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where X ⊆ {0, 1} n is the set of feasible solutions and c c c ∈ R n is a cost vector.

In many practical applications (e.g. uncertain road lengths for a shortest path problem or uncertain revenues in a project investment problem), the decisions x x x must be taken prior to knowing the exact values of the cost vector c c c. In that context, one should account for these uncertainties when looking for a solution. One widely used approach is robust optimization, in which it is assumed that c c c can take any value in a given uncertainty set U ⊆ R n , leading to the robust counterpart min The min-max problem (M 2 ) has been widely studied for discrete uncertainty sets U = {c c c 1 , . . . , c c c m } (see the surveys [START_REF] Aissi | Minmax and min-max regret versions of combinatorial optimization problems: A survey[END_REF][START_REF] Kasperski | Robust discrete optimization under discrete and interval uncertainty: A survey[END_REF]). For most classical combinatorial problems the min-max problem (M 2 ) is N P-hard for general discrete uncertainty sets U, even if U only contains two scenarios. What is more, discrete uncertainty sets rely on accurate historical data, which are often not available. When this is the case, it can be more natural for the decision maker to provide only two values {ĉ i , ĉi + d i } with d i ≥ 0 for each uncertain cost component, representing the expected and worst case, respectively. Then, assuming that only Γ uncertain parameters take their upper values in any scenario, Bertsimas and Sim [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF] introduced what is often called the discrete budgeted uncertainty set

U Γ =    c c c ∈ R n : c i = ĉi + δ i d i , i ∈ [n], δ δ δ ∈ {0, 1} n , i∈[n] δ i ≤ Γ   
where we use the notation [n] := {1, . . . , n}. The implicit description of U Γ leads to min-max problems that are essentially as easy as the underlying deterministic problems (see [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF]).

In some real-world situations, the min-max approach (M 2 ) can be too conservative, as no recourse action can be taken to remedy to the values taken by the uncertain parameters. A more flexible model has been introduced

in [START_REF] Buchheim | Min-max-min robust combinatorial optimization[END_REF] to overcome this limitation. The approach computes K solutions and chooses the best of them for each realization of c c c in U. Using discrete budgeted uncertainty in this setting leads to the min-max-min problem c c c x x x (k) . (M 3 ) Approach (M 3 ) is particularly well-suited in situations where one can prepare the ground before the uncertainty is revealed. It is a special case of the more general K-adaptability approach from [START_REF] Grani | K-adaptability in two-stage robust binary programming[END_REF], where additional firststage costs are allowed. Examples are numerous, e.g. transporting relief supplies or evacuating citizens in case an uncertain disaster arises [CTC07, LPdB + 13], hub locations [START_REF] Sibel A Alumur | Hub location under uncertainty[END_REF], or parcel deliveries [START_REF] Eufinger | A robust approach to the capacitated vehicle routing problem with uncertain costs[END_REF][START_REF] Subramanyam | K-adaptability in two-stage mixed-integer robust optimization[END_REF];

see also [START_REF] André | Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty[END_REF] for more details.

Regarding the budgeted uncertainty, its convex hull

   c c c ∈ R n : c i = ĉi + δ i d i , i ∈ [n], δ δ δ ∈ [0, 1] n , i∈[n] δ i ≤ Γ    (1) 
together with the min-max-min problem has already been considered in [START_REF] Chassein | Having a plan B for robust optimization[END_REF] and [START_REF] André | Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty[END_REF], where the authors study the theoretical complexity of the problem, and propose efficient solution algorithms, respectively.

The focus of this paper is Problem (M 3 ) under the discrete budgeted uncertainty set U Γ . First, we remark that, unlike the min-max problem, it is not equivalent to replace U Γ by its convex hull (1), see for instance [START_REF] Buchheim | Complexity of minmax-min robustness for combinatorial optimization under discrete uncertainty[END_REF] for an example, so that the results for convex uncertainty sets proved in [START_REF] Buchheim | Min-max-min robust combinatorial optimization[END_REF][START_REF] Chassein | Having a plan B for robust optimization[END_REF] do not carry over the problem studied in this paper. Moreover the discrete version of the budgeted uncertainty set is inevitable if we want to model edge failures for problems on graphs or adversarial attacks on labeled data in classification problems, see [START_REF] Bertsimas | Robust classification[END_REF] for the latter application.

Structure and contributions

We prove in Section 2 that, unlike the classical min-max problem, Problem (M 3 ) for discrete budgeted uncertainty is N P-hard for the shortest path problem, the spanning tree problem, the assignment problem, the minknapsack problem, the selection problem and even for the unconstrained minimization problem. We also show that, in general, Problem (M 3 ) cannot be approximated in polynomial time. On the positive side, we provide dynamic programming algorithms for the unconstrained and the min-knapsack problem, which are essentially of theoretical interest. Section 3 turns to integer linear programming (ILP) formulations. We first show that computing the inner maximization problem max

c c c∈U Γ min k∈[K] c c c x x x (k)
is N P-hard, suggesting that no compact ILP may be available for (M 3 ). We then introduce an assignment-based formulation, that is embedded into a row-and-column generation algorithm. We pursue numerical approaches for the problem in Section 4 where we provide two heuristic algorithms. Leveraging known results for budgeted uncertainty, we can prove both algorithms solve only polynomially many deterministic problems. Our ILP formulation and the heuristics are numerically assessed in Section 5 on instances of minknapsack and shortest path problems previously considered in the literature.

Section 6 concludes the paper.

Related Literature

The field of robust optimization first emerged in the 1970s in [START_REF] Allen | Convex programming with set-inclusive constraints and applications to inexact linear programming[END_REF] and was later studied intensively for discrete, conic and ellipsoidal uncertainty sets; see [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF][START_REF] Ben | Robust convex optimization[END_REF][START_REF] Ben | Robust solutions of uncertain linear programs[END_REF]. The budgeted uncertainty set was first introduced by Bertsimas and Sim [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF] and since then studied intensively for the classical robust optimization approach and for several other approaches; see [START_REF] Buchheim | Robust combinatorial optimization under convex and discrete cost uncertainty[END_REF][START_REF] Kasperski | Robust discrete optimization under discrete and interval uncertainty: A survey[END_REF] for an overview. In addition to its favorable computational properties, the set was also motivated by its link with probabilistic constraints, providing safe and tractable approximation to otherwise difficult problems [START_REF] Bertsimas | The price of robustness[END_REF][START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF]. Recently complexity results for the robust two-stage version of several combinatorial problems under budgeted uncertainty were presented [START_REF] Goerigk | Robust two-stage combinatorial optimization problems under convex uncertainty[END_REF].

The approach called min-max-min robustness which we study in this work was first presented by Buchheim and Kurtz in [START_REF] Buchheim | Min-max-min robust combinatorial optimization[END_REF] and can be seen as a special case of the K-adaptability approach which was introduced to approximate robust two-stage problems; see [BC10, HKW16, SGW17].

Buchheim and Kurtz show in [START_REF] Buchheim | Min-max-min robust combinatorial optimization[END_REF] that the min-max-min robust problem is as easy as the underlying problem (M 1 ) if U is a convex uncertainty set and K ≥ n + 1. In contrast they prove that for any fixed K the problem is N P-hard even for the unconstrained binary problem with polyhedral uncertainty. For discrete uncertainty the min-max-min problem is at least as complex as the min-max problem which is, more often than not, N P-hard [START_REF] Buchheim | Complexity of minmax-min robustness for combinatorial optimization under discrete uncertainty[END_REF]. In [START_REF] Eufinger | A robust approach to the capacitated vehicle routing problem with uncertain costs[END_REF] the authors study the min-max-min robust problem for the vehicle routing problem and present exact and heuristic solution algorithms.

