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1. Introduction 

ABSTRA CT 

Thermoelectric thin films are of great interest to microelectronic devices and miniaturized temperature sensors. 
In this article, we have studied the influence of film thickness on the electrical and thermoelectric properties of 
Mg-doped CuCrC½ delafossite material (Cuer(½:Mg), a delafossite-type oxide. For this purpose, a serie of 
CuCr0mMgo.os02 thin films with various thicknesses (25, 50, 100, 200, 300, 400 and 600 nm) have been de
posited by Radio Frequency (RF) magnetron sputtering. The as-deposited films were annealed at 550 •c under 
vacuum to obtain well crystalli2ed delafossite phase. Grazing incidence X-ray diffraction patterns indicated that 
samples had pure delafossite structure. The atomic force microscope observations revealed the increase of the 
grain si2e with increasing thickness. The electrical and thermoelectric properties are characterized in tem
perature ranging from 40 to 220 •c and they were thickness dependent. The thickness dependency of the Seebeck 
coefficient was not expected and indicated that the carrier density changes with thickness below 100 nm. The 
variation of the film resistivity below 100 nm thickness was explained by both the change of the carrier density 
and the potential barrier addition due to small grain si2e. Using the electrical conductivity, the polaron acti
vation energy (E.,p = 0. 131 eV for 100 nm thick sample) was determined and its variation indicated that the 
stress/strain effect in the film with increasing thickness impacts the mobility. Moreover, the unexpected increase 
of the resistivity between 400 and 600 nm was also explained by the micr0<racks formation. The electrical and 
thermoelectric measurements showed a degenerated hopping semi<onductor behavior for the whole thick
nesses. The highest electrical conductivity ( 1.7 S-cm-1 at 40°C) was obtained for 100nm thick film which
presented a Seebeck coefficient of +307 µV·K-1 at 40•c. We report maximum power factor of 16 µWm-1·K-2 

at 40 •c for the optimum thickness of 100nm, which reached 59 µW-m-1-K-2 at 200 •c. The above results were 
explained in terms of microstructure and stress/strain effect. 

Reœnt attention has been focused on the CuM(h delafossite oxide 
family where the cation Cu1 is a monovalent metal and the cation Mm is 
a trivalent metal. The delafossite structure can be described as a stack of 
cation Cu1 layer and MO6 octahedron layer along the c axis. Each cation
Cu1 is linearly coordinated to two oxygens belonging to upper and lower 
M06 octahedron. Among Cu based delafossites, CuCr02 is currently of 
interest due to its attractive physical propa-ties and the abundanœ of 
their constituent elements in the nature. Thanks to its transparent p 
type conduction properties (TCO) (1 12), it have been studied for 
several applications such as transparent electronic devices (13 17), 
dye sensitized solar œlls (18,19) and photoelectrodes (20). This 

material is also outstanding for its catalysis (21) and photo catalysis 
(21 26), antibacterial (27), gas and sensing (28 31), energy storage 
(32), water reduction (33), superconductivity (34), magnetic and 
electric (35 37) outstanding properties. Interesting thermoelectric (TE) 
propa-ties (38 44) have also been reported in the last decade due to its 
high Seebeck coefficient. 

The thermoelectricity defines as a direct and reciprocal energy 
conversion between the temperature differences and the electric vol 
tage. The performance of TE materials are evaluated with the figure of 
merit (ZT = Sa2T hc) where S is the Seebeck coefficient, a is the elec 
trical conductivity and ic is the thermal conductivity). Materials with 
high ZT (ZT ;;:: 1) are necessary in order to be used in TE deviœs. 
Thermoelectric properties are widely studied in bull< form compared to 
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of the target, a low argon pressure [62] was used during the sputtering
process. The deposition parameters are summarized in the Table 1.
Under these conditions, as deposited films with normalized thickness of
25, 50, 100, 200, 300, 400 and 600 nm have been elaborated. The X ray
fluorescence (XRF) measurement (not shown here) carried out with a
Bruker S2 apparatus showed that the ratio was close to 1 Cu for 1 Cr in
the film (with accuracy range of 5%) which is consistent with the
composition of the target (CuCr0.97Mg0.03O2).

