
HAL Id: hal-02335586
https://hal.science/hal-02335586v1

Submitted on 28 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonparametric sign prediction of high-dimensional
correlation matrix coefficients

Christian Bongiorno, Damien Challet

To cite this version:
Christian Bongiorno, Damien Challet. Nonparametric sign prediction of high-dimensional corre-
lation matrix coefficients. EPL - Europhysics Letters, 2021, 133 (4), pp.48001. �10.1209/0295-
5075/133/48001�. �hal-02335586�

https://hal.science/hal-02335586v1
https://hal.archives-ouvertes.fr


Nonparametric sign prediction of high-dimensional correlation matrix coefficients

Christian Bongiorno(1)∗ and Damien Challet(1)
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(Dated: October 16, 2019)

We introduce a method to predict which correlation matrix coefficients are likely to change their
signs in the future in the high-dimensional regime, i.e. when the number of features is larger than
the number of samples per feature. The stability of correlation signs, two-by-two relationships, is
found to depend on three-by-three relationships inspired by Heider social cohesion theory in this
regime. We apply our method to US and Hong Kong equities historical data to illustrate how the
structure of correlation matrices influences the stability of the sign of its coefficients .

I. INTRODUCTION

Correlation matrices may be pathologically noisy with-
out a proper filtering method. For example building op-
timal mean-variance portfolios [1] requires so precise esti-
mations of trends, covariances and correlations that port-
folio optimization was equated to error maximization by
(author?) [2]. The main problem is that a precise es-
timation of a full unfiltered correlation matrix between
N features requires T � N samples per feature. Re-
grettably, the non-stationary nature of many real-life dy-
namical systems, including financial markets, imposes T
to be as small as reasonably possible but in any case pro-
portional to N . The impossibility to approximate the
T → ∞ limit while keeping N constant is known as the
‘curse of dimensionality’ as correlation estimators remain
noisy even in the N and T → ∞ limit at fixed ratio
q = T/N .

Ad-hoc filtering techniques include linear shrinkage
([3]), block-diagonal ansatz for the correlation matrix
([4]) and random matrix theory-based eigenvalue clip-
ping ([5, 6]). The latter works reasonably well for T > N .
More recently, the Rotational Invariant Estimator (RIE),
which makes use of eigenvectors as well, was shown to
be optimal in the large N and T limit at constant ratio
q = T/N > 1 ([7]). RMT and RIE assume stationary
Gaussian returns and N < T (see [8] for a recent review
of the field). Here, we focus on non-stationary correlation
structures of possibly non-Gaussian returns when N > T
and aim to predict the sign of asset correlations. Statis-
tics calls the N > T case high-dimensional and we will
follow this terminology.

Here, we are considering a complex network represen-
tation of an asset correlation matrix. Historically, the
first use of complex networks in finances is the Mini-
mum Spanning Tree (MST) [9]. In this work, the au-
thor showed that a tree network could adequately de-
scribe the economic sector taxonomy of a portfolio of
N assets, leading to a substantial complexity reduction,
i.e., from N × N correlation coefficients to N − 1 links.
Later on, in Ref. [10, 11], the authors proposed a relax-
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ation of the topological constraint of the MST, leading
to the Maximal Planar Graph, i.e., a filtered graph em-
bedded in a bi-dimensional space. In this work, we use
the most straightforward parametric procedure to obtain
a network from a correlation matrix, which is the asset
graph [12]. The asset graph prescribes to retain only
links related to correlations exceeding a threshold value.

Whereas correlations involve two time series (they are
dyadic), we find that triadic measures better quantify
the global and local stability of the dependence and thus
better predict the stability of the sign of correlations
when T < N . Our approach is related to Heider bal-
ance theory ([13, 14]) which aims at explaining the atti-
tude changes of interacting individuals. In the modeling
framework of this theory, only two possible interactions
between two individuals are possible: the latter can be
friends or enemies. The general observation in social sci-
ence that ‘the enemy of my friend is my enemy’ ([15])
becomes particularly relevant when extended to triadic
relationships: for example, triads where a is a friend of
b and c but c is an enemy of b tend to be unstable. As
a consequence, one interaction type is likely to change
and lead to a stable triad: a could become an enemy of
b, or c could become a friend of b. In a similar way, a
triad composed of three individuals that are enemies of
each other is considered unstable as two individuals could
join their forces against the third one. In summary, this
theory identifies four possible triads, two stable ones and
two unstable ones, and adds the intuition is that unstable
triads tend to evolve into stable ones.

