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During the last eighty years, new work philosophies has been introduced and technological advancement changed radically the way of work, making it more reactive, agile but complex as well. As a result, classical approaches for production system design may no longer be sufficient to ensure productivity and safety of industrial systems. In the domain of occupational diseases, adopting a pure biomechanical approach, consisting in ensuring the non-violation of workers' biomechanical limits at each workstation is proved to be uncomplete. Beside biomechanical risk factors, psychosocial risk factors, which are strongly linked to the dynamic of the physical and informational flows, may contribute to the genesis of Musculoskeletal Disorders. By granting a certain workers' margins of manoeuver, these risk factors can be limited. This article introduces AEN-PRO, a simulation tool for investigating the impact of physical flow on the production system and particularly workers, to assess their margins of manoeuver and to ensure safer and productive systems.

INTRODUCTION

In the last two decades, the work organizations especially industrial ones, have been through numerous changes. From Lean Manufacturing systems to agile and flexible cells, new forms of sociotechnical organizations were introduced in order to make production systems more efficient, more reactive, without losing productivity. Today technology makes this achievable. Whereas, in the domain of occupational diseases, Fewer improvements were made. It is undoubtable that new technologies helped significantly to integrate Human Factors (HFs) during design phases, by using advanced tools such as Human Digital Models (HDMs) and Virtual Reality (VR). These tools can be used to assess workstations and ensure the non-violation of biomechanical limits of the worker, based on evaluation systems such as Rapid Upper Limb Assessment (RULA) [START_REF] Mcatamney | RULA: a survey method for the investigation of work-related upper limb disorders[END_REF], Ovako Working posture Analysis System (OWAS) [START_REF] Karhu | Correcting working postures in industry: a practical method for analysis[END_REF], or any other similar evaluation systems. However, except the powerful graphic engines or the fancy gadgets beneath these tools, the approach itself is still classical and seems uncomplete to ensure a full prevention against Work-related Ill Health (WIH) in modern manufacturing systems.

As a matter of fact, [START_REF] Tuncel | Research to practice: Effectiveness of controlled workplace interventions to reduce musculoskeletal disorders in the manufacturing environment-critical appraisal and meta-analysis[END_REF] reviewed different interventions in manufacturing that aim to reduce Musculoskeletal Disorders (MSDs), which represent the largest part of WIH reported in industry (European Agency for Safety and Health at Work, 2010) and found inconclusive results. Based on that, they suggested that both physical and nonphysical dimensions of working situation should be assessed to ensure better prevention. Moreover, [START_REF] Lanfranchi | Explicative models of musculoskeletal disorders (MSD): biomechanical and psychosocial factors to clinical analysis of ergonomics[END_REF] presented an epidemiological review which shows the relationship between Psychosocial Risk (PSR) factors, stress and MSDs. Examples of these factors are temporal pressure, workload, weak social support, monotony, combined with strong demands, lack of control and decisional latitude. As a result, different attempts were made in order to propose an approach for limiting the PSR factors. One of the noteworthy works, is the introduction of the concept of "worker's Margin of Manoeuver" (MM) by several ergonomists [START_REF] Caroly | Sustainable MSD prevention: Management for continuous improvement between prevention and production. Ergonomic intervention in two assembly line companies[END_REF] as a way to limit the PSR factors and therefore, give a complementary prevention alongside the biomechanical one. However, this approach is limited for several reasons: First, it seems that there isn't any methodology for implementing MMs during the design phases. Usually, practitioners' intervention came after the establishment of the system, making it less efficient but never useless. Secondly, the approach itself is a reductionist one, since the practitioners make one-by-one workstation analysis. Whereas, the PSR factors highlighted before are strongly correlated with the physical and informational flow going through the whole system. Thus, using a holistic approach seems to be more promising. One of the techniques that could be used to achieve this, is the flow simulation.

Flow simulation have played a substantial role in evaluating the operational performance and the design of manufacturing systems [START_REF] Negahban | Simulation for manufacturing system design and operation: Literature review and analysis[END_REF]. Beside performance analysis, this paper aims to propose a simulation tool for working conditions assessment, as suggested by [START_REF] Neumann | Integrating human factors into discrete event simulation of parallel flow strategies[END_REF], using the MM concept. Accordingly, it is structured as follow: after introducing the concept of MM, the second section addresses the state of art regarding the different attempts to address psychosocial aspects in production system using simulation. The third section presents in detail our proposition. The fourth one addresses a comparison between the tool predictions and experimental results. The last section is about discussion, conclusions and future work.

STATE OF THE ART

In this section, MM as a concept used to limit PSR factors is introduced, then a review of some noteworthy works which used simulation to address psychosocial aspects in production systems is given.

