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Abstract—Multi-source information fusion strategies in target
recognition have been widely applied. Generally, each source is
defined and modelled over a common frame composed of the
hypotheses to discern. However, in practice, the independent
sources of evidence can refer to distinct frames of discernment
in terms of the hypotheses they consider. Under this condition,
the classical combination process cannot be applied directly.
Working with distinct frames of discernment for information
fusion is a problem often encountered in the development of
recognition systems which requires a particular attention. In
order to combine such sources, this paper presents a new
combination method which splits the process of fusion into two
steps: construction of granular structure, calculation of belief
mass, followed by the fusion process. Our simulations results
show that the proposed method can effectively solve the problem
of fusion of sources defined on distinct frames.
Keywords: Information fusion, Distinct frames of discern-
ment, Belief functions, Combination Rule, Granular Structure,
Rough set.

I. INTRODUCTION

The aim of this paper is to propose a new approach for
combining sources of evidence referring to distinct (uncom-
mon) frame of discernment, that can be eventually (partially)
incompatible.

Motivation

In Dempster-Shafer Theory (DST) also known as the theory
of evidence [1], each Source of Evidence (SoE) refers to a
(common) Frame of Discernment (FoD) with exhaustive and
exclusive elements. Each element of the FoD corresponds to
a choice for the solution of the problem under concern. In
some applications, the FoD related with a source is not always
exhaustive and exclusive and that is why Dezert-Smarandache
Theory (DSmT) [2] has been developed. Moreover, in more
realistic situations, the FoDs related with each source can be
distinct so that no global common FoD is directly available in
order to apply classical fusion techniques developed in DST
or DSmT. The fusion of sources of evidence related to distinct
FoDs encountered in real applications motivates the works
presented in this paper.

State of the art and challenges

In order to fuse sources of evidence referring to distinct
FoDs, some scholars have proposed different methods. The
most representative ones are presented in [3], [4], [5] and
[6]. These methods can be classified into three categories as
follows.

1) Expanded methods: In these methods, for example in
[3], a common (expanded) FoD is built and each SoE assigns a
zero mass value to elements of this common FoD that are not
included in its own specific FoD. This kind of method is simple
and effective up to some degree. The implicit assumption done
in these methods is that each source of evidence can identify
the expanded common FoD as being the disjunction of all
own specific FoDs of the sources. This implicit assumption is
however unreasonable because it overlooks the main fact that
the elements of the expanded common FoD are not within the
scope of expertise of each source under concern.

2) Deconditioning methods: To overcome the problem of
expanded methods, Janez [3] adopted a new standpoint, and he
developed a deconditioning fusion method. This method can
be interpreted as the opposite (dual) of the extension method.
The so-called discriminable domain is divided according to the
FoD of each source of evidence. For example, we consider two
SoE S1 and S2 with FoDs Θ1 and Θ2 and let1 Θc , Θ1∩Θ2

be the common part of Θ1 and Θ2 (assumed to be non empty).
The elements of Θ1∩Θ̄c will be discriminated only by source
S1, whereas the elements of Θ2∩Θ̄c will be discriminated only
by the S2. The elements of Θc will be discriminated by both
sources S1 and S2. Such kind of separation is based on the
range of each evidence, which may yield to some ambiguities
of the extension methods. This separation principle splits the
original fusion process into three sub-steps, in which one
needs to make the fusion. Hence, with these methods one can
degrade the computational efficiency of the fusion strategy,
especially if large databases have to be browsed.

3) Conditioning updating methods: Unlike the previous
methods, the more recent conditional method proposed by
Premaratne et al. in [4], [5] and [6], is a different approach,
which does not need to expand the FoDs of each source into

1Here, we use the symbol , to mean equal by definition.



a common FoD, nor to separate and identify the common
elements of FoDs. In this new (conditioning and updating)
method each source updates its knowledge base by selecting
the incoming evidence that it can discern (or it is interested in).
The performance of such method is however very dependent
on the ad-hoc choice of two weighting tuning parameters.

