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ABSTRACT
The Time Sensitive Networking (TSN) task group has added a set
of mechanisms to Ethernet in order to provide a real-time network.
In particular, the output port scheduling based on a Credit-Based
Shaper (CBS) algorithm, that was introduced formerly by the Audio-
Video Bridging (AVB) task group, has been enhanced with a time
driven Gate Control List (GCL). This implies some update in the
credit evolution rules, and several solutions may exist. In this paper,
we compare the solution used in the standard with another one
used in most papers, and also with a third one, designed as a trade-
off between the two others. The comparison is first done on some
hand-made examples, showing some credit overflow and unfairness
potential problems. Then, simulations are done on a single switch
with 3 CBS queues.
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1 INTRODUCTION
In order to offer real-time guarantees to audio and video flows over
Ethernet, the Audio-Video Bridging (AVB) task group has defined
a set of extensions of the IEEE 802.1Q standard [1], related to the
forwarding policy in bridges (aka. switches). Among the 8 queues,
the two with higher priority (called A and B) are scheduled at the
output port of each switch with a specific policy, the Credit-Based
Shaper (CBS). At configuration, each queue X ∈ {A,B} receives
a part of the output port rate R, called the “idle slope”. Then, a
scheduler based on a credit variable implements this constraint
(this algorithm will be described in Section 2.2).

Thereafter the Time Sensitive Networking (TSN) task group
has added new extensions. One of them, named “Enhancement
for scheduled traffic”, introduced per queue gates: each queue has
access to the output port only when its gate is open, and the open-
ing/closing of the gates is controlled by a cyclic time based schedule,
called Gate Control List (GCL). The introduction of this mechanism

is interpreted by some authors as the introduction of Scheduled
Traffic or Time-Triggered communications in TSN [3]. The CBS al-
gorithm has been adapted to take into account the GCL mechanism.
There are several ways to do such an adaptation and, surprisingly,
the choice made in the standard is different from what is considered
in the literature.

This paper will first present in Section 2 the sub-part of the TSN
standard that is considered in this paper. Section 3 gives an overview
of the assumptions done in the literature. Then, for some examples,
the qualitative impacts of these new rules will be discussed in
Section 4: the transformation of the operator slope into the credit
idle slope, the possible credit overflow and some unfairness between
flows w.r.t. AVB behaviour. After these preliminary considerations,
Section 5 will formally define in an unified framework the standard
evolution rule, the one assumed by most research papers, and a new
one, a trade-off inspired by AVB. These three rules are compared by
simulating a single output port with three CBS queues in Section 6.
For sake of simplicity, this paper does not address preemption.

2 OUTPUT PORT MODEL
This section presents the sub-part of the 802.1Q standard [1] rel-
evant for this study. Subsection 2.1 presents the global standard
architecture, subsection 2.2 presents the credit based shaper rules
defined before the introduction of gates, subsection 2.3 presents
the evolution of those rules due to the introduction of gates, and
subsection 2.4 presents some hypotheses limiting the scope of this
study.

2.1 Output port architecture
In the current 802.1Q standard [1], a TSN output port is made of
(up to) 8 queues, numbered from 0 to 7. To each queue is associated
an optional transmission selection algorithm, and a gate that can
be either open (o) or closed (c) as illustrated in Figure 1. A frame in
a queue can be selected for transmission only if the transmission
selection algorithm allows it (subsection 2.2 presents the credit
based shaper, CBS, selection algorithm) and if the gate is open. A
static global cyclic table, the GCL, schedules the gate openings and
closings. If several frames are ready for transmission, the higher
priority queue is selected (the higher the queue id, the higher the
priority). Each frame is mapped into a class, and each class into a
queue. In this paper, we will assume one queue per class, and use
queue and class as synonyms.

2.2 Credit evolution rules without GCL
The Credit-Based Shaper (CBS, [1, §8.6.8.2]) is one possible trans-
mission selection algorithm. This section presents the selection
rules of CBS, when no GCL is implemented in the output port.

https://doi.org/10.1145/3356401.3356412
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Figure 1: TSN outputput port architecture

These selection rules rely, for each CBS queue X , on the value
of an integer variable, called credit and a parameter, idX , the idle
slope. The rules, when no GCL is used, are the following:
R1: The head of queue frame can be selected for transmission only

if the credit of this queue is non negative, and no higher
priority frame is ready for transmission.

