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Abstract: The development of non-cellularized composites of chitosan (CHI) hydrogels, filled with
cellulose nanofibers (CNFs) of the type nanofibrillated cellulose, was proposed for the repair and
regeneration of the intervertebral disc (IVD) annulus fibrosus (AF) tissue. With the achievement
of CNF-filled CHI hydrogels, biomaterial-based implants were designed to restore damaged/
degenerated discs. The structural, mechanical and biological properties of the developed hydrogel
composites were investigated. The neutralization of weakly acidic aqueous CNF/CHI viscous
suspensions in NaOH yielded composites of physical hydrogels in which the cellulose nanofibers
reinforced the CHI matrix, as investigated by means of microtensile testing under controlled humidity.
We assessed the suitability of the achieved biomaterials for intervertebral disc tissue engineering in
ex vivo experiments using spine pig models. Cellulose nanofiber-filled chitosan hydrogels can be
used as implants in AF tissue defects to restore IVD biomechanics and constitute contention patches
against disc nucleus protrusion while serving as support for IVD regeneration.

Keywords: hydrogel biomaterial; chitosan; cellulose nanofibers; intervertebral disc; tissue engineering

1. Introduction

Fiber-reinforced hydrogels can be engineered to mimic many biological tissues as they present
similar microstructural and mechanical properties, and functionality. Thus, bioinspired composite
hydrogels have great potential for tissue engineering applications. The intervertebral disc (IVD), which
is the largest avascular tissue of the human body [1,2] can constitute a source of bioinspiration for the
engineering of hydrogel biomaterials. The IVD connects the vertebral bodies (VBs) while keeping
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the spine movable. It is mainly composed of fiber-filled hydrogels and three tissue regions can be
distinguished: the nucleus pulposus (NP), the annulus fibrosus (AF), and the vertebral endplates
(VEPs). Proteoglycan (PG) hydrogels reinforced with collagen fibers comprise 95 wt% of the IVD [3].
The NP is a hydrated gelatinous core enclosed by the AF [3]. The water content is related to the PG
content and mechanical history of the disc. It varies in the different disc regions, with the highest
hydration in the NP (≈80–90 wt%) and a lower hydration in the AF (≈65 wt%). Thus, the IVD is
able to withstand high compression loads and plays a key role in spine biomechanics [4–6]. The NP
exerts a turgor, which acts as a hydrostatic pressure to support the applied load [5,6]. The AF
acts as a thick-walled pressure vessel to contain the internal pressure of the nucleus [5]. With disc
degeneration, the collagen and PG composition is altered, and the water content of the nucleus falls by
10–15% [7]. With loadings of above 200 N applied to the disc, for example, 20% of the disc water is
driven out and the nuclear pressure falls by 36%. Intervertebral disc afflictions, which are commonly
due to disc degeneration, are thought to be the leading cause of low back pain (LBP) [8]. So far,
satisfactory treatments of the IVD have not been established [9], with the “gold standard” being
the disc excision and fusion of the adjacent vertebral bodies (VBs). It commonly leads to further
degeneration due to altered segmental motion [10]. Besides, due to the avascular character of the
IVD, its self-regeneration is complicated. The development of bioinspired fiber-filled hydrogels could
be the solution to support IVD regeneration and repair. Roughley et al. [11] studied the suitability
of chitosan/glycerophosphate/hydroxyethyl cellulose hydrogels for the encapsulation of IVD cells
and accumulation of functional extracellular matrix (ECM), mimicking that of the nucleus. Nuclear
supplementation has been commonly aimed against mechanical failure unless a bioactive material
also could be found to promote cell growth, PG production and disc nutrition. The treatment of the
nucleus with a photocrosslinked hyaluronic acid (HA) hydrogel was proposed, which aimed to fill the
NP and yield, in situ, a resistant hydrogel [12]. The NP augmentation by a gel-like formulation could
prevent disc height loss and biomechanical and biochemical changes associated with degeneration.

