
HAL Id: hal-02335367
https://hal.science/hal-02335367v3

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Min-Max-Min Robustness for Combinatorial Problems
with Discrete Budgeted Uncertainty

Marc Goerigk, Jannis Kurtz, Michael Poss

To cite this version:
Marc Goerigk, Jannis Kurtz, Michael Poss. Min-Max-Min Robustness for Combinatorial Prob-
lems with Discrete Budgeted Uncertainty. Discrete Applied Mathematics, 2020, 285, pp.707-725.
�10.1016/j.dam.2020.07.011�. �hal-02335367v3�

https://hal.science/hal-02335367v3
https://hal.archives-ouvertes.fr


Min-Max-Min Robustness for Combinatorial Problems

with Discrete Budgeted Uncertainty

Marc Goerigk

Network and Data Science Management, University of Siegen, Germany

Jannis Kurtz

Department of Mathematics, RWTH Aachen University, Germany

Michael Poss

LIRMM, University of Montpellier, CNRS, France

Abstract

We consider robust combinatorial optimization problems with cost uncer-
tainty where the decision maker can prepare K solutions beforehand and
chooses the best of them once the true cost is revealed. Also known as
min-max-min robustness (a special case of K-adaptability), it is a viable al-
ternative to otherwise intractable two-stage problems. The uncertainty set
assumed in this paper considers that in any scenario, at most Γ of the com-
ponents of the cost vectors will be higher than expected, which corresponds
to the extreme points of the budgeted uncertainty set.

While the classical min-max problem with budgeted uncertainty is essen-
tially as easy as the underlying deterministic problem, it turns out that the
min-max-min problem is NP-hard for many easy combinatorial optimiza-
tion problems, and not approximable in general. We thus present an integer
programming formulation for solving the problem through a row-and-column
generation algorithm. While exact, this algorithm can only cope with small
problems, so we present two additional heuristics leveraging the structure
of budgeted uncertainty. We compare our row-and-column generation algo-
rithm and our heuristics on min-knapsack and shortest path instances previ-
ously used in the scientific literature and find that the heuristics obtain good
quality solutions in short computational times.
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K-adaptability, budgeted uncertainty.

1. Introduction

1.1. Motivation

Let us consider a combinatorial optimization problem

min
x∈X

ccc>xxx, (M1)

where X ⊆ {0, 1}n is the set of feasible solutions and ccc ∈ Rn is a cost vector.

In many practical applications (e.g. uncertain road lengths for a shortest

path problem or uncertain revenues in a project investment problem), the

decisions xxx must be taken prior to knowing the exact values of the cost vector

ccc. In that context, one should account for these uncertainties when looking

for a solution. One widely used approach is robust optimization, in which

it is assumed that ccc can take any value in a given uncertainty set U ⊆ Rn,

leading to the robust counterpart

min
xxx∈X

max
ccc∈U

ccc>xxx. (M2)

The min-max problem (M2) has been widely studied for discrete uncertainty

sets U = {ccc1, . . . , cccm} (see the surveys [ABV09, KZ16]). For most classical

combinatorial problems the min-max problem (M2) is NP-hard for general

discrete uncertainty sets U , even if U only contains two scenarios. What

is more, discrete uncertainty sets rely on accurate historical data, which

are often not available. When this is the case, it can be more natural for

the decision maker to provide only two values {ĉi, ĉi + di} with di ≥ 0 for

each uncertain cost component, representing the expected and worst case,

respectively. Then, assuming that only Γ uncertain parameters take their

upper values in any scenario, Bertsimas and Sim [BS03] introduced what is

often called the discrete budgeted uncertainty set

UΓ =

ccc ∈ Rn : ci = ĉi + δidi, i ∈ [n], δδδ ∈ {0, 1}n,
∑
i∈[n]

δi ≤ Γ
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where we use the notation [n] := {1, . . . , n}. The implicit description of UΓ

leads to min-max problems that are essentially as easy as the underlying

deterministic problems (see [BS03]).

In some real-world situations, the min-max approach (M2) can be too

conservative, as no recourse action can be taken to remedy to the values taken

by the uncertain parameters. A more flexible model has been introduced

in [BK17] to overcome this limitation. The approach computes K solutions

and chooses the best of them for each realization of ccc in U . Using discrete

budgeted uncertainty in this setting leads to the min-max-min problem

min
xxx(1),...,xxx(K)∈X

max
ccc∈UΓ

min
k∈[K]

ccc>xxx(k). (M3)

Approach (M3) is particularly well-suited in situations where one can prepare

the ground before the uncertainty is revealed. It is a special case of the

more general K-adaptability approach from [HKW15], where additional first-

stage costs are allowed. Examples are numerous, e.g. transporting relief

supplies or evacuating citizens in case an uncertain disaster arises [CTC07,

LPdB+13], hub locations [ANSdG12], or parcel deliveries [EKBC20, SGW17];

see also [CGKP19] for more details.

Regarding the budgeted uncertainty, its convex hullccc ∈ Rn : ci = ĉi + δidi, i ∈ [n], δδδ ∈ [0, 1]n,
∑
i∈[n]

δi ≤ Γ

 (1)

together with the min-max-min problem has already been considered in [Cha17]

and [CGKP19], where the authors study the theoretical complexity of the

problem, and propose efficient solution algorithms, respectively.

The focus of this paper is Problem (M3) under the discrete budgeted un-

certainty set UΓ. First, we remark that, unlike the min-max problem, it is not

equivalent to replace UΓ by its convex hull (1), see for instance [BK18a] for

an example, so that the results for convex uncertainty sets proved in [BK17,

Cha17] do not carry over the problem studied in this paper. Moreover the
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discrete version of the budgeted uncertainty set is inevitable if we want to

model edge failures for problems on graphs or adversarial attacks on labeled

data in classification problems, see [BDPZ18] for the latter application.

1.2. Structure and contributions

We prove in Section 2 that, unlike the classical min-max problem, Prob-

lem (M3) for discrete budgeted uncertainty is NP-hard for the shortest

path problem, the spanning tree problem, the assignment problem, the min-

knapsack problem, the selection problem and even for the unconstrained

minimization problem. We also show that, in general, Problem (M3) cannot

be approximated in polynomial time. On the positive side, we provide dy-

namic programming algorithms for the unconstrained and the min-knapsack

problem, which are essentially of theoretical interest. Section 3 turns to in-

teger linear programming (ILP) formulations. We first show that computing

the inner maximization problem

max
ccc∈UΓ

min
k∈[K]

ccc>xxx(k)

is NP-hard, suggesting that no compact ILP may be available for (M3). We

then introduce an assignment-based formulation, that is embedded into a

row-and-column generation algorithm. We pursue numerical approaches for

the problem in Section 4 where we provide two heuristic algorithms. Lever-

aging known results for budgeted uncertainty, we can prove both algorithms

solve only polynomially many deterministic problems. Our ILP formulation

and the heuristics are numerically assessed in Section 5 on instances of min-

knapsack and shortest path problems previously considered in the literature.

Section 6 concludes the paper.

1.3. Related Literature

The field of robust optimization first emerged in the 1970s in [Soy73] and

was later studied intensively for discrete, conic and ellipsoidal uncertainty
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sets; see [KY13, BTN98, BTN99]. The budgeted uncertainty set was first in-

troduced by Bertsimas and Sim [BS03] and since then studied intensively for

the classical robust optimization approach and for several other approaches;

see [BK18b, KZ16] for an overview. In addition to its favorable compu-

tational properties, the set was also motivated by its link with probabilistic

constraints, providing safe and tractable approximation to otherwise difficult

problems [BS04, Pos13]. Recently complexity results for the robust two-stage

version of several combinatorial problems under budgeted uncertainty were

presented [GKZ19].

The approach called min-max-min robustness which we study in this work

was first presented by Buchheim and Kurtz in [BK17] and can be seen as a

special case of the K-adaptability approach which was introduced to approx-

imate robust two-stage problems; see [BC10, HKW16, SGW17].

Buchheim and Kurtz show in [BK17] that the min-max-min robust prob-

lem is as easy as the underlying problem (M1) if U is a convex uncertainty

set and K ≥ n + 1. In contrast they prove that for any fixed K the prob-

lem is NP-hard even for the unconstrained binary problem with polyhe-

dral uncertainty. For discrete uncertainty the min-max-min problem is at

least as complex as the min-max problem which is, more often than not,

NP-hard [BK18a]. In [EKBC20] the authors study the min-max-min ro-

bust problem for the vehicle routing problem and present exact and heuristic

solution algorithms.