The as deposed films have been systematically annealed for 4 h
under primary vacuum at 550 °C.

2.3. Characterization

Thickness measurements were performed with a DEKTAT 3030ST
profilometer, before and after the thermal treatment, on a step made by
applying a tape on the substrate surface prior to the sputtering step. The
structural properties of the films were investigated by a α=1° grazing
incidence X ray diffraction (GIXRD) at room temperature. GIXRD was
performed using a Siemens D5000 diffractometer equipped with a
Bruker Sol X detector (Siemens, USA). Copper radiations were used as
X ray source (λCuKα1= 1.5405 Å and λCuKα2= 1.5445 Å). The mi
crostructure of the films was observed using a Joel JSM7800F field
emission gun Scanning Electron Microscope (SEM) and an optical mi
croscope S Neox and a Nanoscope III Dimension 3000 Atomic Force
Microscope (AFM). AFM surface views were analyzed using the
Gwyddion software.

The electrical resistivity was measured using a four point probe
measurement unit (Signatone, USA).

A home made measurement setup has been used for the Seebeck
coefficient determination as a function of temperature. Two in
dependent heaters fitted to the thin film geometry have been used to
apply a thermal gradient along the thin film. Electrical contacts were
done with a 25 µm diameter aluminum wire bonder (HYBOND Model
626, Hybond, USA). The ohmic type behavior (linearity of current vs.
voltage curve) of the electrical contacts has been checked system
atically for all samples with a source meter (Keithley 2450, Tektronix,
USA) after bonding step. During the experiment, the voltage was
measured with a nanovoltmeter (Keithley 2182A, Tektronix, USA). Two
carbon spots (emissivity coefficient of 0.97) were deposited on the
surface of the thin films by spraying carbon solution through a shadow
mask to accurately measure the surface temperature with an infrared
camera. The two carbon spots were located at the same isotherm po
sition than the electrical contacts. The mean temperature (TMean) was
considered as the average between the temperature of the hot side
(THot) and that of the cold side (TCold). To have a good accuracy, three
measurements of electric potentials and temperatures for a given tem
perature difference are done. For each Seebeck coefficient, three tem
peratures differences was applied (10, 20 and 30 °C).

The Seebeck coefficient S(TMean) at a given mean temperature can
be calculated with:

= −S T S V
T

( ) Δ
Δmean ref (1)

where Sref, ΔV, and ΔT are respectively Seebeck coefficient of the re
ference (Aluminum probe is used as reference whose Seebeck

Table 1
Process parameters for the deposition of delafossite Mg-doped CuCrO2 by RF-
sputtering.

Target material 3 at % Mg-doped CuCrO2

Substrate Fused silica
Power (W) 50
Magnetron Yes
Argon pressure P (Pa) 0.5
Target to substrate distance d (cm) 5

thin film. However, for some TE applications, such as flexible tem 
perature sensor [45 47], fiber optic switches [48], small scale power 
generation applications [49], large area transparent thin film thermo 
electric devices [50,51], hot spot (H S) cooling [52] and on chip energy 
harvesting [53], TE materials are required in thin film form. In parti 
cular, metal oxide semiconductor processing technology facilitates mass 
production of low cost thin film thermoelectric devices for thermal 
management and control. These embeddable TE modules made with 
semiconductor processing techniques have high heat pumping cap 
ability in comparison with standard bulk TE modules and enable a very 
rapid cooling and heating for a precise temperature control [54].

Furthermore, TE materials in thin film form offer the possibility to 
enhance ZT values due to specific microstructures which can lead to a 
significant reduction of the thermal conductivity relative to that ob 
served in bulk material [55 58]. These microstructural effects can 
however reduce the electrical conductivity by increasing scattering ef 
fects, and a compromise between the thermal conductivity and the 
electrical conductivity is then necessary to increase ZT. Moreover, the 
low dimension system and the strains obtained in thin films due to the 
substrate could make a significant band structure modification that 
could impact the figure of merit.