In this work we aimed to develop cellulose nanofiber (CNF)-filled chitosan (CHI) composite
hydrogels, useful for the re-establishment of the IVD biomechanics as well as for repairing and
regeneration. Chitosan is a biocompatible cell growth-promoting compound and the CNFs provide
mechanical reinforcement approaching the functionality of the collagen fibrils in the disc. Chitosan is
the main derivative of chitin, which is mainly extracted from crustacean shells and endoskeleton of
cephalopods. A lot of in vitro and in vivo studies highlight the biological properties of CHI including
biodegradation [13], nontoxicity [14], cytocompatibility [15] and hemostatic activity [14]. The reported
biodegradation of CHI by lysozymes could be advantageous for the design of biomaterials which
should be replaced after tissue regeneration. The exceptional biocompatibility of CHI, combined
with its bioactivity, explains its potential for tissue engineering [13,15–19]. Montembault et al. [19]
prepared CHI physical hydrogels for cartilage tissue engineering, whose interaction with chondrocyte
cells promoted cartilage-like ECM production in vitro. Ladet et al. [20] prepared onion-like CHI
multimembrane hydrogels, suitable for engineering of multilayer tissues [18,20]. Cellulose nanofibers
are renewable and constitute an environmentally friendly nanoreinforcement [21–25]. Cellulose
nanofibers are highly available in plant biomass [25] and present outstanding mechanical performance
because of their high crystallinity and aspect ratio (fiber length–width ratio) [21,26,27]. There are
two main families of native CNFs [25,28]: cellulose nanowhiskers (CNWs), with the highest
strength and stiffness (Young’s modulus of 114–140 GPa) [29]; and nano-/microfibrillated cellulose
(MFC), which originates from the peeling of the native cellulose fibers into a network of hairy
fibrils [28]. Filling of CHI matrix by polysaccharide nanofibers has been mainly reported in the
development of dry film or scaffold nanocomposites [30–37]. In many of those works, instead of using
unmodified cellulose fibers as proposed in the present work, the nanofibers have been modified by
(2,2,6,6-tetramethylpiperidine-1-yl)oxyl (TEMPO) radical oxidation to improve the fiber–CHI matrix
interactions [30,31]. Casting films of blends of CHI and poly(vinyl alcohol) (PVA) were reinforced
with TEMPO- oxidized CNFs (TOCNFs) [30]. The positive effect of ultrasound irradiation on the
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dispersion of CNFs in CHI to produce cast films has been reported [31,36]. The question of CNF
toxicity has been addressed and the low toxicity risk potential for CNFs has been reported according
to ecotoxicological, cytotoxicity, and pro-inflammatory response studies [38,39]. In vitro tests carried
out inhuman and murine cells have demonstrated the absence of cytotoxicity and genotoxicity for
MFC suspensions [40]. In previous works, we demonstrated the good biocompatibility of CNFs in
cytotoxicity evaluations in human dermal fibroblasts (HFIB-D) and human bone marrow stromal
cells (HBMSCs) [41]. Cellulose nanofibers have been used as biomaterial reinforcement in tissue
engineering [41–43]. The biocompatibility of CNFs and their non-biodegradability in the human body
motivated the proposal of CNFs for the development of implants which require long-term stability
to engineer tissues of high-mechanical performance (e.g., bone). Cellulose nanofiber scaffolds have
been proposed for the long-term proliferation of bone-related cells [44]. In hydrogel biomaterials,
the use of CNFs is promising. In addition to their mechanical performance, CNFs present high-water
retention and can yield transparent biomaterials [42,45]. Moreover, CNFs can be oriented within
hydrogels, by the uniaxial stretching of their composites under controlled environmental humidity.
Osorio-Madrazo et al. [21] performed pioneering works where CNFs, specifically nanowhiskers,
were oriented in bulk hydrogel matrices to produce reinforced anisotropic hydrogels. Thermosensitive
injectable hydrogels of CHI containing TOCNFs at concentrations of 0.2%, 0.4%, 0.6%, and 0.8%
(w/v) have been designed for biomedical applications [46]. These hydrogels undergo sol–gel
transition at body temperature through reversible interactions between CHI and β-glycerophosphate.
Both MC3T3-E1 pre-osteoblast cells and L929 fibroblast cells have shown biocompatibility towards
CHI/TOCNF 0.4% (w/v) [46]. On one hand, the excellent biological properties of CHI, its ability to
form hydrogels, the CNFs outstanding mechanical properties and demonstrated biocompatibility;
and on the other hand, the fiber-reinforced hydrogel structure of the IVD motivated us to propose
the development of CNF-filled CHI hydrogels for IVD tissue repair and regeneration. Different
parameters, such as CHI concentration and CNF content, were considered in the processing of the
composite hydrogels. The effect of these parameters in the structure and mechanical properties of the
achieved hydrogel biomaterials was investigated. To assess the suitability of the obtained CNF/CHI
composite hydrogels for IVD tissue repair, we performed studies in which these biomaterials were
implanted in the AF tissue region of the disc to re-establish the biomechanics of lesioned discs,
while serving as support for IVD regeneration and contention patch against NP protrusion.