The min-max-min robust problem with convex budgeted uncertainty (1)

has been considered in [Cha17]. The author could prove that for K = 2

the min-max-min problem can be solved in polynomial time for several com-

binatorial problems, which is in contrast to the NP-hardness result for

polyhedral uncertainty. The more general problem with larger K and convex

budgeted uncertainty was studied in [CGKP19], where the authors study the

theoretical complexity of the problem, and propose efficient solution algo-

rithms. To the best of our knowledge in this work the problem is studied for
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discrete budgeted uncertainty for the first time.

2. Complexity results

2.1. Overview

In this section, we provide complexity results for the min-max-min prob-

lem (M3) for different combinatorial problems. These are:

• the unconstrained binary problem, where X = {0, 1}n,

• the selection problem, where X = {xxx ∈ {0, 1}n :
∑

i∈[n] xi = p} for an

integer p < n,

• the min-knapsack problem, where X = {xxx ∈ {0, 1}n :
∑

i∈[n] wixi ≥ C}
for non-negative weights www and a budget C > 0,

• the assignment problem, where X = {xxx ∈ {0, 1}n×n :
∑

i∈[n] xij =

1 ∀j ∈ [n],
∑

j∈[n] xij = 1 ∀i ∈ [n]},

• the spanning tree problem, and

• the shortest path problem.

For the unconstrained problem, we assume that item costs can be negative

(otherwise, the problem would be trivial). For all other problems, we assume

non-negative item costs.

It turns out that all of the mentioned problems are at least weakly

NP-hard, and under some configurations even strongly NP-hard. Table 1

summarizes the results which we prove in the following. While the uncon-

strained binary problem and the selection problem are trivial problems in the

nominal case, they are often considered in the robust optimization literature

(see, e.g., [BK18b, CGKZ18]).

We prove two additional results not summarized in Table 1. First, we

show the shortest path problem with up to 5 edges cannot be approximated
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in polynomial time, unless P = NP . This result underlines that one can-

not provide approximation algorithms that would be valid for any problem,

unlike the general results provided in [BS03, Pos18]. Second, we provide a

dynamic programming algorithm for the min-knapsack problem, that applies

also to the unconstrained problem and the selection problem. These dynamic

programming algorithms run in pseudo-polynomial time whenever K and Γ

are constant.

Problem K fixed K input Reference
Unconstrained weakly NP-hard strongly NP-hard Theorem 1
Selection weakly NP-hard strongly NP-hard Theorem 2
Min-Knapsack weakly NP-hard strongly NP-hard Theorem 3
Spanning Tree NP-hard strongly NP-hard Theorem 3
Assignment NP-hard strongly NP-hard Theorem 3
Shortest Path strongly NP-hard strongly NP-hard Theorem 4

Table 1: Complexity of Problem (M3) for UΓ.

Our proofs frequently use the following problems (see [GJ90]):

• The weakly NP-hard partition problem:

Given: a set of integers ai ∈ N, i ∈ [ñ]

Decide: Does there exist a subset S ⊆ [ñ] such that
∑

i∈S ai =
∑

i∈[ñ]\S ai?

• The weakly NP-hard equipartition problem:

Given: a set of integers ai ∈ N, i ∈ [ñ], where ñ is even

Decide: Does there exist a subset S ⊆ [ñ] with |S| = ñ
2

such that∑
i∈S ai =

∑
i∈[ñ]\S ai?

• The strongly NP-hard 3-partition problem:

Given: values a1, . . . , a3m ∈ N and a bound B ∈ N such that B
4
<

ai <
B
2

for all i = 1, . . . , 3m and
∑3m

i=1 ai = mB

Decide: Do there exist subsets S1, . . . , Sm ⊆ {1, . . . , 3m} such that∑
i∈Sj

ai = B for all j = 1 . . . ,m?
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2.2. NP-hard cases and inapproximability

In the following we prove NP-hardness results for Problem (M3) for sev-

eral combinatorial problems.

Theorem 1. Problem (M3) for the unconstrained binary problem is weakly

NP-hard, even if K = 2. It is strongly NP-hard when K is part of the

input.

Proof. We use the partition problem and construct an instance of prob-

lem (M3) by setting n = ñ, ĉi = −ai and di = M for each i ∈ [n] with

M =
∑

i∈[n] ai. Furthermore, we set Γ = 1 and K = 2.

By the choice of M in each optimal solution it holds x
(1)
i + x

(2)
i ≤ 1

for all i ∈ [n] and the large deviation M will affect the solution with the

smaller nominal costs. The optimal value is therefore larger or equal to −1
2
M .

Then, the partition instance is a yes instance if and only if the min-max-

min problem has an optimal value equal to −1
2
M . Since the unconstrained

binary problem is a special case of the min-knapsack problem, the pseudo-

polynomial algorithm presented in Section 2.3 can be applied to (M3) for the

unconstrained problem, which proves the weak NP-hardness.

To prove strong NP-hardness for the case that K is part of the input

we reduce the 3-partition problem to Problem (M3). We set n = 3m, and

ĉi = −ai and di =
∑

i∈[3m] ai for all i ∈ [n]. Finally, we set K = m and

Γ = m− 1. By the choice of M , the objective value of any solution is equal

to maxk∈[K] ĉcc
>xxx(k). Hence, the optimal objective value of the min-max-min

problem is equal to −B if and only if the answer to the 3-partition problem

is yes.

Theorem 2. The problem (M3) is weakly NP-hard for the selection problem,

even if K = 2. It is strongly NP-hard if K is part of the input.
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Proof. For K = 2 we can use a similar construction as in the proof of The-

orem 1; see below. Note that negative cost vectors are not required in this

case. Moreover, one can adapt the pseudo-polynomial algorithm presented

in Section 2.3 to the selection problem which proves the weak NP-hardness.

We reduce the equipartition problem to the min-max-min problem, which

is known to be weakly NP-hard [GJ90]. We construct an instance of prob-

lem (M3) by setting n = ñ, p = n
2
, ĉi = ai and di = M for each i ∈ [n]

with M =
∑

i∈[n] ai. Furthermore, we set Γ = 1 and K = 2. By the choice

of M in each optimal solution it holds x
(1)
i + x

(2)
i ≤ 1 for all i ∈ [n]. Since

p = n
2

each item must be selected in exactly one of the solutions, i.e it even

holds x
(1)
i + x

(2)
i = 1 for all i ∈ [n]. The large deviation M will affect the

solution with the smaller nominal costs. The optimal value is therefore larger

or equal to 1
2
M . Then, the partition instance is a yes instance if and only if

the min-max-min problem has an optimal value equal to 1
2
M .

To prove strong NP-hardness for the case that K is part of the input we

reduce the 3-partition problem to Problem (M3).

We define an instance of the min-max-min selection problem in dimension

3m where p = 3, K = m, Γ = K−1 and we define UΓ with ĉi = ai and di = M

where M =
∑3m

i=1 ai. By the definition of M and Γ the K solutions define a

partition of the ground set {1, . . . , 3m} in an optimal solution of (M3). The

given 3-partition is then a yes instance if and only if Problem (M3) has an

optimal value lower or equal to B.

Theorem 3. Even if K = 2, Problem (M3) for the spanning tree problem

and the assignment problem is NP-hard; for the min-knapsack problem it is

weakly NP-hard. It is strongly NP-hard for all the mentioned problems if

K is part of the input.

The proof of Theorem 3 follows the line of the proof of Theorem 1 and

is provided in Appendix A. The result for the min-knapsack problem di-
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rectly follows from Theorem 1 by choosing knapsack weights and a knapsack

capacity such that all vectors in {0, 1}n are feasible.

Theorem 4. Problem (M3) for the shortest path problem is strongly NP-hard,
even if K = 2.

Proof. We use a reduction from the following edge-disjoint paths problem,

which is NP-hard in the strong sense [LMSL90]:

Given: a weighted undirected graph G = (V,E,www), two nodes s and t in V ,

and a value L

Decide: Do there exist two edge-disjoint paths between s and t such that

the length of both paths is less or equal to L?