In order to optimize TE materials, the first approach is the en 
hancement of the Power Factor (PF = σS2). This can be done by opti 
mizing the carrier concentration by doping [39], the mobility by tuning 
the microstructure [59,60]. In a previous work [61], we studied the 
electrical conductivities and TE properties (Seebeck coefficient and 
calculated power factor) in temperature from 40 °C to 220 °C for one set 
of CuCrO2 films annealed at various temperatures, with a thickness of 
300 nm. We noticed that the annealing temperature affected a lot the 
films microstructure and the physical properties. The optimal annealing 
temperature under primary vacuum was found to be 550 °C. In order to 
find the optimal thickness for a higher PF which is rarely investigated 
for oxide thin films, in the present work, we have studied the relation 
between the TE properties of CuCr0.97Mg0.03O2 thin films and the 
thickness through microstructural effects. For that, samples with var 
ious thicknesses (25, 50, 100, 200, 300 and 400 nm) have been de 
posited and then annealed at 550 °C (the optimal annealing tempera 
ture found in the previous study) under vacuum.

2. Experimental

2.1. Preparation of Mg doped CuCrO2 (Target)

Polycrystalline CuCr0.97Mg0.03O2 powder was prepared by grinding 
and mixing the starting commercial oxides, Cu2O, Cr2O3, and MgO with 
appropriate proportions. The stoichiometric oxide mixture was an 
nealed at 900 °C for 10 h in an ambient nitrogen atmosphere and cooled 
down to room temperature. After it was reground, the mixture was 
reheated for a further 10 h period. The purity of the delafossite phase 
was checked by X Ray Diffraction (XRD).

The polycrystalline delafossite powder has been pressed into a 
sputtering target of 10 cm in diameter then sintered at 1200 °C for 10 h 
in air (diameter after sintering : 8.7 cm). The XRD analysis on a small 
representative pellet showed only the 3R delafossite phase. (R 3 m 
space group with a = 2.9755(2) Å and c = 17.091(3) Å as determined 
by the Rietveld method).

2.2. Preparation of Mg doped CuCrO2 thin films

In order to deposit CuCr0.97Mg0.03O2 thin films, the target assembly 
was attached to an Alcatel A450 RF magnetron sputtering chamber 
(Alcatel, France). Fifteen minutes of pre sputtering with argon plasma 
has been applied before starting the film deposition to remove the 
surface contamination. Pre cleaned fused silica substrates 
(25 mm × 25 mm, ≃1 mm thick) placed on a water cooled sample 
holder were used during the deposition. In order to avoid the reduction



coefficient is negligible because Fermi energy level of aluminum is near
the middle of the energy band), electric potential and temperature
difference (THot − TCold) measured on the film. The accuracy of the
experimental setup was checked by using a bar of Ca3Co4O9 already
measured elsewhere with a ZEM3 commercial apparatus. The results
were similar with a standard deviation of 7%.

3. Results and discussion

3.1. Structural and microstructural characterizations

First, we examined the crystal structure of CuCrO2:Mg thin films
annealed at 550 °C for 4 h under vacuum. The Fig. 1a shows the GIXRD
patterns of the annealed films for various thicknesses. For 25 and 50 nm
thick films, the intensity of the GIXRD signal was not significant due to
the insufficient quantity of matter (large standard deviation on the peak
position). Beyond 100 nm, peaks characteristics of the delafossite
structure (0 0 6), (0 1 2), (1 1 0), (1 0 4), (1 1 6) and (2 0 2) appeared
progressively with increasing film thickness. These diffraction peaks
matched well with 3R delafossite phase pattern (PC PDF file #39
0247). Only delafossite phase has been observed for whole studied
thicknesses. It is difficult to identify any impurity peak due to the width
of the strongest diffraction peak. The (0 0 6) peak is weakly represented
in adequacy with works on the delafossite CuCrO2 films [5,63].

The Fig. 1b shows the distance between the planes (0 1 2) as a
function of the film thickness. For 25 and 50 nm thick films, the accu
racy is poor due to a large and not intense X ray diffraction peak. Even
if the values of d(0 1 2) are closed to the distance calculated with the
target lattice parameters, the value of d(0 1 2) tends to decrease when the
thickness increases from 25 nm to 300 nm and seems stabilized above
300 nm. This tendency reveals the strain accumulation in the dela
fossite structure with increasing thickness because of the lower thermal
expansion coefficient of the fused silica (0.5× 10−6 K−1) [64] in
comparison with the film. Beyond 300 nm, the stabilization of d(0 1 2)

shows that the film starts to relax the strain probably by the micro
cracks which is magnified at 600 nm as shown in the Fig. 2b and c.