2. Materials and Method

2.1. Chitosan

Chitosan (Type: Chitosan144, Batch No. 20120926) from squid pen chitin was supplied by Mahtani
Chitosan (Veraval, Gujarat, India). The CHI degree of acetylation (DA) was 2.5%. It was determined by
1H nuclear magnetic resonance (NMR) spectroscopy following the methodology of Hirai et al. [45,46].
The measurement was performed on a Bruker ALS 300 spectrometer (Bruker GmbH, Ettlingen,
Germany) (300 MHz for 1H) at 298 K. The number- (Mn) and weight-average molar masses (Mw) of
CHI were 4.10 × 105 g/mol (±6.4%) and 6.11 × 105 g/mol (±9.6%), respectively, with a polydispersity
index of 1.49 (±10%). These molar masses were determined by size exclusion chromatography (SEC)
coupled to multiangle laser light scattering (MALLS), as described elsewhere [46].

2.2. Cellulose Nanofibers

Gel-like suspensions of CNF were obtained from bleached pine sulfite dissolving pulp by a
mechanoenzymatic method adapted from Doench et al. [41] and Pääkkö et al. [47] at the Centre
Technique du Papier (CTP, Grenoble, France). Pine sulfite pulp was incubated for 1 hat 50 ◦C with a
solution of endoglucanase FiberCare R® (Novozymes Biologicals, Paris, France) at pH 5.0. The pulp
was refined at 4.5% consistency with a 30.5 cm single disk refiner for 25 min. The digested samples
were further refined to obtain a pulp suspension of Schopper-Riegler (SR) number higher than 80 and
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mean fiber length smaller than 300 µm. A quantity of 2% (w/w) fiber suspensions was processed with
an Ariete homogenizer (GEA, Düsseldorf, Germany), involving one pass at 1000 bar followed by three
passes at 1500 bars. The obtained CNFs exhibited a surface charge density of 40–80 mmol/kg. Thus,
they were weakly charged with carboxylate moieties. The morphology of the CNFs was characterized
by atomic force microscopy (AFM)with a NanoScope V controller using the NanoScope 9.1 software
(Bruker Corporation, Santa Barbara, CA, USA). A droplet of a 0.001% CNF suspension was placed on
a freshly cleaved mica surface. After sample drying, observations were performed in tapping mode
with the AFM equipped with a tube scanner from Veeco Digital Instruments (Santa Barbara, CA, USA),
using silicon tips (PPP-NCH, Nanosensors, Sindelfingen, Germany) with resonance frequency and
spring constant of 360 kHz and 50 N m−1, respectively.

2.3. Preparation of the CNF-Filled Chitosan Composite Hydrogels

A fine powder of CHI was mixed at 2 or 3% (w/w) with CNFs in water at a given CNF content
(0.2%; 0.4% (w/w)). The dispersions were sonicated with a SONOPULS Ultrasonic homogenizer
(Bandelin electronic GmbH, Berlin, Germany) for 5 min at 40% amplitude. Then, acetic acid was
added in stoichiometric ratio to the free amine groups of the glucosamine units of CHI, to solubilize
the CHI (DA = 2.5%). The mixture was kept under mechanical stirring overnight. Afterwards,
the CNF/CHI viscous suspensions were neutralized with 2 M NaOH for 1 h using Petri dishes
as molds. After neutralization, the gelled material could be removed from the molds and washed
with distilled water untilneutral and complete removal of the salts formed during the neutralization.
Finally, composite hydrogels of different CNF/CHI concentrations, of around 1–2 mm thickness,
were obtained depending on the amount (1 or 2 g, respectively) of CNF/CHI viscous suspension
added to the 3 × 3 cm Petri dish molds to proceed to the neutralization step. Hydrogels of CNF:CHI
weight ratios of 0.1:1 and 0.2:1 with a CHI concentration of 2% (w/w); and of 0.07:1 and 0.1:1 with
a CHI concentration of 3% (w/w) were produced. To characterize the dispersion of the CNFs in the
CHI matrix, the freeze-dried CNF/CHI scaffolds were carefully fractured and gold sputtered in a
Polaron SC 7640 (VG Microtech, East Sussex, UK), and observed by scanning electron microscopy
(SEM) (Amray Inc., Bedford, MA, USA) at an accelerating voltage of 15 kV. It is worth noticing that
with this technique the analysis was performed in the dry state. Nevertheless, it allowed to get
insight into the dispersion of the CNFs in the dry scaffold composites, which were originated from the
hydrogel processing.