Consider an instance of problem (M3) where we need to find paths between

s and t in G and define ĉe = we and de = M for each e ∈ E, where M can

be chosen as M =
∑

e∈E ĉe. Furthermore, set Γ = 1 and K = 2. Clearly

there exist two disjoint paths in G where the longer path has costs lower or

equal to some value L if and only if the latter instance of the min-max-min

problem has an optimal value lower or equal to L.

Our last complexity result shows that the problem may not be approx-

imable even if the underlying problem is polynomially solvable. An important

consequence of that result is is that there exists no polynomial-time algorithm

with an approximation guarantee valid for any problem X .

Theorem 5. Problem (M3) for the shortest path problem where paths may

have up to 5 edges cannot be approximated in polynomial time if K is part of

the input unless P = NP.

Proof. We use a reduction from the following edge-disjoint paths problem

with bounded number of edges, which is known to be NP-hard [IPS82]:
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Given: an undirected graph G = (V,E), and two nodes s and t in V

Decide: Do there exist K̃ edge-disjoint paths between s and t having at

most 5 edges?

By defining K = K̃, Γ = K − 1, ĉcc = 000 and ddd = 111, the optimal solution cost

of (M3) is 0 if and only if the answer to the decision problem is yes.

2.3. Dynamic programming for the min-knapsack problem

We provide a dynamic programming algorithm for the min-knapsack ver-

sion of problem (M3), which runs in pseudo-polynomial time. As the com-

plexity of the algorithm is high, its purpose is essentially theoretical. In what

follows we suppose the feasibility set is given by

X =

xxx ∈ {0, 1}n :
∑
i∈[n]

wixi ≥ C


where wi denotes the weight of item i and C the total available capacity.

Our algorithm runs in pseudo-polynomial time if K and Γ are fixed, and has

an exponential running-time in general, in accordance with the complexity

stated in Theorem 1. The algorithm can easily be adapted to handle the

unconstrained binary problem by choosing knapsack weights and a capacity

such that all binary vectors are feasible. Similarly, the selection problem is

obtained by choosing weights equal to 1.

Algorithm 1 follows the classical dynamic programming algorithm for

scheduling jobs on unrelated machines proposed in [HS76] by iterating over

all items and creating labels sss ∈ S for each possible variant of adding the

item to the feasible solutions or not. For ease of notation we present the idea

of the algorithm for the case K = 2 and Γ = 1, and sketch the generalization

in Appendix B.

For each item i ∈ [n] we assume that the current set of labels S has been

constructed by deciding whether the first i − 1 items are added to (partial)
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Algorithm 1: Solving the robust min-knapsack problem for K = 2
and Γ = 1
1 Input: XKP , UΓ, K = 2, Γ = 1
2 S = {(0, 0, 0, 0, 0, 0, 0)}
3 for i ∈ [n] do

4 for (w(1), w(2), c(1), c(2), d(1), d(2), d(1,2)) ∈ S do

5 if w(1) + wi≥ C then

6 sss(1) = (w(1) + wi, w
(2), c(1) + ĉi, c

(2),max
(
d(1), di

)
, d(2), d(1,2))

7 if w(2) + wi≥ C then

8 sss(1,2) = (w(1) +wi, w
(2) +wi, c

(1) + ĉi, c
(2) + ĉi,max

(
d(1), di

)
,

max
(
d(2), di

)
,max

(
d(1,2), di

)
)

9 end

10 end

11 else if w(2) + wi≥ C then

12 sss(2) = (w(1), w(2) + wi, c
(1), c(2) + ĉi, d

(1),max
(
d(2), di

)
, d(1,2))

13 end

14 S ← S ∪ {sss(1), sss(2), sss(1,2)}
15 end

16 end
17 Compute sssmax ∈ S with minimal cost(sss) (see Eq. (2))
18 Output: sssmax

solution xxx(1) ∈ XKP , xxx(2) ∈ XKP or to both. Hence, the partial solutions

correspond to sets of items S(1) ⊆ [i − 1] and S(2) ⊆ [i − 1], respectively.

As indexing the label sss by S(1) and S(2) could possibly lead to exponentially

many labels, we instead define the label as

sss = (w(1), w(2), c(1), c(2), d(1), d(2), d(1,2)),

where w(k) =
∑

i∈S(k) wi, c
(k) =

∑
i∈S(k) ci, and d(k) = maxi∈S(k) di for k ∈

{1, 2}. The value d(1,2) represents the highest deviations among the items

included in both solutions up to now, that is, d(1,2) = maxi∈S(1)∩S(2) di. Next,

we have four possibilities concerning the addition of item i to the partial

solutions:

1. S(1) ← S(1) ∪ {i}, yielding the new label sss(1), see step 6

2. S(2) ← S(2) ∪ {i}, yielding the new label sss(2), see step 12
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3. S(1) ← S(1) ∪ {i} and S(2) ← S(2) ∪ {i}, yielding the new label sss(1,2),

see step 8.

4. item i is added to none of the two solutions, which does not change the

current label.

Notice that the first three possibilities occur only if the resulting partial

solutions do not exceed the capacity of the knapsack.

Finally, we detail how to calculate the costs of a label, i.e. the worst-case

over all scenarios in UΓ for the corresponding solution. Note that since Γ = 1

that cost can be computed by examining the following three possibilities:

either we allow a deviation on the item with the largest deviation di contained

in the first solution or contained in the second solution or in both solutions.

Therefore the worst-case costs can be calculated by

cost(sss) = max
{

min(c(1) + d(1), c(2)),

min(c(1) + d(1,2), c(2) + d(1,2)),

min(c(1), c(2) + d(2))
}
.

(2)

To investigate the run-time of the algorithm consider c = maxi∈[n] ĉi, d =

maxi∈[n] di and w = maxi∈[n] wi. Then the largest value we have to consider

for c(1), c(2) is nc, the largest value for w(1), w(2) is nw and the largest value

for d(1), d(2), d(1,2) is d. Therefore the number of different labels we have to

consider in the algorithm is at most n4c2w2d
3
, so that the running time of

Algorithm 1 is in O(n5c2w2d
3
). Since we may record the indices that deviate

instead of the deviations themselves, another valid bound for the running

time of the algorithm is O(n8c2w2). Specifically, we could define any label

in S as the 7-tuple sss′ = (w(1), w(2), c(1), c(2), i(1), i(2), i(1,2)) where i(1), i(2) and

i(1,2) belong to [n].

Many dynamic programming algorithms lead to approximation algorithms

that can provide (1+ε)-approximate solutions with a complexity that is poly-

nomial in the input of the problem and 1/ε. We prove below that this is not
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the case here, by adapting the reduction from the equipartition problem to

the min-knapsack problem from [KPP04].

Theorem 6. There is no FPTAS for the min-knapsack variant of problem

(M3) unless P = NP, even in the case Γ = 1.

Proof. We reduce the equipartition problem to the decision version of (M3)

for Γ = 1 and K = 2. We define a min-knapsack instance with n = ñ many

items as follows: for each i ∈ [n], we set wi = ai, ĉi = 1 and di = n. The

capacity is set to C = 1
2

∑
i∈[n] ai. Clearly, there exists an equipartition of

the elements of [ñ] if and only if there exists a solution of Problem (M3) for

the min-knapsack instance with profit at most n
2
. This yields the result, as

an FPTAS would compute an (1 + 1
n
)-approximate solution in polynomial

time, which would be optimal for that instance.

Note that while it is not possible to construct an FPTAS for the robust

min-knapsack problem, it stands to reason that the dynamic programming

approach presented in this section can be used to construct a PTAS based

on cost inflation.

3. Exact algorithm and lower bounds

We first study the complexity of evaluating the objective function of Prob-

lem (M3), i.e., calculating

cost(x) := max
ccc∈UΓ

min
k∈[K]

ccc>xxx(k) (3)

for fixed x = (xxx(1), . . . ,xxx(K)). Clearly if Γ is constant we can solve the

latter problem by enumerating through all possible worst-case scenarios and

check for each which of the K solutions is the best. Since the number of

scenarios is in O(nΓ) and checking the objective values of the K solutions

can be done in O(nK), solving Problem (3) can be done in time O(nΓ+1K).

