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ABSTRACT 

 We report on an experimental study aimed at optimizing the radiocatalytic properties of 

pure and copper-incorporated TiO2 powders. This has been achieved by conducting cross-

checked structural, optical and radiocatalytic studies. Structural and nanoscale analyses show 

evidence of internal doping by Cu
2+

 in the TiO2 lattice that leads to the reduction of the 

optical band gap down to 1.5 eV. The effect of gamma radiation on the radiocatalytic activity 

of these catalysts was studied by degradation of methylene blue as a model pollutant. It was 

found that the addition of Cu-doped TiO2 (anatase) powders improves significantly the 

pollutant degradation, as compared to photocatalysis. The doping and the annealing 

temperature’s impact on the structural, optical and radiocatalytic efficiencies are highlighted 

and correlated. 

Keywords: Copper-doped titania, Structure, Optical and radiocatalytic relationship, ELNES.   
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1. Introduction     

 Water is a scarce resource and wastewater is a major environmental problem. Advanced 

oxidation processes, like photocatalysis and radiocatalysis, are widely studied for the 

treatment of persistent organic compounds. Among several semiconductors used as 

heterogeneous photocatalysts and radiocatalysts, titanium dioxide (TiO2) is the most widely 

used and has been intensively studied thanks to its many promising properties [1-37]. It 

presents a high chemical and mechanical stability and is amongst the synthetic nanoparticles 

that present especially interesting properties in the fields of nanotechnology, sustainable 

development and ecology. Titanium dioxide is a semiconductor that can only be activated 

with light of energy higher than about 3.2 eV or 3.0 eV for the anatase and rutile structures 

respectively. When TiO2 is subjected to illumination, the electron-hole pairs formed can be 

trapped by surface hydroxyl groups. In the presence of oxygen and water, the trapped carriers 

form free radicals that are strong oxidizing species and are likely to mineralize organic 

pollutants. In this respect, the efficiency of TiO2 catalysis needs to be further improved. Many 

strategies, such as doping [5-18], co-doping [20, 21], surface treatment [22], coupling with 

noble metal nanoparticles [23] or other semiconductors [24, 25], synthesis of nanomaterials 

with different morphologies [26], have been tried over the last few decades, in order to reduce 

the electron–hole recombination rate and improve the photocatalytic efficiency of TiO2. 

Titanium dioxide has a high oxidation power so is easily doped with active ions. It has been 

shown that doping with transition metal cations is an efficient way of promoting the 

photocatalytic activity [16-18]. Such doping can extend the light absorption range from the 

UV down to the visible by inducing additional energy levels within the band gap, leading to 

the improvement of the TiO2 photo-response. Several investigations on doped TiO2 have 

succeeded in providing some indication about the substitutional or interstitial dopant location 

and its impact on the physical and electronic structure of TiO2 [27, 28]. Doping with copper 
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appears to be a particularly promising approach for photocatalytic applications [18]. For 

example, it has been found that the incorporation of Cu
2+

 ions into a TiO2 matrix can 

substitute for Ti
4+

 and/or segregate to the surface of TiO2 crystallites in the form of CuO, 

Cu2O or metallic Cu [14, 29-32] and improve significantly the photocatalytic activity. 

Theoretical investigations show that Cu doping can effectively narrow the band gap by 

creating impurity bands [15, 21], and thus improve the absorption of visible light in 

photocatalytic reactions. Alternatively, Wu and al. [33] reported that the dissolution of Cu 

ions in the TiO2 lattice leads to a reduction in photocatalytic activity. It is now admitted that a 

compromise must be achieved between the band gap value and charge transfer at the surface 

of TiO2 catalysts. However, the nature of the active copper species (CuO, Cu2O, metallic Cu, 

or isolated Cu
2+

 ions incorporated into the TiO2 lattice) and the factors that govern the Cu-

doped TiO2 photo-reactivity are still under debate. Also, there is a need to develop treatment 

methods that are more effective in eliminating dyes from waste streams. Ionizing radiation is 

known to degrade numerous pollutants. As in the case of photocatalysis, some publications 

reported that the addition of nanoparticles such as TiO2 and AlO2 in solution enhances the 

degradation of pollutants and accelerates the reaction induced by ionizing radiations [34-37]. 

However, the effect of doping on radiocatalysis has not been reported. 

 This work explores the local chemical environment of Cu dopants in the core and the 

near-surface regions of TiO2 nanoparticles prepared by a simple sol-gel route and annealed at 

400°C or 600°C. The characterization studies were conducted using various investigation 

techniques, including ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction (XRD), 

transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS) and 

electron paramagnetic resonance (EPR) spectroscopy. Methylene blue (MB) was selected as a 

model compound for evaluating the potential of doped and undoped TiO2 to remove dyes 

from wastewater. By investigating the effect of the copper doping level and heat treatment on 
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the structural and optical properties of a series of TiO2 catalysts and subsequently on their MB 

degradation efficiency under gamma illumination, we show that the performance of such 

systems strikingly depends on the nature and distribution of the Cu species incorporated. 

 2. Experimental details 

Pure and Cu
2+

-doped TiO2 powders (Cu-TiO2) were prepared via a sol-gel technique. 