R2: During frame transmission, the credit decreases as a function
of time with “send slope” rate sdX = idX − R where R is the
transmission rate of the port.

R3: The credit increases with rate idX when either the credit is
negative, or it is positive and there is some frame waiting in
the queue.

R4: If the credit is positive and the queue is empty, the credit is
reset to null.

This behaviour is illustrated on an example with three active
classes: A, B, and C, with A having the highest priority and C the
lowest. Figure 2 shows the arrivals of frames (the frame X-n being
the n-th frame entering queue X), the port transmission schedule
and the credit of class B (with null initial value). When a message
B-1 is set in the queue, the credit is null, and from rule R1, it can
be selected for transmission. Then, rule R2 implies that the credit
decreases. When message B-2 is received, it can not be selected
since the credit is negative, and it must wait until the credit of
class B reaches 0 to be selected. At the end of B-2 transmission,
the output port is idle, and a lower priority message C-1 can start
its transmission. Since we do not consider preemption, when the
credit of class B reaches 0, the message can not be send, and the
credit still increases, reaching positive values. However at the end
of C-1 transmission, a higher priority frame A-1 is waiting, and B-3
has to wait. Thus its credit still increases. Finally message B-3 is
selected for transmission, rule R2 implies that the credit decreases.
At the end of B-3 transmission, the credit is positive and the queue
is empty so, from rule R4, the credit is reset to null.

2.3 Credit evolution rules with GCL
The introduction of gates in [1, §8.6.8.4] comes with a modification
of credit evolution rules. The main ideas are:
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Figure 2: CBS credit evolution rules (without GCL)

R5: The credit is frozen when the gate is closed (overriding rules
R2 and R3).

R6: A frame can start its transmission if it can be sent up to com-
pletion before the next gate-close event.

Moreover, the idle slope is scaled proportionally to the accumulated
closing duration (more details will be given in Section 4).

This new behaviour is illustrated in Figure 3. Moreover the GCL
list is in this example such that, when the gate of a queue is open,
all other gates are open, and when the gate of a queue is closed, all
other gates are closed. When message B-1 is set in the queue, the
credit is null, and from rule R1, it can be selected for transmission.
Then, rule R2 implies that the credit decreases. When message B-2
is received, it can not be selected since the credit is negative, and it
must wait until the credit of class B reaches 0 to be selected. When
message A-1 is received, the output port is idle, it can be selected
for transmission. When the credit of class B reaches 0, the message
can not be sent (the output port is used by frame A-1), the credit
still increases, reaching positive values. The gate closing influence
starts at the end of A-1 transmission (time instant s): rule R6 implies
that message B-2 has to wait. However a lower priority message
C-1 can start its transmission. When the gate is closed, from rule
R5, the credit of class B is frozen. When the gate opens, message
B-2 can start its transmission. At the end of B-2 transmission, the
credit is positive and the queue is empty so, from rule R4, the credit
is reset to null.

One point deserves some attention: what happens just before
gate closing? The rule R6 prevents a frame to encroach on a closed
gate period: a frame can not start its transmission if it does not
have enough time to finish before the next gate-close event1. A
time interval when a frame can not start its transmission due to
rule R6 will be called a “pre-closing” time interval. But what is the
evolution rule of the credit during this time? In previous studies
[10, 16], this period has been considered as an “extension” of the
gate closing period, and it was assumed that the credit was also
frozen. But in the current standard [1], the credit increases during

1The use of preemption may reduce this “forbidden” time, but it can not completely
avoid it.
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Figure 3: CBS credit evolution rules (with GCL)

this waiting time2. This paper focuses on the effect of these rules
on the port traffic scheduling.

2.4 Port with CBS and exclusive gating
This paper focuses on the interactions between the GCL and CBS
mechanisms. It will then restrict the experiments on a specific class,
where

• all queues except the highest and lowest priority (the ones
with respective indexes 7 and 0) ones have a CBS shaper as
the transmission selection algorithm,

• the highest and lowest priority queues have no transmission
selection algorithm,

• the GCL list is such that, when the gate of the highest priority
queue (the one with index 7) is open, all other gates are
closed, and when the gate of the highest priority queue is
closed, all other gates are open (aka. exclusive gating).

To ease comparisonwithAVB, CBS queueswill be namedA,B,C,D,E,F,
as illustrated on Figure 4.