The problem can also be solved efficiently if K is constant. Consider for
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simplicity the case K = 2. Then, we define three disjoints subsets of [n],

Ṡ(1,2) = {i ∈ [n] : x
(1)
i = x

(2)
i = 1}, and Ṡ(k) = {i ∈ [n] : x

(k)
i = 1} \ Ṡ(1,2) for

k ∈ [2], and order their elements according to the non-increasing values of

di. Then, for each k ∈ [2], we denote the sum of the first Γ(k) indices in set

Ṡ(k) as Γ(k)(Ṡ(k)), and similarly Γ(1,2)(Ṡ(1,2)) for the set Ṡ(1,2). Thanks to the

orderings of the elements in each set, Problem (3) can be reformulated as

max
Γ(1),Γ(2),Γ(1,2)∈Z+

Γ(1)+Γ(2)+Γ(1,2)=Γ

(
Γ(1,2)(S(1,2)) + min

k∈[2]
Γ(k)(Ṡ(k))

)

The above problem can be solved in polynomial time by complete enumer-

ation since there are O((Γ + 1)Γ) different triplets (Γ(1),Γ(2),Γ(1,2)) of non-

negative integers that satisfy Γ(1) + Γ(2) + Γ(1,2) = Γ. The above reasoning

can be extended to any constant K by following the lines of Appendix B.

The following result shows that the problem is strongly NP-hard if K

and Γ are part of the input. This makes it unlikely that a compact ILP

formulation for Problem (M3) exists, as such a formulation would typically

allow us to evaluate a solution in polynomial time.

Theorem 7. Evaluating the objective function of Problem (M3) for a given

solution is strongly NP-hard if K and Γ are part of the input.

Proof. We use a reduction from the set cover problem, which is known to be

strongly NP-hard [GJ90]:

Given: an integer N , a collection S of m sets Si ⊆ [N ], and a number L ∈ N

Decide: Does there exist a sub-collection of S of cardinality not greater

than L and whose union equals [N ]?

We construct a reduction through the following instance of cost(x). We

set K = N , Γ = L, n = m, ĉi = 0 and di = 1 for each i ∈ [n]. Further,

we define x
(k)
i = 1 iff k ∈ Si. Clearly, cost(x) ≥ 0. We prove next that

cost(x) ≥ 1 if and only if the answer to the set cover instance is yes.
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Let us define Z = {zzz ∈ {0, 1}n :
∑

i∈[n] zi ≤ Γ} as the set of vectors zzz

describing costs ccc = (ĉi + dizi)i∈[n] ∈ UΓ. There exists a bijection between

the elements of Z and the sub-collections of S of cardinality not greater than

Γ. Further, we see that ccc>xxx(k) =
∑

i∈[n] zix
(k)
i , so setting zi = 1 implies that∑

i∈[n] zix
(k)
i ≥ 1 for each k ∈ Si. From the definition of cost(x), we have

that

cost(x) ≥ 1⇔ ∃zzz ∈ Z, ∀k ∈ [K] :
∑
i∈[n]

zix
(k)
i ≥ 1. (4)

If the answer to the set cover problem is yes and is provided by the sub-

collection indexed byM, then we set zi = 1 for each i ∈M and obtain from

(4) that cost(x) ≥ 1. If the answer is no, then for each zzz ∈ Z, there exists

k ∈ [K] such that
∑

i∈[n] zix
(k)
i = 0, and we obtain cost(x) = 0.

In the following we provide an ILP formulation for Problem (M3) and

derive a row-and-column generation algorithm based on this formulation.

Consider first an arbitrary discrete uncertainty set U = {ccc1, . . . , cccm} and

let binary variables ykj define an assignment between the scenarios and the

solutions, where ykj = 1 if and only if xxx(k) has the minimal objective value

over all xxx(1), . . . ,xxx(K) in scenario cccj. We can reformulate Problem (M3) as

min ω

s.t. ω ≥
∑
k∈[K]

ykj

∑
i∈[n]

cjix
(k)
i

 ∀j ∈ [m]

∑
k∈[K]

ykj = 1 ∀j ∈ [m]

ykj ∈ {0, 1} ∀k ∈ [K], j ∈ [m]

xxx(k) ∈ X ∀k ∈ [K],

(Master)

where the product ykjx
(k)
i can be linearized introducing the additional vari-
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ables wkji = ykjx
(k)
i and rewriting (Master) to

min ω

s.t. ω ≥
∑
k∈[K]

∑
i∈[n]

cjiwkji ∀j ∈ [m]

∑
k∈[K]

ykj = 1 ∀j ∈ [m]

wkji ≥ x
(k)
i + ykj − 1 ∀k ∈ [K], j ∈ [m], i ∈ [n]

ykj ∈ {0, 1} ∀k ∈ [K], j ∈ [m]

wkji ≥ 0 ∀k ∈ [K], j ∈ [m], i ∈ [n]

xxx(k) ∈ X ∀k ∈ [K].

(5)

Note that for fixed values x
(k)
i and ykj, we can assume that wkji is set as

small as possible in an optimal solution. Hence, constraints wkji ≤ ykj and

wkji ≤ x
(k)
i are not required for the linearization. Further note that (Master)

has exponentially many variables and constraints in case of discrete budgeted

uncertainty. The first ingredient of our approach, described in Algorithm 2,

is to solve (Master) for a starting set U ′ ⊂ UΓ and to iteratively add a new

scenario which is the optimal solution of problem

max
ccc∈UΓ

min
k∈[K]

ccc>xxx(k) (Slave)

for the current solution x to the restricted master problem. Note that the op-

timal value of the latter problem is the objective value cost(x) of xxx(1), . . . ,xxx(K)

for problem (M3), which can be computed through the following IP formu-

lation:
max z

s.t. z ≤ ĉ>xxx(k) +
n∑
i=1

δidixxx
(k)
i k ∈ [K]

n∑
i=1

δi ≤ Γ

δi ∈ {0, 1} i ∈ [n].

(6)
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Clearly the optimal value of (Master) for a subset of scenarios is a lower

bound for Problem (M3) while the optimal value of (Slave) is an upper bound.

Therefore Algorithm 2 iteratively calculates upper and lower bounds with

decreasing gap, following a common trend in robust optimization, dating

back to [BÖ08].

Algorithm 2 calculates an optimal solution of Problem (M3). Since there

is a finite number of feasible solutions, we can only generate a finite number

of scenarios in the loop and therefore the algorithm terminates in a finite

number of steps.

Algorithm 2: Row-and-column generation algorithm

1 Input: X , UΓ, K
2 U ′ ← ∅
3 Choose any ccc ∈ UΓ

4 repeat
5 U ′ ← U ′ ∪ {ccc}
6 Solve (Master) with respect to U ′
7 Set x as its optimal solution, LB as its objective value
8 Solve (Slave) with respect to x
9 Set ccc as its optimal solution, UB as its objective value

10 until LB = UB;
11 Output: x

As mentioned above, Algorithm 2 iteratively calculates a non-decreasing

sequence of lower bounds for Problem (M3). Nevertheless as our computa-

tional experiments show these lower bounds are hard to compute and tend to

be far from the optimal value even after one hour of computation time; see

Section 5. In the following we present a different lower bound for Problem

(M3) which turns out to be tighter as well as easier to compute.

Observation 8. The optimal value of problem

max
ccc∈UΓ

min
xxx∈X

ccc>xxx (MMLB)

is a lower bound for Problem (M3).
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Proof. Clearly for every solution xxx(1), . . . ,xxx(K) we have

max
ccc∈UΓ

min
xxx∈X

ccc>xxx ≤ max
ccc∈UΓ

min
k∈[K]

ccc>xxx(k)

which proves the result.

The problem (MMLB) can be solved by a classical row-generation method

as follows: For a subset of solutions X ′ ⊂ X calculate an optimal solution

(ccc∗, z∗) of problem

max z

s.t. z ≤ ccc>xxx ∀xxx ∈ X ′

ccc ∈ UΓ

and afterwards solve the deterministic problem

min
xxx∈X

(ccc∗)>xxx.

Add the optimal solution of the latter problem to X ′ and iterate. Stop if the

latter optimal value is larger than or equal to z∗.

