

corresponds to an interlamellar d-spacing of 3.42 Å. 

The MoS/rGO nanohybrid immobilized on glassy 

carbon (MoS/rGO/GC) were further characterized by 

solid state cyclic voltammetry (CV) in 0.5 M H2SO4 

medium. Figure 5 displays three well-defined chemi-

cally reversible reduction waves，symbolized as I to III, 

associated to the MoVI centers within MoS/rGO. The 

mean peak potentials E1/2=(Epa+Epc)/2 for 

MoS/rGO/GC appeared at about +0.306V (I−I′), 

+0.198 V (II−II′) and -0.022V (III−III′) vs. SCE with 

peak potential separations of 10, 14 and 21 mV (at 

scan rate: 100 mV·s−1), respectively. These data are 

consistent with those reported in the literature and 

are attributed to MoVI→MoV redox processes [37-40]. 

Figure 5 also shows the variation of the CV character-

istics as a function of the potential scan rate. These CVs 

exhibit symmetrical shape featuring the reversible 

reduction and oxidation of surface confined reactants. 

The dependence of cathodic peak current intensity of 

the second wave as a function of the scan rate is also 

shown in the inset in Figure 5. The linearity (R = 0.999) 

of these curves confirms the surface-confined charac-

ter of the observed waves. Altogether, the electro-

chemical observations also underline the successful 

synthesis of remarkably stable MoS/rGO nanohybrids. 

In contrast, ill-defined or moderately stable redox 

waves were reported for PMo12/rGO prepared via 

mere adsorption in water at room temperature with-

out any toxic additive or sonification process [27]. 

 

Figure 5. Cyclic voltammograms (CVs) and peak 
current intensity variations for MoS/rGO/GC in 0.5 M 
H2SO4 medium. The reference electrode was a satu-
rated calomel electrode (SCE). CVs as a function of 
scan rate (from inner to outer: 10, 20, 40, 60, 80, 100, 
120, 140, 16, 180 and 200 mV s-1); (inset) the de-
pendence of cathodic current of the second reduction 
wave as a function of the scan rate. 

 
DFT calculations of the interaction of MoS or PMo12 

and graphene 

It is well-known that most POMs have the propensi-

ty to spontaneously self-assemble onto different car-

bon materials [2, 3, 41, 42]. This adsorption is at-

III
III

I'
II'

III'
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tributed to an electrostatic interaction which proceeds 

through proton transfer from the polyoxometalates to 

the oxygen-containing group present on these materi-

als. Recent DFT studies reported by some of us 

demonstrate that the strength of the interaction be-

tween the POM and the carbon material depends 

strongly on the nature of the POM [5]. Therefore, the 

easier synthesis of MoS/rGO compared to that of 

PMo12/rGO could be due, at least partly, to the extent 

of the interaction. The interaction between MoS or 

PMo12 and graphene were investigated based on DFT 

calculations, which were performed by using the SI-

ESTA (Spanish Initiative for the Electronic Simulations 

of Thousand of Atoms) program package [43-45] The 

geometry and energy properties were described using 

general gradient approximation (GGA) in the scheme 

of Perdew−Burke−Ernzerhof (PBE) [46], and the 

double-ξ basis set plus polarization (DZP) function 

was used for all elements. The cut off energy of the 

plane-wave basis is 200 eV, and 3×3×1 k-point mesh-

es were used for the Brillouin zone integration. The 

atomic relaxation is carried out until forces are less 

than 0.1 eV/Å, while the energy properties are carried 

out until forces are less than 0.02 eV/Å. The geome-

tries were investigated by standard density functional 

theory (DFT) using the general gradient approxima-

tion (GGA) of Perdew, Burke, and Ernzerhof (PBE). 

The adsorption energy for the most stable configura-

tion (Figure 6) is -1.97 eV, indicating that the adsorp-

tion process of [MoV
4O8(OH)2(H2O)2(C2O4)2]2- on 

graphene is very strong. The same results can also be 

drawn from the distance (3.04 Å) and the charge 

transfer (0.86 e). The adsorption energy and the 

charge transfer for all cases in our calculations is much 

larger than that of [PMo12O40]3- (-1.50 eV and 0.08 e), 

indicating that the adsorption process of 

[MoV
4O8(OH)2(H2O)2(C2O4)2]2- on graphene is easier 

than for [PMo12O40]3-. Additionally, we also considered 

the neutral structure of the tetranuclear POM, adding 

two Na+ to compensate the negative charge. The ad-

sorption energy and charge transfer between the neu-

tral POM and graphene are -1.06 eV and 0.24 e, re-

spectively. Therefore, the DFT calculation results are 

consistent with the experimental observations and 

suggest that the MoS/rGO hybrids should be good 

candidates as highly stable and effective electrode 

materials.  

