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Abstract 

The members of the annexin family of calcium- and phospholipid-binding proteins participate 

in different cellular processes. Annexin A2 binds to S100A10 forming a functional 

heterotetrameric protein that has been involved in many cellular functions such as exocytosis, 

endocytosis, cell junction formation and actin cytoskeleton dynamics. Herein, we studied 

annexin A2 cellular movements and looked for its partners during epithelial cell 

differentiation. By using immunofluorescence, mass spectrometry and western blot analyses 

after S100A10 affinity column separation, we identified several annexin A2-S100A10 partner 

candidates. The association of putative annexin A2-S100A10 partner candidates obtained by 

MS after column affinity was validated by immunofluorescence and sucrose density gradient 

separation. The results show that three proteins were clearly associated to AnxA2: E-cadherin, 

actin and caveolin 1. Overall the data show that annexin A2 is able to associate to molecular 

complexes containing actin, caveolin 1 and flotillin 2 before epithelial differentiation and to 

complexes containing E-Cadherin, actin and caveolin 1, but not flotillin 2 after cell 

differentiation. The results indicate that actin, caveolin 1 and E-cadherin are the principal 
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protein partners of annexin A2 in epithelial cells and that the serine phosphorylation of the N-

terminal domain does not play an essential role during epithelial cell differentiation. 

Keywords: Actin; Annexin A2; Caveolin; Epithelial cell differentiation; E-cadherin. 

 

Introduction 

The members of the annexin family of calcium- and phospholipid-binding proteins participate 

in different cellular processes (Gerke and Moss 2002; Rescher and Gerke 2004; 

Monastyrskaya et al. 2009). They bind to negative phospholipids of membranes with different 

Ca2+ sensitivity (Monastyrskaya et al. 2007). Annexin A2 (AnxA2) has been involved in 

many membrane related processes: exocytosis, endocytosis, cell junction formation and actin 

cytoskeleton stabilisation and dynamics (Grieve et al. 2012). Two molecules of AnxA2 are 

able to bind to a S100A10 dimer forming a heterotetramer with high calcium sensitivity for 

membrane binding. It is accepted that the tetrameric AnxA2 form is functional in cells but 

functional roles for the monomeric AnxA2 have also been suggested (López-Rodríguez et al. 

2018; Taylor et al. 2018). 

Actin was described as the first partner of AnxA2. The binding of annexin A2 to actin 

filaments is calcium dependent (Gerke and Weber 1984) and seems to be mediated by the C-

terminal end of the protein (Filipenko and Waisman 2001). AnxA2 not only binds actin 

filaments but also regulates actin filaments bundling in vitro (Jones et al. 1992; Ma et al. 

1994) and in vivo (Falsey et al. 2006). Its role in actin dynamics has been demonstrated during 

actin-driven macro-pinocytosis rocketing (Merrifield et al. 2001), its accumulation in actin 

enriched pedestals during bacterial-plasma membrane interaction (Zobiack et al. 2002; 

Miyahara et al. 2009), and cortical actin remodelling and stress fibres re-arrangements 

(Hansen et al. 2002; Hayes et al. 2006, 2009; Rescher et al. 2008). The AnxA2 phospholipid 

ligand phosphatidylinositol-4,5-bisphosphate (PI2P) has been suggested to be a participant of 

this AnxA2-actin-membrane interactions during membrane ruffles and bacterial pedestals 

formation (Rescher et al. 2004), and macro-pinocytosis (Hayes et al. 2009). 

Caveolin 1 is a protein found in caveolae which are cholesterol-enriched invaginated 

membrane domains (Murata et al. 1995). Caveolin 1 has been suggested to bind AnxA2 by 

co-localization in detergent resistant membrane domains (Corvera et al. 2000) and co-

immunoprecipitation (Uittenbogaard et al. 2002; Smart et al. 2004). Liao and collaborators 
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suggested recently that caveolae are signalling platforms for AnxA2-induced cell proliferation 

(Liao et al. 2017). 