2.4. Microtensile Testing of CNF-Filled Chitosan Composite Hydrogels

For the tensile straining experiments, ≈2 mm wide and ≈7 mm long strips were cut out from the
prepared flat nanocomposite hydrogels with a razorblade. Each sample was glued immediately
onto a foliar frame with a test span of about 7 mm by using cyanoacrylate glue (Loctite® 454,
Germany). Afterwards, the frame with the sample was mounted onto a home-made microtensile
tester surrounded by a sealed sample chamber, which allowed for controlling relative humidity (RH)
during the experiment. The humidity generator (Wetsys, Setaram Instrumentation, Caluire, France)
mixes dry air and water-saturated air in a controlled way to supply a gaseous flow with a stable RH
that can be tuned between 5 and 95% (±0.3%) at a given temperature. At a RH of 45%, the hydrogel
nanocomposite was uniaxially stretched at a constant speed of 0.2 µm/s. The RH was kept constant
during the whole experiment (±2% RH). The applied force (F) was measured by a load cell with a
maximum capacity of 50 N. The displacement of the motorized linear stage was recorded. Nominal
stress σ = F/(w0t0) and nominal strain ε = (l − l0)/l0 values were estimated with w0 being the initial
width, t0 the initial thickness, l the actual length, and l0 the initial length of the cut hydrogel strip.
At least three different strips of a given sample were tested under similar experimental conditions. It is
worth noticing that the true stress of the sample should be different from the calculated one because of
a reduction of the sample cross-sectional area (wt) caused by straining and/or partial drying.
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2.5. Suitability of the CNF/CHI Composite Hydrogels for IVD Repair and the Re-Establishment of
IVD Biomechanics

2.5.1. Implant of CNF/CHI Composite Hydrogels in the Annulus Fibrosus Region of the IVD.
Biomechanical Studies

The design of a bioactive hydrogel to seal, reinforce, and repair the AF disc region would
ensure appropriate long-term tissue regeneration while providing a mechanical support to avoid
post-surgery hernia reoccurrence. To this end, the determination of spine mechanical loading and
motion is challenging in biomechanics. To understand its functionality, the needed smallest unit
(motion segment) consists of two vertebrae and the disc joining them together [6]. Around 30 kg
growing-finishing pigs were used as models for compression testing of healthy and damaged discs,
these latter repaired with the composite hydrogels. Discs localized between the lumbar L5 and thoracic
T7 vertebrae were considered (Figure 1). Motion segments were dissected, consisting of two adjacent
VEPs and the in-between disc. A total of 9 motion segments were tested: T8–T9, T10–T11, T11–T12,
T12–T13, T14–T15, L1–L2, L2–L3, L3–L4, and L4–L5 discs (Figure 1).
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Figure 1. Radiographies showing the frontal (above) and lateral (below) views of the thoracic (T) and
lumbar (L) parts of the spine of the growing-finishing pig model used in the study, with the different
motion segments considered in the biomechanical testing.

The compression tests have been performed on a Shimadzu Autograph AG-X plus (Kyoto, Japan)
equipped with a 10 kN load cell. After a pre-loading of 200 N [7], compression was applied until
failure. Concerning lesioned discs, a fenestration of length ≈10 mm, width ≈5 mm, and thickness
≈1.5 mm was performed in the ventral part of the AF. A composite hydrogel (3% CHI/0.4% CNF
(w/w)) piece of similar dimensions as the performed fenestration was carefully implanted within the
AF defect. Then, the disc was sutured at the implanted position and subjected to compression loading.
Figure 2 shows the methodology followed to prepare and mechanically test a fenestrated disc that was
implanted with the hydrogel.



Biomimetics 2019, 4, 19 6 of 17
Biomimetics 2019, 4, 19 6 of 16 

 

 
Figure 2. Implantation of the CNF/CHI composite hydrogel shown in the top-right (3% CHI/0.4% 
CNF (w/w)) in an annulus fibrosus tissue defect (1, 2) of a L4–L5 lumbar disc of a pig model (Figure 
1). The disc was sutured at the implanted position (3, 4) and subjected to compression loading as 
shown in the bottom-right of the figure. 