 

Top view                  Side view                                                                    

Figure 6. Ball-and-Stick representation of the most 
stable optimized structure for MoS/rGO. Colour code: 
Mo (yellow), O (red), C (blue), H (pink). 
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Preparation and Characterization of MoS/Au NPs and of 

multilayers films 

Specific experimental details for GO and MoS/Au 

NPs are provided in the Experimental Section. After 

the Au acid was mixed with MoS, the electron ex-

change process from MoS to Au acid occurred sponta-

neously at room temperature without any additives, 

with a color change of the solution from yellow to dark 

red within 30 s. It follows that MoV centers in MoS 

were oxidized to MoVI while Au acid was reduced from 

AuIII to Au0, resulting in the formation of Au NPs. The 

solution UV-vis spectra of Au acid (curve a), MoS 

(curve b) and MoS/Au NPs (curve c) are displayed in 

Figure S4. It can be noted in curve c that a new absorp-

tion band at ca. 550 nm, characteristic of the Au NPs, is 

observed after mixing Au acid and MoS. The presence 

of a single-band suggests that the NPs are spherical. 

Moreover, the colloid solution of MoS/Au NPs is very 

stable and does not present any precipitate after two 

months without adding any stabilizer, which indicates 

that MoS serves both as high-performance reductant 

and stabilizer. 

Figures 7a-c show representative TEM images at 

different magnifications of MoS/Au NPs deposited on a 

carbon-coated copper grid. Most of these nanoparti-

cles are spherically shaped and quasi-monodisperse 

with an average diameter of ca. 36 nm calculated by a 

statistical study of 60 NPs, which is consistent with the 

results of DLS analysis (the hydrodynamic radius was 

ca. 37 nm). Figure 7c exhibits a magnified image of a 

MoS/Au NP nanoparticle which highlights a thin layer 

of MoS (ca. 2 nm thickness), suggesting the core-shell 

architecture of MoS/Au NPs. Moreover, the HRTEM 

image featured in Figure7d displays the lattice fringe 

of Au crystalline face (0.23 nm), indicating a highly 

monocrystalline feature of MoS/Au NPs. In addition, in 

situ EDX analysis detects the molybdenum and gold 

signals (Figure S5), further demonstrating the pres-

ence of a MoS layer around Au NPs.  

 

Figure 7. (a-c) different magnifications of TEM im-
ages of MoS/Au NPs; (d) HRTEM image of MoS/Au 
NPs. 

 

XPS was used to further confirm the nature of the 

prepared MoS/Au NPs. For this purpose, a cleaned 

sample was dropped on silicon substrate. Figure S6 

shows Au 4f and Mo 3d spectra of MoS/Au NPs. On one 
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hand, the characteristic Au 4f peaks for Au0, ascribed 

to 4f7/2 and4f5/2 levels respectively, appear at 83.7 and 

87.5 eV. The characteristic Au 4f peaks for AuIII are not 

observed, demonstrating the effectiveness of the re-

duction process from AuIII to Au0 performed by MoS. 

On the other hand, after the sample was washed com-

pletely, two characteristic Mo 3d peaks at ca. 232.3 and 

235.6 eV are also detected, further supporting our 

proposal that MoS acts both as reducing and capping 

molecules for the synthesis of Au NPs. 

As an alternative method, we have also shown that 

the well-known layer by layer (LBL) assembly tech-

nique can be employed to prepare multilayer assem-

blies of MoS, GO and/or Au NPs by using PDDA as a 

cationic moiety linker. The multilayer film growth 

process on quartz substrates was checked by UV-vis 

absorption spectra. For comparison purpose, two mul-

tilayer films containing GO, MoS and MoS/Au NPs were 

fabricated using identical experimental conditions. 

Figure S7 shows the changes of UV-vis absorption 

spectra for two multilayer films on quartz slides. 

Comparing Figures S4, S7and S8, it is clear that the 

characteristic bands of MoS, GO and MoS/Au NPs are 

globally maintained in the multilayer films, indicating 

that their electronic structures are retained. The small 

shifts observed are attributed to the electrostatic in-

teractions between GO, MoS, MoS/Au NPs and PDDA 

together with the different chemical environments 

around these species. In addition, as shown in the in-

sets of Figure S7, the absorbance values for the char-

acteristic bands of MoS and GO increase with the in-

crease of the layer number. Linear dependences are 

observed in the absorbances at 235 nm corresponding 

to GO and 310 nm corresponding to MoS, demonstrat-

ing the nearly uniform growth of the two multilayer 

films. 

MoS/rGO based cathode material as 

high-performance electrocatalyst and promising 

supercapacitor 

Owing to its electrochemical properties and stability, 

the MoS/rGO-based electrode material may be a po-

tential candidate for triggering several effective and 

clean electrocatalytic processes and for energy storage. 