Details are presented in our previous work [6]. This method produces powders of high 

chemical purity. In this case the measured atomic ratio of Cu to Ti is between 0 and 12 at.%. 

Undoped TiO2 samples were prepared as a controlin the same way. The obtained millimetric 

solids were ground in an agate mortar to get fine nanopowders. The nanopowders were 

systematically characterized after heat treatment at 400°C or 600°C in order to optimize their 

synthesis. In this regard, XRD, TEM and EELS are suitable characterization techniques as 

they allow one to identify the structures of crystallized phases and to observe possible 

structural changes after doping and heat treatment.  

The X-ray diffractometer used was a Siemens D5005 in Bragg-Brentano geometry, 

furnishing CuKα radiation (λ = 1.5406 Å). The diffractograms were recorded at room 

temperature and the X-ray data were collected from 20° to 80° (2Ɵ), with a measurement time 

of 10 seconds and a step size of 0.02° (2Ɵ).  

TEM (TOPCON 002B at 100 keV) was used to study the morphology and the 

crystallographic structure of the powders, and their possible changes after heat treatment and 

doping. Nanopowders were dispersed in ethanol before drop casting a very dilute suspension 

on a carbon-film copper grid.  

The electronic structure of Cu-TiO2 powders was investigated by means of EELS 

performed in two dedicated scanning transmission electron microscopes (STEM), a probe Cs-

corrected Nion Ultra-STEM and a STEM-VG HB501, both equipped with a field emission 

source operated at 100 keV and coupled to a Gatan EELS spectrometer optically coupled to a 
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high-sensitivity (either nitrogen-cooled or electron amplifying) CCD camera. EELS does not 

only perform elemental analysis of Cu inserted into the TiO2 structure after doping, it also 

provides information related to the local electronic structure of the materials (valence state of 

each element for example) with a high spatial resolution (down to the atomic scale).   

For EPR analysis, the sample was inserted into a standard rectangular cavity in an EMX 

71 X-band EPR spectrometer with 100 kHz magnetic field modulator operating at room 

temperature. 

The optical measurements were performed by diffuse reflection over the 250 to 800 nm 

wavelength range. The reflection spectrum was measured using a UV-vis-near infrared 

spectrometer (Lambda-950) equipped with an integrating sphere.  

Finally, the radiocatalytic activity of the synthesized samples was evaluated through the 

degradation of methylene blue (MB) in aqueous solution under gamma-ray irradiation at 

doses varying from 10 to 1500 Gy using the Tunisian Cobalt-60 radiation facility at a 

80Gy/min dose rate [38, 39]. This dose rate was determined by alanine dosimeters irradiated 

by the facility and returned to Aerial for dose rate assessment. 

In a typical experiment, a 10 mg/l aqueous solution of MB was mixed with the catalyst 

in a 100 ml glass dish to obtain a solution suspension of 2 g/l. The mixture solution was 

initially stirred for about 2h in the dark, to reach the adsorption equilibrium between MB and 

the powder catalyst surface. The MB concentration in the solution after the radiocatalysis 

reaction was estimated by using a UV-vis spectrophotometer (IC6400) and measuring the 

intensity maximum of the MB absorption peak at about 620 nm. 

3. Results and discussion 

3.1. Microstructural analysis 

XRD was used as a first characterization step to identify the structures of the crystalline 

phases present in the powders and to monitor any possible structural changes upon heat 
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treatment and doping. The presence of a possible second phase was also looked for. Fig. 1 

shows XRD patterns of the Cu-TiO2 samples annealed at 600°C. Importantly, we note that 

powders with 0-3 at.% Cu concentration are a mixture of anatase and rutile phases without 

any detected additional phase. The fraction of the rutile phase increases with doping levels, 

from 20% for undoped TiO2 to 44% for 3at.% Cu-TiO2. Therefore, it is clear that within this 

doping level range, the Cu doping promotes the anatase-to-rutile phase transition. This may be 

caused by the substitution of Cu
2+

 ions for Ti
4+

 ions within the anatase structural framework. 

Indeed, it is a well-known fact that the TiO2 anatase structure is metastable with respect to 

rutile. In both rutile and anatase, Ti is six-fold coordinated, but the number of shared 

octahedral edges increases from two in rutile to four in anatase [40]. The tolerance of the TiO2 

structure to Cu doping can be qualitatively related to the local environment of Ti and the 

introduced strain. When Cu
2+

 ions enter the TiO2 lattice, substituting for Ti
4+

 ions, the ion 

charges should be compensated by an increase in oxygen vacancies, that act as nucleation 

sites for the anatase-to-rutile transformation. At the annealing temperature of 600°C, these 

defects promote the transition from a metastable anatase phase to a more stable phase, more 

tolerant of defects, i.e. rutile. At a higher Cu doping level (6 at.%) we note the almost 

complete disappearance of the rutile phase and the appearance of an additional phase 

identified as CuO. The amount of this phase increases with Cu concentration. Once part of the 

Cu
2+

 ions is segregated outside the TiO2 structure, the number of oxygen vacancies decreases, 

leading to the inhibition of the anatase-to-rutile transformation. Other notable changes were 

observed: the estimated "a (= b)" and "c" lattice parameters for undoped TiO2 powder are 

respectively 3.781 Å and 9.478 Å in the anatase structure and 4.592 Å and 2.957 Å in rutile. 