More recently, many authors in the field of network
science proposed to extend the mechanism of triad bal-
ance to describe the evolution of a signed complex net-
work ([16–19]). In particular, Hedayatifar [20] measured
the global social balance with a Hamiltonian whose mini-
mal energy level coincides with the maximal stability and
studied the possible paths that drive the system towards
minimal energy levels, i.e. to the maximally stable triad
states. In a financial context, various properties of net-
work structures have been used to characterize the state
of the market ([21, 22]) or of interbank lending networks
([23, 24]).

Here, we link the stability of the dyadic relationships
as encoded by correlation matrices and statistically vali-
dated networks to triadic relationships. Section II A de-
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scribes how we processed the data-set; in Section II B,
we illustrate the speed at which the correlation matrix
structure changes in financial data and the relevance of
the high-dimensional regime; Section II C shows how a
social balance metric based on triads can describe such
evolution; in Section II D, we demonstrate that the prin-
ciple of social balance can be used to predict the stability
of the a correlation matrix coefficient sign; Section III
concludes.

II. RESULTS

A. Data Description and Processing

In this work we consider the daily close-to-close returns
of equities from US and Hong Kong stock markets, ad-
justed for dividends, splits and other corporate events.
We focus on large capitalization equities for which we
have information on their official industrial sector. More
precisely:

1. US equities: large-capitalization stocks, from 1992-
02-03 to 2018-06-29. The number of stocks with
data vary over time: it ranges from 399 in 1992-
02-06 to 723 in 2018-06-29, and is roughly constant
from 2008.

2. Hong Kong equities: 1277 stocks with the largest
capitalization as of 2019-05-01 listed on Hong Kong
stock exchange. Our dataset covers the 2002-01-04
to 2017-06-23 period. The number of stocks is sim-
ilar to the US database: the minimum number of
stocks was 320 stocks on 2002-01-01 and the maxi-
mum was 1277 on 2017-06-23.

Let pi,t be the matrix of the adjusted close prices, we
denote the log-return matrix r whose elements are ri,t =
log(pi,t)− log(pi,t−1).

First, we define partial returns r̃i,t = ri,t−mt where mt

is the median of all price returns at time t (a nonpara-
metric definition of the market mode ([25])) and their
binarized values bi,t = sign(r̃i,t).

Then, for a given time window [t − T + 1, t], we only
keep the assets without any missing value and evaluate
the correlation matrix Φt of the binarized returns b ([26]).
Given the definition of b, Φt is nonparametric. We also
will use the notation Ct to denote the correlation matrix
of the raw returns ri,t in the time window [t− T + 1, t].

Binarized returns certainly require less bits of storage.
Whether they contain less information in practice de-
pends on the situation and on the issue under investiga-
tion. For example, the cluster composition of US equities
determined by Louvain clustering adapted to usual corre-
lation matrices ([27]) is essentially the same if for Φ and
C ([28, 29]). Here, we use binarized returns for two rea-
sons: first to infer statistically validated networks, and
second to build a robust nonparametric method.

For the sake of completeness (but not robustness),
we repeated all the analysis with Pearson correlation
matrices computed of raw returns in Appendix V A, and
we achieved qualitatively similar results. In addition,
an alternative way to remove the global trend from the
Pearson correlation matrix is reported in section V B of
the Appendix.

B. Fast correlation structure dynamics

We first illustrate how quickly the structure of correla-
tion matrices change in financial markets, which explains
why the prediction of correlation sign changes is impor-
tant in this context. The idea is to infer statistically
significant elements of Φt, which then defines a time-
dependent adjacency matrix At whose evolution reflects
some of the structural changes of the financial market in
question.