Work margin concept

There are two important positions regarding occupational diseases [START_REF] Lanfranchi | Explicative models of musculoskeletal disorders (MSD): biomechanical and psychosocial factors to clinical analysis of ergonomics[END_REF]. The first one considers that WIH are due to exposure to pathogenic external factors, including biomechanical and psychosocial ones. Based on that, the intervention of the practitioner consists in limiting these factors. The second approach considers that the one's health is a subjective matter, that the human is an organism full of subjectivity and needs to have a say on his environment by adapting it to his needs. Therefore, organizations with high level of constraints in terms of task planning, sequencing and sometimes, in terms of gesture are inconsistent with the human nature neither with the nature of work situation, full of variations itself. The concept of MM is based on the second position. It consists in establishing a certain level of work flexibility which gives the worker the possibility to adapt his way of working regarding the faced situation and with consideration to his health particularities [START_REF] Durand | Margin of Manoeuvre Indicators in the Workplace During the Rehabilitation Process: A Qualitative Analysis[END_REF]. Thus, responding to the work demands and preserving his health by limiting risk factors and particularly psychosocial ones.

Approaches based on flow simulation

Most of WIH prevention approaches based on, Predetermined Motion Time Systems [START_REF] Genaidy | The validity of predetermined motion time systems in setting production standards for industrial tasks[END_REF], biomechanical workload assessment systems (such as RULA and OWAS), DHMs or VR, consider one-by-one workstation assessment. However, the PSR factors highlighted in section 1 depend strongly on the nature of the physical and informational flow in the production system. For example, having a sudden variation on part arrivals flow may cause a stressful situation and a lack of visibility, both considered as PSR factors. Therefore, the whole structure of the system must be considered and its impacts on the different types of flows must be investigated. What is meant by "structure", is the interconnections between the different entities composing the production system and their spatial positioning (layout). Accordingly, [START_REF] Neumann | Integrating human factors into discrete event simulation of parallel flow strategies[END_REF]) used a flow simulation to compare two configurations, a production line and a dual cell configuration with a parallel flow. In opposition to the first one, the parallel flow allows autonomous breaks, which is considered as a work flexibility given to the workers. The simulation gave a prediction of productivity. As this one satisfies the management, the transformation toward dual cell configuration was allowed. Another interesting work is done by [START_REF] Perez | Discrete event simulation as an ergonomic tool to predict workload exposures during systems design[END_REF] which tried to evaluate the muscular fatigue of a worker in a workstation. This one depended on the entering physical flow. By simulating it, the level of fatigue at the investigated workstation was estimated. To integrate MMs during a production system design, [START_REF] El Mouayni | A simulation based approach for enhancing health aspects in production systems by integrating work margins[END_REF] proposed an agent-based simulation approach to evaluate both productivity and working conditions after establishing an organizational MMs. To assess the productivity, the use of the number of throughputs and among them rejected ones due to human errors is proposed. Regarding the working conditions, worker's fatigue and processing time are used to spot workstations with high level of workload and stress. The behaviors of production system entities are observed to assess the system's performance for improvement proposes using four Elementary States (ESs). Based on the last work, the next section introduces the proposed model for performance and working conditions assessment. The major extensions made since [START_REF] El Mouayni | A simulation based approach for enhancing health aspects in production systems by integrating work margins[END_REF] are in order to support temporal MMs integration.

PROPOSED MODEL FOR PERFORMANCE AND WORKING CONDITIONS ASSESSMENT

In this section, the model proposed for performance and working conditions assessment is discussed. The main objective is to present the model to the reader and to highlight the different extensions made. Accordingly, the main hypothesizes of this work are stated, then the model is presented using two views. The first one is concerning the global structure used to model the production system. The second one is about the behavior modeling.