All animal subjects used in this study abide to the French and the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals, by completing the legal forms and having all the 
required authorizations (legal and ethical). The experimentations on animal subjects were performed 
by authorized staff in labelled facilities (Institute Claude Bourgelat, VetAgro Sup, Lyon Veterinary 
School, France) according to ethical agreement (Proposal Number 69.127.05.05, Ethical Committee 
Agreement Number 1440). 

2.5.2. Cell Culture of NIH/3T3 Fibroblasts on CNF/CHI Hydrogels 

To evaluate the suitability of the CNF/CHI composite hydrogels for IVD tissue engineering, 
experiments were performed with fibroblast cells cultured on the hydrogels of different CHI 
concentrations and CNF contents. Cell cultures of 3T3 cells developed using the NIH Swiss mouse 
embryo fibroblasts were performed (murine fibroblast, strain: NIH/Swiss). NIH/3T3 fibroblast cells 
were grown in T75 (75 cm2) cell culture flasks (Sarstedt, Nümbrecht, Germany). The cells were 
cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 2 mM L-glutamine and 
10% fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific, Leicestershire, UK) at 37 °C in a 
humidified atmosphere of 5% CO2 for 1 week. Upon 90% confluence, cells were rinsed twice with 
phosphate-buffered saline (PBS) (Gibco, Thermo Fisher Scientific, Leicestershire, UK) followed by 
detachment with trypsin/ethylenediaminetetraacetic acid (EDTA) for 5 min and neutralization with 
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Figure 2. Implantation of the CNF/CHI composite hydrogel shown in the top-right (3% CHI/0.4%
CNF (w/w)) in an annulus fibrosus tissue defect (1,2) of a L4–L5 lumbar disc of a pig model (Figure 1).
The disc was sutured at the implanted position (3,4) and subjected to compression loading as shown in
the bottom-right of the figure.

All animal subjects used in this study abide to the French and the National Institutes of Health
Guide for the Care and Use of Laboratory Animals, by completing the legal forms and having all the
required authorizations (legal and ethical). The experimentations on animal subjects were performed
by authorized staff in labelled facilities (Institute Claude Bourgelat, VetAgro Sup, Lyon Veterinary
School, France) according to ethical agreement (Proposal Number 69.127.05.05, Ethical Committee
Agreement Number 1440).

2.5.2. Cell Culture of NIH/3T3 Fibroblasts on CNF/CHI Hydrogels

To evaluate the suitability of the CNF/CHI composite hydrogels for IVD tissue engineering,
experiments were performed with fibroblast cells cultured on the hydrogels of different CHI
concentrations and CNF contents. Cell cultures of 3T3 cells developed using the NIH Swiss mouse
embryo fibroblasts were performed (murine fibroblast, strain: NIH/Swiss). NIH/3T3 fibroblast
cells were grown in T75 (75 cm2) cell culture flasks (Sarstedt, Nümbrecht, Germany). The cells were
cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 2 mM L-glutamine
and 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific, Leicestershire, UK) at 37 ◦C in a
humidified atmosphere of 5% CO2 for 1 week. Upon 90% confluence, cells were rinsed twice with
phosphate-buffered saline (PBS) (Gibco, Thermo Fisher Scientific, Leicestershire, UK) followed by
detachment with trypsin/ethylenediaminetetraacetic acid (EDTA) for 5 min and neutralization with
the corresponding cell culture medium. After detachment, cells were spun down in a centrifuge for
5 min at 110 rcf (Rotor F-45-30-11, Eppendorf 5417R, Hamburg, Germany). The supernatant was
discarded and cells were diluted into the culture medium. The CNF/CHI hydrogel pieces were put in
24-well cell culture plates, covering the whole well surface for subsequent use for cell growth. Firstly,
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the hydrogel pieces were incubated with 1 mL of culture medium for 30 min. Then, the medium was
removed and cells were transferred to each well in wished dilution. A suspension of the cells in culture
medium (500 µL) was added on the hydrogel surface and NIH/3T3 cells were seeded at 200,000 cells
per well on average in triplicates. Cells seeded in empty wells (i.e., without the hydrogel) were used
as control.