3 STATE OF THE ART
Scheduling synchronous and asynchronous workload on a given
resource is an old issue. For example, the “deferrable server” [15]
considers a set of strictly periodic tasks, plus a deferrable server,
designed to execute the asynchronous workload. Like CBS, this
server receives periodically a capacity, a credit, of execution time.
But a deferrable server can use all its credit to execute several
pending asynchronous tasks, whereas the replenishment rules of
CBS are designed to limit such bursts (as illustrated by the delaying
of frame B-2 in Figure 2). Moreover, deferrable server assumes
preemptive scheduling, whereas the core is this paper is the impact
that non-preemption and encroaching avoidance have on credit.

More recently, another Ethernet-based solution mixing synchro-
nous (Time-Triggered) and asynchronous (Rate Constrained) flows
has been developed: TTEthernet [14]. Three integration policies

2A detailed analysis of this sub-part of the standard devoted to CBS credit evolution
rules and GCL interactions can be found in [5].
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have been defined in [14] to solve (or limit) the encroaching of asyn-
chronous flow on synchronous time windows. But this technology
has no credit-based shaping mechanism.

There are, to the best of our knowledge, few studies discussing
this specific point of credit evolution rule before gate-close event
in the TSN context.

The first proposal on adding some time scheduled traffic to AVB
seems to be done in [3], calling the proposal “AVB ST”. It shows that
to avoid encroaching on reserved time windows, called “ST slots”,
some “guard bands” have to be considered. The credit evolution
rule is the one of AVB: when a CBS queue waits, its credit increases,
whether this waiting is due to any guard band or a ST slot. A worst
case response time AVB ST is done in [4], making clear distinction
between the standard behaviour of TSN and the AVB ST proposal.

All other papers, analysing TSN configurations with CBS and
GCL mechanisms, either by simulation or evaluating the worst
case latency, assume that there is a “guard band” before the gate-
close event, and that during this guard band, the credit is frozen
[7, 10, 10, 16].

Last, in [6], when looking for a worst case latency bound, sev-
eral integration policies are considered, and a generic model that
generalises all these policies is defined. It might be generic enough
to be used with the standard rules.

4 IMPACT OF CREDIT EVOLUTION RULES
This evolution of credit before a gate-close event can have unex-
pected consequences. The reason is that, for a given class, there
are two sources of bandwidth loss due to gate closing: some is lost
while the gate is closed, and during these intervals, the credit is
frozen, whereas some is lost while the gate is open, and during
these intervals, the credit increases.

In this section, we will first show that the pre-closing time (this
time when a frame can not be sent since there is not enough time
to send a frame before the next gate-close event) can not be “used”
by CBS flows: if this time is statically allocated to CBS flows, it
can lead to buffer overflow (Section 4.2.1), and if it is not, it will
lead to CBS idling time, whereas there is backlog and idle port
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Table 1: Glossary

portTransmitRate The transmission rate of the port of in-
terest

R Shorthand for portTransmitRate
CBS Credit-Based Shaper
operIdleSlope(n) Bandwidth (in b/s) reserved for queue n
GCL Gate Control List
OperCycleTime The duration of the GCL
GateOpenTime(n) The total amount of time during the GCL

duration that the gate state for queue n
is Open

PreCloseTime(n, s, t) Accumulated time of pre-closing be-
tween s and t

MaxPreCloseTime(n) Maximum value of pre-closing during a
GCL

(Section 4.2.2). Second, we will show in Section 4.3 that these rules
can be unfair: it allows the CBS queues with the highest priority
to gain more credit, and send larger bursts than in a pure AVB
system, creating larger jitter for low priority CBS queues. But before
discussing the differences and interactions between these elements,
some vocabulary has to be introduced.

4.1 Vocabulary
Let portTransmitRate be the transmission rate of the port of in-
terest and let OperCycleTime be the duration of the GCL table
(the period of the behaviour). Let n ∈ [0, 7] be a queue number,
GateOpenTime(n) is the total amount of time during the GCL du-

ration that the gate state for queue n is open, GateCloseTime(n)
def
=

OperCycleTime−GateOpenTime(n), the total amount of time during
the GCL duration that the gate state for queue n is Closed. The
network designer has to set the operIdleSlope(n) of each queue n
using CBS, the bandwidth allocated to this queue [1, § 34.3]. All
these values are statically defined. Now, given an interval [s, t],
PreCloseTime(n, s, t) is the accumulated time where some frame has
been delayed because of rule “there is insufficient time available
to transmit the entirety of that frame before the next gate-close
event”3. This duration is by nature dynamic: it depends on the pres-
ence of frame in the queue before some gate-close event, on the
credit value, and on the frame size. It can be upper bounded: each
close-gate event may generate only one pre-close interval, and its
length is at most the duration of one frame of maximal length. Let
MaxPreCloseTime be its maximal value on a GCL cycle4.