Yamada and collaborators showed that annexin A2 moves from the cytosol to the lateral 

plasma membrane of epithelial cells and co-localizes with the adherens junction protein E-

cadherin (Yamada et al. 2005a). They showed that the inhibition of AnxA2 expression blocks 

the formation of E-cadherin dependent junctions. In endothelial cells a similar behaviour was 

observed (Heyraud et al. 2008; Su et al. 2010). Moreover, AnxA2 has been involved in 

intestinal cell differentiation and polarity (Hein et al. 2011). Interestingly, depletion of cell 

membrane cholesterol induced AnxA2 membrane dissociation and disruption of adherens 

junctions (Yamada et al. 2005a; Heyraud et al. 2008). These results suggest that annexin A2 

modulates the association of junctional proteins with cholesterol-enriched domains. The 

involvement of annexin A2 in anchoring structures to the cholesterol-enriched membrane 

domains was supported by experiments showing that clusters of AnxA2 and CD44 in 

membrane “rafts” favours the directionality of actin bundles in mammary epithelial cells 

(Oliferenko et al. 1999). 

Annexin A2 can be phosphorylated in residue Tyr23, and it is also phosphorylated by PKC on 

serine residues in a calcium and phospholipid dependent manner (Johnsson et al. 1986; 

Khanna et al. 1986) (for review (Grindheim et al. 2017)). Tyrosine phosphorylation of AnxA2 

has been involved in the regulation of cofilin-dependent actin cytoskeletal dynamics (Graauw 

et al. 2008). Jost and Gerke (Jost and Gerke 1996) showed that the principal sites of serine 

phosphorylation are Ser11 and Ser25 on the AnxA2 N-terminal domain. Moreover, PKC 

induced phosphorylation has been involved in chromaffin granules membrane fusion 

(Regnouf et al. 1995) and in mRNA binding (Grindheim et al. 2014). However, the role of 

AnxA2 phosphorylation during cell junction formation has not been determined. 

In this work, we studied AnxA2 movements and looked for its partners during epithelial cell 

differentiation. The results indicate that actin, caveolin 1 and E-cadherin are the principal 

partners of annexin A2-S100A10 in epithelial cells and that serine phosphorylation of the N-

terminal domain does not strongly affect epithelial differentiation. 

 

Materials and Methods 

Materials 
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DMEM with and without Ca2+ and foetal calf serum were from Life Technologies Inc. Rabbit 

anti human AnxA2 was produced in the laboratory. Mouse monoclonals anti-human S100A10 

and anti-flotillin 2, rabbit anti-caveolin 1 and rat monoclonal anti-E-cadherin were from BD 

biosciences. Goat anti-actin was from Santa Cruz and rat monoclonal anti-ZO1 was a kind gift 

of M. Maurice (INSERM, CHU Saint Antoine, Paris, France). Secondary antibodies for 

immuno-fluorescence and WB (anti-mouse, -rabbit and -rat coupled to FITC, CY3 and CY5) 

were from Jackson ImmunoResearch and Sigma. Restriction enzymes SmaI and T4 

polymerase were from Boheringer Mannheim and PpuMI, NheI and T4 DNA ligase from 

New England Biolabs. 

Cell culture 

Madin Darby Canine kidney (MDCK) cells type II provided by Dr. M. Maurice  were 

cultured as described in (Maniti et al. 2012). The cells were grown in Dulbecco’s modified 

Eagle’s medium supplemented with 10% heat-inactivated foetal bovine serum, penicillin (0.1 

i.u./ml) and streptomycin (100 mg/ml). MDCK cells were grown at 37°C in a 5 % CO2/air 

atmosphere. The medium was changed every two days. Caco2 cells were cultured as 

described in (Ayala-Sanmartin et al. 2004). Briefly the cells were maintained in DMEM 

supplemented with 20% heat-inactivated foetal bovine serum, 1% non-essential amino acids, 

0.1 i.u./ml penicillin and 100 mg/ml streptomycin. Caco2 cells were grown at 37°C in a 10% 

CO2/air atmosphere. The medium was changed every day. 

For calcium-induced differentiation and de-differentiation strategy we followed the protocol 

described in (Illien et al. 2012). To obtain differentiated epithelial MDCK cells, the cultures 

were collected 2 days after confluence. Undifferentiated cells were obtained using the Ca2+ 

depletion strategy (Hansen et al. 2002). Briefly confluent MDCK cultures were incubated in a 

Ca2+-free medium for two days. This medium was prepared with Ca2+-free DMEM and serum 

dialyzed against PBS. 

Construction and cell transfection of AnxA2-GFP wild type and phosphorylation 

mutants. 