4. Heuristic algorithms

In this section we present two heuristic algorithms which are based on

the idea to find a partition of the uncertainty set into K subsets and cal-

culate the optimal min-max solution for each of the subsets, see the general

scheme presented in Algorithm 3. To end up with a fast algorithm the min-

max problem for each subset should be computationally tractable. For both

heuristics we derive a K-partition of the budgeted uncertainty set such that

each subset remains a budgeted uncertainty set or has a structure which is

close to a budgeted uncertainty set. In both cases we can show that each of

the min-max problems in Algorithm 3 can be solved by solving a polynomial

number of deterministic problems (M1).
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Algorithm 3: Heuristic Algorithm for Problem (M3) with K ≤ n.

1 Input: X , UΓ, K
2 Calculate a partition U1 ∪ . . . ∪ UK = UΓ.
3 Calculate

xxx(k) = arg min
xxx∈X

max
ccc∈Uk

ccc>xxx ∀k ∈ [K].

4 Output: xxx(1), . . . ,xxx(K)

4.1. Heuristic 1

In this section we derive a partition of the budgeted uncertainty set UΓ

such that each of the subsets has a similar structure as the classical budgeted

uncertainty set. Furthermore each subset of the partition covers scenarios

which are close to each other in the sense that there exists a solution xxx ∈ X
which works well for most of the scenarios. We show that for each subset

of the partition the min-max problem can be solved by solving a polynomial

number of deterministic problems.

We partition the budgeted uncertainty set such that in each subset Uk a

subsequence of items is selected and in each scenario of the subset at least one

of the items deviates from its mean value. More precisely, let any ordering of

the indices i1, . . . , in be given. Without loss of generality, we assume i` = `

in the following presentation. For t := b n
K
c, we define

Uk :=

{
ccc ∈ Rn : ci = ĉi + δidi, δδδ ∈ {0, 1}n, (7)

(k−1)t∑
i=1

δi = 0,
kt∑

i=(k−1)t+1

δi ≥ 1,
n∑

i=(k−1)t+1

δi ≤ Γ

}
for each k = 1, . . . , K − 1 and

UK :=

{
ccc ∈ Rn : ci = ĉi + δidi, δδδ ∈ {0, 1}n,

(K−1)t∑
i=1

δi = 0,
n∑

i=(K−1)t+1

δi ≥ 1,
n∑

i=(K−1)t+1

δi ≤ Γ

}
.

20



Note that the only difference in the definition of UK is that the second sum

instead of containing t summands, additionally contains all summands which

are left due to rounding of t. For ease of notation we do not consider this

special case in the following.

It is easy to see that U1∪· · ·∪UK = UΓ\{ĉ}. Furthermore all of the subsets

Uk have a budgeted-like structure. We will use this structure in the following

theorem to show that the classical min-max problem in Step 3 of Algorithm

3 can be solved in polynomial time if an oracle for the underlying determin-

istic problem is given. We define in the following (x)+ := max {x, 0}. The

following result is related to Theorem 3 from [BS03] and its generalizations

in [Pos18].

Theorem 9. The min-max problem with uncertainty set Uk can be solved by

solving the deterministic problems

α∗Γ− β∗ + t(β∗ − α∗)+ + min
xxx∈X

ĉcc>xxx+www>xxx (8)

where

wi =


0 if i ≤ (k − 1)t

(di + β∗ − α∗)+ − (β∗ − α∗)+ if (k − 1)t+ 1 ≤ i ≤ kt

(di − α∗)+ if i ≥ kt+ 1

for all values

(α∗, β∗) ∈ A× {0} ∪ {(α, β) | α ∈ A, β = α}

∪ {(α, β) | α ∈ A, β = (α− di)+ : i = (k − 1)t+ 1, . . . , kt} ,

where A := {di | i = (k − 1)t+ 1, . . . , n} ∪ {0} and returning the solution of

the problem with the smallest optimal value.

Proof. For each given xxx ∈ X we can rewrite the objective value maxccc∈Uk ccc
>xxx
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by

ĉcc>xxx+ max
δδδ

n∑
i=(k−1)t+1

δidixi

s.t.
kt∑

i=(k−1)t+1

δi ≥ 1

n∑
i=(k−1)t+1

δi ≤ Γ

δi ∈ [0, 1] i = (k − 1)t+ 1, . . . , n.

The dual of the above linear program is

ĉcc>xxx+ min αΓ− β +
n∑

i=(k−1)t+1

γi

s.t. α− β + γi ≥ dixi i = (k − 1)t+ 1, . . . , kt

α + γi ≥ dixi i = kt+ 1, . . . , n

α, β ≥ 0

γi ≥ 0 i = (k − 1)t+ 1, . . . , n.

(9)

In each optimal solution of the latter problem for γi it holds

γi = (dixi + β − α)+ = xi(di + β − α)+ + (1− xi)(β − α)+

for each i = (k − 1)t+ 1, . . . , kt and

γi = (dixi − α)+ = xi(di − α)+

for each i = kt+ 1, . . . , n. Therefore, substituting the latter equations in the

objective function of Problem (9) we obtain that problem

min
xxx∈X

max
ccc∈Uk

ccc>xxx
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is equivalent to

min ĉcc>xxx+ αΓ− β +
kt∑

i=(k−1)t+1

xi(di + β − α)+ + (1− xi)(β − α)+

+
n∑

i=kt+1

xi(di − α)+

s.t. xxx ∈ X , α, β ≥ 0.

(10)

α

β

di1 di2 di2 di3

di4

di5

Figure 1: Non-differentiable regions of f1(α, β) and f2(α, β), respectively drawn as dotted
and solid lines. The squares represent the kinkpoints of the objective function on the
domain visible in the figure.

For any fixed xxx∗ the objective function of the latter problem is a piece-

wise linear and convex function, so its minimum is reached at one of its

kinkpoints. More specifically, the function is the sum of an affine function

and two convex piece-wise linear functions, f1(α, β) =
∑kt

i=(k−1)t+1 xi(di +

β − α)+ + (1 − xi)(β − α)+ and f2(α, β) =
∑n

i=kt+1 xi(di − α)+. The non-

differentiable regions of both functions are half-lines, parallel to the lines

α−β = 0 and α = 0, respectively, see Figure 1 for an illustration. Therefore,

any kinkpoint of the objective function is obtained at the intersection of these

lines, proving the result.

Corollary 10. The heuristic presented in Algorithm 3 for the partition given

in (7) requires the solution of O(K(2 + t)n) many deterministic problems.
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Proof. For each of the K subsets Uk the number of (α, β) values for which

we have to solve the deterministic problem is in O(2n + tn). Since we have

to solve the min-max problem for each of the K subsets in Algorithm 3 in

total we have to solve O(K(2 + t)n) deterministic problems.

4.2. Heuristic 2

In this section we present a second heuristic for Problem (M3), which is

also based on partitioning the set U into K sets U1 ∪ . . .∪UK , such that the

min-max problem on each set can be solved in polynomial time. Differently

from the previous approach, we find the partition dynamically.

Consider again the uncertainty set

UΓ =

ccc ∈ Rn : ci = ĉi + diδi, δδδ ∈ {0, 1}n,
∑
i∈[n]

δi ≤ Γ


and let us assume that for a specific item i ∈ [n], we enforce δi = 1. We denote

the resulting uncertainty set as U+i. It is also possible to enforce δi = 0, in

which case the resulting set is denoted as U−i. Note that U+i ∩ U−i = ∅ and

U+i ∪U−i = UΓ. We can repeat this branching step on the resulting subsets,

until we have constructed a partition consisting of K sets.

This requires two rules: one rule to decide on which of the current sets to

branch, and another rule to decide which variable to fix. This is similar to a

branch-and-bound method, where we need to decide a node selection and a

variable selection policy.

We propose the following rules. For branching, we choose a set for which

less than Γ many items are already fixed to 1 (otherwise it consists of a single

scenario) and the min-max problem has the highest objective value. This is

a greedy choice by which we can hope to reduce the objective value of the

current solution. For variable selection, we choose an item i ∈ [n] that is not

yet fixed in the current set, is used in the corresponding min-max solution,

and has the highest deviation di. This way, we branch on what is estimated

to be the current most important item.
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Note that after fixing some δi variables to be either 0 or 1, the resulting

uncertainty set is a classical budgeted uncertainty set and applying Theo-

rem 3 from [BS03], the resulting min-max problem can be solved by solving

O(n) many deterministic problems. With every branching, we need to solve

two new such subproblems. To complete, the heuristic thus requires the

solution of O(Kn) many deterministic problems, and runs overall in poly-

nomial time if the deterministic problem can be solved in polynomial time.