Then, the idleSlope parameter is computed as in [1, §8.6.8.2]

idleSlope(n) = operIdleSlope(n) ×
OperCycleTime

GateOpenTime(n)
(1)

3We chose the term “pre-closing” time for these intervals, instead of “guard band”
which is more commonly used, because depending on the authors, the “guard band”
is this dynamic pre-closing time, whereas for others, the “guard band” is a static
interval before the gate-close event, whose length must be large enough to prevent
any encroaching. In the standard itself, the term “guard band” is used only in an
informative appendix [1, Appendix Q], and without any exact definition.
4The terms portTransmitRate, OperCycleTime, GateOpenTime operIdleSlope, are from
the standard, the terms GateCloseTime, PreCloseTime and MaxPreCloseTime have been
introduced to ease the discussion.
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Figure 5: Credit overflow

where GateOpenTime
OperCycleTime is the fraction of time the gate is open. Table 1

summarises all of this information.

4.2 The pre-closing time can not be used by
CBS flows

This section presents how the evolution rules of credit prevent the
use of this pre-closing time by CBS flows: first, in Section 4.2.1,
how the static configuration of parameters prevents from stati-
cally reserving it for CBS flows, second, in Section 4.2.2, how the
transmission rules prevents CBS flows from dynamically using it.

4.2.1 Pre-closing time can not be allocated to CBS flows. During
the configuration, the pre-closing time can not be allocated to CBS.
Otherwise, the value of the credit is unbounded and its implemen-
tation variable can overflow (in the remainder of this paper we will
write “credit overflow” to speak about the credit implementation
overflow).

Consider a TSN output port with CBS at queues 1 to 6 and
exclusive gating, as presented in Section 2.4. For any priority n ∈

[1, 6], the condition∑
i ∈hp(n)

operIdleSlope(i)
R

+
GateCloseTime(n)
OperCycleTime

+
MaxPreCloseTime(n)

OperCycleTime
≤ 1 (2)

must hold, where hp(n) denotes the set of CBS queues with prior-
ity not smaller than the nth queue5. Otherwise, the credit of the
priority level n can overflow. This condition just states that the
global load must be less than 1, considering ρi =

operIdleSlope(i)
R the

load associated to higher priority flow i , ρGCL =
GateCloseTime(n)
OperCycleTime

the load associated to GateCloseTime, and a “virtual” load ρPreC =
MaxPreCloseTime(n)

OperCycleTime associated to pre-closing.
An example of overflow is illustrated in Figure 5: in this example,

there are two CBS flows, class A and class B. The evolution of their
credits is represented at the top of the figures, as in subsequent
figures. At the bottom of the figures, as in subsequent figures, is
represented the transmission of the messages (A or B) as well as the
gate state (grey when the gate is closed). The OperCycleTime is set
5Whereas it is common in real-time community to consider that the index 0 has the
highest priority, in the 802.1Q standard, the queue with index 0 has the lowest priority,
and so, hp(n) = {n, n + 1, . . . , 6}.
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Figure 6: Unused bandwidth

equal to 1000ms, the portTransmitRate is also 1b/ms, all messages
are of constant sizes 100b and the GateCloseTime represents 20% of
the OperCycleTime divided into two windows of duration 100ms
(One may object that it is not possible to have Ethernet frames
of size 100b, and that 1b/ms is unrealistic. But this example has
been built to illustrate some behaviour with a small number of
frames, human-friendly constants and can be scaled to realistic
values). Both examples assume that the queues are never empty
during the considered interval. In this example the sum of allocated
bandwidth plus the GateCloseTime is equal to portTransmitRate
(class A and class B operIdleSlope equal 400b/s). But since a part of
the bandwidth allocated is in fact lost by pre-closing time, it leads
to credit overflow.