AnxA2-GFP expression vector pEGFP-C1-AnxA2 was a kind gift of Drs Stephen Moss and 

Matthew Hayes (University college London, UK) (Merrifield et al. 2001). The N-terminal 

phosphorylation site  mutants of AnxA2-GFP were obtained from the previously constructed 

pCDNA3 vectors containing the S11A-S25A and S11E-S25E replacements (Ayala-Sanmartin 

et al. 2000). The restriction fragments containing the mutations were used to replace the wt 
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residues of the pEGFP-C1-AnxA2 plasmid. Briefly, the pCDNA vectors containing the 

annexin A2 phosphorylation mutants were cut with the restriction enzymes SmaI (position 

907) and PupMI (position 1778). The resulting 870 bp fragment was purified by agarose gel 

electrophoresis. The pEGFP-C1-AnxA2 was cut with the restriction enzyme NheI (position 

591) and after purification, the sticky ends were filled with the T4 polymerase to be 

compatible for blunt end ligation with a SmaI fragment. The vector was cut with PpuMI 

(position 1433) and the fragment containing the vector part of the plasmid was purified by 

agarose gel electrophoresis. The vector and the mutant containing fragments were ligated 

(DNA ligase) and the products were transfected in E. coli DH5α strain by the standard 

calcium transfection method. The absence of undesired mutations was verified by DNA 

sequencing. MDCK and Caco2 cells were transfected by the standard lipofectamine (Thermo 

Fisher) protocol. 

S100A10 affinity column. 

S100A10 protein was purified as previously described (Ayala-Sanmartin et al. 2008). Four 

mg of S100A10 protein were attached to a HiTrap NHS activated HP (Sigma-Aldrich) 

column (1 ml) as recommended by the furnisher. For control experiments a “void” column 

was used. The control column was treated and blocked as the S110A10 containing column but 

in the absence of the protein. Before the cell extract loading, and to avoid unspecific protein 

binding, the columns were saturated in PBS pH 7 with PVP 1%. The samples for control and 

S100A10 affinity columns were prepared as follows. Cells from two Petri dishes (10 cm 

diameter) were lysed in PBS added with protease inhibitors (Sigma Aldrich) cocktail with or 

without calcium by passing them through needles (18G, 23G and 26G successively). Then the 

samples were centrifuged (800g) for 10 minutes and the supernatant was sonicated and passed 

through a 45 µm filter. Then, the samples were passed through the column in closed circuit 

overnight in PBS with or without calcium. Columns were washed with PBS buffer and the 

bound proteins were recovered by elution with Glycine 0.1 M pH 2.5. Elution fractions (0.5 

ml) were neutralized with Tris 1 M pH 9. The column was washed with PBS containing 

sodium azide and conserved at 4°C. 

Immunofluorescence and confocal microscopy. 

Cells were cultured on glass cover-slips in 24 well plates as described in (Illien et al. 2012). 

The cells were washed with PBS, and fixed with paraformaldehyde (3.7% ) in PBS for 15 

minutes at room temperature (Ayala et al. 1989). Then they were washed three times with 
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PBS, NH4Cl 50 mM and post-fixed and permeabilized with cold methanol (-20°C) for 1 

minute and washed as before. Fixed cells were saturated with PBS, NH4Cl 50 mM, BSA 1% 

for 20 minutes at room temperature. The first antibodies were added at the right dilution 

during 1.5 hours at room temperature followed by three washes in saturation solution. The 

secondary antibodies were incubated and washed as the first antibodies. Finally, the cover-

slips were dried and mounted in Mowiol (Sigma-Aldrich). The fluorescence confocal images 

were acquired with a TCS SP2 laser-scanning spectral system (Leica, Wetzlar, Germany) 

attached to a Leica DMR inverted microscope at the specific excitation wavelengths and 

appropriate emission channels for each fluorophore. Optical sections were recorded with a 

63/1.4 or 100/1.4 immersion objectives. 

Protein partners identification by mass spectrometry. 

The pull down proteins from S100A10 affinity columns were identified by mass 

spectrometry. After polyacrylamide gel electrophoresis of column fractions, the coomassie 

blue-stained bands of interest were cut from gels and processed by trypsin digestion for 

identification by MS as described (Munera et al. 2012). The proteins were identified by 

peptide mass fingerprinting using MALDI-TOF-MS. Peptide sequences were obtained by 

MS/MS. The data was analysed by using the MASCOT search algorithm. Molecular weight 

search (MOWSE) scores attained for individual protein identifications were inspected 

manually and considered significant only if at least two peptides were matched for each 

protein. The MS identification was performed for two independent extracts and for each cell 

type and differentiation state (differentiated and undifferentiated). 