The min-max-min robust problem with convex budgeted uncertainty (1) has been considered in [START_REF] Chassein | Having a plan B for robust optimization[END_REF]. The author could prove that for K = 2 the min-max-min problem can be solved in polynomial time for several combinatorial problems, which is in contrast to the N P-hardness result for polyhedral uncertainty. The more general problem with larger K and convex budgeted uncertainty was studied in [START_REF] André | Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty[END_REF], where the authors study the theoretical complexity of the problem, and propose efficient solution algorithms. To the best of our knowledge in this work the problem is studied for discrete budgeted uncertainty for the first time.

Complexity results

Overview

In this section, we provide complexity results for the min-max-min problem (M 3 ) for different combinatorial problems. These are:

• the unconstrained binary problem, where X = {0, 1} n ,

• the selection problem, where

X = {x x x ∈ {0, 1} n : i∈[n] x i = p} for an integer p < n,
• the min-knapsack problem, where

X = {x x x ∈ {0, 1} n : i∈[n] w i x i ≥ C}
for non-negative weights w w w and a budget C > 0,

• the assignment problem, where

X = {x x x ∈ {0, 1} n×n : i∈[n] x ij = 1 ∀j ∈ [n], j∈[n] x ij = 1 ∀i ∈ [n]},
• the spanning tree problem, and

• the shortest path problem.

For the unconstrained problem, we assume that item costs can be negative (otherwise, the problem would be trivial). For all other problems, we assume non-negative item costs.

It turns out that all of the mentioned problems are at least weakly N P-hard, and under some configurations even strongly N P-hard. Table 1 summarizes the results which we prove in the following. While the unconstrained binary problem and the selection problem are trivial problems in the nominal case, they are often considered in the robust optimization literature (see, e.g., [START_REF] Buchheim | Robust combinatorial optimization under convex and discrete cost uncertainty[END_REF][START_REF] Chassein | On recoverable and two-stage robust selection problems with budgeted uncertainty[END_REF]).

We prove two additional results not summarized in Table 1. First, we

show the shortest path problem with up to 5 edges cannot be approximated in polynomial time, unless P = N P. This result underlines that one cannot provide approximation algorithms that would be valid for any problem, unlike the general results provided in [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF][START_REF] Poss | Robust combinatorial optimization with knapsack uncertainty[END_REF]. Second, we provide a dynamic programming algorithm for the min-knapsack problem, that applies also to the unconstrained problem and the selection problem. Our proofs frequently use the following problems (see [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]):

• The weakly N P-hard partition problem:

Given: a set of integers a i ∈ N, i ∈ [ñ]
Decide: Does there exist a subset S ⊆ [ñ] such that i∈S a i = i∈[ñ]\S a i ?

• The weakly N P-hard equipartition problem:

Given: a set of integers a i ∈ N, i ∈ [ñ]
, where ñ is even

Decide: Does there exist a subset S ⊆ [ñ] with |S| = ñ 2 such that i∈S a i = i∈[ñ]\S a i ?
• The strongly N P-hard 3-partition problem:

Given: values a 1 , . . . , a 3m ∈ N and a bound B ∈ N such that B 4 < a i < B 2 for all i = 1, . . . , 3m and 3m i=1 a i = mB Decide: Do there exist subsets S 1 , . . . , S m ⊆ {1, . . . , 3m} such that i∈S j a i = B for all j = 1 . . . , m?

N P-hard cases and inapproximability

In the following we prove N P-hardness results for Problem (M 3 ) for several combinatorial problems.

Theorem 1. Problem (M 3 ) for the unconstrained binary problem is weakly

N P-hard, even if K = 2. It is strongly N P-hard when K is part of the input.
Proof. We use the partition problem and construct an instance of problem (M 3 ) by setting n = ñ, ĉi = -a i and

d i = M for each i ∈ [n] with M = i∈[n] a i . Furthermore, we set Γ = 1 and K = 2.
By the choice of M in each optimal solution it holds x

(1) i + x (2) i ≤ 1
for all i ∈ [n] and the large deviation M will affect the solution with the smaller nominal costs. The optimal value is therefore larger or equal to -1 2 M . Then, the partition instance is a yes instance if and only if the min-maxmin problem has an optimal value equal to -1 2 M . Since the unconstrained binary problem is a special case of the min-knapsack problem, the pseudopolynomial algorithm presented in Section 2.3 can be applied to (M 3 ) for the unconstrained problem, which proves the weak N P-hardness.

To prove strong N P-hardness for the case that K is part of the input we reduce the 3-partition problem to Problem (M 3 ). We set n = 3m, and ĉi = -a i and d i = i∈[3m] a i for all i ∈ [n]. Finally, we set K = m and Γ = m -1. By the choice of M , the objective value of any solution is equal to max k∈[K] ĉ c c x x x (k) . Hence, the optimal objective value of the min-max-min problem is equal to -B if and only if the answer to the 3-partition problem is yes.

Theorem 2. The problem (M 3 ) is weakly N P-hard for the selection problem,

even if K = 2. It is strongly N P-hard if K is part of the input.
Proof. For K = 2 we can use a similar construction as in the proof of Theorem 1; see below. Note that negative cost vectors are not required in this case. Moreover, one can adapt the pseudo-polynomial algorithm presented in Section 2.3 to the selection problem which proves the weak N P-hardness.

We reduce the equipartition problem to the min-max-min problem, which is known to be weakly N P-hard [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]. We construct an instance of problem (M 3 ) by setting n = ñ, p = n 2 , ĉi = a i and d i = M for each i ∈ [n] with M = i∈[n] a i . Furthermore, we set Γ = 1 and K = 2. By the choice of M in each optimal solution it holds x

(1) i + x (2) i ≤ 1 for all i ∈ [n]. Since p = n
2 each item must be selected in exactly one of the solutions, i.e it even holds x

(1)

i + x (2) i = 1 for all i ∈ [n].
The large deviation M will affect the solution with the smaller nominal costs. The optimal value is therefore larger or equal to 1 2 M . Then, the partition instance is a yes instance if and only if the min-max-min problem has an optimal value equal to 1 2 M . To prove strong N P-hardness for the case that K is part of the input we reduce the 3-partition problem to Problem (M 3 ).

We define an instance of the min-max-min selection problem in dimension 3m where p = 3, K = m, Γ = K-1 and we define U Γ with ĉi = a i and d i = M where M = 3m i=1 a i . By the definition of M and Γ the K solutions define a partition of the ground set {1, . . . , 3m} in an optimal solution of (M 3 ). The given 3-partition is then a yes instance if and only if Problem (M 3 ) has an optimal value lower or equal to B.

Theorem 3. Even if K = 2, Problem (M 3 ) for the spanning tree problem and the assignment problem is N P-hard; for the min-knapsack problem it is weakly N P-hard. It is strongly N P-hard for all the mentioned problems if

K is part of the input.
The proof of Theorem 3 follows the line of the proof of Theorem 1 and is provided in Appendix A. The result for the min-knapsack problem di-rectly follows from Theorem 1 by choosing knapsack weights and a knapsack capacity such that all vectors in {0, 1} n are feasible.

Theorem 4. Problem (M 3 ) for the shortest path problem is strongly N P-hard,

even if K = 2.
Proof. We use a reduction from the following edge-disjoint paths problem, which is N P-hard in the strong sense [START_REF] Li | The complexity of finding two disjoint paths with min-max objective function[END_REF]:

Given: a weighted undirected graph G = (V, E, w w w), two nodes s and t in V , and a value L Decide: Do there exist two edge-disjoint paths between s and t such that the length of both paths is less or equal to L?