The applications of MoS/rGO as electrocatalyst for the 

reduction of hydrogen peroxide reduction and as 

cathode for supercapacitor were selected to exemplify 

the bifunctional properties of MoS/rGO. 

Electrocatalysis of hydrogen peroxide reduction  

The effective electrocatalytic detection of H2O2 is 

crucial in medical, environmental and industrial fields. 

In particular, H2O2 is a by-product of many oxidative 

biological reactions, including those of glucose oxidase, 

cholesterol oxidase, alcohol oxidase, galactose oxidase, 

sarcosine oxidase and l -amino-acid oxidase. 



 
  

 

14     

 

CV and amperometric measurements were used to 

evaluate the electrocatalytic activity of MoS/rGO/GC 

towards H2O2 reduction in a pH 2 medium. The loading 

amount of MoS/rGO was 0.05 mg cm-2. Figure 8a dis-

plays the CV responses of MoS/rGO/GC to additions of 

H2O2 over the 0-20 mM range. It can be clearly seen 

that the reduction of H2O2 is efficiently triggered by 

the Mo-waves of MoS/rGO as evidenced by the gradual 

increase of the reduction currents upon increasing 

H2O2 concentration. Importantly, the calibration curve 

featured in Figure 8b shows that the peak current at 

-0.2 V versus SCE increased proportionally with the 

H2O2 concentration. As shown in Figure S9, the 

[PDDA/MoS/PDDA/GO]17 LBL film-modified electrode 

also exhibited the ability to efficiently reduce H2O2 

which underscores the interest of the LBL assembly 

technique as an alternative method for 

MoS/rGO-based electrocatalyst preparation. Compara-

tive studies show that the ability of the 

[PDDA/MoS/PDDA/GO]17 composite to 

electrocatalytically reduce H2O2 is much higher than 

that of PDDA/MoS or PDDA/GO. This observation 

suggests that the superior performance of 

[PDDA/MoS/PDDA/GO]17 is due to the synergistic ef-

fect of its components. 

As a further study, the amperometric response to 

H2O2 of a MoS/rGO/GC modified electrode was inves-

tigated to reinforce that this material is promising for 

application as a noble metal-free H2O2 sensor. A typical 

current–time plot of MoS/rGO/GC upon the successive 

addition of aliquots of H2O2 is shown in Figure 9a. It 

can be clearly observed that the currents increased 

stepwise with successive additions of H2O2 into the 

stirred electrolyte, with the current responses of about 

2 s at -0.2 V versus SCE. Importantly, the obvious in-

crease of the current could be observed when the 

concentration of H2O2 was as low as 50 μM (Figure 9b, 

a local image corresponding to the rectangular area 

featured in Figure 9a). The corresponding calibration 

curve presented in Figure 9c shows that the hydrogen 

peroxide sensor based on MoS/rGO exhibited a linear 

response range from 5 × 10-5 to 2 × 10-2 M with a lin-

earity regression equation (LRE) of I (μA) = 4.17 C 

(mM)-0.81 (R2=0.997), a limit of detection (LOD) of 2 

μM (based on S/N=3 and a sensitivity of 33.2 μA cm-2 

mM-1). Figure 9d is a local image corresponding to the 

rectangular area of Figure 9c shown to highlight the 

linear calibration plot (R2 =1) obtained with low con-

centrations of H2O2 (5 x 10-5 to 10-3 M). This observa-

tion underscores the excellent sensitivity of MoS/rGO 

towards the H2O2 reduction reaction compared to 

those of POM-based reported electrocatalysts (Table 

S2). 
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Figure 8. (a) CVs of the MoS/rGO (0.05 mg/cm2) 
modified GC electrode in 0.5 M Na2SO4 + H2SO4 (pH = 
2) at 10 mV s-1 in the presence of H2O2 with various 
concentrations from 0 to 20 mM. (b) The correspond-
ing calibration plot of the cathodic currents with the 
concentrations of H2O2 extractedat the potential of -0.2 
V vs. SCE from (a). 

 

 

Figure 9. Typical amperometric responses of the 
MoS/rGO modified GC electrode to successive addition 
of aliquot H2O2 at –0.2 V vs. SCE in 0.5 M Na2SO4 + 
H2SO4 (pH = 2) (a) and the corresponding calibration 
plot of steady-state currents against concentrations of 
H2O2 (c). (b) and (d) are local images corresponding to 
the rectangular area of (a) and (c), respectively. 

 
Preliminary evaluation of MoS/rGO/CC electrode for 

supercapacitor application 

Supercapacitors (SCs) are very promising energy 

storage devices owing to their high-power density, 

long cycle life time and potential application in various 

devices including consumer electronics and electric 

vehicles [47-50]. Based on different charge storage 

mechanisms, SCs can be categorized into electrical 

double-layer capacitors (EDLCs) and pseudocapacitors. 