Sucrose density gradients. 

Sucrose solutions at 20% and 50% (W/V) were prepared in buffer Hepes 40 mM pH 7, KCl 

30 mM EGTA 1 mM, and free Ca2+ 0.2 mM. The gradients were prepared in 12 ml 

polypropylene Beckman tubes with a mixer (Amersham) and the help of a peristaltic pump. 

The cell extracts were laid on the top of the gradients and centrifuged 35 000 g during 16 

hours at 4°C in a Beckman rotor SW41.Ti. 24 fractions (0.5 ml) were collected. The 

refraction index of all fractions was measured with a refractometer and their density was 

calculated with a reference table (Evans 1978). 

Miscellaneous procedures. 
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Standard protein quantification, gel electrophoresis and western blot were performed as 

described in (Borot et al. 2009). DNA purification for AnxA2-GFP mutants construction and 

transfections was performed as described previously (Ayala-Sanmartin and Gomez-

Eichelmann 1989). The statistical analysis; unpaired, two-tailed t-test was performed with 

GraphPad Prism software. 

 

Results 

Annexin A2 expression before and after epithelial cell differentiation. 

To characterise AnxA2 expression in epithelial cells, we performed cell cultures of MDCK 

cells (kidney) and Caco2 cells (intestinal epithelium). We plated 50 000 dissociated MDCK 

cells or 100 000 Caco2 cells in 60 mm Petri dishes and recovered the cultures after 2, 4, 6, 8 

and 10 days for MDCK and after 3, 7, 11, 16 and 21 days for Caco2 cells. The cells were 

lysed and the protein content was quantified by BCA. Fig 1A shows that MDCK cell line 

arrive at confluence on day 6 and Caco2 cells at day 11. Microscopy observation showed that 

at day 2 (and 3) the cultures showed small cell aggregates, at day 4 (and 7) the cultures were 

close to confluence and at day 6 (and 11) they were fully confluent (data not shown). 

Specific protein expression was analysed by western blot. Fig 1 shows that AnxA2 and 

S100A10 expression increases slightly during in vitro epithelial cell differentiation. However, 

S100A10 expression increase was not statistically significant in MDCK cells. 

Cellular localization of AnxA2 and its principal partner S100A10 were followed by 

immunofluorescence and confocal microscopy. Fig S1 shows a strong co-localization of both 

proteins in MDCK cells during all steps of epithelial differentiation. However, in fully 

differentiated cells, we observed an enrichment in AnxA2 in the apical pole of the cells and 

that both proteins co-localize approaching the apical region. In the basolateral region, annexin 

A2 was probably present also in monomeric form because S100A10 showed low expression 

in this zone (Fig S1). 

Annexin A2 co-localizes with E-cadherin in adherent junctions 

Yamada and collaborators have shown that AnxA2 was involved in adherens junctions 

formation (Yamada et al. 2005a). Therefore we followed its localization during MDCK cell-

cell contacts formation. We plated dissociated MDCK cells at different cell densities (2 000 to 

30 000 cells per well) and fixed them four days later. Fig 2A shows clear co-localization of 
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AnxA2 with E-cadherin at the level of early cell contacts as well as in cells highly confluent 

and differentiated (Fig S2A). Lee and collaborators reported that AnxA2 co-localized with 

tight junctions in a MDCK II cell line (Lee et al. 2004) . However, we saw no localization 

with the marker of tight junctions ZO1 during in vitro cell differentiation (Fig 2B and S3). 

The ZO1 signal was very thin and close to the membrane zones enriched in AnxA2 but not in 

contact with them. 

To study the distribution of annexin A2, S100A10 and E-Cadherin, we performed triple 

antibody labelling. As shown in Fig 2C and S2B, the previously observed co-localization of 

AnxA2 with E-cadherin was confirmed and the co-localization of S100A10 with both proteins 

were evidenced suggesting that AnxA2 is in the heterotetrameric form. 

Expression of AnxA2-GFP during epithelial cell differentiation. 