Consider an instance of problem (M 3 ) where we need to find paths between s and t in G and define ĉe = w e and d e = M for each e ∈ E, where M can be chosen as M = e∈E ĉe . Furthermore, set Γ = 1 and K = 2. Clearly there exist two disjoint paths in G where the longer path has costs lower or equal to some value L if and only if the latter instance of the min-max-min problem has an optimal value lower or equal to L.

Our last complexity result shows that the problem may not be approximable even if the underlying problem is polynomially solvable. An important consequence of that result is is that there exists no polynomial-time algorithm with an approximation guarantee valid for any problem X .

Theorem 5. Problem (M 3 ) for the shortest path problem where paths may have up to 5 edges cannot be approximated in polynomial time if K is part of the input unless P = N P.

Proof. We use a reduction from the following edge-disjoint paths problem with bounded number of edges, which is known to be N P-hard [IPS82]:

Given: an undirected graph G = (V, E), and two nodes s and t in V Decide: Do there exist K edge-disjoint paths between s and t having at most 5 edges? By defining K = K, Γ = K -1, ĉ c c = 0 0 0 and d d d = 1 1 1, the optimal solution cost of (M 3 ) is 0 if and only if the answer to the decision problem is yes.

Dynamic programming for the min-knapsack problem

We provide a dynamic programming algorithm for the min-knapsack version of problem (M 3 ), which runs in pseudo-polynomial time. As the complexity of the algorithm is high, its purpose is essentially theoretical. In what follows we suppose the feasibility set is given by

X =    x x x ∈ {0, 1} n : i∈[n] w i x i ≥ C   
where w i denotes the weight of item i and C the total available capacity.

Our algorithm runs in pseudo-polynomial time if K and Γ are fixed, and has an exponential running-time in general, in accordance with the complexity stated in Theorem 1. The algorithm can easily be adapted to handle the unconstrained binary problem by choosing knapsack weights and a capacity such that all binary vectors are feasible. Similarly, the selection problem is obtained by choosing weights equal to 1.

Algorithm 1 follows the classical dynamic programming algorithm for scheduling jobs on unrelated machines proposed in [START_REF] Horowitz | Exact and approximate algorithms for scheduling nonidentical processors[END_REF] by iterating over all items and creating labels s s s ∈ S for each possible variant of adding the item to the feasible solutions or not. For ease of notation we present the idea of the algorithm for the case K = 2 and Γ = 1, and sketch the generalization in Appendix B.

For each item i ∈ [n] we assume that the current set of labels S has been constructed by deciding whether the first i -1 items are added to (partial) Algorithm 1: Solving the robust min-knapsack problem for K = 2 and Γ = 1

1 Input: X KP , U Γ , K = 2, Γ = 1 2 S = {(0, 0, 0, 0, 0, 0, 0)} 3 for i ∈ [n] do 4 for (w (1) , w (2) , c (1) , c (2) , d (1) , d (2) , d (1,2) ) ∈ S do 5 if w (1) + w i ≥ C then 6 s s s (1) = (w (1) + w i , w (2) , c (1) + ĉi , c (2) , max d (1) , d i , d (2) , d (1,2) ) 7 if w (2) + w i ≥ C then 8 s s s (1,2) = (w (1) +w i , w (2) +w i , c (1) + ĉi , c (2) + ĉi , max d (1) , d i , max d (2) , d i , max d (1,2) , d i ) 9 end 10 end 11 else if w (2) + w i ≥ C then 12 s s s (2) = (w (1) , w (2) + w i , c (1) , c (2) + ĉi , d (1) , max d (2) , d i , d (1,2) ) 13 end 14 S ← S ∪ {s s s (1) , s s s (2) , s s s (1,2) } 15 end
16 end 17 Compute s s s max ∈ S with minimal cost(s s s) (see Eq. ( 2)) 18 Output: s s s max solution x x x (1) ∈ X KP , x x x (2) ∈ X KP or to both. Hence, the partial solutions correspond to sets of items S (1) ⊆ [i -1] and S (2) ⊆ [i -1], respectively.

As indexing the label s s s by S (1) and S (2) could possibly lead to exponentially many labels, we instead define the label as

s s s = (w (1) , w (2) , c (1) , c (2) , d (1) , d (2) , d (1,2) ),
where

w (k) = i∈S (k) w i , c (k) = i∈S (k) c i , and d (k) = max i∈S (k) d i for k ∈ {1, 2}. The value d (1,2
) represents the highest deviations among the items included in both solutions up to now, that is,

d (1,2) = max i∈S (1) ∩S (2) d i . Next,
we have four possibilities concerning the addition of item i to the partial solutions:

1. S (1) ← S (1) ∪ {i}, yielding the new label s s s (1) , see step 6 2. S (2) ← S (2) ∪ {i}, yielding the new label s s s (2) , see step 12 3. S (1) ← S (1) ∪ {i} and S (2) ← S (2) ∪ {i}, yielding the new label s s s (1,2) , see step 8. 4. item i is added to none of the two solutions, which does not change the current label.

Notice that the first three possibilities occur only if the resulting partial solutions do not exceed the capacity of the knapsack.

Finally, we detail how to calculate the costs of a label, i.e. the worst-case over all scenarios in U Γ for the corresponding solution. Note that since Γ = 1 that cost can be computed by examining the following three possibilities: either we allow a deviation on the item with the largest deviation d i contained in the first solution or contained in the second solution or in both solutions.

Therefore the worst-case costs can be calculated by

cost(s s s) = max min(c (1) + d (1) , c (2) ), min(c (1) + d (1,2) , c (2) + d (1,2) ), min(c (1) , c (2) + d (2) ) .
(2) To investigate the run-time of the algorithm consider c = max i∈[n] ĉi , d = max i∈[n] d i and w = max i∈[n] w i . Then the largest value we have to consider for c (1) , c (2) is nc, the largest value for w (1) , w (2) is nw and the largest value for d (1) , d (2) , d (1,2) is d. Therefore the number of different labels we have to consider in the algorithm is at most n 4 c 2 w 2 d 3 , so that the running time of Algorithm 1 is in O(n 5 c 2 w 2 d 3 ). Since we may record the indices that deviate instead of the deviations themselves, another valid bound for the running time of the algorithm is O(n 8 c 2 w 2 ). Specifically, we could define any label in S as the 7-tuple s s s = (w (1) , w (2) , c (1) , c (2) , i (1) , i (2) , i (1,2) ) where i (1) , i (2) and

i (1,2) belong to [n].
Many dynamic programming algorithms lead to approximation algorithms that can provide (1+ )-approximate solutions with a complexity that is polynomial in the input of the problem and 1/ . We prove below that this is not the case here, by adapting the reduction from the equipartition problem to the min-knapsack problem from [START_REF] Kellerer | Knapsack problems[END_REF].

Theorem 6. There is no FPTAS for the min-knapsack variant of problem (M 3 ) unless P = N P, even in the case Γ = 1.

Proof. We reduce the equipartition problem to the decision version of (M 3 ) for Γ = 1 and K = 2. We define a min-knapsack instance with n = ñ many items as follows: for each i ∈ [n], we set w i = a i , ĉi = 1 and

d i = n. The capacity is set to C = 1 2 i∈[n] a i .
Clearly, there exists an equipartition of the elements of [ñ] if and only if there exists a solution of Problem (M 3 ) for the min-knapsack instance with profit at most n 2 . This yields the result, as an FPTAS would compute an (1 + 1 n )-approximate solution in polynomial time, which would be optimal for that instance.