We restrict Φt to its significantly positive elements by
controlling for multiple hypothesis. Because Φt is com-
puted from binary variables, we can use the one-sided
Fisher exact test, which equivalent to the hypergeomet-
ric test ([30]). The coefficients which pass the test (at a
false discovery rate set to α = 0.1) form the adjacency
matrix At whose coefficients are either Aij,t = 1 if φij,t
is selected or 0 otherwise. This is known as Statisti-
cally Validated Networks (SVNs) which may be applied
to more than two states ([31]). Section IV A gives for
more details about the method. The main advantage of
this approach is to obtain a filtered network of stocks even
in the high-dimensional regime (N > T ), without any
assumption on the resulting clustering structure such as
not-overlapping clusters and without resorting to boot-
straps (see e.g. [32, 33])

It is well known that stocks belonging to the same sec-
tor are usually strongly correlated with each other: sev-
eral methods can observe such emergent behavior, for
example, the minimum spanning tree ([9]) or principal
component analysis coupled with random matrix theory
([5, 6]). Here, we expect that assets that belong in the
same sector form clusters in the SVN At. Among the
arsenal of techniques to screen a complex network, we
identified in the assortativity coefficient ([34]) as the most
appropriate to measure the similarity with respect to the
GICS sector composition. We shall drop the index t when
it leads to too heavy notations. The assortativity coeffi-
cient is defined as

G =

∑
ij (Aij − kikj/2m) δ(ci, cj)

2m−
∑

ij(kikj/2m)δ(ci, cj)

where δ(ci, cj) is 1 if node i and j belong to the same
sector and zero otherwise, ki is the degree of node i i.e.
ki =

∑
j Aij and m is the total number of links.

By definition, assortativity G ∈ [−1, 1]; its expectation
equals 0 if the links of the networks are distributed ran-
domly with respect to the sector partition in the case of
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a configuration null-model. G > 0 indicates a propensity
of the nodes to establish links between nodes the same
sector and reversely.

This section reports results for US equities; those for
Hong Kong equities are to be found in Section V C. We
explored the dynamics of G by shifting a time window of
T = 100 days one day at a time from 2000-01-03 to 2018-
06-29. For each time window t, we computed the SVN
At with α = 0.1 and the related assortativity coefficient
Gt.

The assortativity coefficient oscillates between 0.2 and
0.85 (Fig. 1(a)). One of the local minimum values is
reached during the crisis of 2009 and is close to the
random sector linking limit. It is worth noticing that
although the link density of SVNs reaches local max-
ima in the proximity of the minima of the assortativity
(Fig. 1(b)), the dynamical evolution of the assortativity
should be unbiased by definition with respect to the num-
ber of links as indeed the assortativity coefficient is an
adjusted metric that considers the configuration model
as a null model, i.e., the family of models that preserves
the exact degree distribution of the nodes.

In order to support our interpretation of the assor-
tativity coefficient, we show a graphical representation
of the networks obtained in 2007-07-20 and 2019-05-19
in Figs 1(c) and Fig. 1(d) respectively. The clusters ob-
served in the network of Fig. 1(c), characterized by an as-
sortativity of 0.8, has a clear association with the macro-
scopic structure defined by the sectors. However, in the
network of Fig. 1(d), such association disappears. Such
network, characterized by an assortativity of 0.2, seems
to be composed by two large clusters, highly overlapping
each other. Results for significantly negative correlations
are reported in S.I.; in short, they lead to much sparser
networks that are disassortative (G < 0) and only non-
null in times of crisis.

Thus SVNs of binarized partial returns are able to cap-
ture part of the fast evolution of correlation structures in
a way that overcomes the usual problems of correlation
matrices in the high-dimensional regime N > T . That
said, because SVNs are built by controling the false posi-
tive rate, they do not control the false negative rate, i.e,,
the fraction of links that have been wrongly omitted (see
[35] for a discussion on this point). The smaller the FDR
of the SVN, the larger the risk of a larger false negative
rate. Figure 1(b) illustrates this point: only a few links
are retained in the SVN for most of the time periods and
a high number of nodes are isolated.

At any rate, it is clear that the structure of correla-
tion has a non-trivial fast dynamics, which can only be
captured by small calibration windows. In the following,
we focus on a specific part of structural changes, i.e. the
change of correlation signs.

C. Triads Dynamic

We first further simplify the correlation matrix Φ by
taking its sign and by setting its diagonal to 0: we intro-
duce S = sign(Φ) − I. In short, one assumes that a link
is positive if Φij ≥ 0 and a negative when Φij < 0, and
Si,i=0. This time, an unknown fraction of false positives
may be included in S. However, the global information
emerging by considering the whole network structure will
compensate for such errors.

The matrix S is nothing else than a signed adjacency
matrix and makes it easy to define triads: there are four
possible triads, two stable and two unstable (see Fig. 2)
ones. In the case of asset returns, the two stable config-
urations correspond to a triangle of positively correlated
assets, and to two assets that are positively correlated but
negatively correlated to a third one. The two unstable
situations involve two positive links and three negative
ones.