An MDCK cell line expressing the chimeric protein AnxA2-GFP was obtained. The 

expression level of the AnxA2-GFP chimeric protein was evaluated. Cell extracts were 

subjected to an affinity column containing the S100A10. Western blot revealed that the 

expression of AnxA2-GFP chimeric protein was 35% and the endogenous protein of 65% (Fig 

S4A). This fact rise the possibility that the total annexin A2 content in the transfected cells 

would be higher compared to the wild type cells. However it is also possible that the cell 

regulates the expression of the endogenous protein in order to maintain normal total annexin 

A2 levels. To characterize the AnxA2-GFP calcium dependent movement to the membranes 

we treated the cells with the calcium ionophore ionomycin. After 10 minutes of ionophore 

addition, the association of the protein with the plasma membrane due to the calcium entry 

into the cells was clearly observed (Fig S4B), as previously reported with other pore forming 

peptides (Lamaziere et al. 2007). We also obtained a Caco2 cell line expressing AnxA2-GFP. 

The chimeric protein presented a similar behaviour during epithelial cell differentiation 

compared to MDCK cells and showed strong co-localization with S100A10 (Fig S5). 

We followed the expression of AnxA2-GFP, S100A10 and E-cadherin by confocal 

microscopy and observed co-localization of AnxA2-GFP with S100A10 and E-cadherin 

during junction formation and in differentiated cells (Fig 3). 

Annexin A2 localization during differentiation and de-differentiation of MDCK cells. 

In order to obtain a high quantity of cells in the undifferentiated state, we performed cell 

cultures at a high density in the absence of calcium by using the calcium switch protocol. We 
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characterized the cellular movements of AnxA2, S100A10 and E-cadherin during 

differentiation and de-differentiation. As shown in Fig S6, the undifferentiated cells express 

the 3 proteins mainly in the cytosol. After addition of calcium the cellular junctions 

established and the three proteins move from the cytosol to the plasma membrane at the level 

of cell-cell contacts. Co-localization of AnxA2 with S100A10 and E-cadherin was observed. 

Annexin A2-S100A10 partners in differentiated and undifferentiated Cells. 

To find out AnxA2 partners in MDCK and Caco2 cell lines, we used a S100A10 affinity 

column. The elution fractions were collected and subjected to gel electrophoresis. To confirm 

the S100A10 binding specificity of the pull down proteins, we compared the bands with those 

of a control (void) column. Figure S7 show several examples of gels indicating that the 

S100A10 column specifically pull down S100A10 and AnxA2 binding proteins. After gel 

electrophoresis we identify the bands of interest by mass spectrometry. Two independent 

experiments were performed for each cell line. Several annexin A2-S100A10 partner 

candidates were identified. The proteins identified with the best scores were β-actin, heat 

shock 70 cognate protein (HSC70) and α-Enolase 1 from MDCK cells, and β-actin, β-tubulin 

and α-Enolase 1 from Caco 2 cells. 

The partner candidates from the affinity column were verified by western blot. Three 

independent experiments were performed. As shown in Fig 4, actin was detected as a 

S100A10-AnxA2 partner in differentiated and undifferentiated cells. We were unable to 

detect HSC70, Enolase 1 and tubulin by western blot. On the contrary, caveolin 1 and flotillin 

2, two proteins which are, similarly to AnxA2, associated to cholesterol enriched membrane 

domains, were pulled down with the S100A10 affinity column. Caveolin 1 was detected in 

differentiated and undifferentiated cells and flotillin 2 only in undifferentiated cells. 

We also performed a study of protein co-migration in sucrose density gradients. As shown in 

Fig 5, in undifferentiated cells, AnxA2 and S100A10 were found in high quantity in fractions 

of density 1.09 and 1.17 and in minor quantity in fraction of density 1.15. The actin and 

AnxA2 profiles were very similar. E-cadherin was found in fraction 1.17, 1.15 and 1.09. On 

the contrary, flotillin 2 was present mainly in the 1.17 fraction and caveolin 1 was present in 

fractions of density from1.11 to 1.16. After cell differentiation, we observed that AnxA2 in 

the 1.09 and 1.17 fractions diminished but its amount increased in fraction 1.13 giving a 

plateau 1.13 to 1.19. S100A10 was present in fractions 1.08, 1.15. 1.17 but was absent in the 

1.13 fraction. The actin profile was similar to that of AnxA2 and E-cadherin was also 
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enriched in the zone 1.11 to 1.19. Flotillin 2 (1.17) and caveolin 1 (1.13 to 1.17) show only 

small changes in density profile after cell differentiation. Overall, the data show that actin and 

E-cadherin co-migrate with AnxA2 before and after cell differentiation. On the contrary after 

cell differentiation, the degree of co-migration of AnxA2 and caveolin 1 strongly increases. 