The AFM micrographs of CuCrO2:Mg thin films (Fig. 2a) show
smooth surface at 25 nm and 50 nm, while granular layer could be
observed for the higher thicknesses (100 600 nm). The grains were
marked using watershed algorithm to estimate the grain size. It was
observed that the surface grain diameter increased with the film
thickness, the 100, 200 and 400 nm thick films have respectively 16, 23
and 32 nm grain size. The 600 nm film shows a different morphology
where the small grains (25 nm) form large clusters (91 nm) with a very
high roughness which can be due to a partial stress relaxation of the
film. The Fig. 2b shows the top surface SEM micrographs of the 600 nm
annealed film. The surface morphology of this sample is consistent with

the morphology observed by AFM and shows a large crack. The Fig. 2c
shows optical microscope image of the 600 nm thick film and allows to
see wider. The film presents several micro cracks at the surface. For
thinner films, the cracks could not be observed so it confirms the pre
sence of tensile stress could not be relaxed when samples were cooled
down from 550 °C during the thermal annealing.

3.2. Electrical and thermoelectric properties analysis

3.2.1. Seebeck coefficient analysis
The Seebeck coefficient values are positive for whole studied

thicknesses as shown in the Fig. 3. It indicates the p type conduction, in
agreement with the literature [1,39,65].

The Seebeck coefficient versus temperature (Inset Fig. 3) for a given
thin film thickness remains constant and corresponds to constant Fermi
level location from the top of the valence band [61] with the tem
perature. It is in agreement with a highly degenerated semiconductor
behavior. It is also determined by the slope of the Seebeck coefficient as
a function of the logarithm of the electrical conductivity for various
temperatures (Fig. 3) called Jonker plot which are not equal to kB/
e=86.15 µV·K−1 (where kB is Boltzmann’s constant and e is the elec
tronic charge). The Seebeck and the electrical conductivity (discussed
afterward) behavior as function of the temperature is in agreement with
highly degenerated hopping semiconductor properties. In fact, the
electrical conductivity increased with the temperature while the See
beck coefficient stays constant. In the case of band gap semiconductor
with free holes in the valence band, the Seebeck coefficient will de
crease with the temperature. Only hopping mechanism can explain si
multaneously Seebeck and electrical conductivity behavior with the
temperature in this material.

Moreover, the band gap of CuCrO2:Mg is about 2.73 eV [61] which
is high enough for TCO applications and avoids the band gap electronic
transition. Indeed, if the band gap electronic transition was possible,
the presence of the both carrier types could lead to a very low global
Seebeck coefficient (ST= (σnSn+σpSp)/(σn+σp), where σp and Sp are
respectively the electrical conductivity and the Seebeck coefficient due
to the holes·σn and Sn are respectively the electrical conductivity and
the Seebeck coefficient due to the electrons.). In our case, the carrier
concentration does not depend of the temperature in a large range (10
kBT < Eg).

The hole density is deduced from the Heikes relation which is well
adapted in the case of hopping mechanism:

= × ⎛
⎝

× ⎞
⎠

+

+S k
e

a Cu
Cu

ln [ ]
[ ]

B
2 (2)

where a is a constant which depends of the spin and orbital degen
eracy and is equal to ¼ in the case of CuCrO2 structure. Seebeck

Fig. 1. (a) GIXRD patterns of CuCrO2:Mg thin films annealed at 550 °C under vacuum. (b) d(012) as a function of the film thickness.



coefficient is then only dependent of the [Cu+]/[Cu2+] ratio where
[Cu2+] is equal to the hole concentration. This ratio is defined by the
dopant (Mg2+) concentration and oxygen non stoichiometry.