3. Results and Discussion

3.1. Structure of the CNF/CHI Hydrogels

Figure 3 shows atomic force microscopy (AFM) images of the CNFs used as nanoreinforcement of
the CNF/CHI composite hydrogels. They reveal an entangled network of interconnected nanofibrils
with average width of 35.2 ± 8.1 nm and bundles up to 100 nm width. The relative larger width of
the fibrils observed by this method could be due to the drying of the fibrils inducing the formation of
aggregates [47]. The mechanoenzymatic hydrolysis during the CNFs processing leaves long nanoscale
fibrils, preserving the native cellulose I crystalline allomorph with partly amorphous regions. Thus,
nanofibrils are able to inherently entangle [47]. Such long entangled nanofibers may be feasible for
nanoreinforcement percolation in the composite hydrogels.
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Figure 4. Images of the material appearance during the different steps of the processing of CNF-filled
CHI composite hydrogels. (Top) Neutralization of a CNF/CHI viscous suspension with aqueous
NaOH, showing the neutralization front which moves with time from the top to the bottom of the Petri
dish. (Middle) Three examples of flat composite hydrogels (2% CHI/0.2% CNF (w/w)) preserved in
distilled water after finalized the washing steps.

Figure 5 shows SEM micrographs of CNF/CHI hydrogels of different compositions which were
freeze-dried for observation. The scaffolds revealed a sponge-like network microstructure with
interconnected pores for all CNF/CHI concentrations considered in the hydrogel preparation. In all
considered compositions, a regular network structure with indistinguishable cellulose nanofibers was
observed, which can be due to the good interfacial compatibility of the polysaccharide nanofibers
and matrix allowing for good dispersion of the CNFs in the composite. Scanning electron microscopy
(SEM)images reveal that with the increase in CHI concentration the porosity decreases. For a given
CHI concentration, the increase in CNF content yielded biomaterials of smaller pore sizes. In a
given hydrogel sample, observations at the hydrogel outer top surface (Figure 5b,h) (which was
directly in contact with the NaOH solution during neutralization) differed from those of surface
fractures corresponding to the inner part of the hydrogel (Figure 5a,g). At the outer top surface,
a smoother microstructure was observed with a pore size smaller (Figure 5b,h) than in the inner
hydrogel (Figure 5a,g). It could be explained due to the hydrogel processing with a directional
diffusion of the base (NaOH) during the neutralization, in which the neutralization front moves from
the top to the bottom of the Petri dish mold (Figure 4). Sereni et al. [48] also reported on porosity
variations throughout the cross-section of CHI physical hydrogels due to the preparation procedure
similar to that used in this work to prepare composite hydrogels.
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(w/w) and a CNF content of 0.4% (w/w). Results were in the range of relatively good mechanical 
performance for polysaccharide hydrogel biomaterials [21,49].These results indicate that the 
nanofibers provided reinforcement to the hydrogel matrix of both 2 and 3% (w/w) CHI. The surface 
of CNFs used in this work was weakly charged with carboxylate moieties displaying a surface charge 
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contribute to the formation of the hydrogel network during the neutralization step. All mentioned 
interactions contribute to the good compatibility between the nanofibers and the CHI matrix and may 
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mechanical properties of the composites. Chitosan chains may absorb on the surface of CNF and play 
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Figure 5. Scanning electron micrographs of scaffolds obtained after freeze-drying of CNF/CHI
composite hydrogels containing (a–f) 2% and (g–l) 3% (w/w) chitosan. (a,b) neat 2% CHI; (c,d) 2%
CHI/0.2% CNF; (e,f) 2% CHI/0.4% CNF; (g,h) neat 3% CHI; (i,j) 3% CHI/0.2% CNF; (k,l) 3% CHI/0.4%
CNF. (a,c–g,i–l) Fracture surfaces; (b,h) top view SEM micrographs of the freeze-dried CHI hydrogel
surface. Scale bars:10 µm (a–c,e,g–i,k); 5 µm (d,f,j,l).