Flotillin 2 seemed not to be sensitive to cell differentiation and AnxA2 movements.  

Cellular localisation of Annexin A2-S100A10 partners candidates. 

Immunofluorescence experiments were performed to characterize the localization of AnxA2 

partner candidates during epithelial cell differentiation. In MDCK cells, no clear co-

localization with tubulin was observed. HSC70 does not co-localizes with AnxA2 in 

membranes involved in cell-cell contacts and only small co-localization was observed in 

peripheral membranes of undifferentiated cells (Fig S8A). On the contrary we observed clear 

co-localization of caveolin 1 with AnxA2 and S100A10 (Fig 6) in the cell-cell contact zones. 

We also performed cellular localization experiments with the AnxA2-GFP cell line. As for 

wild type MDCK cells, we did not observe localization of AnxA2 with tubulin (Fig S8B). On 

the contrary, we observed co-localization with S100A10, actin, caveolin 1 and E-cadherin 

(Fig 7). 

In order to study the role of serine phosphorylation on the N-terminal domain of AnxA2, we 

constructed chimeric AnxA2-GFP double mutants on serine residues 11 and 25. We replaced 

serine by alanine residues to avoid phosphorylation (S11A-S25A) and by glutamic acid 

residues to mimic “permanent phosphorylation” (S11E-S25E). The physicochemical 

characterisation of the mutants showed that they are able to bound S100A10 in vitro (Ayala-

Sanmartin et al. 2000). Fig 8 shows that the mutants did not perturbed the formation of 

junctions neither the co-localization of AnxA2-GFP with E-cadherin, actin and caveolin 1. 

 

Discussion 

In the present paper we studied the localisation of AnxA2, S100A10 and its putative partners 

during epithelial differentiation of kidney and intestinal cells lines in vitro. MDCK and Caco2 

cell lines changed their morphology and underwent full polarization showing formation of 

adherens and tight junctions and reorientation of cytoskeletal elements (Bacallao et al. 1989). 

We searched for annexin A2-S100A10 partner proteins during epithelial cell differentiation 

by analysing the AnxA2 binding proteins in cells before and after cell differentiation. By 
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using immunofluorescence, mass spectrometry and western blot analyses after S100A10 

affinity column separation, we had identified several AnxA2 partner candidates. We also 

performed co-immunoprecipitation experiments but unfortunately without success. Probably 

because the interaction of annexin A2 with membranes and partners diminish the availability 

of annexin A2 surface for antibody recognition. We also performed protein crosslinking of 

cell extracts before column affinity pull down but it was also difficult to obtain accurate MS 

data. The putative partner candidates detected after S100A10 affinity column can be 

considered as partners of the tetrameric form of the protein (Annexin A2-S100A10) because 

in the column, the most important protein associated to S100A10 is AnxA2 (Fig S7). The 

association of some putative candidates obtained by MS after column affinity such as the α-

enolase-1, the chaperon protein HSC70 and tubulin were not validated by other techniques 

such as immunofluorescence and sucrose gradient separation. However, it have been reported 

that enolase-1 is present in caveolae and co-precipitates with Cav-1 and AnxA2 (Zakrzewicz 

et al. 2014). These data support the interaction observed herein by affinity pull-down. Three 

proteins were clearly associated to AnxA2: E-cadherin, actin and caveolin 1. 

Cell junctions are very complex structures (Vogelmann and Nelson 2004). The adherens 

junctions are calcium-dependent molecular complexes necessary for epithelial cell 

differentiation. The role of AnxA2 during cadherin junctions formation has been 

demonstrated in epithelial and endothelial cells (Yamada et al. 2005a; Heyraud et al. 2008). 

The E-cadherin protein associates to catenins that bind the actin cytoskeleton. It has been 

suggested that the adherens complex is modulated by the sphingomyelin cholesterol-enriched 

domains in the membranes (Bryant and Stow 2004). Herein, we observed by immuno-

localisation and membrane separation by sucrose density gradients that AnxA2 and E-

cadherin are associated during the adherens junction formation in kidney (MDCK) and 

intestinal (Caco2) cells. However, we were unable to detect E-cadherin in affinity columns 

suggesting that the association of AnxA2 with cadherin could be mediated by other proteins 

or lipids in the junctional zone. 