Contribution

As aforementioned discussed, the existing methods have
all their own limitations and drawbacks. In this paper, we
propose to combine the granular computing developed by
Pawlak [7] in his Rough Set Theory (RST) and belief mass
allocation in Belief Functions (BFs). Specifically, we split
the process of fusion into two steps: 1) the construction of
granular structure (GS) based on the defined relations, and 2)
the calculation of belief mass of target focal element (TFE).
The innovation of GS construction is that at first we determine
the indistinguishability relation according to TFE. Then we
construct the relevant GS about the indistinguishability relation
in the framework of the available FoDs. The calculation of the
belief mass of TFE is the summation of the related masses of
TFE in each GS with conflict redistribution, followed by a
normalization step.

This paper is organized as follows. Section 2 reviews some
basic concepts of belief functions. Section 3 discusses fusion
strategy based on RST for SoE defined on distinct FoDs.
Section 4 gives the summary of the new proposed combination
method. In section 5, a target identification case is chosen
to show the performance of this new approach. Section 6
concludes the paper and proposes some perspectives.

II. BASICS OF BELIEF FUNCTIONS

In DST framework [1], the FoD Θ , {θ1, . . . , θn} (n ≥ 2)
is a set of exhaustive and exclusive elements. This is called
Shafer’s model of FoD. The set of all subsets of Θ is called the
powerset of Θ and it is denoted 2Θ. A basic belief assignment
(BBA) m(·) is defined as a mapping m(·) : 2Θ 7→ [0, 1],
verifying m(∅) = 0 and

∑
A∈2Θ m(A) = 1. In DSmT [2],

one can abandon Shafer’s model2 and refute the principle
of the third excluded middle. Instead of defining the BBAs
on the power set 2Θ , (Θ,∪), the BBAs are defined on
the so-called hyper-power set (or Dedekind’s lattice) denoted
DΘ , (Θ,∪,∩) whose cardinalities follows Dedekind’s
numbers sequence [2], Vol.1. A (generalized) BBA is defined
as the mapping m(·) : DΘ 7→ [0, 1], verifying m(∅) = 0 and∑

A∈DΘ m(A) = 1. The DSmT framework encompasses DST
framework because 2Θ ⊂ DΘ. If m(A) > 0, A is called focal
element of the BBA m(·). A BBA is called a Bayesian BBA
if all of its focal elements are singletons and Shafer’s model is
assumed, otherwise it is called non-Bayesian. A full ignorance
source is represented by the vacuous BBA mv(Θ) = 1. In
DST, the combination of several distinct SoE is done with
the controversial Dempster’s rule of combination which is
the normalized version of conjunctive rule [1]. To palliate

2If Shafer’s model doesn’t fit with the problem.

the drawbacks of Dempster’s rule, the Proportional Conflict
Redistribution Rule # 6 (PCR6) has been proposed in DSmT.
Because we do not use these rules in this work, we do not
need to present them in details here.

III. FUSION OF EVIDENCES BASED ON RST

A. Construction of GS of TFE

Consider a FoD Θ = {θ1, θ2, · · · , θn}, (n ≥ 2). We
denote X a specific TFE under concern. We denote U =
{u1, u2, · · · , ui} a chosen subset of DΘ corresponding to the
set of focal elements of the BBA m(·) of the SoE. According
to Pawlak’s RST [7], any set U can be partitioned from some
chosen rules which help to determine if two elements of U can
be considered as equivalent or relevant, or not. For example,
if the chosen rule is the belief mass, we will say that ui ∈ U
and uj ∈ U are equivalent if and only if m(ui) = m(uj).
Using RST notations and formalism [7], the relation IND(R)
defined by (1) is called a R-indiscernibility relation.

IND(R) , {(ui, uj) ∈ U ×U | ∀r ∈ R, r(ui) = r(uj)} (1)

If (ui, uj) ∈ IND(R), then ui and uj are indiscernible (or
indistinguishable) from R. We denote U(R) , {[ui]R|ui ∈
U} the partition of U based on R. [ui]R denotes the equivalent
class of ui with respect to R, i.e., [ui]R = {uj ∈ U |r(uj) =
r(ui)}. The partition U(R) is interpreted as a GS built from
equivalence relation R. In fact, R is a partitioning method
which can discriminate elements of U into separate subsets.
With different equivalence relations, we can construct various
meaningful partitions (GSs) of U .