4.2.2 Un-allocated time can not be used by CBS flows. The previ-
ous example has shown that the pre-closing time, which is by nature
dynamic, can not be allocated to CBS flows. One may wonder if it
can be dynamically used by these flows. Consider a second example
(see Figure 6) with the same parameters as the previous one, except
that the sum of allocated bandwidth plus the GateCloseTime plus
theMaxPreCloseTime is equal to portTransmitRate (class A and class
B operIdleSlope equal 300b/s). In this case, there is no more overflow;
however there is some unused bandwidth. The reason is that the
idle slope of a CBS queues acts both as a minimal reserved capacity,
but also as a maximal bandwidth usage (it is both the slope of the
minimal service curve and the shaping curve [12]). Then, since the
MaxPreCloseTime has not been allocated to CBS flows (to avoid
possible credit overflow), it can not be used by these CBS flow.

This behaviour is not surprising: whereas GPS-like policies (WFQ,
WRR, DRR [9, 11, 13]) are designed to dynamically share the band-
width in a fair way (with configurable weights between flows),
credit based shaping reserves a constant capacity. In TSN, to avoid
encroaching on static gate closing, some dynamic loss of bandwidth
is created, and credit based shaping can not share it between flows
(but it may be used by some Best-Effort queue, i.e. queue with low
priority flows and without shaper).

4.3 The pre-closing time credit evolution rule
can be unfair

A more unexpected consequence of the credit evolution rule is that
it can be unfair: it can allow high priority classes to accumulate
more credit, and create larger bursts than what would happen
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Figure 9: Credits are frozen during the pre-closing time

without gate closing. It would then increase the worst waiting time
of low priority frames.

In order to visualise this unfair behaviour we will use the orig-
inal situation described in Figure 7. In these examples there are
three CBS flows : class A, class B and class C. In this example the
GateCloseTime is null and the portTransmitRate is 1b/ms. 30% of the
OperCycleTime is allocated to class A (operIdleSlope equal 300b/s),
20% is allocated to class B (operIdleSlope equal 200b/s) and 20% is
allocated to class C (operIdleSlope equal 200b/s). Messages of each
class are of constant sizes : 150b for A and 100b for B and C. Figure 7
shows that there is an alternation in the transmission of messages
between these three classes.

Now we will consider a different situation. The traffic of the
class A is split: two thirds remains in the class A, and one third is
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set to the highest priority queue. The highest priority queue gets
an exclusive access to the medium through GCL mechanism, as
described in Section 2.4. The operIdleSlope of the class A is decreased
to 200b/s, its message size is decreased to 100b. The part sent to the
higher priority queue is cut into smaller packets of size 50b, with a
schedule6 given at the bottom of Figure 8. Then, the behaviour of
the system is represented in Figure 8: the first frame of the C queue
is delayed by two frames from A and two frames from B. The long
term service is the same (in both Figures 7 and 8, 12 frames of C
are served), but the traffic is more bursty, due to gate closing, but
also to the credit evolution rule.

Now we will consider that during the pre-closing time, the credit
is frozen (like when the gate is closed). The Figure 9 represents the
same system than in Figure 8, but with credit frozen during pre-
closing time. In this situation there is a perfect alternation in the
transmission of messages between the three classes. This situation
is more fair. However the part of unused bandwidth increases:
since the credits no longer increase during PreCloseTime, only 10
frames per class are served during this schedule. The reason is in
the conversion between the operIdleSlope and the idleSlope: the
eq. 1 does not consider the effect of pre-closing. This point will be
discussed in Section 5.

5 DIFFERENT EVOLUTION RULES
In this section, we will formally define in an unified framework the
standard evolution rule, the one assumed by most research papers,
and a new one, a trade-off inspired by AVB. We will first take a look
at some important CBS properties (Section 5.1) before discussing
several possible credit evolution rules (Section 5.2).

5.1 Two framing remarks
Before discussing and comparing different rules for the credit evo-
lution, let us make two framing remarks.

Keeping credit value bounded. First, one must avoid any credit
overflow. We have shown in Section 4.2 that the pre-closing time
can not be allocated to CBS flows. In other words, one can interpret
the pre-closing time as the time where the link is used by a virtual
higher priority flow. Since the operate idle slope operIdleSlope(i) of
a class i can be interpreted as a part of the bandwidth reserved for
this class, one must take into account the bandwidth used by the
virtual flow, and the total bandwidth allocation must be less than
the link capacity. That is to say, the equation 2 must hold. Note that,
like for other CBS flows, the bandwidth that was reserved for this
virtual “pre-closing” flow and that is not used is not lost since it
may be used by best-effort flows.