The actin-AnxA2 binding has been well documented (for reviews see (Hayes et al. 2004; 

Grieve et al. 2012)). In the present work we found an association of annexin A2 and actin by 

affinity column and corroborate this association by immunofluorescence and sucrose density 

gradients. The association of annexin A2 with E-cadherin could be mediated by actin. 

However the direct association of actin with E-cadherin has been questioned by experiments 

which demonstrated that catenins, are not associated to actin and cadherin at the same time 
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(Drees et al. 2005; Yamada et al. 2005b). In such a case, another molecule could be 

responsible for the association with the junctional complex. This partner could be a protein 

but we did not exclude that the lipids in the form of particular membrane domains enriched in 

cholesterol, phosphatidylserine or PI2P play an important role in this process. 

Caveolin 1 was the third identified partner. This protein is considered to be present in 

cholesterol enriched membrane domains (Murata et al. 1995; Harder and Simons 1997) and 

has been shown to co-localize with AnxA2 (Corvera et al. 2000; Uittenbogaard et al. 2002; 

Liao et al. 2017). In spite of the fact that a study concerning the interaction of cav-1 and 

annexin A2 has been retracted (Smart et al. 2004), three other reports and our own study 

demonstrate a relationship between both proteins. In endothelial cells caveolin 1 and AnxA2 

bound to low density cholesterol-enriched membranes after formation of cellular junctions 

(Corvera et al. 2000). Moreover, it is known that the presence of cholesterol in membranes 

increases the calcium sensitivity for AnxA2 membrane binding (Ayala-Sanmartin 2001; 

Ayala-Sanmartin et al. 2001). Therefore, the Caveolin-AnxA2 association seems to depend on 

membrane lipid composition. 

Overall the data shows that annexin A2-S100A10 is able to associate to molecular complexes 

containing actin, caveolin 1 and flotillin 2 before epithelial differentiation and to complexes 

containing E-Cadherin, actin and caveolin 1, but not flotillin 2 after cell differentiation. It is of 

interest to note that after cell differentiation, AnxA2 and other proteins move to compartments 

of light density and that the increase of cholesterol at the level of the plasma membrane could 

be responsible for this change in density. At present we know that annexin A2 can bind actin 

but it is less clear whether the association with the other proteins is directly or indirectly 

mediated by other proteins or membrane domains. Considering that AnxA2 is essentially a 

membrane phospholipid binding protein sensitive to cholesterol content, we must consider the 

membrane domains as mediators of these complex interactions. In fact, it has been shown that 

membrane clusters of AnxA2 and CD44 depend on cholesterol and favour the direction of 

actin bundles to these membrane domains (Oliferenko et al. 1999). It is of interest to note that 

there is a correlation between the actin filament membrane attachment and plasma membrane 

ordered domain formation (Dinic et al. 2013). In smooth muscle cells, a membrane domain 

separation of stiff actin binding and flexible caveolar domains that bind annexin proteins at 

different calcium concentrations have been observed (Babiychuk and Draeger 2000). A 

similar behaviour could be present in epithelial cells in which AnxA2 bind to different 

membrane domains (caveolar, actin rich cell junctions) at different calcium concentrations 
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and/or with different membrane phospholipids. For example, PI2P which is a ligand of 

AnxA2, is involved also in actin filaments reorganisation and changes in cell shape 

(Takenawa and Itoh 2001). Martin-Belmonte and collaborators showed that annexin A2 

expression in the apical surface of MDCK cells overlapped with actin and suggest that this is 

an important event during the establishment of apical membrane identity (Martin-Belmonte et 

al. 2007). Moreover, AnxA2 is targeted to PI2P sites of the membrane enriched in cholesterol 

where actin accumulates (Rescher et al. 2004; Gokhale et al. 2005) and the localisation of 

AnxA2 to cell-cell contacts and actin re-organisation seemed to require PI-3 kinase activity 

suggesting the participation of lipids and not only proteins in these complex cellular processes 

(Hansen et al. 2002). Secondly, membrane cholesterol seems to play an important role 

because its decrease abolished both, the AnxA2 movement to the membrane and the 

concentration of E-cadherin to the nectin cell-cell contact sites (Yamada et al. 2005a; Heyraud 

et al. 2008). 