Algorithm 4 summarizes this procedure.

Algorithm 4: Heuristic Algorithm for Problem (M3) with K ≤ n.

1 Input: X , UΓ, K
2 L ← {UΓ}
3 repeat
4 U ← arg max{minxxx∈X maxccc∈U ccc

>xxx : U ∈ L not fixed completely}
5 xxx← minxxx∈X maxccc∈U ccc

>xxx
6 i← arg maxi∈[n]{di : xi = 1, i not yet fixed in U}
7 L ← (L ∪ {U+i,U−i}) \ {U}
8 until |L| = K;

9 Output: xxx(1), . . . ,xxx(K) as minimizers for each U ∈ L

We give an example for the approach with K = 3 in Figure 2. Here, we

Figure 2: Example for Heuristic 2.

first solve the min-max problem using the original set UΓ. In the resulting
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solution, let i be the item with the highest deviation di. We branch by

removing UΓ from our current list of uncertainty sets, and instead consider

U+i and U−i. We solve the min-max problem on each. Now let us assume

that the resulting objective value is larger on set U+i. We choose this set

for our next branching. Let j 6= i be the item in the corresponding solution

with largest deviation value dj. We remove U+i from our current partition

and instead add U+i,+j and U+i,−j. After solving the respective min-max

problems, we have found a partition of U into three sets. The algorithm

terminates and gives a heuristic solution to Problem (M3) by using an optimal

min-max solution on each set of the partition.

Note that if a set U ∈ L maximizing minxxx∈X maxccc∈U ccc
>xxx (see Step 4 of

Algorithm 4) is already completely fixed, it consists of only a single cost

scenario and cannot be partitioned further. In this case, the heuristic has in

fact determined an optimal solution to Problem (M3), as the objective value

has reached the lower bound (MMLB). Algorithm 4 still carries on so that

K solutions are found in total.

5. Computational experiments

5.1. Setup

In this section we present the results of computational experiments for the

minimization variant of the knapsack problem and the shortest path problem.

We show results for the exact row-and-column generation method presented

in Algorithm 2 (RCG), the lower bound (MMLB) and both heuristic algo-

rithms (Heur1 and Heur2), presented in Section 4. To analyze the quality of

the heuristic solutions we compare the results to the classical min-max solu-

tion (MM) and to the solution of a heuristic (HeurPS) already presented in

[EKBC20]. The latter heuristic calculates K random Pareto-scenarios of the

uncertainty set UΓ and returns the optimal deterministic solution for each of

the scenarios. Note that HeurPS is a more general heuristic that does not

exploit the special structure of the budgeted uncertainty set.
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All algorithms were implemented in C++. All objective values cost(x)

were calculated by solving the IP formulation (6). The lower bound (MMLB)

was calculated by using the row-generation procedure presented in Section

3. The min-max problems appearing in the two heuristics are solved via

dualized reformulations (e.g., (9) for the first heuristic) rather than solv-

ing the polynomial number of deterministic problems, as the dualized MILP

appeared to be faster than the latter approach on our instances. All occur-

ring IP and LP formulations as well as the master- and the slave-problem

in Algorithm 2, were implemented in CPLEX 12.8. For the min-knapsack

problem and the shortest path problem we used the classical IP formulations.

To avoid symmetric solutions with the same objective value we added the

symmetry-breaking constraints

n∑
i=1

ix
(j)
i + 1 ≤

n∑
i=1

ix
(j+1)
i j ∈ [K − 1]

to the master-problem (Master).

The initial ordering of the indices i1, . . . , in for Heuristic 1 was selected

by sorting the deviations in non-decreasing order di1 ≤ . . . ≤ din . This choice

was motivated by preliminary tests on random instances.

The Pareto-scenarios for the heuristic presented in [EKBC20] were cal-

culated by drawing K random vectors λλλk from a uniform distribution and

selecting the Pareto-scenarios

ccck := arg max
ccc∈UΓ

λλλ>k ccc.

We set a timelimit of 3600 seconds for each of the algorithms. All computa-

tions were calculated on a cluster of 64-bit Intel(R) Xeon(R) CPU E5-2603

processors running at 1.60 GHz with 15MB cache. Each algorithm was re-

stricted to one thread.

We consider min-knapsack and shortest path problems. The min-knapsack
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problem can be written as

min

∑
i∈[n]

cixi :
∑
i∈[n]

wixi ≥ C, x ∈ {0, 1}n
 .

Our random instances were generated as in [CGKP19]. For each dimension

n the costs ci and the weights wi were drawn from a uniform distribution

on {1, . . . , 100}. The knapsack capacity C was set to 35% of the sum of all

weights. For each knapsack instance we generated a budgeted uncertainty

set with mean vector ĉcc = ccc and a random deviation vector ddd where each di is

drawn uniformly in {1, . . . , ci}. For each dimension n ∈ {100, 200, 300, 400}
we generate 10 random instances and for each instance we vary the parame-

ters Γ ∈ {3, 6} and K ∈ {10, 20, 30}.
Our shortest path computations were performed on the instances gen-

erated in [HKW15]. The authors create graphs with 20, 25, . . . , 50 nodes,

corresponding to points in the Euclidean plane with random coordinates in

[0, 10]. They choose a budgeted uncertainty set where ĉij is set to the Eu-

clidean distance of node i to node j and the deviations are set to dij =
cij
2

.

The parameter Γ is chosen from {3, 6}. For each dimension n we tested

all 100 instances generated in [HKW15] and for each instance we vary the

parameters Γ ∈ {3, 6} and K ∈ {10, 20, 30}.

5.2. Results on min-knapsack problems

The results regarding the RCG and the MMLB are shown in Table 2.

Each row shows the average over all 10 knapsack instances of the following

values (rounded down to one decimal place): the number of items n; the

parameter Γ; the number of calculated solutions K; the percental gap (Gap)

between the MMLB and the best LB calculated by the RCG during the

timelimit; the total calculation time t in seconds of the MMLB (or RCG);

the number of terminated calculations #solved of the MMLB (or RCG)

during the timelimit; the number of iterations #iter performed by the MMLB
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(or RCG); the percental optimality gap (Opt-Gap) of the best LB and UB

calculated by the RCG during timelimit. Recall that MMLB does not depend

on the value of K.

MMLB RCG
n Γ K Gap (%) t #solved #iter t #solved #iter Opt-Gap (%)

100 3 10 8.0 0.4 10 14.0 3600.0 0 2.0 16.9
100 3 20 8.0 0.4 10 14.0 3600.0 0 2.0 16.9
100 3 30 8.0 0.4 10 14.0 3600.0 0 2.0 16.9
100 6 10 13.4 1.9 10 33.6 3600.0 0 2.1 27.7
100 6 20 13.4 1.9 10 33.6 3600.0 0 2.0 27.8
100 6 30 13.4 1.9 10 33.6 3600.0 0 2.0 27.8
200 3 - - 3.1 10 37.6
200 6 - - 98.2 10 121.9
300 3 - - 4.1 10 53.8
300 6 - - 292.5 10 197.4
400 3 - - 5.8 10 47.0
400 6 - - 1639.6 9 247.1

Table 2: Results of MMLB and RCG for the min-knapsack problem.

Even for a dimension of n = 100 the RCG hit the timelimit of 1 hour in

every instance. Furthermore the lower bound given by the MMLB is at least

8% better than the lower bound of the RCG after 1 hour. The optimality

gap of the RCG after 1 hour is still at least 17% and sometimes even 27%.

Due to this observation and the time consuming calculations of the RCG we

did not test the RCG for larger instances. The bounds found using MMLB

are stronger. For nearly all configurations we could calculate the bound

for all instances during the timelimit. The total calculation time is very

small for most of the instances. Interestingly the calculation time increases

significantly for the larger uncertainty sets with Γ = 6 while for Γ = 3 all

instances could be solved in seconds. This is mostly due to the larger number

of iterations performed by the MMLB for Γ = 6.