Note that while it is not possible to construct an FPTAS for the robust min-knapsack problem, it stands to reason that the dynamic programming approach presented in this section can be used to construct a PTAS based on cost inflation.

Exact algorithm and lower bounds

We first study the complexity of evaluating the objective function of Problem (M 3 ), i.e., calculating

cost(x) := max c c c∈U Γ min k∈[K] c c c x x x (k)
(3)

for fixed x = (x x x (1) , . . . , x x x (K) ). Clearly if Γ is constant we can solve the latter problem by enumerating through all possible worst-case scenarios and check for each which of the K solutions is the best. Since the number of scenarios is in O(n Γ ) and checking the objective values of the K solutions can be done in O(nK), solving Problem (3) can be done in time O(n Γ+1 K).

The problem can also be solved efficiently if K is constant. Consider for simplicity the case K = 2. Then, we define three disjoints subsets of

[n], Ṡ(1,2) = {i ∈ [n] : x (1) i = x (2) i = 1}, and Ṡ(k) = {i ∈ [n] : x (k) i = 1} \ Ṡ(1,2) for k ∈ [2]
, and order their elements according to the non-increasing values of

d i . Then, for each k ∈ [2],
we denote the sum of the first Γ (k) indices in set Ṡ(k) as Γ (k) ( Ṡ(k) ), and similarly Γ (1,2) ( Ṡ(1,2) ) for the set Ṡ(1,2) . Thanks to the orderings of the elements in each set, Problem (3) can be reformulated as max

Γ (1) ,Γ (2) ,Γ (1,2) ∈Z + Γ (1) +Γ (2) +Γ (1,2) =Γ Γ (1,2) (S (1,2) ) + min k∈[2] Γ (k) ( Ṡ(k) )
The above problem can be solved in polynomial time by complete enumeration since there are O((Γ + 1)Γ) different triplets (Γ (1) , Γ (2) , Γ (1,2) ) of nonnegative integers that satisfy Γ (1) + Γ (2) + Γ (1,2) = Γ. The above reasoning can be extended to any constant K by following the lines of Appendix B.

The following result shows that the problem is strongly N P-hard if K and Γ are part of the input. This makes it unlikely that a compact ILP formulation for Problem (M 3 ) exists, as such a formulation would typically allow us to evaluate a solution in polynomial time.

Theorem 7. Evaluating the objective function of Problem (M 3 ) for a given solution is strongly N P-hard if K and Γ are part of the input.

Proof. We use a reduction from the set cover problem, which is known to be strongly N P-hard [GJ90]:

Given: an integer N , a collection S of m sets S i ⊆ [N ], and a number L ∈ N Decide: Does there exist a sub-collection of S of cardinality not greater than L and whose union equals [N ]?

We construct a reduction through the following instance of cost(x). We set K = N , Γ = L, n = m, ĉi = 0 and

d i = 1 for each i ∈ [n]. Further, we define x (k) i = 1 iff k ∈ S i .
Clearly, cost(x) ≥ 0. We prove next that cost(x) ≥ 1 if and only if the answer to the set cover instance is yes.

Let us define Z = {z z z ∈ {0, 1} n : i∈[n] z i ≤ Γ} as the set of vectors z z z

describing costs c c c = (ĉ i + d i z i ) i∈[n] ∈ U Γ .
There exists a bijection between the elements of Z and the sub-collections of S of cardinality not greater than Γ. Further, we see that

c c c x x x (k) = i∈[n] z i x (k) i , so setting z i = 1 implies that i∈[n] z i x (k) i ≥ 1 for each k ∈ S i .
From the definition of cost(x), we have that

cost(x) ≥ 1 ⇔ ∃z z z ∈ Z, ∀k ∈ [K] : i∈[n] z i x (k) i ≥ 1. ( 4 
)
If the answer to the set cover problem is yes and is provided by the subcollection indexed by M, then we set z i = 1 for each i ∈ M and obtain from (4) that cost(x) ≥ 1. If the answer is no, then for each z z z ∈ Z, there exists

k ∈ [K] such that i∈[n] z i x (k) i
= 0, and we obtain cost(x) = 0.

In the following we provide an ILP formulation for Problem (M 3 ) and derive a row-and-column generation algorithm based on this formulation.

Consider first an arbitrary discrete uncertainty set U = {c c c 1 , . . . , c c c m } and let binary variables y kj define an assignment between the scenarios and the solutions, where y kj = 1 if and only if x x x (k) has the minimal objective value over all x x x (1) , . . . , x x x (K) in scenario c c c j . We can reformulate Problem (M 3 ) as min ω

s.t. ω ≥ k∈[K] y kj   i∈[n] c j i x (k) i   ∀j ∈ [m] k∈[K] y kj = 1 ∀j ∈ [m] y kj ∈ {0, 1} ∀k ∈ [K], j ∈ [m] x x x (k) ∈ X ∀k ∈ [K], (Master) 
where the product y kj x (k) i can be linearized introducing the additional vari-ables w kji = y kj x (k) i

and rewriting (Master) to min ω

s.t. ω ≥ k∈[K] i∈[n] c j i w kji ∀j ∈ [m] k∈[K] y kj = 1 ∀j ∈ [m] w kji ≥ x (k) i + y kj -1 ∀k ∈ [K], j ∈ [m], i ∈ [n] y kj ∈ {0, 1} ∀k ∈ [K], j ∈ [m] w kji ≥ 0 ∀k ∈ [K], j ∈ [m], i ∈ [n] x x x (k) ∈ X ∀k ∈ [K].
(5)

Note that for fixed values x

(k) i
and y kj , we can assume that w kji is set as small as possible in an optimal solution. Hence, constraints w kji ≤ y kj and

w kji ≤ x (k) i
are not required for the linearization. Further note that (Master) has exponentially many variables and constraints in case of discrete budgeted uncertainty. The first ingredient of our approach, described in Algorithm 2, is to solve (Master) for a starting set U ⊂ U Γ and to iteratively add a new scenario which is the optimal solution of problem max

c c c∈U Γ min k∈[K] c c c x x x (k) (Slave)
for the current solution x to the restricted master problem. Note that the optimal value of the latter problem is the objective value cost(x) of x x x (1) , . . . , x x x (K) for problem (M 3 ), which can be computed through the following IP formu-

lation: max z s.t. z ≤ ĉ x x x (k) + n i=1 δ i d i x x x (k) i k ∈ [K] n i=1 δ i ≤ Γ δ i ∈ {0, 1} i ∈ [n]. (6) 
Clearly the optimal value of (Master) for a subset of scenarios is a lower bound for Problem (M 3 ) while the optimal value of (Slave) is an upper bound.

Therefore Algorithm 2 iteratively calculates upper and lower bounds with decreasing gap, following a common trend in robust optimization, dating back to [B Ö08].

Algorithm 2 calculates an optimal solution of Problem (M 3 ). Since there is a finite number of feasible solutions, we can only generate a finite number of scenarios in the loop and therefore the algorithm terminates in a finite number of steps.

Algorithm 2: Row-and-column generation algorithm Proof. Clearly for every solution x x x (1) , . . . , x x x (K) we have max

1 Input: X , U Γ , K 2 U ← ∅ 3 Choose any c c c ∈ U Γ 4 repeat 5 U ← U ∪ {c c c}
c c c∈U Γ min x x x∈X c c c x x x ≤ max c c c∈U Γ min k∈[K] c c c x x x (k)
which proves the result.