In the present study we were unable to observe differences in behaviour and localisation of 

annexin A2 serine phosphorylation mutants. However, other studies showed that Tyrosine 

phosphorylation is an important event in actin mediated changes in cell morphology 

associated with the control of cell adhesion in BHK cells (Rescher et al. 2008) and in nicotine 

induced chromaffin cell secretion (Gabel et al. 2019). New experiments designed to study the 

dynamics of serine phosphorylation-dephosphorylation must be performed to deeply 

investigate the role of annexin A2 serine phosphorylation during epithelial cell differentiation. 

In conclusion, the association of AnxA2 with other proteins and lipids is a very complex field 

to be developed accurately. The participation of AnxA2 in different cellular processes seems 

to be mediated by different proteins but, the association with the membranes lipids organized 

in different domains play certainly a very important role. Therefore, the development of new 

experimental approaches such as lipidomics of Annexin A2 membrane binding sites must be 

considered in the future research. 
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Figure legends 
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Figure 1. Annexin A2 and S100A10 expression during epithelial cell differentiation. 

A; Kinetics of cell culture growth of MDCK and Caco2 cell lines followed by total protein expression 

as a function of time. B; Expression of annexin A2 and S100A10 by western blot. Each well contains 

contained 7.5 µg of MDCK extracts and 15 µg of Caco2 extracts. Quantitative analysis of protein 

expression for MDCK cells (C) and Caco2 cells (D). Gel quantification was performed by normalizing 

the bands intensities in percent; the strongest band for each gel being the 100% of expression. This 

normalization allows the statistical comparison of different experiments. Notice the slight increase in 

annexin A2 and S100A10 expression during cell contacts formation. Means ± SEM from 3 to 4 

experiments. * = P<0.05, ** =P<0.01, continuous and dotted lines for AnxA2 and S100A10 

respectively. 

Figure 2. Annexin A2, E-cadherin, ZO1 and S100A10 expression in MDCK cells. 

Confocal images of MDCK cells after four days in culture and plated at a low density (5 000 cells per 

well). Annexin A2 and E-cadherin are co-localized in the lateral membrane (A). Annexin A2 and the 
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tight junction marker ZO1 does not co-localize (B). Triple labelling of MDCK cells showing co-

localization of AnxA2, S100A10 and E-Cadherin (C). Bars, 20 µm. 

 

 

Figure 3. AnxA2-GFP, S100A10 and E-cadherin expression in MDCK cells. 

Confocal images of MDCK cells after 3 days in culture plated at 5 000 (A) and 20 000 cells per well 

(B). AnxA2-GFP, S100A10 and E-cadherin are co-localized in the lateral membranes. Bars, 20 µm. 

 

 

Figure 4. S100A10-AnxA2 binding proteins in undifferentiated and differentiated epithelial cells. 

Western blots of cellular fractions from undifferentiated and differentiated epithelial MDCK cells 

eluted from S100A10 affinity (S100A10) and control (ctrl) columns. 
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Figure 5. Protein profiles on sucrose density gradients in undifferentiated and differentiated 

MDCK cells. 

(A), non-differentiated cells. (B), differentiated cells. Annexin A2 (black continuous line ●), S100A10 

(black dotted line ○), actin (red ▲), E-cadherin (blue ■), caveolin 1 (green continuous line ♦) and 

flotillin 2 (green dotted line ◊). The profiles are means of 2 to 6 independent experiments. 
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Figure 6. Annexin A2, S100A10 and caveolin expression in MDCK cells. 

Confocal images of MDCK cells after four days in culture and plated at a low density (5 000 cells per 

well). AnxA2, S100A10 and caveolin 1 are clearly co-localized in the lateral membranes involved in 

cell contacts. Bars, 20 µm. 
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Figure 7. Annexin A2, S100A10, actin, E-cadherin and caveolin 1 expression in AnxA2-GFP 

MDCK cells. 

Confocal images of AnxA2-GFP transfected MDCK cells after four days in culture plated at different 

densities. AnxA2, S100A10 and caveolin 1 clearly co-localize in lateral membranes involved in cell 

contacts (top). Actin and AnxA2 co-localizes in cell membranes of isolated cells and in contacts 

(middle). They co-localize with E-cadherin (bottom). Bars, 20 µm. 

 

 

Figure 8. Localization of E-cadherin, caveolin 1 and actin in AnxA2-GFP phosphorylation 

mutants. 

The cellular localization of the AnxA2 phosphorylation mutants S11A-S25A (AA) and S11E-S25E 

(EE) is similar to the wild type protein. The cellular localization of actin, E-cadherin and caveolin was 

not modified by the presence of mutant proteins. Bars, 20 µm. 

 