AVB credit and bandwidth. Second, one should consider how the
credit-based rule can ensure a throughput of idleSlope(X ) to a class
X .

In AVB, when a class X starts at some time t to send a frame
of length L with null credit, it has to wait up to t + L

idX before
emitting a new frame, letting other flows send their frames. The
credit goes up to positive values only when others AVB flows are

6Like in example of Figure 5, this example has been built to illustrate some behaviour
with human-friendly constants, leading to unrealistic Ethernet frames of size 50b, and
a very non efficient schedule with very small intervals.
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Figure 10: AVB credit evolution w.r.t. packet size; Li is the
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Figure 11: Credit evolution rule and frozen time.

sending frames (or due to the non-preemption of one best-effort
frame). That is to say, the credit can always increase and return back
to zero when it has negative value, but it can increase to positive
values only if another flow is using the link. Moreover, the amount
of data sent in an interval [u,v] (where the credit ceases to be null at
u and comes back to 0 at v) is idX (v −u), as illustrated in Figure 10.
More generally, the credit mechanism offers a bandwidth idX to
class X (up to bounded credit variations). Let us now discuss several
possible credit evolution rules.

5.2 Discussing new rules
Operator slope vs. idle slope. As presented in Section 5.1, the

CBS mechanisms in AVB ensure that a class X with idle slope idX
(expressed in bit per second), on any backlogged interval receives
at least idX , and can not use more than idX (up to the – bounded –
credit variation).

The integration of CBS and GCL has introduced some intervals
where the credit is frozen. Then, considering two instants u, v
such that the credit ceases to be null at u and comes back to 0
at v , as illustrated in Figure 11. The quantity of data send is only
idX ×(v −u−F (u,v)), where F (u,v) denote the credit freezing time
between u and v (in Figure 11, this is a single interval, but in the
general case, it may be the sum of several).

Considering the example of Figure 11, the relation between
L,u,v, F , idX is L = idX × (v − u − F ). Then, if the network op-
erator aims to offer to class X a bandwidth opX , one must set

idX = opX ×
v − u

v − u − F
. (3)

In the current standard rule, this time F (u,v) is statically known
(this is the GateCloseTime). Then, as presented in eq. 1, in order to
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Figure 12: Possible credit evolution scenarios

offer a long-term bandwidth opX , on all a GCL schedule, starting
at s and ending at e , the idle slope is set as

idX = opX ×
e − s

e − s − F (s, e)
= opX ×

OperCycleTime
GateOpenTime(X)

. (4)

But when considering a rule where this freezing time is dynamic,
one may only know F , F such that F ≤ F (s, e) ≤ F , leading to two
possible definitions of the idle slope,

idX = opX ×
OperCycleTime

OperCycleTime − F
(5)

or

idX = opX ×
OperCycleTime

OperCycleTime − F
. (6)

Credit evolution rule. Consider first the situation where a frame
X is received while the credit of its class is negative (Figure 12, left
part) and this frame is too large to be sent before the next gate-close
event. The standard behaviour, labelled (S) considers that the credit
increases up to gate-close event, and is frozen while the gate is
closed. Previous studies assume that the credit is frozen is such
case, leading to the dotted credit curve (F). But one may consider, by
symmetry with AVB behaviour, that a negative credit can always
increase and return to zero, but that a positive credit must be linked
to a use of the link by another flow, leading to the dashed credit
curve (R).

Considering several flows, more options appear, as presented in
right part of Figure 12. While the frame X is blocked, it can exist
another frame Y using the link. Moreover, it introduces another
variation in the possible credit evolution rule: while Y is being
sent, does the credit of X evolve or not? We chose in this study to
let it increase, since it reduces the frozen time, which is a kind of
“waste” of credit opportunity. Moreover, another class may have
a head-of-queue frame Z small enough to be sent between Y and
the gate-close event. In the current standard rules, this frame Z
will be sent, and this appear to be a reasonable behaviour. But this
highlights the fact that there is no “guard band” but a per-class
behaviour, that we named “pre-closing”.