The results for all three heuristics and the min-max solution are shown

in Table 3. Each row shows the average over all 10 knapsack instances of the

following values (rounded down to one decimal place): the number of items

n; the parameter Γ; the number of calculated solutions K; the percental gap

between the MMLB and the solution of Heur1 (or Heur2/HeurPS/MM). We
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do not record any calculation times here since all procedures return a solution

in a few seconds for all instances. The percental gap is always compared to

the MMLB since as Table 2 indicates, in nearly all instances this lower bound

is tighter than the one provided by the RCG.

n Γ K Heur1 Heur2 HeurPS MM
100 3 10 2.5 1.3 7.3 5.4
100 3 20 2.2 0.8 6.5 5.4
100 3 30 2.5 0.5 6.1 5.4
100 6 10 3.7 3.2 9.2 7.0
100 6 20 4.0 1.9 8.8 7.0
100 6 30 3.6 1.8 8.4 7.0
200 3 10 1.9 1.0 4.6 3.4
200 3 20 1.6 0.7 4.6 3.4
200 3 30 1.7 0.5 4.6 3.4
200 6 10 3.4 2.7 7.0 5.2
200 6 20 3.2 2.2 7.0 5.2
200 6 30 3.1 1.9 7.0 5.2

n Γ K Heur1 Heur2 HeurPS MM
300 3 10 1.5 1.0 3.1 2.7
300 3 20 1.4 0.7 3.1 2.7
300 3 30 1.3 0.6 3.1 2.7
300 6 10 2.7 2.2 5.1 4.2
300 6 20 2.5 1.8 5.1 4.2
300 6 30 2.4 1.5 5.1 4.2
400 3 10 1.0 0.7 2.3 1.9
400 3 20 0.9 0.5 2.3 1.9
400 3 30 0.7 0.4 2.3 1.9
400 6 10 2.1 1.6 3.7 3.0
400 6 20 1.7 1.4 3.7 3.0
400 6 30 1.6 1.2 3.7 3.0

Table 3: Percental Gaps of Heur1, Heur2, HeurPS and MM to the lower bound MMLB
for the min-knapsack problem.

Heur2 outperforms the other heuristics for all configurations. The gap to

the lower bound is always smaller than 3.2%. The gaps of Heur1 are also

very small, at most 3.7%, but always larger than the gaps of Heur2. The

gaps of HeurPS are the largest in most of the instances, even larger than the

gaps of the min-max solution.

In Figure 3 we show a line plot of the same average gaps as in Table 3

over 10 instances with n = 150 and Γ = 6 for all K ∈ {1, . . . , n}. Heur2

shows the best performance. Heur1 returns solutions which are significantly

better than the min-max solutions as well. Unfortunately due to the number

of items t := b n
K
c considered in each of the K − 1 subsets in the partition

constructed in Heur1, the size of the last set in the partition varies depending

on K. This explains the fluctuating gaps of Heur1. The gaps of Heur2 seem

to be much more stable, as the algorithm guarantees an improving objective

value with increasing K.
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Figure 3: Average percental gaps between objective value of the heuristic solutions and
the MMLB over 10 instances with n = 150 and Γ = 6.

5.3. Results on shortest path problems

In this section we consider the classical shortest path problem. The results

regarding the RCG and the MMLB are shown in Table 4. The results for all

three heuristics and the min-max solution are shown in Table 5. Each row

shows the average over all 100 shortest path instances.

Even for a dimension of n = 131 the RCG hit the timelimit of 1 hour

in every instance. For most configurations it could solve at most 25 of 100

instances during the timelimit. Furthermore the lower bound given by the

MMLB is larger than the lower bound of the RCG after 1 hour. For small

instances it is at least 5% better while for the larger instances the gap in-

creases up to 12% for some instances. The optimality gap of the RCG after

1 hour is still at least 9%, for larger instances even around 30%. Due to this

observation and the time consuming calculations of the RCG we did not test

the RCG for larger instances as the bounds provided by MMLB are tighter

and the hardest of them could be computed in at most 1.2 seconds. This
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MMLB RCG
n Γ K Gap (%) t #solved #iter t #solved #iter Opt-Gap (%)

57 3 10 5.4 0.0 100 7.3 3279.9 14 4.8 9.7
57 3 20 5.4 0.0 100 7.3 3428.3 10 6.0 9.8
57 3 30 5.8 0.0 100 7.3 3360.7 14 5.0 11.0
57 6 10 8.4 0.1 100 12.0 3453.1 9 5.0 17.1
57 6 20 8.2 0.1 100 12.0 3535.7 7 5.4 16.2
57 6 30 9.0 0.1 100 12.0 3572.3 6 5.2 17.7
90 3 10 6.4 0.1 100 8.8 3507.4 4 4.3 13.5
90 3 20 6.8 0.1 100 8.8 3566.8 2 3.6 15.4
90 3 30 8.5 0.1 100 8.8 3567.4 1 3.1 18.8
90 6 10 10.4 0.2 100 15.0 3568.9 1 3.9 24.9
90 6 20 11.5 0.2 100 15.0 3600.0 0 3.5 26.7
90 6 30 12.6 0.2 100 15.0 3600.0 0 3.0 30.0

131 3 10 6.6 0.1 100 10.1 3600.0 0 4.1 16.6
131 3 20 7.4 0.1 100 10.1 3600.0 0 3.6 18.5
131 3 30 8.8 0.1 100 10.1 3600.0 0 3.0 22.5
131 6 10 11.4 0.3 100 18.3 3600.0 0 3.6 30.9
131 6 20 12.5 0.3 100 18.3 3600.0 0 3.3 32.1
131 6 30 13.5 0.3 100 18.3 3600.0 0 2.9 34.2
179 3 - - 0.1 100 12.0
179 6 - - 0.6 100 22.9
234 3 - - 0.2 100 11.8
234 6 - - 0.6 100 23.7
297 3 - - 0.2 100 12.5
297 6 - - 0.9 100 28.2
368 3 - - 0.3 100 13.7
368 6 - - 1.2 100 32.3

Table 4: Results of MMLB and RCG for the shortest path problem.

is due to the very small number of iterations and the small computational

effort of the shortest path problem in its deterministic version.

In Table 5 we show the results for all three heuristics and the min-max

solution. Heur2 outperforms all other heuristics for all configurations. Com-

pared to the min-knapsack problem the gaps are slightly larger for higher

dimensions but are never larger than 12%. The gaps of Heur1 are also larger

than for the min-knapsack problem, at most 13.3%, but always larger than

the gaps of Heur2. In contrast to the min-knapsack problem here the min-

max solution provides the worst gaps in nearly all instances. The gaps of

HeurPS are slightly better but can also increase up to 30% for larger in-

stances. To summarize Heur1 and Heur2 seem to be a good choice to solve

Problem (M3) for the shortest path problem.

In Figure 4 we show a line plot of the same average gaps as in Table 5
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n Γ K Heur1 Heur2 HeurPS MM
57 3 10 5.1 1.7 8.1 15.3
57 3 20 5.6 0.5 6.1 15.3
57 3 30 7.4 0.3 5.5 15.3
57 6 10 8.2 3.9 8.7 17.4
57 6 20 7.9 2.1 6.5 17.4
57 6 30 9.1 1.7 5.8 17.4
90 3 10 5.1 2.3 11.8 18.0
90 3 20 5.1 0.9 9.5 18.0
90 3 30 4.6 0.5 8.6 18.0
90 6 10 9.5 5.7 14.1 22.6
90 6 20 8.6 3.3 11.2 22.6
90 6 30 8.0 2.4 10.2 22.6

131 3 10 6.4 3.4 15.7 19.9
131 3 20 5.8 1.7 13.6 19.9
131 3 30 5.7 0.9 13.0 19.9
131 6 10 10.9 7.5 20.4 26.1
131 6 20 8.9 4.8 18.0 26.1
131 6 30 9.4 3.6 16.5 26.1

n Γ K Heur1 Heur2 HeurPS MM
179 3 10 7.3 5.2 20.2 22.4
179 3 20 7.1 3.2 17.7 22.4
179 3 30 7.9 2.2 15.8 22.4
179 6 10 11.4 8.9 23.1 29.6
179 6 20 10.5 5.8 20.2 29.6
179 6 30 10.7 4.7 18.7 29.6
234 3 10 7.3 5.7 22.5 22.7
234 3 20 6.8 3.3 20.1 22.7
234 3 30 6.9 2.1 19.1 22.7
234 6 10 11.7 9.8 27.5 31.0
234 6 20 11.0 6.5 25.0 31.0
234 6 30 10.0 5.1 23.5 31.0
297 3 10 7.7 6.5 24.1 22.9
297 3 20 7.3 4.5 20.9 22.9
297 3 30 7.7 3.1 20.0 22.9
297 6 10 12.3 10.4 29.9 32.3
297 6 20 10.9 7.5 28.1 32.3
297 6 30 10.6 5.9 26.8 32.3
368 3 10 7.5 7.3 25.5 23.3
368 3 20 6.9 5.2 23.7 23.3
368 3 30 6.7 3.5 22.8 23.3
368 6 10 13.3 12.5 32.5 33.7
368 6 20 11.1 9.1 30.9 33.7
368 6 30 10.8 7.5 29.7 33.7

Table 5: Percental Gaps of Heur1, Heur2, HeurPS and MM to the lower bound MMLB
for the shortest path problem.

over 100 instances with n = 179 and Γ = 6 for all K ∈ {1, . . . , n}. Again,

Heur2 outperforms the other heuristics. Heur1 returns solutions which are

significantly better than the min-max solutions as well. In contrast to the

min-knapsack problem the HeurPS performs better than the min-max solu-

tion here.