Thus, triads with an odd number of negative links are
stable and those with an even number of negative links
are unstable. (author?) [20] introduce a global metric H
to characterize the fraction of stable triangles in a system
of N nodes, defined as

H = − 1(
N
3

) ∑
ijk

SijSikSjk. (1)

A stable triangle adds +1 to the sum and an unstable one
−1. The metric is normalized by the maximum number
of triangles. Finally the minus sign ensures that a sys-
tem with only stable triangles has H = −1, and a system
characterized by only unstable triangles has H = +1.
Thus, as pointed out in [20], H can be interpreted as
the Hamiltonian of a physical system. Only two possible
macroscopic states are possible in the lowest energy lev-
els (the most stable ones): the ‘paradise’, where all the
nodes have positive links with other nodes, and the ‘bi-
polar’ with two groups with positive interactions within
the same group and negative interactions among different
groups. Other compositions such as a clustering struc-
ture with K > 2 clusters can exist in a jammed state or
be caused by an external force.

Within this modelling framework, the clustering struc-
ture such as the sector composition may therefore to be
unstable with respect to perturbations and may evolve
towards more stable structures if it was not for stabiliz-
ing forces that we do not explicitly account for in the
following.

We observed the evolution of H with a time window
of T = 100 days. As shown in Fig. 3(a), the dynamic of
H is strongly correlated with the sector assortativity of
the SVNs. In fact, the local minima of the assortativity
correspond to the local minima of H, and similarly for
the local maxima. This observation confirms that such
a dynamic of the composition of the clusters can be well
detected by H. It is worth noticing that the evolution of
H is strongly anticorrelated with that of the volatility, see
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FIG. 1. (a) Assortativity of the network of statistically validated correlation (SVN) with respect to the sector classification,
(b) links density of the correlation network, each point refers to the last day of the time window used to compute the SVN;
(c) correlation network as of 2007-07-30 (dotted red line in panel (a)); (d) correlation network as of 2009-05-19 (dotted green
line in panel (a)); the color code of the nodes of both networks represents different different sectors, the links between different
sectors are colored in gray; calibration windows of T = 100 days.

FIG. 2. (a) and (b) stable triads, (c) and (d) unstable triads. The solid line indicates a positive relation, the dotted line
indicates a negative relation.

Fig. 3(b). In particular, a large change of the volatility
in many cases precedes a similar event for H, as in 2009.
This suggests that the volatility could be related with
the perturbation that moves the system away from the
jammed state characterized by the sector structure

1. Triads and Spectral Decomposition

According to the Spectral Decomposition Theorem, a
symmetric matrix can be written as a sum of its eigen-
vectors weighted by their respective eigenvalues

Φ =

N∑
i=1

λiv
′
i vi, (2)

where λi is the i-th eigenvalue, vi its associated eigen-
vector, and v′i the transpose of vi. In addition, since cor-
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FIG. 3. (a) Evolution of H (black line), assortativity coef-
ficient of the SVNs with respect to the sector composition
(orange line); (b) Evolution of H (black line), minus volatility
(red line) defined as the average absolute value of the returns
in the considered time window.

relation matrices are positive-defined, λi ≥ 0 for every i.
When q = T/N < 1, there are N − T zero eigenvalues
and the rank of the matrix is T , hence smaller than N .
Finally,

∑
i λi = N . We shall adopt the convention that

eigenvalues are sorted, i.e., λ1 ≥ λ2 ≥ · · · ≥ λN .
This decomposition yields interesting insights on tri-

ads: indeed, each component of the spectral decomposi-
tion v′i vi is a matrix which only contains stable triangles.
This means that the signs of its elements label the groups
to which they belong. Indeed, only two possible scenarios
can occur:

1. paradisiac case: vi has only positive (or negative)
components, in which case v′i vi has only positive
entries;

2. bi-polar case: some components of vi are positive
and others are negative, in which case the matrix
v′i vi is composed of two groups.

Therefore, if the largest eigenvalue is much larger than
the other ones, i.e. λ1 � 1/N , the v′1 v1 matrix domi-
nates in Eq. (2). Reversely, if λ1 ≈ 1/N , the contribution
to the stability of each component v′i vi may cancel out
each other, leading in most of the cases to lower global
stability.