With the increase in Cu
2+

 concentration from 0 to 3 at.%, the value of these lattice parameters 

hardly changes. Upon further increase of the Cu
2+

 concentration, only anatase crystallites are 

observed (as already mentioned), accompanied by a shift of the (101) and (200) reflections 
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toward larger angles. According to [9], this shift may reflect the interstitial incorporation of 

Cu
2+

 ions within the TiO2 lattice. Such incorporation is promoted by an excess of copper. 

Interstitial doping generates stress in the anatase structure. Moreover, it does not provide 

additional oxygen vacancies and therefore inhibits the transition to the rutile phase. XRD 

measurements on pure TiO2 and Cu-TiO2 sol-gel powders annealed at 400°C (not shown 

here) exhibit only diffraction peaks corresponding to the anatase phase without any secondary 

phase nor any notable change in lattice parameter, within the detection limits of XRD 

measurements. 

The average crystallite size as a function of the Cu levels for samples annealed at 400°C 

and 600°C (Fig. 2) has been evaluated from the full width at half maximum (FWHM) of the 

most intense peaks (the (101) and (110) peaks for anatase and rutile respectively) using the 

Scherrer method [41]. As previously reported [6], the crystallite size increases with annealing 

temperature. Moreover, it appears that Cu incorporation has a different effect on crystal 

growth for each temperature. For samples annealed at 400°C the crystallites are smaller than 

those in the undoped material, by 25% for the 3at.% Cu-TiO2 sample, with no detectable 

change of lattice parameters. The crystallite size evolution according to the doping level must 

be related to the insertion of doping atoms in the TiO2 structure. The substitution of metal ions 

of lower valence values for Ti
4+

 increases the oxygen deficiency to maintain charge neutrality. 

The reduction in crystallite size could be due to the formation of oxygen vacancies. In fact, 

defects can influence considerably the nucleation, growth, and structure of crystals [42, 43]. 

For samples annealed at 600°C, the opposite is observed: for a doping level not exceeding  

3 at.%, doping leads to an increase in the average crystallite size (in both rutile and anatase 

phases). This result will be further discussed following a nano-structural study (see section 

3.2). For both annealing temperatures and at a high Cu doping level (> 6 at.%) a slight 

decrease in the size of the crystallites (present only in the anatase phase) is observed. Such a 
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relative reduction in crystallite size in the presence of segregation of copper cations and/or a 

copper oxide additional phase at the grain boundaries has already been observed for Co-doped 

TiO2 [6]. This effect seems to increase with temperature as the relative difference between the 

crystallite size of doped and undoped samples increases with temperature. Above 6 at.% the 

Cu
2+

 doping level does not show any significant effect on grain growth. Thus, we assume that 

at these high doping levels, the solubility limit of copper in the TiO2 structure is exceeded and 

Cu
2+

 ions are segregated to the grain surfaces. We will come back to this statement in the 

nanoscale analysis section.  

3.2. Nanoscale analysis 

 As the energy-loss near-edge fine structures (ELNES) are sensitive to the oxidation state 

and to the bonding and local environment, it is not only possible to determine the chemical 

composition of the doped TiO2 samples, but also to sort out spectral signatures of the copper 

oxidation state and to locally identify the TiO2 crystalline phase (anatase vs rutile) in the 

studied samples. Chemical analyses were performed by EELS in the spectrum-imaging mode, 

in which the focused beam is scanned over a region of interest and a whole spectrum is 

acquired at each position of the scan [44, 45]. Such a spectrum-image contains typically 

10000 spectra. These spectra can be processed individually, usually by removing the 

background and summing the intensity corresponding to a characteristic edge and thus 

building elemental maps. However, as this data set contains a lot of redundant information, it 

is often very useful to process it as a whole using multivariate statistical techniques [46]. We 

used principal component analysis (PCA) as a filtering method for separating meaningful 

signal components from noise. In a few favorable cases, we used spectral unmixing methods. 

These methods assume that the whole spectrum-image can be described by a few reference 

spectra, each individual spectrum of the original data cube being a linear combination of these 
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basic components [47, 48]. We used Vertex Component Analysis [49] to perform this 

unmixing step. 

 TEM and high angle annular dark field (HAADF) STEM images of the 3at.% Cu-TiO2 

sample annealed at 400°C are displayed in Fig. 3(a) and Fig. 3(b) respectively, for two 

different areas in the sample. Typical samples are well crystallized and crystallites exhibit 

polyhedral shapes with a mean size around 10-15 nm, in agreement with XRD investigations. 