The problem (MMLB) can be solved by a classical row-generation method as follows: For a subset of solutions X ⊂ X calculate an optimal solution

(c c c * , z * ) of problem max z s.t. z ≤ c c c x x x ∀x x x ∈ X c c c ∈ U Γ
and afterwards solve the deterministic problem min

x x x∈X (c c c * ) x x x.
Add the optimal solution of the latter problem to X and iterate. Stop if the latter optimal value is larger than or equal to z * .

Heuristic algorithms

In this section we present two heuristic algorithms which are based on the idea to find a partition of the uncertainty set into K subsets and calculate the optimal min-max solution for each of the subsets, see the general scheme presented in Algorithm 3. To end up with a fast algorithm the minmax problem for each subset should be computationally tractable. For both heuristics we derive a K-partition of the budgeted uncertainty set such that each subset remains a budgeted uncertainty set or has a structure which is close to a budgeted uncertainty set. In both cases we can show that each of the min-max problems in Algorithm 3 can be solved by solving a polynomial number of deterministic problems (M 1 ).

Algorithm 3: Heuristic Algorithm for Problem (M 3 ) with K ≤ n.

1 Input: X , U Γ , K 2 Calculate a partition U 1 ∪ . . . ∪ U K = U Γ . 3 Calculate x x x (k) = arg min x x x∈X max c c c∈U k c c c x x x ∀k ∈ [K].
4 Output: x x x (1) , . . . , x x x (K)

Heuristic 1

In this section we derive a partition of the budgeted uncertainty set U Γ such that each of the subsets has a similar structure as the classical budgeted uncertainty set. Furthermore each subset of the partition covers scenarios which are close to each other in the sense that there exists a solution x x x ∈ X which works well for most of the scenarios. We show that for each subset of the partition the min-max problem can be solved by solving a polynomial number of deterministic problems.

We partition the budgeted uncertainty set such that in each subset U k a subsequence of items is selected and in each scenario of the subset at least one of the items deviates from its mean value. More precisely, let any ordering of the indices i 1 , . . . , i n be given. Without loss of generality, we assume i = in the following presentation. For t := n K , we define

U k := c c c ∈ R n : c i = ĉi + δ i d i , δ δ δ ∈ {0, 1} n , ( 7 
) (k-1)t i=1 δ i = 0, kt i=(k-1)t+1 δ i ≥ 1, n i=(k-1)t+1 δ i ≤ Γ
for each k = 1, . . . , K -1 and

U K := c c c ∈ R n : c i = ĉi + δ i d i , δ δ δ ∈ {0, 1} n , (K-1)t i=1 δ i = 0, n i=(K-1)t+1 δ i ≥ 1, n i=(K-1)t+1 δ i ≤ Γ .
Note that the only difference in the definition of U K is that the second sum instead of containing t summands, additionally contains all summands which are left due to rounding of t. For ease of notation we do not consider this special case in the following.

It is easy to see that

U 1 ∪• • •∪U K = U Γ \{ĉ}.
Furthermore all of the subsets U k have a budgeted-like structure. We will use this structure in the following theorem to show that the classical min-max problem in Step 3 of Algorithm 3 can be solved in polynomial time if an oracle for the underlying deterministic problem is given. We define in the following (x) + := max {x, 0}. The following result is related to Theorem 3 from [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF] and its generalizations in [START_REF] Poss | Robust combinatorial optimization with knapsack uncertainty[END_REF].

Theorem 9. The min-max problem with uncertainty set U k can be solved by solving the deterministic problems

α * Γ -β * + t(β * -α * ) + + min x x x∈X ĉ c c x x x + w w w x x x (8) 
where 

w i =      0 if i ≤ (k -1)t (d i + β * -α * ) + -(β * -α * ) + if (k -1)t + 1 ≤ i ≤ kt (d i -α * ) + if i ≥ kt + 1 for all values (α * , β * ) ∈ A × {0} ∪ {(α, β) | α ∈ A, β = α} ∪ {(α, β) | α ∈ A, β = (α -d i ) + : i = (k -1)t + 1, . . . ,
δ i d i x i s.t. kt i=(k-1)t+1 δ i ≥ 1 n i=(k-1)t+1 δ i ≤ Γ δ i ∈ [0, 1] i = (k -1)t + 1, . . . , n.
The dual of the above linear program is

ĉ c c x x x + min αΓ -β + n i=(k-1)t+1 γ i s.t. α -β + γ i ≥ d i x i i = (k -1)t + 1, . . . , kt α + γ i ≥ d i x i i = kt + 1, . . . , n α, β ≥ 0 γ i ≥ 0 i = (k -1)t + 1, . . . , n. (9) 
In each optimal solution of the latter problem for γ i it holds

γ i = (d i x i + β -α) + = x i (d i + β -α) + + (1 -x i )(β -α) +
for each i = (k -1)t + 1, . . . , kt and

γ i = (d i x i -α) + = x i (d i -α) +
for each i = kt + 1, . . . , n. Therefore, substituting the latter equations in the objective function of Problem (9) we obtain that problem min x For any fixed x x x * the objective function of the latter problem is a piecewise linear and convex function, so its minimum is reached at one of its kinkpoints. More specifically, the function is the sum of an affine function and two convex piece-wise linear functions,

i (d i + β -α) + + (1 -x i )(β -α) + + n i=kt+1 x i (d i -α) + s.t. x x x ∈ X , α, β ≥ 0. ( 10 
) α β d i 1 d i 2 d i 2 d i 3 d i 4 d i 5
f 1 (α, β) = kt i=(k-1)t+1 x i (d i + β -α) + + (1 -x i )(β -α) + and f 2 (α, β) = n i=kt+1 x i (d i -α) + .
The nondifferentiable regions of both functions are half-lines, parallel to the lines α -β = 0 and α = 0, respectively, see Figure 1 for an illustration. Therefore, any kinkpoint of the objective function is obtained at the intersection of these lines, proving the result.

Corollary 10. The heuristic presented in Algorithm 3 for the partition given in (7) requires the solution of O(K(2 + t)n) many deterministic problems.

Proof. For each of the K subsets U k the number of (α, β) values for which we have to solve the deterministic problem is in O(2n + tn). Since we have to solve the min-max problem for each of the K subsets in Algorithm 3 in total we have to solve O(K(2 + t)n) deterministic problems.

Heuristic 2

In this section we present a second heuristic for Problem (M 3 ), which is also based on partitioning the set U into K sets U 1 ∪ . . . ∪ U K , such that the min-max problem on each set can be solved in polynomial time. Differently from the previous approach, we find the partition dynamically.

Consider again the uncertainty set

U Γ =    c c c ∈ R n : c i = ĉi + d i δ i , δ δ δ ∈ {0, 1} n , i∈[n] δ i ≤ Γ   
and let us assume that for a specific item i ∈ [n], we enforce δ i = 1. We denote the resulting uncertainty set as U +i . It is also possible to enforce δ i = 0, in which case the resulting set is denoted as U -i . Note that U +i ∩ U -i = ∅ and U +i ∪ U -i = U Γ . We can repeat this branching step on the resulting subsets, until we have constructed a partition consisting of K sets. This requires two rules: one rule to decide on which of the current sets to branch, and another rule to decide which variable to fix. This is similar to a branch-and-bound method, where we need to decide a node selection and a variable selection policy.