The components of the first eigenvector of the correla-
tion matrix C (of real returns r) typically have the same
sign because the market mode is still present; however,
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FIG. 4. (a) Scatter plot of H as a function of the fraction
of variance explained by the largest and the second largest
eigenvalues; (b) Pearson correlation between the eigenvector
corresponding to the largest eigenvalue in the in-sample time
window vin

1 and in the out-of-sample time window vout
1 . Tin =

Tout = 100

since we are interested in the macroscopic cluster compo-
sition of the stocks, we removed the market mode defined
as the median return when computing Φ. This means
that the largest eigenvector v1 of Φ will be composed
of positive and negative entries, and it will be strongly
correlated with the second largest eigenvector of the cor-
relation matrix C. As was pointed out by [36], the dy-
namics of the second eigenvalue of C is quite independent
from that of the first one, and the direction of the related
eigenvector is quite stable over time. In fact, in Fig. 4(a),
we show that the fraction of variance explained by the
largest eigenvalue of Φ, λ1/N , is strongly anti-correlated
with H (R2 = 0.94), whereas λ2/N is only weakly anti-
correlated with H. Furthermore, we show in Fig. 4(b)
that the direction of v1 is quite stable across the time
periods.

The main implication of this observation is that, if the
largest eigenvalue λ1 (Φ) increases and if the direction
of v1 does not change substantially, then the stability
of some the triads increases. This is when one can pre-
dict the sign of some correlations according to Heider’s
balance theory.
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D. Prediction of correlation signs

As observed in the previous section, triads suggest a
mechanism to predict the future states of S, i.e., of the
signs of correlation coefficients. For this purpose we de-
fine ∆ij as the contribution of asset pair (i, j) toH, which
amounts to (in matrix notation)

∆ =
S ◦ S2

N − 2
, (3)

where S is the signed adjacency matrix defined above and
◦ is the Hadamard (element-wise) product. Note that
∆ij ∈ [−1,+1]: ∆ij = +1 if the link (i, j) forms stable
pairs with all the other nodes, and ∆ij = −1 if the link
(i, j) forms unstable pairs with all the other nodes.

Our hypothesis is that the lower ∆ij in the in-sample
window, the higher the probability for the link (i, j) to
switch its sign in the future, and reversely: high values
of ∆ij should be related to high out-of-sample stability
interactions.

In order to test this hypothesis, we build a binary clas-
sifier that uses ∆ij as discrimination variable. Specifi-
cally, we evaluate ∆ij in an in-sample time window of Tin
days, and we try to predict the sign switch of Φij in the
out-of-sample of Tout. In our experiments the in-sample
and out-of-sample time windows are not overlapping and
in general Tin 6= Tout. In order to assess the ability of
∆ij to predict the sign stability, we used the Receiver
Operating Characteristic (ROC) curve ([37]), a graphi-
cal representation of the True Positive Rate as a function
of the False Positive rate as the discrimination threshold
varies. As a summary of the performance of a discrimina-
tion variable, we use the Area Under the Curve (AUC).
We therefore compare the ROC curves obtained with ∆ij

as discrimination variable, and the other associated with
the value of the correlation Φij .

Intuitively, larger correlations (in absolute value)
should be more stable than smaller ones, if only because
of estimation noise. In the high-dimensional case how-
ever, stability depends more on triadic relationships that
on the intensity of correlations. In Fig. 5(a), we show
an example of the ROC evaluated on 2011-18-04 with
Tin = Tout = 155. The variable ∆ij outperforms |Φij |
for the prediction of the correlation sign: their respective
AUCs are 0.75 and 0.61. The origin of this difference
clearly appears in Fig. 5(b) which plots the probability
that both in- and out-of-sample signs are the equal as a
function of the discrimination parameter. The first ob-
vious observation is that |Φ| is not able to predict the
sign changes as P (Sin

ij = Sout
ij ) is never smaller than 0.5.

Furthermore, by looking at the marginal distributions, it
is clear that most of the correlations lie close to |Φ| = 0;
this explains why |Φ| is only slightly more informative
than a coin toss. On the other hand, the marginal dis-
tribution of ∆ has better coverage, resulting in a better
correction sign prediction performance. This result also
holds for the correlation coefficients of raw returns C.
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FIG. 5. (a) ROC curve for 2011-18-04 with Tin = Tout = 155;
(b) the lower subplot is the probability to preserve the in-
sample sign in the out-of-sample on 2011-18-04 for different
values of the discrimination parameter binned in steps of 0.05,
the upper subplot is the related marginal distribution.