To formally define the rules (R) and (F), let us introduce two new
boolean variables pre-closing, and gate-closed. The boolean gate-
closed is true when the gate is closed, false otherwise. Definition of
pre-closing depends on the policy and is postponed. In the cases of

AVB behaviour (R) and of frozen behaviour (F) the credit evolution
rules are the following:

• the credit decreases during a frame transmission (which
implies that the gate is open, i.e. gate-closed=False);

• the credit increaseswhen gate-closed=False and pre-closing=False
and
– either the credit is negative,
– or there is some frame waiting in the queue;

• the credit is frozenwhen gate-closed=True or pre-closing=True.
It remains to define when pre-closing turns True and False. First

pre-closing turns False when the gate closes. Second pre-closing
turns Truewhen the gate is open, the link is available (no message is
being sent, and no high priority message can start its transmission)
and
Return to zero (R): the credit is positive and the frame could not

be sent up to completion before the next gate-close event.
Frozen behaviour (F): the frame could not be sent up to comple-

tion before the next gate-close event.

Combining remarks on evolution rules and idle slope leads to 5
behaviours of interest: the standard one, denoted S, with the idle
slope computed using eq. (4), the one freezing the credit when a
frame can not be fully sent, denoted F, using either the idle slope id
or id (resp. defined in eq. (5) and eq. (6)), and the negative values
return to zero, denoted R, also with either id or id. But keep in mind
that using numerical values, id = id since the minimal freezing
time is the GateCloseTime.

6 EXPERIMENTS
This section evaluates the effects that credit evolution rules have
on the traversal time of CBS messages. In order to evaluate these
impacts, we first define an experimental configuration (Section 6.1).
The results obtained are presented in Section 6.2 before being in-
terpreted in the Section 6.3.

6.1 Simulation model and assumptions
In this paper, we decide to focus on a single node and a single
transmit port. Then our configuration pattern is the following:

• The portTransmitRate is equal to 100 Mb/s.
• The architecture conforms to the hypotheses of Section 2.4:
no transmission algorithm for higher and lower priority
queues, CBS for all others, exclusive-gating between the
higher priority queue and all others.

• Only 3 CBS queues are active (queue A, queue B and queue
C):
– Their operIdleSlope are equal and set to 20 Mb/s.
– The OperCycleTime is equal to 1s and the GateOpenTime
is equal to 0.8s.

– Each queue is shared by 20 stricly periodic flows with
offsets and constant packet size.

– The period and size of each flow was uniformly chosen
from the set {(1ms, 125bytes), (2ms, 250bytes), (4ms, 500bytes),
(8ms, 100bytes)} so that the load of each flow is equal to 1
Mb/s.

• There is 1 BE flow in the lower priority queue, with messages
of size randomly chosen between 125 bytes and 1250 bytes.
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We consider two different configurations for the closing
events of CBS and BE queues:
– Random: 1000 closed intervals, with duration of 0.2ms, are
randomly set (without overlaping).

– Uniform: Every ms starts a closed interval (leading to 1000
closed interval), with a duration of 0.1ms, 0.2ms or 0.4ms
randomly chosen, but such that there are 400 intervals of
0.1ms, 400 intervals of 0.2ms and 200 intervals of 0.4ms
per OperCycleTime.

One simulation is done using this configuration pattern and by
choosing randomly an offset for each flow. One simulation lasts
5 second and provides the delay for each message. In order to
obtain representative results, statistics are done over 50 simulations,
leading to more than 5 × 106 messages. Now that we have our
configuration it is possible to compute the idle slopes defined in
equations (4) (5) and (6): id = 25Mb/s, id = 25 Mb/s and id = 27.78
Mb/s.

6.2 Results
As presented in Section 5, our aim is to evaluate 3 possible credit
evolution rules, with different values of idle slope. In each case, 50
simulations have been run, each one with a different set of offsets
between the (periodic) flows. The delays of each frame have been
recorded during 5s of simulated time, and then grouped per class to
get per class delay distribution. Since the delays depend strongly on
the set of offsets, all the 50 delays distributions have been merged
into a single one.

A first framing observation is that, for each experiment, the
shapes of the three classes are similar: they may have different
average or median values, but the shapes of the distributions curves
look very similar, as shown on Figure 13. Then, next results plotting
delay distribution will aggregate all classes into a single one, and the
per class results will be given using box plots. The ends of the box
are the lower and upper quartiles (Q1 and Q3) and the band inside
the box is the median (Q2). The whiskers (the two lines outside the
box) extend to the highest and lowest observations.