We propose the following rules. For branching, we choose a set for which less than Γ many items are already fixed to 1 (otherwise it consists of a single scenario) and the min-max problem has the highest objective value. This is a greedy choice by which we can hope to reduce the objective value of the current solution. For variable selection, we choose an item i ∈ [n] that is not yet fixed in the current set, is used in the corresponding min-max solution, and has the highest deviation d i . This way, we branch on what is estimated to be the current most important item.

Note that after fixing some δ i variables to be either 0 or 1, the resulting uncertainty set is a classical budgeted uncertainty set and applying Theorem 3 from [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF], the resulting min-max problem can be solved by solving O(n) many deterministic problems. With every branching, we need to solve two new such subproblems. To complete, the heuristic thus requires the solution of O(Kn) many deterministic problems, and runs overall in polynomial time if the deterministic problem can be solved in polynomial time.

Algorithm 4 summarizes this procedure.

Algorithm 4: Heuristic Algorithm for Problem (M 3 ) with K ≤ n.

1 Input: X , U Γ , K 2 L ← {U Γ } 3 repeat 4 U ← arg max{min x x x∈X max c c c∈U c c c x x x : U ∈ L not fixed completely} 5 x x x ← min x x x∈X max c c c∈U c c c x x x 6 i ← arg max i∈[n] {d i : x i = 1, i not yet fixed in U} 7 L ← (L ∪ {U +i , U -i }) \ {U} 8 until |L| = K;
9 Output: x x x (1) , . . . , x x x (K) as minimizers for each U ∈ L

We give an example for the approach with K = 3 in Figure 2. Here, we first solve the min-max problem using the original set U Γ . In the resulting solution, let i be the item with the highest deviation d i . We branch by removing U Γ from our current list of uncertainty sets, and instead consider U +i and U -i . We solve the min-max problem on each. Now let us assume that the resulting objective value is larger on set U +i . We choose this set for our next branching. Let j = i be the item in the corresponding solution with largest deviation value d j . We remove U +i from our current partition and instead add U +i,+j and U +i,-j . After solving the respective min-max problems, we have found a partition of U into three sets. The algorithm terminates and gives a heuristic solution to Problem (M 3 ) by using an optimal min-max solution on each set of the partition. Note that if a set U ∈ L maximizing min x x x∈X max c c c∈U c c c x x x (see Step 4 of Algorithm 4) is already completely fixed, it consists of only a single cost scenario and cannot be partitioned further. In this case, the heuristic has in fact determined an optimal solution to Problem (M 3 ), as the objective value has reached the lower bound (MMLB). Algorithm 4 still carries on so that K solutions are found in total.

Computational experiments

Setup

In this section we present the results of computational experiments for the minimization variant of the knapsack problem and the shortest path problem.

We show results for the exact row-and-column generation method presented in Algorithm 2 (RCG), the lower bound (MMLB) and both heuristic algorithms (Heur1 and Heur2), presented in Section 4. To analyze the quality of the heuristic solutions we compare the results to the classical min-max solution (MM) and to the solution of a heuristic (HeurPS) already presented in [START_REF] Eufinger | A robust approach to the capacitated vehicle routing problem with uncertain costs[END_REF]. The latter heuristic calculates K random Pareto-scenarios of the uncertainty set U Γ and returns the optimal deterministic solution for each of the scenarios. Note that HeurPS is a more general heuristic that does not exploit the special structure of the budgeted uncertainty set.

All algorithms were implemented in C++. All objective values cost(x) were calculated by solving the IP formulation (6). The lower bound (MMLB) was calculated by using the row-generation procedure presented in Section 3. The min-max problems appearing in the two heuristics are solved via dualized reformulations (e.g., (9) for the first heuristic) rather than solving the polynomial number of deterministic problems, as the dualized MILP appeared to be faster than the latter approach on our instances. All occurring IP and LP formulations as well as the master-and the slave-problem in Algorithm 2, were implemented in CPLEX 12.8. For the min-knapsack problem and the shortest path problem we used the classical IP formulations.

To avoid symmetric solutions with the same objective value we added the symmetry-breaking constraints

n i=1 ix (j) i + 1 ≤ n i=1 ix (j+1) i j ∈ [K -1]
to the master-problem (Master).

The initial ordering of the indices i 1 , . . . , i n for Heuristic 1 was selected by sorting the deviations in non-decreasing order d i 1 ≤ . . . ≤ d in . This choice was motivated by preliminary tests on random instances.

The Pareto-scenarios for the heuristic presented in [START_REF] Eufinger | A robust approach to the capacitated vehicle routing problem with uncertain costs[END_REF] We set a timelimit of 3600 seconds for each of the algorithms. All computations were calculated on a cluster of 64-bit Intel(R) Xeon(R) CPU E5-2603 processors running at 1.60 GHz with 15MB cache. Each algorithm was restricted to one thread.

We consider min-knapsack and shortest path problems. The min-knapsack problem can be written as min

   i∈[n] c i x i : i∈[n] w i x i ≥ C, x ∈ {0, 1} n    .
Our random instances were generated as in [START_REF] André | Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty[END_REF]. For each dimension n the costs c i and the weights w i were drawn from a uniform distribution on {1, . . . , 100}. The knapsack capacity C was set to 35% of the sum of all weights. For each knapsack instance we generated a budgeted uncertainty set with mean vector ĉ c c = c c c and a random deviation vector d d d where each d i is drawn uniformly in {1, . . . , c i }. For each dimension n ∈ {100, 200, 300, 400} we generate 10 random instances and for each instance we vary the parameters Γ ∈ {3, 6} and K ∈ {10, 20, 30}.

Our shortest path computations were performed on the instances generated in [START_REF] Grani | K-adaptability in two-stage robust binary programming[END_REF]. The authors create graphs with 20, 25, . . . , 50 nodes, corresponding to points in the Euclidean plane with random coordinates in [0, 10]. They choose a budgeted uncertainty set where ĉij is set to the Euclidean distance of node i to node j and the deviations are set to

d ij = c ij 2 .
The parameter Γ is chosen from {3, 6}. For each dimension n we tested all 100 instances generated in [START_REF] Grani | K-adaptability in two-stage robust binary programming[END_REF] and for each instance we vary the parameters Γ ∈ {3, 6} and K ∈ {10, 20, 30}.

Results on min-knapsack problems

The results regarding the RCG and the MMLB are shown in Table 2.

Each row shows the average over all 10 knapsack instances of the following values (rounded down to one decimal place): the number of items n; the parameter Γ; the number of calculated solutions K; the percental gap (Gap) between the MMLB and the best LB calculated by the RCG during the timelimit; the total calculation time t in seconds of the MMLB (or RCG); the number of terminated calculations #solved of the MMLB (or RCG) during the timelimit; the number of iterations #iter performed by the MMLB (or RCG); the percental optimality gap (Opt-Gap) of the best LB and UB calculated by the RCG during timelimit. Recall that MMLB does not depend on the value of K. Even for a dimension of n = 100 the RCG hit the timelimit of 1 hour in every instance. Furthermore the lower bound given by the MMLB is at least 8% better than the lower bound of the RCG after 1 hour. The optimality gap of the RCG after 1 hour is still at least 17% and sometimes even 27%.

Due to this observation and the time consuming calculations of the RCG we did not test the RCG for larger instances. The bounds found using MMLB are stronger. For nearly all configurations we could calculate the bound for all instances during the timelimit. The total calculation time is very small for most of the instances. Interestingly the calculation time increases significantly for the larger uncertainty sets with Γ = 6 while for Γ = 3 all instances could be solved in seconds. This is mostly due to the larger number of iterations performed by the MMLB for Γ = 6.