We computed the performance of both predictors for
a wide range of calibration and test window lengths cho-
sen in order to include partial-rank and full-rank cor-
relation matrices, i.e., 10 values between 20 and 2000
with a geometric progression. For each pair (Tin, Tout),
we estimate the AUC of each method in rolling windows
with a step of 1 day. Figure 6(c) shows the difference
〈AUC∆〉−〈AUC|Φ|〉, where 〈AUCX〉 is the average value
of the AUC in the considered time-period for predictor
X ∈ {∆, |Φ|}.

The dependence of the AUC as a function of qin and
qout is worth discussing: first, AUC|Φ| increases monoton-
ically as a function of both qin and qout; second, AUC∆

has a local maximum at about (qin, qout) ' (0.1, 0.5), i.e.,
deep in the high-dimensional regime. The difference be-
tween the two is clear: triads are better as long as q > 1
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FIG. 6. (a) Heatmap of the difference between the aver-
age AUC of the two discrimination variables ∆ and |Φ|; (b)
heatmap of the average AUC∆; (c) heatmap of the average
AUC|Φ|.

and correlations better when q < 1. The same results
hold for Hong Kong equities data (see appendix V C).

Figure 7(a) shows the evolution of the AUC for Tin =
Tout = 155. Although ∆ outperforms |Φ| most of the
time, the difference between the methods is not con-
stant. On 2008-26-06 for example, both AUCs are almost
equal. Fig. 7(b) illustrates the strong anti-correlation be-
tween AUC∆ and the out-of-sample H. Specifically, the
two variables have a Pearson correlation of −0.77 and a
Spearman correlation of −0.83, with a p-value close to 0.
In fact, we must consider that when H increases, the to-
tal number of stable pairs decrease, and reversely. In any
case, even in the worse situation, the variable ∆ performs
as well as Φ.
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FIG. 7. (a) Evolution of AUC for the two model; (b) AUC
(blue line) and H evaluated on the out-of-sample as a function
of time. Both panels refer are evaluated with Tin = Tout =
155

III. DISCUSSION

In the high-dimensional regime, correlation matrices
become pathologically noisy and the strength of their co-
efficients are not the best predictors of their stability.
Accounting for more complex relationships between cor-
relations makes it possible to predict the sign change of
correlation coefficients deep in this regime. More pre-
cisely, dyadic relationships are better predicted from tri-
adic relationships, as higher-order nonparametric struc-
tures exploit non-obvious structure of high-dimensional
correlation matrices.

Potential applications of our method includes building
better portfolios by accounting for predicted correlation
sign changes, which will be addressed in a future work.

This publication stems from a partnership between
CentraleSupélec and BNP Paribas.

IV. METHODS

A. Statistically Validated Networks

A binarized version of the return matrix b ∈ N × T
can be interpreted as a bipartite network. A bipartite
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network is a particular network where the nodes belong
to two different sets, in our case one set is composed by
the N stocks and the other set by the T days. Only links
among nodes of different sets are allowed. Specifically,
a stock is linked to a day if its return is larger than the
median return of all the stocks in such day. A typical ap-
proach to study bipartite networks is to project them into
monopartite networks. A projected network is a network
composed by nodes of only one set, and a link among
to node is established only if those nodes share at least
one common neighbors in the opposite set. However, this
linkage rule is too permissive and typically leads to a very
dense projected network; therefore, the resulting interac-
tion topology could be in many cases meaningless. An
alternative approach, defined in [31], is to link two nodes
of the same set if the number of common neighbours they
share in the opposite set cannot be explained by random
chance. Specifically, one computes a p-value for each link
according to the cumulative hypergeometric distribution:

πij = 1−
cij−1∑
x=0

(
kj

ki

)(
T−kj

x−ki

)(
n
x

) , (4)

where cij is the number of common neighbours of (i, j), ki
and kj are the degree of the nodes i and j in the bipartite
network respectively, and T is the number of nodes of the
opposite set. Since the test is performed on every link of
the projected network, a multiple-comparison correction
is required to control the fraction false positive discover-
ies; in this work we use the False Discovery Rate (FDR)
which guarantees that the proportion of false discovery
is strictly less than α.