We then can compare the three policies, with the same value
of idle slope (id = id = 25Mb/s), first on the experiments with the
uniform gate closing (cf. Figure 14, and mind that the scales are
different). Clearly, the frozen policy gives the worst results, and in
fact, such a policy will lead to buffer overflow (but our simulator
assumes infinite memory). The reason is that this policy, with this
value of idle slope, does not offer enough throughput to the flows.
In fact, it also is the case for the policy R considering the worst
possible behaviours. But in this simulation, the credit has enough
opportunities to get back to 0 before gate closing and avoid buffer
overflow.

When considering a random allocation, (cf. Figure 15), the box
plots are globally equivalent to the one of the uniform allocation,
but the distributions of delay are different, as illustrated on Figure 16.
This shows that the distribution of the gate closing instants has
a significant impact on the delays, but this influence is out of the
scope of this study.

The previous experiments have been done with the small value
of the idle slope, id (25Mb/s in the experiment), which is insufficient
for the policy R to serve all input flows, in theory, and insufficient
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Figure 13: Per class delay distribution for policy S, idle slope
id, random gate closing.

in practice for the policy F. We may now have a look on the effect
of a larger idle slope, id (27.78Mb/s in the experiment). In this set
of experiments, we are going to set the idle slope of the S policy
to 27.78Mb/s. This is not the value of the idle slope given by the
standard, but comparing policy S with R and F, while giving S a
smaller idle slope would have been an unfair comparison.

The delay distributions of all classes are plotted in Figure 17 and
the per class box plots are given in Figure 18. When comparing the
policies, it also appears that F is worse than the others, and that S
and R have very similar results. But there is another important fact:
while the idle slopes have been increased by only 11%, the average
delays have been decreased by a factor of 8.

6.3 Discussing results
What can be learned from all these results? Mainly two things. First,
freezing the credit of a class when it can not send any frame due
to a gate closing (policy F) is not a very good solution with regard
to the other solutions (policies S and R). Second, the delays do not
increase linearly with the load with the standardmechanisms: when
considering average delays, it is better to let the load be slightly
smaller than the bandwidth allocated through the operator slope
parameter. Last, the policy R, inspired by AVB, performs comparably
to the standard mechanism.

7 CONCLUSION
This article pays attention to a small part of the TSN behaviour:
the instants before a gate-close event, and their interactions with
the CBS selection algorithm, and in particular the credit evolution
rules before a gate-close event.

The starting point of this study is that several behaviours exist
in the literature, without (up to our knowledge) any qualitative or
quantitative comparison. In this paper, we have considered in a
unified framework three policies: the one of the standard (denoted
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Figure 14: Box plot of delays (in ms), for policies S, R, and F, idle slope id = id, uniform gate closing.
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Figure 15: Box plot of delays (in ms), for policies S, R, and F, idle slope id = id, random gate closing.
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Figure 16: Delay distribution of all classes for policy S, idle
slope id, uniform and random gate closing.

S), one that, as assumed in most of papers, freezes the credit before
the gate closing (denoted F), and a third one, inspired by AVB, that
allows the credit to return up to zero before a gate closing (denoted
R). Whereas the differences can be considered as minor (just a few
words to change in the standard), it has an impact. We have shown
on some specific hand-made examples, presented in Section 4, that
small modifications can lead to buffer overflow or unfairness be-
tween classes. The impact on these variations have been evaluated
by running 200 simulations for each of the three policies. It shows
that it can have very significant impact on the performances. In
particular, the policy F that is mainly considered in the literature,
gives on simulation worse results than the standard behaviour S.
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Figure 17: Delay distribution of all classes for policies S, R
and F, idle slope id, uniform gate closing.

The new policy R, has results comparable to the standard S. The
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Figure 18: Box plot of delays of all classes for policies S, R and F, idle slope id, uniform gate closing.

unfairness shown on examples has not been reproduced on these
simulations.

This studymust now be completed by some analysis on the worst
case delays. The policy R has been designed to avoid too large values
of the credit, which is a root of unfairness. The simulations have
shown that it has mean performances equivalent to the standard,
and one must investigate what are the differences on the worst case
delays.

However, the preemption (presented in [2, 8]) will reduce the
impact of gate closing onCBS flow, but it will not disappear.Without
preemption, the maximum pre-closing is a full Ethernet frame
(15KB), and with preemption, it will be reduced to a full fragment
(1.6KB).
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