The inspection of the diffraction pattern confirms the anatase structure of the prepared 

samples with no detectable trace of the rutile phase. The Ti, O and Cu elemental maps 

extracted from the EELS spectra acquired in the spectrum-imaging mode are shown in 

Fig. 3(c, d, e) respectively. Fig. 3 also shows the presence of metallic copper nanoparticles of 

size less than 2 nm (indicated by an arrow in Fig. 3(b)) which are not detected by XRD. The 

corresponding EELS Cu L2,3 spectrum is shown and labeled (1) in Fig. 3(f). The Cu-L2,3 

spectrum from the square region, labeled (2) in Fig. 3(e), displays a lower signal-to-noise 

ratio and characteristic features of Cu
2+

 (Fig. 3(f)). In fact, the Cu-L2,3 edge shape, which 

reflects electronic transitions from 2p to 3d levels, is very sensitive to the oxidation state of 

the copper ion. The absorption edge of metallic copper Cu
0
 (d10s1) exhibits a typical step like 

shape, while for Cu
2+ 

(d9s0) most of the intensity in the near-edge region is concentrated in 

two narrow peaks, called L3 and L2 white lines. The Cu
2+

 L edge threshold is also shifted to 

lower energy by around 2 eV in comparison to the metallic state. It should be noted that the 

Cu
1+

(d10s0) ELNES (not shown here) exhibits an increase in L3 white line intensity in 

comparison to metallic copper, but no chemical shift [50]. 

 Fig. 4(a) shows a higher magnification TEM image together with its corresponding 

selected area electron diffraction (SAED) pattern of 6at.% Cu-TiO2 annealed at 400°C. The 

SAED pattern confirms the anatase structure of these polycrystalline powders [6]. We also 

note the presence of grain boundaries. Elemental maps as extracted from EELS spectrum-
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images of the region of interest associated with the HAADF image displayed in Fig. 4(b), are 

shown in Fig. 4(c, d) for the energy regions including the Ti-L2,3 and Cu-L2,3 edges 

respectively. These elemental maps show the presence of copper-rich nanoparticles (1-2 nm in 

diameter) at grain surfaces and a copper segregation at the grain boundaries. These secondary 

phases were not detected by XRD. In Fig. 4(e) we have manually applied two thresholds to 

the Cu map in order to separate the particles (visible in red) from the grain boundaries (in 

green). The spectra summed over the corresponding pixels are shown in Fig. 4(f). It appears 

that the grain boundaries contain mostly oxidized Cu
2+

 as indicated by the strong intensity in 

the white lines. The EELS fine structures corresponding to the particles exhibit a much-

reduced white line intensity due to a strong contribution of a metallic Cu signal. From doping 

levels of about 3 at.%, the TiO2 structure begins to be saturated with Cu. The electrons 

trapped in oxygen vacancies (whose presence assures electron neutrality of the sample upon 

Ti
4+

 substitution) may be transferred to the Cu
2+

 ions segregated on the crystallite surface, 

resulting in metallic Cu formation. 

 Results from a nanoscale analysis of Cu-TiO2 samples annealed at 600°C are 

summarized in Fig. 5. For samples with a Cu concentration of 3 at.%, the typical crystallite 

morphology is shown in the HAADF images of Fig. 5(a) and Fig. 5(d). Large TiO2 particles 

with faceted shapes are observed. The mean particle size is found to be around 55 nm (in 

agreement with XRD analysis). The Cu map (Cu-L2,3 edge intensity map) of Fig. 5(b) clearly 

shows a copper segregation at the TiO2 crystallite surface and grain boundaries. As in the case 

of the 400°C annealed sample, we have applied a thresholding to the Cu map in order to 

separate the signal coming from the larger metallic copper particles (in red) from that of a 

weaker segregation at surfaces and grain boundaries (in green). Cu-L2.3 edges thus obtained 

are presented in Fig. 5(c) and show slightly different oxidation states. In a few cases a strong 

copper segregation is observed at grain boundaries allowing for the signal extraction by 
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statistical analysis of this secondary phase. Maps obtained after spectral unmixing of sets of 

spectra encompassing the Ti-L2,3 to O-K energy region are presented in Fig. 5(e). These maps 

show the presence of both anatase and rutile phases (blue and green pixels in the image of 

Fig. 5(e)). A third component is extracted, which is characteristic of the grain boundaries (red 

pixels). The EELS components corresponding to these maps are presented in Fig. 5(f). It is 

clearly possible to distinguish a rutile grain (in green) from the surrounding anatase ones (in 

blue). Fig. 5(g) and Fig. 5(h) show the result of a second VCA treatment applied when 

considering a larger energy range encompassing the Ti-L2,3, O-K and Cu-L2,3 edges. The map 

associated with the VCA component related to Cu segregation at grain boundaries is shown in 

Fig. 5(g). The associated Cu-L2,3 edge after background subtraction is shown in Fig. 5(h). The 

edge fine structures clearly indicate that the copper segregation at the grain boundaries 

involves a high copper oxidation state (Cu
2+

). An elemental quantification of this VCA EELS 

component gives an estimated doping level of about 3 at.% Cu. This is much more than the 

measured Cu content within the grains, which is well below 1 at.%. The remaining copper is 

probably present in an undetected additional phase. 