6. Conclusion

We considered the min-max-min problem in robust combinatorial op-

timization, where it is possible to prepare K solutions beforehand. Once

the uncertain costs are revealed, one then chooses the best of the prepared

solutions for this scenario. For the first time, the min-max-min setting is

considered in combination with discrete budgeted uncertainty.

Our complexity analysis reveals that most combinatorial problems be-

come NP-hard in this setting, and even inapproximable. Furthermore, even

evaluating the objective value of a K-tuple of solutions is already strongly
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Figure 4: Average percental gaps between objective value of the heuristic solutions and
the MMLB over 100 instances with n = 179 and Γ = 6.

NP-hard if K is part of the input, making it unlikely that a compact problem

formulation exists. We thus present a row-and-column generation approach

to find exact solutions. As this approach fails for larger problem instances, we

also develop two heuristic algorithms that run in polynomial time. Computa-

tional experiments indicate that these heuristics scale well with the problem

size, leading to solutions in seconds that leave a gap of a few percent for large

instances when compared to a simple lower bound.

Still there exist several open problems. First it is not clear which role the

parameter Γ plays for the complexity of the problem. In all our proofs we

had to set Γ = K − 1, therefore Γ is related to K. It would be interesting

to derive results for arbitrary fixed Γ and K. A second research direction

could be to find algorithms with a certain approximation guarantee valid for

specific problems. Finally, other combinatorial problems such as minimum s-

t-cut or representative selection (see [KZ16]) were not considered in this work

and could be studied regarding the complexity and approximability of the
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corresponding min-max-min problem with discrete budgeted uncertainty.
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Appendix A. Additional proofs

Theorem 11. Problem (M3) for the spanning tree problem is NP-hard, even
if K = 2. It is strongly NP-hard if K is part of the input.

Proof. Assume first that Γ = 1 and K = 2. We reduce the partition problem

to (M3) for the spanning tree problem. Given an instance of the partition

problem, i.e. ai ∈ N for each i ∈ [ñ], we define the graph G = (V,E)

as follows: Using n = ñ, let V = {v1, . . . , vn+1, w1, . . . , wn+1} and E =

{e1, . . . , en, f1, . . . , fn, g1, . . . , gn+1} where ei = {vi, vi+1}, fi = {wi, wi+1} and

gi = {vi, wi}. Assume ei and fi have nominal costs ai and a deviation of M

where M =
∑

i∈[n] ai. All edges gi have costs and deviation 0. See Figure A.5

for an example construction. Note that all optimal spanning trees of the

latter graph must use all edges gi and for each i ∈ [n] exactly one of the

edges ei or fi. Now any optimal solution of (M3) for K = 2 contains two

trees which are disjoint on the e-edges and on the f -edges since otherwise the

deviation on a common edge could be set to M . Thus we can find a solution

S ⊆ [ñ] for the partition problem if and only if the optimal value of (M3) is

1
2
M .

The proof extends to the case when K is part of the input by using the

strongly NP-hard 3-partition problem. Setting K = m and Γ = K − 1, and

constructing a graph G = (V,E) with nodes

V =
{
v1

1, . . . , v
1
n+1, . . . , v

K
1 , . . . , v

K
n+1

}
and edges

E =
{
e1

1, . . . , e
1
n, . . . , e

K
1 , . . . , e

K
n , g

1
1, . . . , g

1
n+1, . . . , g

K−1
1 , . . . , gK−1

n+1

}
where eji =

{
vji , v

j
i+1

}
and gji =

{
vji , v

j+1
i

}
. Again all edges eji have nominal

costs ai and a deviation of M where M =
∑

i∈[n] ai. All edges gji have costs

and deviation 0. A similar reasoning as above shows that one can decide
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if a partition into m sets having the same costs exists if and only if the

corresponding min-max-min problem has an optimal value equal to 1
K
M .

v1 v2 v3

w1 w2 w3

(0, 0) (0, 0) (0, 0)

(a1,M) (a2,M)

(a1,M) (a2,M)

Figure A.5: Construction with K = 2 and n = 2 for the spanning-tree problem. The
tuples show the nominal costs and the deviation on each edge.

Theorem 12. Problem (M3) for the assignment problem is NP-hard, even
if K = 2. It is strongly NP-hard if K is part of the input.

Proof. Assume first that Γ = 1 and K = 2. We reduce the equipartition

problem to (M3) for the assignment problem. Given an instance of the

equipartition problem i.e. ai ∈ N for each i ∈ [ñ] we want to know if

there exists a subset S ⊆ [ñ] with |S| = ñ/2 such that
∑

i∈S ai =
∑

i∈[ñ\S ai.

Using n = ñ, we consider a complete bipartitie graph G = (V,E) with nodes

V = {v1, . . . , vn, w1, . . . , wn} and edges E = {{vi, wj} : i, j = 1, . . . , ñ}. The

edges {vi, wi} have nominal costs −ai and deviation M =
∑

i∈[n] ai for each

i = 1, . . . , n. All other edges have costs and deviation 0. See Figure A.6 for

an example construction. By the choice of M the two solutions in an optimal

solution of (M3) are disjoint and each edge {vi, wi} is used by at least one of

the two solutions. Thus we can find a solution S ⊆ [ñ] for the equipartition

problem if and only if the optimal value of (M3) is −1
2
M .

The proof extends to the case when K is part of the input using the

3-partition problem setting K = m and Γ = K − 1. A similar reasoning as

above shows that one can decide if a partition into m sets having the same

costs exists if and only if the corresponding min-max-min problem has an

optimal value equal to 1
K
M .
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v1

v2

w1

w2

(−a1,M)

(−a2,M)

(0, 0) (0, 0)

Figure A.6: Construction with K = 2 and n = 2 for the assignment problem. The tuples
show the nominal costs and the deviation on each edge.

Appendix B. Dynamic programming for the min-knapsack prob-
lem with any fixed K and Γ

Consider first Γ ≥ 2 and K = 2. As before, the algorithm enumerates

labels sss and chooses the best of them by computing their costs. As K =

2, only two solutions are being built, and steps 6–12 follow the same idea

as before with one difference: computing the cost (2) requires the worst Γ

deviations for each partial solution. Therefore, every state s ∈ S is now

described by the (3Γ + 4)-tuple sss = (w(1), w(2), c(1), c(2), i(1), i(2), i(1,2)) where

i(1), i(2), and i(1,2) are Γ-tuples recording the indices of the largest elements.

Equation (2) becomes

cost(sss) = max
S⊆[n]
|S|≤Γ

min

c(1) +
∑

i∈S∩(i(1)∪i(1,2))

di, c
(2) +

∑
i∈S∩(i(2)∪i(1,2))

di

 .

(B.1)

For K ≥ 3, we are now constructing K solutions, so steps 6–12 should

be adapted accordingly. In addition, computing the cost for K ≥ 3 also

requires the Γ worst deviations for each subset j ⊆ [K] that contains at most

Γ elements. We obtain states described by

sss = (w(1), . . . , w(K), c(1), . . . , c(K), i(j1), . . . , i(jK)),

where

K =

min(K,Γ)∑
γ=1

(
K

γ

)
,
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which is constant when K and Γ are constant. The resulting set S contains

O(nK+ΓKcK) many states. The cost function (B.1) can be extended similarly.

42