The results for all three heuristics and the min-max solution are shown in Table 3. Each row shows the average over all 10 knapsack instances of the following values (rounded down to one decimal place): the number of items n; the parameter Γ; the number of calculated solutions K; the percental gap between the MMLB and the solution of Heur1 (or Heur2/HeurPS/MM). We do not record any calculation times here since all procedures return a solution in a few seconds for all instances. The percental gap is always compared to the MMLB since as Heur2 outperforms the other heuristics for all configurations. The gap to the lower bound is always smaller than 3.2%. The gaps of Heur1 are also very small, at most 3.7%, but always larger than the gaps of Heur2. The gaps of HeurPS are the largest in most of the instances, even larger than the gaps of the min-max solution.

In Figure 3 we show a line plot of the same average gaps as in Table 3 over 10 instances with n = 150 and Γ = 6 for all K ∈ {1, . . . , n}. Heur2

shows the best performance. Heur1 returns solutions which are significantly better than the min-max solutions as well. Unfortunately due to the number of items t := n K considered in each of the K -1 subsets in the partition constructed in Heur1, the size of the last set in the partition varies depending on K. This explains the fluctuating gaps of Heur1. The gaps of Heur2 seem to be much more stable, as the algorithm guarantees an improving objective value with increasing K. 

Results on shortest path problems

In this section we consider the classical shortest path problem. The results regarding the RCG and the MMLB are shown in Table 4. The results for all three heuristics and the min-max solution are shown in Table 5. Each row shows the average over all 100 shortest path instances.

Even for a dimension of n = 131 the RCG hit the timelimit of 1 hour in every instance. For most configurations it could solve at most 25 of 100 instances during the timelimit. Furthermore the lower bound given by the MMLB is larger than the lower bound of the RCG after 1 hour. For small instances it is at least 5% better while for the larger instances the gap increases up to 12% for some instances. is due to the very small number of iterations and the small computational effort of the shortest path problem in its deterministic version.

In Table 5 we show the results for all three heuristics and the min-max solution. Heur2 outperforms all other heuristics for all configurations. Compared to the min-knapsack problem the gaps are slightly larger for higher dimensions but are never larger than 12%. The gaps of Heur1 are also larger than for the min-knapsack problem, at most 13.3%, but always larger than the gaps of Heur2. In contrast to the min-knapsack problem here the minmax solution provides the worst gaps in nearly all instances. The gaps of HeurPS are slightly better but can also increase up to 30% for larger instances. To summarize Heur1 and Heur2 seem to be a good choice to solve Problem (M 3 ) for the shortest path problem.

In Figure 4 we show a line plot of the same average gaps as in over 100 instances with n = 179 and Γ = 6 for all K ∈ {1, . . . , n}. Again, Heur2 outperforms the other heuristics. Heur1 returns solutions which are significantly better than the min-max solutions as well. In contrast to the min-knapsack problem the HeurPS performs better than the min-max solution here.

Conclusion

We considered the min-max-min problem in robust combinatorial optimization, where it is possible to prepare K solutions beforehand. Once the uncertain costs are revealed, one then chooses the best of the prepared solutions for this scenario. For the first time, the min-max-min setting is considered in combination with discrete budgeted uncertainty.

Our complexity analysis reveals that most combinatorial problems become N P-hard in this setting, and even inapproximable. Furthermore, even evaluating the objective value of a K-tuple of solutions is already strongly N P-hard if K is part of the input, making it unlikely that a compact problem formulation exists. We thus present a row-and-column generation approach to find exact solutions. As this approach fails for larger problem instances, we also develop two heuristic algorithms that run in polynomial time. Computational experiments indicate that these heuristics scale well with the problem size, leading to solutions in seconds that leave a gap of a few percent for large instances when compared to a simple lower bound.

Still there exist several open problems. First it is not clear which role the parameter Γ plays for the complexity of the problem. In all our proofs we had to set Γ = K -1, therefore Γ is related to K. It would be interesting to derive results for arbitrary fixed Γ and K. A second research direction could be to find algorithms with a certain approximation guarantee valid for specific problems. Finally, other combinatorial problems such as minimum st-cut or representative selection (see [START_REF] Kasperski | Robust discrete optimization under discrete and interval uncertainty: A survey[END_REF]) were not considered in this work and could be studied regarding the complexity and approximability of the corresponding min-max-min problem with discrete budgeted uncertainty.

  min x x x (1) ,...,x x x (K) ∈X max c c c∈U Γ min k∈[K]
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  Solve (Master) with respect to U Set x as its optimal solution, LB as its objective value 8 Solve (Slave) with respect to x Set c c c as its optimal solution, U B as its objective value 10 until LB = U B; 11 Output: x As mentioned above, Algorithm 2 iteratively calculates a non-decreasing sequence of lower bounds for Problem (M 3 ). Nevertheless as our computational experiments show these lower bounds are hard to compute and tend to be far from the optimal value even after one hour of computation time; see Section 5. In the following we present a different lower bound for Problem (M 3 ) which turns out to be tighter as well as easier to compute.Observation 8. The optimal value of problem max is a lower bound for Problem (M 3 ).

  kt} , where A := {d i | i = (k -1)t + 1, . . . , n} ∪ {0} and returning the solution of the problem with the smallest optimal value. Proof. For each given x x x ∈ X we can rewrite the objective value max c c c∈U k c c c x x x by ĉ c c x x x + max

  min ĉ c c x x x + αΓ -β + kt i=(k-1)t+1
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 1 Figure 1: Non-differentiable regions of f 1 (α, β) and f 2 (α, β), respectively drawn as dotted and solid lines. The squares represent the kinkpoints of the objective function on the domain visible in the figure.

Figure 2 :

 2 Figure 2: Example for Heuristic 2.

  were calculated by drawing K random vectors λ λ λ k from a uniform distribution and selecting the Pareto-scenarios c c c k := arg max c c c∈U Γ λ λ λ k c c c.
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 3 Figure 3: Average percental gaps between objective value of the heuristic solutions and the MMLB over 10 instances with n = 150 and Γ = 6.

Figure 4 :

 4 Figure 4: Average percental gaps between objective value of the heuristic solutions and the MMLB over 100 instances with n = 179 and Γ = 6.

Table 1 :

 1 Complexity of Problem (M 3 ) for U Γ .

	These dynamic

Table 2 :

 2 Results of MMLB and RCG for the min-knapsack problem.

					MMLB				RCG
	n Γ K Gap (%)	t #solved #iter	t #solved #iter Opt-Gap (%)
	100 3 10	8.0	0.4	10	14.0 3600.0	0	2.0	16.9
	100 3 20	8.0	0.4	10	14.0 3600.0	0	2.0	16.9
	100 3 30	8.0	0.4	10	14.0 3600.0	0	2.0	16.9
	100 6 10	13.4	1.9	10	33.6 3600.0	0	2.1	27.7
	100 6 20	13.4	1.9	10	33.6 3600.0	0	2.0	27.8
	100 6 30	13.4	1.9	10	33.6 3600.0	0	2.0	27.8
	200 3	-	-	3.1	10	37.6		
	200 6	-	-	98.2	10 121.9		
	300 3	-	-	4.1	10	53.8		
	300 6	-	-	292.5	10 197.4		
	400 3	-	-	5.8	10	47.0		
	400 6	-	-1639.6	9 247.1		

Table 3 :

 3 Table 2 indicates, in nearly all instances this lower bound is tighter than the one provided by the RCG. Percental Gaps of Heur1, Heur2, HeurPS and MM to the lower bound MMLB for the min-knapsack problem.