There are many design approaches for SCs based on 

POMs and a variety of carbon materials including rGO 

because most POMs can undergo chemically reversible 

multi-electron processes in various media. However, to 

our knowledge, SCs made of POM/rGO nanohybrids 

coated on a carbon cloth substrate (POM/rGO/CC) 

have not been reported. For SC application, CC sub-

strate offers significant advantages including low-cost, 

good electrical conductivity, low thickness, light 

weight, good flexibility, high mechanical stability, good 

chemical stability and 3D structure. Scheme 2 features 

the schematic preparation of MoS/rGO/CC, which 

simply consists in the deposition of a MoS/rGO sus-

pension, prepared as described in the experimental 

section, on a CC substrate. 

 

Scheme 2. Scheme of the synthesis of MoS/rGO/CC. 

 

Figure 10 compares the CV characteristics of 

MoS/rGO/CC and MoS/rGO/GC recorded in 0.5 M 
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H2SO4 medium. The CV pattern of MoS/rGO/CC not 

only exhibits the general shape as that of MoS/rGO/GC 

but also shows that its CV area is substantially larger 

than that of MoS/rGO/GC and, accordingly, its capaci-

tive response is also much higher. This can be easily 

explained considering that compared to the GC sub-

strate, CC has a larger specific surface and a more po-

rous morphology which favors ion diffusion and elec-

tron transport. As featured in Figure S10, the specific 

surface of bare CC is nearly 2.5-fold smaller than that 

of MoS/rGO/CC which underscores the important 

contribution of the pseudocapacitance associated with 

MoS/rGO. Figure S11 displays the CV curve as a func-

tion of the scan rate for MoS/rGO/CC. The dependence 

of cathodic and anodic peak currents of the second 

wave as a function of the scan rate is also shown in the 

inset in the Figure S11. The linearity of these curves 

confirms the surface-confined characters of the ob-

served waves which are well-defined whatever the 

value of the scan rate (from 10 mV to 200 mV/s). 

 

Figure 10. Superposition of the cyclic 
voltammograms of MoS/rGO/CC and MoS/rGO/GC, 
run in 0.5 M H2SO4 medium at 100 mV s-1. 

 
Capacitive behavior of the electrode was studied by 

CV within a potential range of +0.7 to -0.08 V versus 

SCE at 10 mV s-1. The specific capacitance (Cs) was 

calculated by using the following equation: 

Cs = Q / mV    

where Q is the cathodic voltammetric charge de-

termined by integrating the area under the CV curve, 

m is the mass of active materials, and V is the width 

of the potential window of the CV. To evaluate the con-

tribution of MoS/rGO to the capacitive performance of 

MoS/rGO/CC, the Cs of MoS/rGO was calculated by 

subtracting the charge of bare CC from that of 

MoS/rGO/CC. The Cs due to MoS/rGO was 870 F g-1 at 

10 mV s-1, which compares favorably with those de-

termined from CV at 10 mV s-1 in acidic media for ef-

fective PMo12/polymer/rGO based supercapacitor 

cathodes (from 406 to 650 F g-1) [26-28]. As stability 
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is an important prerequisite for practical application, 

we also studied the cycling stability of MoS/rGO/CC at 

100 mV s-1 and found that the electrode retains its ini-

tial capacitance after 5000 cycles. Therefore, the 

MoS/rGO/CC cathode is a promising candidate as 

low-cost electrode material for flexible and 

high-performance SC. Work is in progress to perform 

further evaluation of the MoS/rGO/CC electrode by 

using galvanostatic charging/discharging measure-

ments. 

 
Conclusions 

In summary, nanohybrids that combine the simple 

and cheap [MoV
4O8(OH)2(H2O)2(C4O4)2]2- 

polyoxomolybdate with reduced graphene or Au na-

noparticles were prepared for the first time, in water 

at room temperature via one-step synthetic routes. 

DFT calculations of the interaction between MoS and 

graphene demonstrate that the interaction between 

them is strong and even much stronger than that ob-

served with the classical polyoxomolybdate PMo12 

[43-45]. Moreover, the noble metal-free MoS/rGO hy-

brid displays excellent electrocatalytic performances 

towards hydrogen peroxide reduction with high sensi-

tivity, large detection range and low detection limit. 

The specific capacitance for MoS/rGO/CC obtained 

from CV at scan rate of 10 mV s-1 is higher than those 

of previously reported POM-based supercapacitors 

[27-29]. It is proposed that the association of MoS/rGO 

and CC induces significant enhancement of the 

pseudocapacitance performance of MoS/rGO. These 

findings open the way for facile and energy saving 

synthesis of novel and high- performance 

polyoxomolybdate-based electrode materials and their 

use in challenging electrocatalytic reactions or in en-

ergy storage devices. 
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