Example 1: Consider a set U = {u1, . . . , u10} of focal
elements of a normalized BBA m(·) whose values are

m(u1) = 0.0156 m(u2) = 0.0874 m(u3) = 0.0156;

m(u4) = 0.0874 m(u5) = 0.0874 m(u6) = 0.2354

m(u7) = 0.2354 m(u8) = 0.2354 m(u9) = 0.0002;

m(u10) = 0.0002

If we consider the simple equivalence rule R defined by

R : ui ≡ uj if and only if m(ui) = m(uj)

we see that U can be partitioned as follows:

U(R) = {{u1, u3}, {u2, u4, u5}, {u6, u7, u8}, {u9, u10}}

Of course, if a different rule is adopted, an other GS of U
is generated. In fusion problems, one has to consider several
initial FoDs which are directly provided by the SoE. Each FoD
associated with a source is related to the FoD corresponding
to the scope of expertise of the SoE.

Example 2: Consider three distinct FoDs Θ1 = {x1, x2, x3},
Θ2 = {y1, y2} and Θ3 = {z1, z2} representing radar cross
section (RCS) attributes, shape attributes and speed attributes,
respectively. Suppose that one observes a target T among a
family of potential targets ΘT , {T1, T2, T3, T4, T5, T6} and
each target is characterized by its 3-tuple (xi, yj , zk). For ex-
ample, T1 = (x1, y1, z1), T2 = (x1, y2, z1), T3 = (x2, y2, z2),



T4 = (x3, y2, z1), T5 = (x3, y1, z1), and T6 = (x2, y1, z2).
Suppose that three smart sensors (i.e. sources of evidence)
provide three reports expressed by the following BBAs

m1(x1) = 0.1,m1(x3) = 0.2,m1(x1 ∪ x2) = 0.3,

m1(x1 ∪ x2 ∪ x3) = 0.4

m2(y1) = 0.2,m2(y2) = 0.3,m2(y1 ∪ y2) = 0.5

m3(z1) = 0.8,m3(z2) = 0,m3(z1 ∪ z2) = 0.2.

From these three SoE, one gets the three FoDs (i.e. sets of
focal elements) U1, U2 and U3

U1 = {x1, x3, x1 ∪ x2, x1 ∪ x2 ∪ x3};
U2 = {y1, y2, y1 ∪ y2};
U3 = {z1, z2, z1 ∪ z2}.

These three sets of focal elements can be understood as
three different GSs obtained by three independent experts
using their prior knowledge in order to partition the set
U123 , U1 × U2 × U3.

In order to compute the global (fusioned) belief mass of any
TFE X from the available FoDs U1, U2 and U3, we propose
two works with two distinct domains called: the compatible
domain and the incompatible domain of X , whose definitions
are given below.

Definition 1 (Compatible domain of X): Consider q ≥ 2
focal sets U1, U2, . . ., Uq provided by q SoE. The compatible
domain of a TFE X = (xi1 , . . . , xiq ), denoted UC

1,...,q(X),
corresponds to the set of all q-tuples of U1× . . .×Uq and each
componentwise intersection of q-tuple of U1×U2×Uq with X
must be equal to the component of X which means that the q-
tuples of U1× . . .×Uq is compatible with X . Mathematically,
the compatible-domain of X is defined by

UC
1,...,q(X) , {(ui1 , . . . , uiq ) ∈ U1 × . . .× Uq

|∀uik ∈ Uk, uik ∩ xik = xik , xik ∈ X, k = 1, . . . , q}. (2)

For instance, taking back the example 2 and considering the
TFE T1 = (x1, y1, z1), all 3-tuples that satisfy definition 1 are
listed in Table I.