 The Ti-L2.3 ELNES corresponding to 3at.% Cu-TiO2 samples annealed at 400°C and 

600°C are presented in Fig. 6(a). All are composed of two main contributions, namely the L3 

and L2 edges, separated by the 2p core-hole spin–orbit coupling. The L3 and L2 edges are then 

both subdivided into two peaks by the strong crystal field splitting created by the surrounding 

oxygen atoms [51-54]. All the spectra have a similar form and are consistent with the TiO2 

anatase structure for samples annealed at 400°C and with both anatase and rutile structures for 

samples annealed at 600°C. A splitting reduction of the Ti-L3-eg edge induced by Cu
2+

 

incorporation is observed for both anatase and rutile structures. Fig. 6(b) shows EELS O-K 

edges for undoped and 3at.% Cu-TiO2 annealed at 400°C and 600°C. The spectra match well 

with the anatase and rutile TiO2 structures. They can be decomposed in two main 
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spectroscopic regions labeled as (1) and (2). The pre-edge (1) results from hybridization of the 

oxygen 2p with the titanium 3d orbitals. A stronger crystal field splitting is observed for rutile 

than anatase (associated with a 2.75 eV and 2.5 eV t2g-eg splitting respectively) [55]. (2) 

corresponds to electron transitions from 1s to 2p oxygen states hybridized with titanium 4s 

and 4p states that are sensitive to long-range connectivity changes between oxygen octahedra 

in the TiO2 structure. For all doped samples, the spectra of Fig. 6 show that the Ti-L2.3 and O-

K ELNES modifications due to the structural distortion induced by Cu
2+

 substitution are more 

marked at the grain boundaries, but are also present within the bulk of the TiO2 crystallites. 

Importantly, according to the recorded ELNES, we can rule out the presence of significant 

quantities of Ti
3+

 in all studied samples. 

 We now come back to the previous discussion on the particle size. For samples 

annealed at 400°C, the average crystallite size decreases by 25% when the Cu content 

increases from 0 to 3 at.%. The opposite is seen for samples annealed at 600°C: a strong 

increase of about 50% and 30% of the crystallite size, respectively in anatase and rutile phases 

is observed. Nanoscale investigation reveals that the TiO2 structure annealed at 600°C has a 

lower Cu saturation limit. Therefore, the true Cu doping concentration in the TiO2 lattice 

annealed at 600 °C is lower than that in samples annealed at 400°C. Any size reduction due to 

growth inhibition in the presence of oxygen vacancies created by Cu
2+

 substitution is thus 

expected to be much more limited. However, oxygen vacancies and their effect on crystal 

growth cannot explain the crystallite size evolution discrepancy between both annealing 

temperatures.  

 In fact, the growth of such small nanoparticles is probably more dominated by surface 

processes than bulk ones. We speculate that the growth mechanism during annealing is 

affected by the presence of copper at the surface. For example, it has been suggested by Wu et 

al. for Fe-doped TiO2 samples that the presence of Fe
3+

 ions at the surface decreases the free 
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energy and thereby reduces the thermodynamic driving energy of particle growth [56]. 

Alternatively, other mechanisms such as sintering [57] may be at the origin of an increase of 

particle size in the presence of copper. 

 3.3. Electron paramagnetic resonance (EPR) study 

 EPR spectroscopy analyses were performed in order to monitor the involved 

paramagnetic centers and to follow the valence state and the coordination environment of the 

doping ions as a function of Cu doping concentration in the TiO2 lattice. The evolution of the 

EPR signal of undoped and copper-doped TiO2 samples, annealed at 400°C, are shown in  

Fig. 7. The sharp peak observed at g = 2.003 closely approaches the free electron g value 

(g = 2.002). This value is associated with single electrons trapped in oxygen vacancies from 

the TiO2 lattice [58]. Undoped samples have only this paramagnetic signal. For a doping level 

not exceeding 0.3 at.% of Cu
2+

 the intensity of this EPR peak increases and an asymmetric 

EPR signal shape appears whose intensity also increases. This EPR signal corresponds to the 

presence of Cu
2+

 (3d9) ions in octahedral coordination in the TiO2 lattice. This result is in 

agreement with that obtained by B. Choudhry et al. [11], confirming the substitution role of 

Cu
2+

 ions in the TiO2 network. The substitution of Cu
2+

 for Ti
4+

 ions in the TiO2 lattice leads 

to the formation of oxygen vacancies. It has been disclosed that for anatase the doping with a 

cation, such as Cu
2+

, Co
2+

, Fe
3+

, with a lower valence than that of the Ti
4+

 ion, introduces 

oxygen vacancies inhibiting the formation of Ti
3+

 ions [11, 15, 6, 56]. We also note that these 

oxygen vacancy sites are electron traps [59, 60]. Following the Cu
2+

 doping, the place 

occupied by the O
2-

 anion in the regular TiO2 lattice is taken by one or two free electrons, thus 

forming a donor level below the conduction band. It is demonstrated that these donor states in 

both anatase and rutile increase with increasing oxygen vacancies and can overlap the 

conduction band [61]. This may explain the great decrease in the band gap of TiO2 produced 

by Cu
2+

 doping.    
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 At a higher doping level (0.6at.% Cu-TiO2) a decrease in oxygen vacancy sites is noted, 

which is accompanied by an increase in the peak-to-peak height  (PPH) of the Cu
2+

 ion 

spectral signature (Fig. 7(b)). This may be due to the insertion of Cu
2+

 ions in the interstitial 

sites in addition to substitution. At doping levels up to 3 at.%, the decrease in the oxygen 

vacancies PPH is more pronounced and is accompanied by a decrease in the Cu
2+

 ion signal 

PPH. The Cu
2+

 ion EPR signal also broadens, suggesting that a dipolar interaction among 

neighboring Cu
2+

ions is taking place. The nanoscale investigation in section 3.2 reveals the 

presence of metallic copper nanoparticles in the grain boundaries at and above a 3 at.% 

copper doping level. The electrons trapped inTiO2 oxygen vacancies can be transferred to the 

Cu
2+

 ions and metallic Cu is thus formed. This charge transfer can explain the decrease in the 

Cu
2+

 EPR signal PPH. 