	n Γ K Heur1 Heur2 HeurPS MM	n Γ K Heur1 Heur2 HeurPS MM
	100 3 10	2.5	1.3	7.3	5.4	300 3 10	1.5	1.0	3.1	2.7
	100 3 20	2.2	0.8	6.5	5.4	300 3 20	1.4	0.7	3.1	2.7
	100 3 30	2.5	0.5	6.1	5.4	300 3 30	1.3	0.6	3.1	2.7
	100 6 10	3.7	3.2	9.2	7.0	300 6 10	2.7	2.2	5.1	4.2
	100 6 20	4.0	1.9	8.8	7.0	300 6 20	2.5	1.8	5.1	4.2
	100 6 30	3.6	1.8	8.4	7.0	300 6 30	2.4	1.5	5.1	4.2
	200 3 10	1.9	1.0	4.6	3.4	400 3 10	1.0	0.7	2.3	1.9
	200 3 20	1.6	0.7	4.6	3.4	400 3 20	0.9	0.5	2.3	1.9
	200 3 30	1.7	0.5	4.6	3.4	400 3 30	0.7	0.4	2.3	1.9
	200 6 10	3.4	2.7	7.0	5.2	400 6 10	2.1	1.6	3.7	3.0
	200 6 20	3.2	2.2	7.0	5.2	400 6 20	1.7	1.4	3.7	3.0
	200 6 30	3.1	1.9	7.0	5.2	400 6 30	1.6	1.2	3.7	3.0

Table 4 :

 4 Results of MMLB and RCG for the shortest path problem.

	The optimality gap of the RCG after

Table 5

 5 

					n Γ K Heur1 Heur2 HeurPS MM
					179 3 10	7.3	5.2	20.2 22.4
					179 3 20	7.1	3.2	17.7 22.4
	n Γ K Heur1 Heur2 HeurPS MM	179 3 30	7.9	2.2	15.8 22.4
	57 3 10	5.1	1.7	8.1 15.3	179 6 10	11.4	8.9	23.1 29.6
	57 3 20	5.6	0.5	6.1 15.3	179 6 20	10.5	5.8	20.2 29.6
	57 3 30	7.4	0.3	5.5 15.3	179 6 30	10.7	4.7	18.7 29.6
	57 6 10	8.2	3.9	8.7 17.4	234 3 10	7.3	5.7	22.5 22.7
	57 6 20	7.9	2.1	6.5 17.4	234 3 20	6.8	3.3	20.1 22.7
	57 6 30	9.1	1.7	5.8 17.4	234 3 30	6.9	2.1	19.1 22.7
	90 3 10	5.1	2.3	11.8 18.0	234 6 10	11.7	9.8	27.5 31.0
	90 3 20	5.1	0.9	9.5 18.0	234 6 20	11.0	6.5	25.0 31.0
	90 3 30	4.6	0.5	8.6 18.0	234 6 30	10.0	5.1	23.5 31.0
	90 6 10	9.5	5.7	14.1 22.6	297 3 10	7.7	6.5	24.1 22.9
	90 6 20	8.6	3.3	11.2 22.6	297 3 20	7.3	4.5	20.9 22.9
	90 6 30	8.0	2.4	10.2 22.6	297 3 30	7.7	3.1	20.0 22.9
	131 3 10	6.4	3.4	15.7 19.9	297 6 10	12.3	10.4	29.9 32.3
	131 3 20	5.8	1.7	13.6 19.9	297 6 20	10.9	7.5	28.1 32.3
	131 3 30	5.7	0.9	13.0 19.9	297 6 30	10.6	5.9	26.8 32.3
	131 6 10	10.9	7.5	20.4 26.1	368 3 10	7.5	7.3	25.5 23.3
	131 6 20	8.9	4.8	18.0 26.1	368 3 20	6.9	5.2	23.7 23.3
	131 6 30	9.4	3.6	16.5 26.1	368 3 30	6.7	3.5	22.8 23.3
					368 6 10	13.3	12.5	32.5 33.7
					368 6 20	11.1	9.1	30.9 33.7
					368 6 30	10.8	7.5	29.7 33.7

Table 5 :

 5 Percental Gaps of Heur1, Heur2, HeurPS and MM to the lower bound MMLB for the shortest path problem.

Appendix A. Additional proofs Theorem 11. Problem (M 3 ) for the spanning tree problem is N P-hard, even if K = 2. It is strongly N P-hard if K is part of the input.

Proof. Assume first that Γ = 1 and K = 2. We reduce the partition problem to (M 3 ) for the spanning tree problem. Given an instance of the partition problem, i.e. a i ∈ N for each i ∈ [ñ], we define the graph G = (V, E) as follows: Using n = ñ, let V = {v 1 , . . . , v n+1 , w 1 , . . . , w n+1 } and E = {e 1 , . . . , e n , f 1 , . . . , f n , g 1 , . . . , g n+1 } where e i = {v i , v i+1 }, f i = {w i , w i+1 } and g i = {v i , w i }. Assume e i and f i have nominal costs a i and a deviation of M where M = i∈[n] a i . All edges g i have costs and deviation 0. See Figure A.5 for an example construction. Note that all optimal spanning trees of the latter graph must use all edges g i and for each i ∈ [n] exactly one of the edges e i or f i . Now any optimal solution of (M 3 ) for K = 2 contains two trees which are disjoint on the e-edges and on the f -edges since otherwise the deviation on a common edge could be set to M . Thus we can find a solution S ⊆ [ñ] for the partition problem if and only if the optimal value of (M 3 ) is

The proof extends to the case when K is part of the input by using the strongly N P-hard 3-partition problem. Setting K = m and Γ = K -1, and constructing a graph G = (V, E) with nodes

and edges

n+1 where e j i = v j i , v j i+1 and

. Again all edges e j i have nominal costs a i and a deviation of M where M = i∈[n] a i . All edges g j i have costs and deviation 0. A similar reasoning as above shows that one can decide if a partition into m sets having the same costs exists if and only if the corresponding min-max-min problem has an optimal value equal to 1 K M . solution of (M 3 ) are disjoint and each edge {v i , w i } is used by at least one of the two solutions. Thus we can find a solution S ⊆ [ñ] for the equipartition problem if and only if the optimal value of (M 3 ) is -1 2 M . The proof extends to the case when K is part of the input using the 3-partition problem setting K = m and Γ = K -1. A similar reasoning as above shows that one can decide if a partition into m sets having the same costs exists if and only if the corresponding min-max-min problem has an optimal value equal to 1 K M . Consider first Γ ≥ 2 and K = 2. As before, the algorithm enumerates labels s s s and chooses the best of them by computing their costs. As K = 2, only two solutions are being built, and steps 6-12 follow the same idea as before with one difference: computing the cost (2) requires the worst Γ deviations for each partial solution. Therefore, every state s ∈ S is now described by the (3Γ + 4)-tuple s s s = (w (1) , w (2) , c (1) , c (2) , i (1) , i (2) , i (1,2) ) where i (1) , i (2) , and i (1,2) are Γ-tuples recording the indices of the largest elements.

Equation (2) becomes cost(s s s) = max

For K ≥ 3, we are now constructing K solutions, so steps 6-12 should be adapted accordingly. In addition, computing the cost for K ≥ 3 also requires the Γ worst deviations for each subset j ⊆ [K] that contains at most Γ elements. We obtain states described by s s s = (w (1) , . . . , w (K) , c (1) , . . . , c (K) , i (j 1 ) , . . . , i (j K ) ),