Model hypothesizes

The main problematic addressed in this article is the gap between the worker capacity and the work demands. Both variate due to several reasons. Human Factors (HFs) such as learning and fatigue impact worker's capacity. Similarly, different stochastic elements such as part arrivals, machine breakdowns, variable processing times, impact the physical and informational flow and therefore the work demands. By considering two main components: the physics and cognition, the worker's capacity is measured using the time needed to process the task Ttask and the probability of success Psuccess as given by ( 1 The third type of agents is the Human agent. It is considered the new feature of this model in comparison with simulation models proposed in the literature. This agent has a physics module simulating the fatigue using (2) and (3) [START_REF] Jaber | Incorporating human fatigue and recovery into the learning forgetting process[END_REF]
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F is the fatigue index, λ and μ are respectively the fatigue and recovery rates, which need to be determined depending on the different factors that may induce fatigue, including the psychological stressors. R(τ) is the residual fatigue after a break of τ units of time. The second module is the cognition. It models the learning abilities of the human agent using (4) to (8) [START_REF] Jaber | A comparative study of learning curves with forgetting[END_REF]:
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T1 is the processing time corresponding the first execution (unexperienced worker), Tni is the processing time needed to produce n th units during the cycle i (defined by a break or a batch arrival). The parameter ui is the experience at the beginning of the work cycle. The parameter b is calculated using (5):
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Where LR is the learning rate measured in percentage. The term ui is given by:
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Initially, u(i=1)=u1=0. The parameter si represents the number of units that would be produced during the cycle i if there wasn't a work break between the cycles. The parameter fi represents forgetting rate. The parameters fi and si are respectively given by ( 7) and ( 8):
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The term τi refers to the break duration at the end of the cycle i. D is the time for total forgetting, t(ui+ni) is the time needed to produce ui+ni units continuously (without breaks). The agent Worker inherits its properties from the HumanAgent class, including the cognition and physics modules. Several tasks can be associated to each worker (the task executed is decided based on the received moving entity). Each task follows a Work Sequence, which is a sequence of ordered Phases, typically, a Get, a Put and a Process phase. The Work Sequence and the Phases are addressed in detail in the section 3.4. They are the main extension of the previous model. The class AgentBehavior was also improved by using the Finite State Machine (equivalent to finite state automaton) provided by jade library [START_REF]Java Agent DEvelopment Framework[END_REF] instead of using cyclic behavior (see [START_REF] El Mouayni | A simulation based approach for enhancing health aspects in production systems by integrating work margins[END_REF]). In the following section, the behavior modeling is presented.

Fig. 2. Behavior modeling using finite state automaton.

Conceptual simulation model: Agents' behaviors

To model the agents' behaviors, a finite state automaton is used with four Elementary States (ESs): structural stopping AS, productive PR, induced stopping AI and self-stopping
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AP state. The AS state is entered when an agent stopping is caused by the structure of the system, such as a product waiting in a queue or a machine waiting for a busy worker. The PR state is entered when all conditions for executing the main function or role of the agent are satisfied. The AI state is entered when the agent stops playing its role due to an external event caused by another agent. Finally, the AP state is entered due to an internal event such as a machine stopping when it breaks down or a worker taking a break (figure 2). Using simulation, the ESs distribution regarding each agent can be generated and by analyzing it, the performance of each one of them can be assessed. The Process phase execution time is determined using (4). This phase induce a fatigue and learning rise and depending on the level of these factors, the worker may make an error with a Human Error Probability (HEP) modeled by ( 9) [START_REF] Givi | Modelling worker reliability with learning and fatigue[END_REF]. The parameter F is the fatigue index given by (2), Tx is processing time reached by gaining experience, T1 is the processing time without any experience at all. w1 and w2 are respectively the weight of fatigue and learning in the error occurrence; Their sum is equal to 1. α is for scaling the HEP depending on the task difficulty. In the work sequence model shown in the figure 3, two parameters are highlighted and are related to the task flexibility and thus, to the worker's MM: Temporal margin of Manoeuver TM and Remaining Time RT. TM represents the maximum delay time the worker can have before processing the task and without having a flow clogging. If we consider the average Time Between job arrival Events MTBE and the mean in which, the moving entities are stocked before getting processed by the worker, TM can be estimated using ( 10):
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Where bc is the mean's buffer capacity used for the Get phase and bi its current size. The RT parameter is calculated by subtracting the instant of finishing the work sequence from the next job arrival event instant. This parameter is for measuring the capacity of the worker to execute the task within the time between two job arrivals. Having a RT positive indicates that there is no need for flexibility (TM =0). Otherwise, if RT<0, the worker needs a positive TM to be able to postpone the next task the time needed to finish the previous one. If RT=0, TM gives the worker time for relaxation and fatigue recovery if needed, based on his own initiative. Having RT<0 and TM=0 represents a stressful situation where the work demands exceed the worker's capacity without giving him enough flexibility.

The conceptual model presented above is implemented using java programming language and Jade library. Jade has different packages for multi-agent system development.

Other functionalities where added like a graphic engine and a Graphic User Interface GUI. The tool obtained is called AEN-PRO (Agents-based ENgine for PROduction system simulation). The implementation model and other technical aspects related to the simulation technique used are not detailed in this article. were published in [START_REF] Claudon | Effects of artifacts in a repetitive light assembly task on muscular activity according to age and work rate constraints[END_REF], which are about to be reused for the tool validation. The experimentation only proves the tool validity regarding the bench configuration.

Other experiments with various configuration need to performed to claim the validity of the proposed tool. However, only white-box validation is needed as the basic components of the model (fatigue, learning and task sequence) are based on valid literature. The bench is composed by a conveyor ensuring the parts transfer. When the operator finishes processing a part, he puts it in the right side of the conveyor to be transferred to the left one. The transfer follows a specific pattern in order to reproduce a real physical flow pattern. To process the part, the worker puts it in a maintaining system and processes it as follow: 1) putting five pawns into the appropriates holes in a correct order, 2) An option consists in putting a sixth pawn, 3) Applying a force using a lever action, 4) Removing the pawns, 5) Putting the part in the conveyor for transfer. The screen shows the progression of the task (the pawns installed or removed, the level of force applied) and to indicate if the current part has an option (six pawns to install). The experiment is conducted during 100min, the work is paced and a part arrives every 21s. The conveyor speed is set to 0.25 m.s -1 and only three parts are allowed to be stocked (bc=3) along the conveyor.