3.2. Micromechanical Properties of the CNF/CHI Composite Hydrogels

Mechanical properties characterization of the composite hydrogels is shown in Figure 6.
Micromechanical studies were performed under controlled RH. Figure 6 shows the impact of the
increase of both CHI concentration and CNF content on the hydrogel mechanical properties. Table 1
gives the elastic modulus (E) values estimated from the slope of the tangent comprising the range
between the origin and the lowest strain values of the stress–strain curves (Figure 6). Strain at break
values of 45–65% and E between 0.073 and 0.30 MPa were obtained depending on the hydrogel
composition. As expected, the increase of the CNF content enhanced the hydrogel mechanical
properties. The highest value of E was obtained for composites containing a CHI concentration
of 3% (w/w) and a CNF content of 0.4% (w/w). Results were in the range of relatively good mechanical
performance for polysaccharide hydrogel biomaterials [21,49]. These results indicate that the nanofibers
provided reinforcement to the hydrogel matrix of both 2 and 3% (w/w) CHI. The surface of CNFs
used in this work was weakly charged with carboxylate moieties displaying a surface charge density
of 40–80 mmol/kg [50,51]. During hydrogel processing, in the viscous suspensions electrostatic
interactions could be established between CHI (a polycation) and CNFs (a polyanion). Hydrogen
bond interactions also could be established between the –OH and –NH functionalities of CHI and
the –OH groups of cellulose. Besides, hydrophobic interactions together with H-bonding contribute
to the formation of the hydrogel network during the neutralization step. All mentioned interactions
contribute to the good compatibility between the nanofibers and the CHI matrix and may allow for
stress transfer from the CHI hydrogel matrix to the nanofibers, resulting in improved mechanical
properties of the composites. Chitosan chains may absorb on the surface of CNF and play a role in the
bridging of nanofibers [41,52,53].
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Figure 6. Stress–strain curves of CNF/CHI hydrogels of different compositions analyzed in microtensile
tests performed under controlled 45% relative humidity.
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Table 1. Elastic modulus (E) values of CNF/CHI hydrogels of different compositions obtained by
microtensile test.