The measured Seebeck coefficient is thickness dependent. It de
creased from 25 nm to 100 nm then it is stabilized for films thicknesses
above 100 nm. Even 600 nm thick film which presented cracks at the
surface, shows a Seebeck coefficient of 300 µV. K−1 at 220 °C (not
shown in the Fig. 3). Seebeck coefficient is an intrinsic property of the
material (Fermi level variation in the case of semiconductors) and re
lates to the carrier concentration in the case of the hopping mechanism.
We can conclude that the carrier concentration increases from
3.85×1019 cm−3 to a nearly saturated value of 1.25× 1020 cm−3

calculated respectively from the Seebeck coefficient of the 25 nm thick

film and the Seebeck coefficient of the film with higher thickness than
100 nm. Lunca Popa et al. [66] have also calculated the carrier con
centration using the small polaron transport model and obtained
1.5×10 21 cm−3 for 200 nmMg doped CuCrO2 film.

This unexpected variation of the carrier concentration for low
thicknesses which is related to the dopant concentration and oxygen
non stoichiometry, is not clearly understood. However, the following
hypotheses can be used as an explanation:

The influence of the structural lattice deformations due to the stress
induced by the substrate which is compressive in the case of low
films thicknesses as shown by the highest d(012) noticed by XRD
(Fig. 1b).
An incomplete crystallization of the delafossite structure similar to
the effect of a low temperature thermal annealing studied in a
previous article [61].
For thicknesses above 100 nm, no clear variation of the Seebeck
coefficient and consequently, the hole concentration was identified.
We can conclude that crystallization of the delafossite structure and
the doping are stable above 100 nm.

3.2.2. Electrical resistivity analysis
The Fig. 4a reports the electrical resistivity at room temperature as a

function of the film thickness. The observed behavior of the electrical
resistivity is not representative in comparison with the classical film
resistivity variation. The models [67,68] predict that the resistivity
decreases with the increasing thickness until the bulk resistivity is
reached, mainly due to the carriers scattering at the grains boundary
and interfaces for low thicknesses.

In our case, due to the hopping transport mechanism, the interfaces
scattering effect cannot be considered because the carrier hopping
length is in the range of the lattice parameter (from copper site to an
other neighbor copper site) and clearly negligible in comparison with

t = 25 nm
RMS = 0.28 nm 

t = 50 nm
RMS = 0.52 nm 

t = 100 nm
RMS = 0.41 nm 

t = 200 nm
RMS = 0.68 nm 

t = 400 nm
RMS = 3.33 nm 

a)

t = 600 nm
RMS = 7.04 nm 

100 nm
b) c) 100 μm

Fig. 2. (a) AFM micrographs of the annealed CuCrO2:Mg films. (b) Top surface SEM micrograph and (c) optical microscope image of the 600 nm annealed film.

Fig. 3. Jonker plot. Inset: Seebeck coefficient as a function of measuring tem-
perature.



the thin film thickness. It is more probable that the grain boundaries
impact the hopping transport by adding potential barriers that are
multiplied at low thickness for which the grain size is very small
(Fig. 2a).

For small thicknesses, the contribution of a lower carrier density
determined by the Seebeck measurement, can partially explain the high
electrical resistivity. Nevertheless, for the 25 nm thick film, the calcu
lated macroscopic mobility (µhop= 2.32× 10 −2 cm2 V−1 s−1), which
is obtained using the Eq. (3), is lower than the value calculated for
100 nm thick film (µhop= 7.43×10 −2 cm2 V−1 s−1). These low value
of the mobility explain the difficulty of performing the DC Hall mea
surement on this material as reported in [35].

=σ peμhop (3)

where the hole density (p) is deduced from Heikes relation.
In the case of the small polaron hopping mechanism thermally ac

tivated, the mobility can be express according to the Mott’s conductors
[69] as:

= − × ⎛
⎝

− ⎞
⎠

μ
efd

nk T
φd E

k T
exp( 2 ) exphop

B

a

B

2

(4)

where f is the hopping frequency, d the average distance between two
copper sites, T the temperature, ϕthe inverse of the decay length of the
localized wave function, Ea the activation energy which is the required
energy for the polaron to hop from a site to another and n a constant
parameter which depends of the dimension for the hop (n=2 in the
case of linear chain hopping, n=4 for 2D hopping and n=6 for 3D
hopping). In the case of CuCrO2:Mg, we can suppose that the effective
hopping is done only along the a and b axis (the CrO6 octahedron along
the c axis can be considerate as a barrier for the hole hopping) which
corresponds to a 2D hopping transport mechanism.