3.4. Optical properties 

 The optical properties of Cu-TiO2 powders annealed at 400°C and 600°C were 

investigated by UV-vis spectroscopy in diffuse reflectance mode (DRS). The reflectance data 

R% was converted to the Kubelka-Munk function F(R) by the equation:       
      

  
 which 

is proportional to the absorption coefficient  . The optical gap value is estimated using the 

Kubelka-Munk method combined with the Tauc relation [62]:              
 , where 

   is the photon energy, A is an energy dependent constant and m an integer depending on the 

nature of the electronic transitions. For an indirect transition m = 2 and for a direct one  

m = 1/2. By plotting           
 

  as a function of energy excitation, we estimate the indirect 

energy band gap   
  and likewise           to estimate the direct band gap energy   

 . 

According to theoretical investigations, the substitution of Cu
2+

 for Ti
4+

 in anatase (2at.% Cu-

doped TiO2) should lead to a decrease in the band gap, down to 1.7 eV, and an increase in the 

visible light absorption [15, 21]. Indeed, as already mentioned, Cu
2+

 substitution in TiO2 is 

accompanied by the formation of oxygen vacancies to preserve electric neutrality. In a 
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simplistic ionic model, along with Cu
2+

 acceptor defect states, oxygen donor band states are 

formed in the band gap [21]. Using more sophisticated models, the appearance of new states 

at the top of the valence band and the bottom of the conduction band after Cu
2+

 doping has 

been shown to result from the strong iono-covalency of the Cu-O bonding which has a strong 

O2p-Cu3d hybridized character [15]. The absorbance spectra corresponding to the Kubelka-

Munk function versus wavelength and the band gap energy estimations for Cu-TiO2 powders 

annealed at 400°C and 600°C are represented in Fig. 8. As expected, the insets in Fig. 8(a) 

and Fig. 8(b) show a general red shift in the UV-visible absorption spectra as a function of the 

Cu concentration. Undoped TiO2 exhibits strong absorption in the UV region and high 

transparency in the visible. Copper incorporation into the TiO2 lattice leads to a general shift 

in the UV-visible absorption spectra and to the creation of an increasingly (with Cu content) 

strong broad absorption band in the visible range. Two typical effects are observed: (i) the 

appearance of an absorption band between 400 and 500 nm that could be caused by the 

hybridization between O2p from TiO2 and Cu
2+

 3d states [4, 11, 15, 21]. This band has been 

shown also to appear due to charge transfer between TiO2 and CuO clusters [63] at the 

TiO2/CuO interface. The possible presence of metallic copper can also affect the absorbance 

of this material in the visible range, via plasmonic excitations. (ii) the appearance of abroad 

absorption band between 600 and 900 nm, which is not observed in pure TiO2, and which is 

attributed to d-d transitions between the newly created energy levels at the top and bottom of 

the valence and conduction bands when Cu
2+

 is inserted into the TiO2 crystalline environment 

[11, 15]. This typical behavior and these types of electronic transitions are consistent with 

those observed in the literature [11, 12] and indicate once more the substitution of Ti
4+

 by 

Cu
2+

. Resulting indirect (  
   and direct (  

 ) energy band gaps were estimated graphically in 

a first approximation via the Tauc relation [62] by extrapolation of the Tauc plot to the    axis 

with a linear fit. The obtained values are shown in Fig. 8(c). In the TiO2 energy band 
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structure, the top of the valence band originates mainly from O2p states and the conduction 

band from Ti3d states. The presence of the extra element in the TiO2 lattice leads to a decrease 

of both direct and indirect band gaps. However, the most significant decrease is recorded for 

the indirect gap. For undoped samples, the band gap decreased slightly with increasing 

annealing temperature. This is in agreement with an increase in the rutile fraction with 

temperature. The presence of Cu
2+

 ions in the TiO2 structure has an even stronger effect on 

the band gap value reduction. In fact, we note that, at doping levels greater than 0.6 at.%, 

samples annealed at 400 °C present the largest band gap reductions, peaking for the sample 

with 3 at.% of copper (1.5eV). For Cu-TiO2 samples annealed at 400°C, when passing from a 

copper incorporation level of 3 at.% to 6 at.% the intensity of the 400-500 nm absorption band 

increases while the 600-900 nm absorption band decreases (Fig. 8(a)). This suggests that the 

effective copper doping level in the 6at.% Cu-TiO2 samples is lower than in 3at.% Cu-TiO2. 

Indeed, at higher copper incorporation levels, microanalysis investigations confirm the 

segregation of copper oxide species at the surface of the crystallites. 