Interpreting the conflict as a situation which cannot occur
(i.e. an impossible case), we define the incompatible domain
of a given TFE X as the set of all elements of the product
space U1×U2× . . .×Uq which have at least one component
incompatible (or in conflict) with X . This yields to the
following definition:

Definition 2 (Incompatible domain with X): Consider a TFE
X = (xi1 , . . . , xiq ), and q ≥ 2 focal sets U1, U2, . . ., Uq

provided by q SoE. The incompatible domain with X (or
conflict domain) denoted U I(X)

1,...,q(∅) corresponds to the set of
all q-tuples of U1× . . .×Uq having at least a componentwise
empty intersection with X , that is

U
I(X)
1,...,q(∅) , {(ui1 , . . . , uiq ) ∈ U1 × . . .× Uq

| ∃uik ∈ Uk, uik ∩ xik = ∅}. (3)

Example 2 (revisited):
We show how to build these two domains for Example 2.

As mentioned before the set of focal elements available from
the three SoE are

U1 = {x1, x3, x1 ∪ x2, x1 ∪ x2 ∪ x3};
U2 = {y1, y2, y1 ∪ y2};
U3 = {z1, z2, z1 ∪ z2}.

Because U1 has 4 elements, U2 has 3 elements and U3 has 3
elements, the Cartesian product U1×U2×U3 has 4×3×3 = 36
elements. We suppose that the TFE under concern is X =
T1 = (x1, y1, z1). Based on the definitions 1 and 2, the self
domain and the conflict domain of T1, are given as follows:
• Compatible domain of T1: All the elements of UC

1,2,3(T1)
are listed in Table I.

• Incompatible domain of T1: The set U I(T1)
1,2,3 (∅) is the

complement of UC
1,2,3(T1) in U1 × U2 × U3, that is

U
I(T1)
1,2,3 (∅) = U1 × U2 × U3 − UC

1,2,3(T1), where the
minus operator symbol corresponds to the set difference
operator. U I(T1)

1,2,3 (∅) has therefore 24 = 36− 12 elements
(not listed here due to space limitation constraint).

The product set U1 × U2 × U3 has been partitioned into
two subsets, the compatible domain of T1 including the
twelve elements of U1 × U2 × U3 compatible with T1, and
the incompatible domain of T1 including the 24 elements
incompatible with T1.

Link with RST: From the standpoint of RST, we can
define some equivalence rules based on definitions 1 and
2, denoted R = {r1 = rule based on definition 1, r2 =
rule based on definition 2}. Under a chosen rule r ∈ R, some
particular elements (ui1 , . . . , uiq ) of U1 × . . . × Uq can be
selected to characterize some special relationship with TFE
(based on equivalence relation using definition 1 and conflict
relation using definition 2). According to the principles of
RST: GSs3 can be induced by various relations depending on
the specificity of the problem, such as a neighborhood relation
or a tolerance relation [7]. In the following example, we will
show how a tolerance relation is used to solve the case where
we have incomplete information of targets.

Dealing with incomplete information: In many practical
problems, the available information can be incomplete. For
example, it could happen that an object under interest has a
(or more) missing (non observed) attribute. In such situation,
this requires to deal with incomplete information with a special
notation using the question mark symbol ? to represents the
missing information. For instance, if the third attribute for the
target T1 of example 2 is missing (unknown), we will denote
it as (x1, y1, ?) and question mark symbol ? represents the
third missing attribute. Because of the possibility of missing
attribute, the definition 1 needs to be revised as follows4:

3In this paper, UC
1,...,q(X) and U

I(X)
1,...,q(∅) are regarded as a variety of GSs

in RST.
4Modification of definition 2 is similar.



TABLE I: Elements of UC
1,2,3(T1) for Example 2.