In this case, only d and/or Ea are the parameters that can modify the
global hopping mobility. Even if a variation of d can be caused by the
lattice deformation due to the tensile stress [69], however from the
GIXRD analysis (Fig. 1b), the variation of the d(012) remains very low
(< 0.4%) in the whole thickness range and cannot explain the large
change of the mobility according to the Eq. (4). Therefore, the most
probable cause of the mobility variation is the change of the activation
energy. It can be due to an increase of the number of potential barrier
that are located at the grain boundaries [70] for very small grains,
which is observed in low thickness films (Fig. 2a). This is consistent
with the experimental hopping activation energies (Fig. 4c) extracted
from the Arrhenius plot [7,36,71], ln σT= f(1/T), for various thick
nesses (Fig. 4b).

Above 100 nm, the electrical resistivity increases which is un
expected. This variation cannot be attributed to the hole density de
crease because the Seebeck coefficient measurement have shown that
this value remains constant when the thickness increases over 100 nm.
Thus, this can be only explained by a hopping mobility decrease due to
stress effect [72] which are revealed by the micro cracks apparition in
the thicker film (Fig. 2b and c).

In conclusion, due to microstructural and stress/strain effects,
CuCrO2:Mg does not follow the classical models proposed for thin films
and shows an optimal thickness for the electrical properties.

3.2.3. Thermoelectric properties analysis
From the measured Seebeck coefficient and the electrical con

ductivity, the thermoelectric power factor (PF) was calculated for var
ious thicknesses at three different temperatures. It is plotted in the
Fig. 5b and has been used to evaluate the performance of the thermo
electric thin films. As shown in the Fig. 5b, the PF increased with the
measuring temperature. For the optimum thickness, 100 nm, the PF was

Fig. 4. (a) Film resistivity of the annealed CuCrO2:Mg films at 25 °C as a function of the film thickness. (b) Arrhenius plot. (c) Activation energy versus film thickness.



59 µW·m−1 K−2 at 200 °C. Nevertheless, the obtained value of PF re
mains lower than the PF of Mg doped CuCrO2 in bulk form published by
Hayashi et al. [39] (56 µW·m−1 K−2 at 40 °C) and Meng et al. [43]
(65 µW·m−1 K−2 at 40 °C). However, these authors announced that the
PF doubled from 40 to 200 °C in bulk form but in the present work, the
100 nm thick Mg doped film showed the PF nearly four times higher at
200 °C than at 40 °C. The stronger increase of the PF with the tem
perature in thin films provides a great interest to furthermore study.
Moreover, thin films could have the figure of merit values higher than
bulk thanks to the low substrate thermal conductivity (κ(fused si

lica) = 1.38 Wm−1 K−1 [73]).

4. Conclusion

CuCrO2:Mg thin films with various thicknesses were deposited using
RF magnetron sputtering and then annealed at 550 °C under vacuum in
order to form delafossite structure. An increase of the grain size is ob
served with AFM when the thickness is increased. Seebeck coefficient
measurement showed highly degenerated semiconductor behavior for
whole studied thicknesses and was thickness dependent. It decreased
from 25 nm to 100 nm then it was stabilized for films thicknesses above
100 nm. Some proposed hypotheses are: a lattice deformation due to
tensile stress effect and an incomplete crystallization causing a decrease
of the carrier density at low thickness. The consequence was an increase
of the film resistivity when the thickness decreases from 100 nm to
25 nm. The evolution of the resistivity in the whole thickness range was
also related to the change in the hole mobility. From the calculated PF,
we found that the optimum thickness for a highest thermoelectric
performance was 100 nm with an electrical conductivity of 1.7 S·cm−1

and a Seebeck coefficient of 307 µV·K−1, both at 40 °C. The power
factor attained 59 µW·m−1 K−2 at 200 °C. By thickness optimization,
the electrical conductivity was increased without a negative impact on
the Seebeck coefficient. This study reveals that the model and theories
predict the influence of the thickness on physical properties but do not
consider several parameters such as stress/strain and micro cracks
which can affect strongly these properties.
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