Regarding AEN-PRO parameters settings, the table 1 gives the fatigue rate values corresponding to the different phases.

The recovery rate (μ) is set to 13.17×10 -2 min -1 . These values were determined by making a mapping with Peter and Steel partner's fatigue allowances determination tables appeared in (Kanawaty and International Labour Office, 1992).

Table 1. Fatigue accumulation parameters

Phase Get Process Put λ (10 -2 min -1 ) 2.15 2.24 2.12 For the learning parameters, T1 is set to 0.9min (observed during the experiment), LR is set to 0.8 (medium learning capacity) and D is considered equal to one month. Regarding the HEP model, α is set to 1.0 using a mapping with values given by the HEART method [START_REF] Kirwan | The validation of three human reliability quantification techniques -THERP, HEART and JHEDI: Part 1technique descriptions and validation issues[END_REF], w1 and w2 were set both to 0.5 considering that fatigue and learning have the same impact in the error occurrence.

The table 2 gives the comparison between the simulation outputs and the experimental results in terms of throughputs and rejected parts numbers. The figure 6 shows the task processing time variation according to AEN-PRO and to the experiment. Figure 7 shows the TM variation, the figure 8 describes the RT variation and the figure 9 gives the worker and conveyor (transfer mean) ESs distribution. In the fourth section of this article, an experiment was conducted in order to validate the tool. The table 2 shows the throughputs and rejected part numbers obtained using the experiment and AEN-PRO. The estimation error doesn't exceed 10.5%. The figure 6 shows that a high level of precision regarding task processing time prediction is achieved using AEN-PRO, but also highlight the presence of stochastic variations in the real task processing time. These variations are not supported by the introduced work sequence model, which is rather deterministic. In the other hand, they impact significantly the TM. However, the TM approximation given by AEN-PRO still good as the error is around 30% at worst. Regarding the parameter RT (figure 8), at first, diversion between the AEN-PRO estimation and the experimental results at the beginning of the job execution is noticed. This is mainly due to the parts arrival. In AEN-PRO, the work was paced from the beginning with a part arrival each 21s, exceeding the worker capacity and causing the drop of RT. In the experiment, the work was rhythmed at the beginning according to the worker capacity and as this one gains deftness, the work became paced, causing simulated RT and experimental one to converge.

The figure 9 shows the worker's and the conveyor (transfer mean) ESs distribution, which can be used to make subtle assessment regarding productivity and not to limit to the classical throughputs. The diagram shows a certain level of structural stopping (AS), which indicates that there is room for improvement. Combining this with the analyze of the parameters RT and TM, gives the manufacturing system designer, a tool to assess both productivity and working conditions and can be used to assess larger systems and if needed, to improve its whole structure and not to limit to local improvement.

With the development of AEN-PRO, the opportunity of introducing a tool-centered methodology for production system improvement is given. The perspectives also include simulation model extensions in order to support other aspects, related to the job nature such as modeling other types of operations (machining, inspection or maintenance operations), aspects related to HFs such as stochastic processing times (beside the impact of learning) and worker's adaptability and anticipation, or aspects concerning the nature of organization such as rotations and collaborations. These are some leads for the future works.
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 1 Fig. 1. Simulation conceptual model (UML class diagram).
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 3 Fig. 3. Work sequence model.

  Fig. 4. Get (a) and Put (b) phases decomposition.

  order to have a first validation of the developed tool, an experiment was conducted. A specific experimental bench was designed by INRS (National Institute of Research and Safety) as shown in figure 5. The results of the experiment
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 5 Fig. 5. Experimental bench.
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 7 Fig. 7. Temporal Margin (TM) variation.
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 8 Fig. 8. Remaining Time (RT) variation.

  To model the production system, the conceptual model given in the figure1is proposed. The model is based on a multiagent paradigm. Three types of agents are considered. Each of them has a behavior (AgentBehavior class) and a 3D geometric model (3Dmodel class). The first type of agent is the Moving Entity agent. It may represent any kind of entity that moves in the system such as parts, products and batches, which can trigger an agent behavior. The second type is the Mean agent which can be a machine, a Manual Workstation, a Stock or a Transfer Mean.
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	Results	Experiment	AEN-PRO	Error
	Throughputs	217	200	7.8%
	Rejected parts	19	17	10.5%
	Fig. 6. Task processing time variation.