Hydrogel Composition E (MPa) 1

2% CHI 0.073 ± 0.0024
3% CHI 0.13 ± 0.0045

2% CHI/0.2% CNF 0.22 ± 0.0013
3% CHI/0.2% CNF 0.24 ± 0.0013
2% CHI/0.4% CNF 0.28 ± 0.0021
3% CHI/0.2% CNF 0.30 ± 0.0011

1 Data are shown as the mean ± standard deviation.

3.3. Suitability of the CNF/CHI Composite Hydrogels for IVD Repair and Biomechanics Re-Establishment

Examples of optical phase-contrast images of NIH/3T3 fibroblasts after six days of culture on
a CNF/CHI hydrogel composite are shown in Figure 7. After 48 h (data not shown), confluent cell
spreading was practically achieved on both the neat 2% (w/w) CHI hydrogels and the corresponding
CNF/CHI composites. The differences in cellular behavior observed for different CHI concentrations
were mainly explained by the increase of stiffness and density (porosity decrease) of the hydrogel
when increasing CHI concentration. Higher CHI concentrations led to less accessibility for the
cells, reduced adhesion, and longer time was needed for representative spreading. Ata given CHI
concentration, for the CNF contents considered in this study (0.2–0.4% (w/w)), similar cell behaviors
were observed when using CHI alone or CNF-filled CHI hydrogels. A remarkable aspect was that
for CHI concentrations higher than 2% (w/w), as considered in this study, the fibroblasts mostly grew
on the hydrogel surface, which hardly revealed a three-dimensional (3D) cell culture appearance
(Figure 7a). When the top surface of the hydrogel was cut to produce a fresh surface revealing the
inner microstructure of the flat hydrogel (i.e., farther from the original top surface), proliferation of
the cells within the hydrogel structure was observed, as revealed in Figure 7b. This relatively low
proliferation in the bulk of the hydrogels for CHI concentration higher than 2% could be also related
to variations in the density and stiffness throughout the hydrogel cross-section (when moving from
the top to the inner part). Actually, in the hydrogel processing, a directional neutralization occurred
since the neutralization front moves from the top to the bottom of the Petri dish mold (Figure 4).
Sereni et al. [48] reported on porosity variations in the cross-section of CHI hydrogels due to the
preparation procedure, which was similar to that used in this study. This effect may also be present in
CNF-filled CHI hydrogels, which indeed could influence the fibroblast behavior on the hydrogel.
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Using CNF/CHI hydrogel patches for the repair of the AF disc region is justified by the
reported modeling of IVD tissue, in which the fibrous network of AF plays a critical role in the
IVD biomechanics [54]. A rigorous material definition maybe achieved to incorporate the role of
fiber–matrix interactions in the complex IVD tissue. The design of hydrogel composite implants
needs to reach adequate mechanics and relative long-term performance as well as fix onto the
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tissue defect (e.g., by adhesion or suture). The design of a bioactive hydrogel to seal, reinforce,
and repair the AF, as proposed here, may ensure appropriate long-term tissue regeneration, while
providing a mechanical support to avoid post-surgery hernia reoccurrence or compressive scar.
We studied the input of the engineered CNF/CHI composite hydrogels on the biomechanics of
the IVD. The hydrogel composition with the best mechanical properties achieved in the microtensile
testing results (3% CHI/0.4% CNF) was selected for implantation studies. Figure 8 shows the resulting
nonlinear stress–strain relationship of the motion segments’ mechanical behavior. The curves of the
healthy, damaged, and hydrogel-implanted discs showed an initial neutral zone (NZ), where the discs
undergo relatively large deformation under low applied force. Then, the elastic zone (EZ) was reached.
This linear EZ corresponds to the physiological loading range (Figure 8, grey shadow) with stresses
reported to be 0.6–3.8 MPa, related to body weight or exerted muscle forces during bending and torsion
(0.6–1.3 MPa) [5], and typical or extreme daily loadings like object lifting and vibrating vehicle driving
(2.5–3.8 MPa) [7,55,56]. The EZ of the healthy disc revealed the physiological loading region and a
pronounced slope. The positive input of the hydrogel implantation in AF defect on disc biomechanics
is also shown. While both curves of the damaged and hydrogel-treated discs revealed an EZ within the
physiological loading range, the linear EZ of the curve of the hydrogel-treated disc revealed a higher
slope similar to the healthy disc. Moreover, the stress at failure of the healthy disc, hydrogel-implanted
disc, and the untreated damaged disc (6.7, 5.9, and 5.0 MPa, respectively) demonstrates the beneficial
role of hydrogel composite implantation to re-establish IVD biomechanics.
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Figure 8. (a) Examples of healthy, damaged, and hydrogel-implanted discs for which spinal
motion segments, consisting of two vertebral endplates and the disc joining them together,
biomechanical testing were performed. (b) Compression stress–strain curves of healthy, damaged,
and hydrogel-implanted intervertebral disc. For the latter, the intervertebral disc annulus fibrosus
was repaired with a 3% CHI/0.4% CNF composite hydrogel patch. Grey shadow: Physiological
loading range.
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The range of motion (ROM)—the displacement at the largest applied load—of the
hydrogel-implanted disc approached more that of the healthy disc, than did the damaged disc.
In contrast to the damaged disc, the shape of the curve of the hydrogel-implanted disc was much closer
to that of the healthy disc. Similarly to what is observed for the healthy disc, the hydrogel-implanted
disc revealed a plastic deformation range after the EZ. The dotted curve in the Figure 8 corresponds
to a hydrogel-implanted disc, which initially reached complete failure, but was retreated with a new
hydrogel patch in the AF defect and injected with 120 µL of CNF/CHI viscous formulation (sol state)
in the nucleus [41]. With this combination of hydrogel implant and injectable treatment, a stress of
2.2 MPa, still in the range of physiological loading, could be achieved. Pictures of discs subjected
to this treatment combination after complete failure are shown in Figure 9. In a first disc, when the
failure was achieved for the second time, the integrity of the disc was preserved at the implanted side
(Figure 9b), revealing the ability of the hydrogel implant to withstand any fluid leak during nucleus
prolapse. In a second disc, the implanted hydrogel could not withstand fluid leak during nucleus
prolapse (Figure 9c). Noticeably, the images in Figure 9 correspond to the appearance after mechanical
testing of motion segments which already achieved failure in a previous compression testing.
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Research on hydrogel biomaterial therapies for IVD tissue engineering is facing many challenges.
Our designed materials appear compatible with early mechanical stimulation, which also appears
to affect the behavior of chondrocytes and thus the self-regeneration of cartilaginous tissues [54].
A proportional relationship was found between compression of a chondrocyte-loaded tissue engineered
biomaterial and the culture time-dependent increase of stiffness of the biomaterial [54,57,58].

4. Conclusions

Cellulose nanofiber-filled chitosan composite hydrogels were developed and structurally and
mechanically characterized. The addition of CNF contributes to the improvement of the mechanical
properties of CHI hydrogel matrices. From ex vivo experiments performed in pig vertebral unit models,
we showed that the implantation of CNF-reinforced CHI hydrogels in AF disc defects contributes to the
restoration of the disc biomechanics by approaching the functionality of a healthy disc. Furthermore,
these hydrogel composites can serve as contention patches against nucleus protrusion and also as
hydrogel biomaterial to support cell growth in a 3D environment, and finally show characteristics and
properties which are promising for IVD tissue engineering.
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