It is worth noticing that the number of common neigh-
bours of two nodes can be evaluated with the scalar prod-
uct cij =

∑
t bitbjt, and the expected number of common

neighbours according with the hypergeometric distribu-

tion is E[cij ] =
kikj

T =
∑

t bit
∑

t bjt
T . Therefore, the con-

dition behind the statistical test can be translated into a
condition of positivity of the correlation coefficient φij .
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V. APPENDIX

A. Pearson correlations

In order to prove that our results are qualitatively in-
dependent from the binarization of the returns, we per-

2001
2003

2005
2007

2009
2011

2013
2015

2017
0.55

0.60

0.65

0.70

0.75

AU
C

| |

(a)

20 33 56 93 15
5

25
8

43
1

71
9
11

99
20

00

out-of-sample window [days]

20
33
56
93

155
258
431
719

1199
2000

in
-s

am
pl

e 
wi

nd
ow

 [d
ay

s]

0.06

0.04

0.02

0.00

0.02

0.04

0.06

AU
C

AU
C |

|

(b)

FIG. 8. (a) Evolution of AUC for the two model for Tin =
Tout = 155; (b) Average difference of the AUC among the
two model for different in-sample and out-of-sample time win-
dows; Both panels refer to the Pearson correlation matrix
among the returns minus the median z

formed the same analysis from the sign of the Pearson
correlation ρij computed from partial log-returns. Fig-
ure 8 confirms that unstable triads are better predictors
of correlation sign changes than correlation values them-
selves.

B. Market mode removal: first eigenvalue

We show that our results are qualitatively stable if we
remove the market mode in a different way. In this sec-
tion we studied the sign of the partial Pearson correlation
matrix obtained with the following equation:

ρ(p) =

N∑
i=2

λiv
′
i vi (5)

where the eigenvalues and the eigenvectors are computed
on the Pearson correlation matrix ρ among the original
return matrix r. As depicted in Fig. 9, results are similar
to those obtained by removing the median returns; how-
ever, the nonparametric nature of the estimate is lost.
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FIG. 9. (a) Evolution of AUC for the two model for Tin =
Tout = 155; (b) Average difference of the AUC among the
two model for different in-sample and out-of-sample time win-
dows; Both panels refer to the partial Pearson correlation ma-
trix ρ(p) among the returns minus the median r

C. Hong Kong Stock Exchange

In this section we repeated the analysis for the Hong
Kong stock exchange. We build a binary return matrix
b and the related phi matrix φ according with the pro-
cedure illustrated in section II A.

In contrast with US equities, we do not observe a
strong correlation between the sector partition and the
links of the SVN, as shown in Fig. 10(a). In fact, the
assortativity is very close to the random null expectation
for most of the time-period. We want to stress that this
does not necessarily mean that the stocks are not orga-
nized in clusters. In fact, as for US equities, H varies
over time, and it is strongly correlated with the number
of links of the SVN (Fig. 10(b)) and with the volatility
(Fig. 10(c)). To our knowledge, the sector structure (or

apparent lack thereof) of Honk Kong equities has not
reported elsewhere.

In this dataset as well, unstable triads are significantly
better than the absolute value of the |φ| at predicting
the instability of correlation signs in the high-dimensional
regime (Fig. 11(a)).
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FIG. 10. Hong Kong stock exchange: (a) assortativity of the
SVN with respect to the sector partition and H; Number links
of the SVN and H; (c) minus Volatility and H. T = 100 days.

Once again, dynamical evolution of the AUC
(Fig. 11(b)) is minimal in the proximity of a minima of
Hout.

D. Negative Links

We report here the SVNs determined between bina-
rized returns of opposite signs. Three observations stand
out: i) they are mostly empty; ii) they are more likely
to become non-empty in times of large volatility iii) they
are generally disassortative.
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FIG. 11. Hong Kong stock exchange: (a) average difference of the AUC among the two model for different in-sample and out-
of-sample time windows; (b) Evolution of AUC for the two model for Tin = Tout = 155; (c) AUC and H in the out-of-sample
as a function of time for Tin = Tout = 155. All panels refer to the Hong Kong Stock Market.
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FIG. 12. (a) Heatmap of the difference between the average AUC of the two discrimination variables ∆ and |φ|; (b) heatmap
of the average AUC∆; (c) heatmap of the average AUC|φ|.
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FIG. 13. (a) link density of significant negative Φ; (b) Assortativity of of significant negative Φ with respect to the sector
categorization, only networks with at least 10 links are considered.