(x1, y1, z1) (x1, y1 ∪ y2, z1) (x1, y1, z1 ∪ z2) (x1, y1 ∪ y2, z1 ∪ z2)

(x1 ∪ x2, y1, z1) (x1 ∪ x2, y1 ∪ y2, z1) (x1 ∪ x2, y1, z1 ∪ z2) (x1 ∪ x2, y1 ∪ y2, z1 ∪ z2)

(x1 ∪ x2 ∪ x3, y1, z1) (x1 ∪ x2 ∪ x3, y1 ∪ y2, z1) (x1 ∪ x2 ∪ x3, y1, z1 ∪ z2) (x1 ∪ x2 ∪ x3, y1 ∪ y2, z1 ∪ z2)

Definition 3 (Compatible domain with incomplete informa-
tion): Consider q ≥ 2 focal sets U1, U2, . . ., Uq provided
by q SoE. The compatible domain of a TFE X with missing
attributes, denoted U

′C
1,...,q(X), corresponds to the set of all q-

tuples of U1 × . . .×Uq and each componentwise intersection
of q-tuple of U1 × U2 × Uq with X must be equal to the
component of X , that is

U
′C
1,...,q(X) , {(ui1 , . . . , uiq ) ∈ U1 × . . .× Uq

|∀uik ∈ Uk, uik ∩ xik = xik or uik →?, k = 1, . . . , q}. (4)

Here, uik →? means that for all uik in Uk replacing the
missing attribute in k-th dimension of X , respectively. And
uik →? actually means uik ∩ ? ≡ uik , k = 1, . . . , q.

Considering back the example 2, if X = (x1, y1, ?), we will
get U

′C
1,...,3(X) as follows:

U
′C
1,...,3(X) = {(x1, y1, z1), (x1, y1 ∪ y2, z1),

(x1, y1, z1 ∪ z2), (x1, y1 ∪ y2, z1 ∪ z2), (x1 ∪ x2, y1, z1),

(x1 ∪ x2, y1 ∪ y2, z1), (x1 ∪ x2, y1, z1 ∪ z2),

(x1 ∪ x2, y1 ∪ y2, z1 ∪ z2), (x1 ∪ x2 ∪ x3, y1, z1),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z1), (x1 ∪ x2 ∪ x3, y1, z1 ∪ z2),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z1 ∪ z2), (x1, y1, z2),

(x1 ∪ x2, y1, z2), (x1 ∪ x2 ∪ x3, y1, z2),

(x1, y1 ∪ y2, z2), (x1 ∪ x2, y1 ∪ y2, z2),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z2)}

The elements of U
′C
1,...,3(X) are the triplets of U1×U2×U3

compatible with the two first components of X for which the
missing attribute of X is replaced either by z1, z2, or z1 ∪ z2.

The definition 3 can also be regarded as a kind of equiv-
alence relation5 which is applied to find the relevant sets of
TFE in U1 × . . .× Uq .

The main contribution of this paper is to propose some
rules to handle the different domains of TFE based on the
specificity of the problem. Based on these rules, we can
identify the compatible-domain and the incompatible domain
for a chosen TFE, and then define belief allocation strategies
and combination in order to get a final quantitative result as
proposed in the sequel.

B. Calculation of the belief mass of TFE

Once the compatible domain and the incompatible domain
of TFE are identified, we use the elements in these domains

5This equivalence relation is also called tolerance relation in RST.

to calculate the belief mass of a chosen TFE. In fact, in RST,
the granular space obtained by each partitioning rule will be
used to approximate the target concepts, namely the upper
approximation set and the lower approximation set, as well
as the positive, negative and uncertainty domains about the
target concept. Such results of approximation are to some
extent qualitative expressions. Once equivalent sets of TFE in
each domain are found, we calculate the belief mass of TFE
in each domain space in order to get a quantitative result.
In a certain sense, rough set solves the qualitative solution
of target concept and the multi-granular rough set fusion is
a kind of qualitative fusion method, whereas the evidence
fusion provides a quantitative fusion solution. Although the
two approaches are focused on different aspects, from a
fusion point of view, the rough set approach can be seen as
complementary to the fusion rules of belief functions. In what
follows, we propose a method to combine BBAs to get the
belief mass of TFE based on the construction of own domain
and conflict domain.

Fusion based on partially uniform redistribution rule
Consider q ≥ 2 BBAs m1(·),. . . , mq(·) with q sets of focal

elements U1,. . . , Uq , and a subset X of U1 × U2 × · · · × Uq .
The (conjunctive) fusion for the TFE X is calculated by

mC
1,...,q(X) =

∑
(ui1 ,...,uiq )∈UC

1,...,q(X)

m1(ui1) · . . . ·mq(uiq ).