 For Cu-TiO2 samples annealed at 600°C the incorporation of Cu
2+

 into the TiO2 

structure also enhances the absorption by the catalyst in the visible range and induces a shift 

in the band gap to lower energies, though less pronounced than at 400°C. According to the 

structural investigations, this finding can be attributed to the absorption caused by: (i) metallic 

copper clusters formed in grain boundaries, and (ii) the disordered, highly Cu-doped TiO2 

structure formed in the grain boundaries. These interpretations concern samples with doping 

level no greater than 3 at.% of copper. The band gap decreases from 3.04 to 2.06 eV and 1.98 

eV for a doping level of 6 at.% and 12 at.% respectively. These variations are probably due to 

the presence of the CuO additional phase, which presents a gap of around 1.5eV. As shown in 

Fig. 8(b), the contribution of this extra phase becomes rather large, which makes difficult the 

estimation of the gap through the methods used here on the diffuse reflectivity data. 
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3.5. Radiocatalytic activity evolution 

 Fig. 9 shows the effects of radiolytic and radiocatalytic degradation of methylene blue 

(MB) as a function of gamma-ray doses. Fig. 9(a) shows the radiocatalytic degradation curves 

of MB as a function of dose for different Cu dopant content in Cu-TiO2 catalysts calcined at 

400°C for 6 h. It is found that the degradation ratio of MB increases gradually with gamma 

dose. Under gamma irradiation and without any TiO2 catalyst, MB presents a similar 

degradation to that reported previously in the literature [64]. We then find that the insertion of 

copper into the TiO2 structure is beneficial to the radiocatalytic efficiency. In the presence of 

Cu-TiO2 catalyst the MB degradation is about 25% higher than for undoped TiO2. At low 

gamma radiation doses (≤ 100 Gy) the best degradation was obtained with 3at.% Cu-TiO2. 

The presence of more copper in the TiO2 structure becomes slightly beneficial to the 

radiocatalytic activity only for high gamma radiation doses (≥ 500 Gy). The best 

radiocatalytic performance obtained for a 3at.% Cu-TiO2 catalyst annealed at 400°C is 

probably due to the large reactive surface area and the low band gap energy values. As 

revealed by XRD measurements, at this doping level the produced samples have the smallest 

particle size and possibly have the highest specific surface area. In fact, as reported by many 

authors, e.g., [9], the specific surface area increases in inverse proportion to the sol-gel TiO2 

particle size. Our structural and optical results revealed that Cu
2+

 internal doping of the TiO2 

structure occurs and leads to a very low band gap. During the radiocatalytic process, gamma 

irradiation can also lead to the desorption of oxygen from the crystallite surface. The oxygen 

vacancies so created can form donor levels in the TiO2 forbidden band gap and can also act as 

traps for photogenerated electrons, thereby limiting the electron-hole recombination. With 

further copper doping level increases, CuO partially covers the surface of the TiO2 catalyst. 

CuO/TiO2 heterostructures thus formed can facilitate the carrier separation and lead to 

improved radiocatalytic properties. 
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 Regarding the second set of Cu-TiO2 samples annealed at 600°C, the degradation rate as 

a function of gamma-ray dose is presented in Fig. 9(b). Pure TiO2 synthesized at 600℃ 

presents better radiocatalytic performance than at 400℃, even though for TiO2 catalysts it is 

generally accepted that anatase exhibits a higher photocatalytic activity than rutile [65]. 

Indeed, anatase is an indirect band gap semiconductor in contrast to rutile. This leads to a 

longer lifetime for photogenerated electrons and holes in anatase than in rutile. However, an 

optimal amount (not exceeding 20 %) of the rutile phase can result in enhanced catalytic 

properties. This synergistic effect (like that observed in commercial TiO2 powders, Degussa 

P25) is controlled by the band alignment between rutile and anatase, which is favorable to 

charge separation (see [66] for more details). Higher rutile percentages will generate trap sites 

for carrier recombination. 

 We observe at this temperature that Cu doping leads to a decrease in the radiocatalytic 

activity of the TiO2 catalyst. At this annealing temperature samples present a much lower 

specific surface than undoped ones (crystallites are about 45% larger after doping) and are 

densely covered with copper species, inhibiting the catalytic properties of TiO2. For samples 

doped with 3 at.% of copper, structural investigations show an increase in the proportion of 

rutile (about 44%). For higher doping levels, the specific surfaces are even smaller, but the 

return to a pure anatase phase can explain the slight increase in the MB catalytic degradation 

efficiency as compared to that obtained with 3at.% Cu-TiO2 catalysts. 

 In summary, the best catalytic performance under gamma radiation was observed for 

copper-doped TiO2 samples annealed at 400°C, copper being inserted in substitutional sites of 

the anatase structure. These samples have a high specific surface area and a small band gap. 

We note that during radiocatalysis, high-energy radiation is known to generate oxygen 

vacancies at the catalyst surface [67-69] that act as electron traps [61]. Such defects have been 

reported to affect surface adsorption of H2O and O2 on TiO2 and to promote H2O dissociation 
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[70] and formation of hydroxyl groups, therefore accelerating the organic pollutant 

degradation process.  

 4. Conclusions 

This work investigates a novel approach for destroying organic pollutants involving 

transition-metal-doped titania. Amongst the advantages of using ionizing radiation is the fact 

that it overcomes optical transparency limitations associated with visible and near-UV 

illumination. The performance of such systems depends strongly on the insertion of impurities 

in the TiO2 structure and their resulting distribution. We have shown that 3at.% Cu-TiO2 

catalysts annealed at 400°C present very small crystallites and therefore the highest specific 

surface, the most reduced band gap, due to Cu
2+ 

insertion in the TiO2 lattice and so the best 

radiocatalytic performance. We suggest that oxygen vacancies generated during the 

radiocatalytic process form donor levels in the forbidden band gap of TiO2 and can also act as 

traps for the photogenerated electrons thereby limiting the electron-hole recombination. We 

also suggest that at higher annealing temperature, the much lower specific surface and the 

copper species present on the surfaces and at grain boundaries inhibit the radioacatalytic 

performances.  
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Highlights :  

 Copper doped and undoped TiO2 powders were prepared by sol-gel route. 

 Nanoscale analysis show evidence of internal doping by Cu
2+

 in the TiO2 sublattice. 

 Substitution reduce the optical band gap down to 1.5 eV. 

 Metallic copper segregation is formed at the crystallite surfaces. 

 Anatase Cu doped TiO2 improves significantly the radiocatalytic efficiency. 
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Figures captions: 

Fig. 1: (a) XRD patterns of undoped and Cu-TiO2 powders annealed at 600°C. (b) Enlarged 

view of the XRD patterns around the anatase (101) reflection (c) same for the (200) 

reflection.  

Fig. 2: Crystallite size (a) and full-width at half-maximum (FWHM) estimation of the 

anatase (101) and rutile (110) peaks (b) for pure TiO2 and Cu-TiO2 powders annealed 

at 400°C and 600°C versus Cu doping levels. 

Fig. 3:  Copper distribution characteristics in 3at.% Cu-TiO2 samples annealed at 400°C. 

(a) TEM micrograph and corresponding fast Fourier transform (FFT) pattern from a 

typical area. (b) HAADF image showing a nanometer size copper particle (arrow). 

(c) Ti, (d) O and (e) Cu elemental maps from the area displayed in (b). (f) associated 

EELS Cu-L2.3 to the areas labelled (1) and (2) in (e). 

Fig. 4:  Copper distribution characteristics in 6at.% Cu-TiO2 samples annealed at 400°C. 

(a) TEM micrograph and the corresponding fast Fourier transform (FFT) pattern 

from a typical area. (b) HAADF image showing a large number of Cu particles 

decorating at grain boundaries or decorating the grain surface. (c) Ti and (d) Cu 

elemental maps from the area displayed in (b). (e) thresholding of the Cu map in 

order to separate the nanoparticles (visible in red) from the grain boundaries (in 

green). (f) the EELS Cu-L2.3spectra summed over the corresponding nanoparticle 

pixels (1) and that at grain boundaries (2). 

Fig. 5: Copper distribution characteristics in 3at.% Cu-TiO2 samples annealed at 600°C. 

 (a) HAADF image and (b) Cu-L2,3 intensity map with thresholding from a protruding 

 grain to isolate the spectroscopic contribution from the nanoparticles (in red) to that 

 from the grain surface and boundaries (in green). (c) associated Cu-L2,3spectra. (d) 

 HAADF image of several adjacent grains. (e) Composite image after VCA 

 processing of a spectrum image acquired from a reduced area and in the energy 

 range of Ti-L2,3 and OK edges. The blue, red and green pixels correspond to 

 different TiO2 phases. (f) VCA component EELS spectra associated to (e). (g) 

 VCA component map associated to Cu, extracted from a spectrum image from the 

 same reduced spatial area but encompassing the whole energy range of Ti-L2,3,  OK 

 and Cu-L2,3 edges. (h) Cu-L2,3 edge associated to the VCA map displayed in (g). 

 

Fig. 6: EELS for Cu-TiO2 powders annealed at 400 (Cu 3 at.%, Cu 6 at.%) and 600°C 

 (Anatase: Cu 3 at.% (A), Rutile: Cu 3 at.% (R), grain boundaries Cu 3 at.% (GB) 

 and Cu 6 at.%). (a) Ti-L2,3 ELNES. (b) OK ELNES. 

 

Fig. 7:  EPR spectroscopy of Cu-TiO2 catalysts annealed at 400°C. EPR signal for (a) 

 divalent copper ions (Cu
2+

) and (b) oxygen vacancies (Vo). (c) Evolution of the 

 peak-to-peak height of both signatures as a function of Cu doping levels.  

 

Fig. 8:  Plots of              versus    for estimating the band gap energies for sol gel

 undoped and Cu-TiO2 powders annealed at 400°C (a) and 600°C (b), insets 

 display the absorption spectra. (c) Evolution of the direct and indirect band gap 

 energy estimation versus Cu incorporated levels.     

Fig. 9:  MB degradation by radiocatalysis using pure and Cu-TiO2 catalyst annealed at  

 400° C (a) and 600°C (b). 
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