(5)
To reduce the complexity of the fusion combination rule, we

propose to average the conflicting masses allocated to elements
of U I(X)

1...q (∅) and to distribute it back to X , which is expressed
as

m1,...,q(X) = mC
1,...,q(X)+

1

|U I(X)
1...q (∅)|

∑
(ui1

,...,uiq )∈UI(X)
1...q (∅)

m1(ui)× . . .×mq(uiq ).

(6)

where |U I(X)
1...q (∅)| is the cardinality of U I(X)

1...q (∅).
With such basic redistribution principle, after having com-

puted the BBA m1...q(X) of all possible TFE X , we don’t get
a normalized BBA. That is why a normalization step must be
applied to get final fusion result,



Example 2 (revisited): Let’s consider X = T1 = (x1, y1, z1),
then based on Table I one has

UC
1,2,3(T1) = {(x1, y1, z1), (x1, y1 ∪ y2, z1),

(x1, y1, z1 ∪ z2), (x1, y1 ∪ y2, z1 ∪ z2), (x1 ∪ x2, y1, z1),

(x1 ∪ x2, y1 ∪ y2, z1), (x1 ∪ x2, y1, z1 ∪ z2),

(x1 ∪ x2, y1 ∪ y2, z1 ∪ z2), (x1 ∪ x2 ∪ x3, y1, z1),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z1), (x1 ∪ x2 ∪ x3, y1, z1 ∪ z2),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z1 ∪ z2)}.

The (conjunctive) mass of belief of T1 is given by

mC
1,...,3(T1) =

∑
(ui1

,ui2
,ui3

)∈UC
1,2,3(X)

m1(ui1)m2(ui2)m3(ui3)

= m1(x1)m2(y1)m3(z1)

+m1(x1)m2(y1)m3(z1 ∪ z2)

+m1(x1 ∪ x2)m2(y1)m3(z1)

+m1(x1 ∪ x2)m2(y1)m3(z1 ∪ z2)

+m1(x1 ∪ x2 ∪ x3)m2(y1)m3(z1)

+m1(x1 ∪ x2 ∪ x3)m2(y1)m3(z1 ∪ z2)

+m1(x1)m2(y1 ∪ y2)m3(z1)

+m1(x1)m2(y1 ∪ y2)m3(z1 ∪ z2)

+m1(x1 ∪ x2)m2(y1 ∪ y2)m3(z1)

+m1(x1 ∪ x2)m2(y1 ∪ y2)m3(z1 ∪ z2)

+m1(x1 ∪ x2 ∪ x3)m2(y1 ∪ y2)m3(z1)

+m1(x1 ∪ x2 ∪ x3)m2(y1 ∪ y2)m3(z1)

= 0.56.

The incompatible domain U
I(X)
1...q (∅) has 24 elements. They

correspond altogether to a conflicting belief mass value given
by the total mass value (equal to one) minus the mass of belief
of the 12 q-tuples compatible with T1. That is

m
I(T1)
1...3 (∅) = 1.0− 0.56 = 0.44

Therefore the average conflicting mass value is.
1

|UI(X)
1...q (∅)|

m
I(T1)
1...3 (∅) = 1

24 · 0.44 ≈ 0.0183.

Thus the total belief mass committed to T1 (before normal-
ization) will be

m1,...,3(T1) = mC
1,...,3(T1) +

1

|U I(X)
1...q (∅)|

m
I(T1)
1...3 (∅)

= 0.56 +
1

24
· 0.44 ≈ 0.5783.

We apply the same principle of derivation for all targets of
ΘT . After the normalization step, we finally get

m123(T1) ≈ 0.2274 m123(T2) ≈ 0.2485

m123(T3) ≈ 0.0558 m123(T4) ≈ 0.2174

m123(T5) ≈ 0.1998 m123(T6) ≈ 0.0511.

Example 3 (revisited): We consider the following TFE X =
T ∗ = (x1, y1, ?) with a missing attribute (the third component
is missing). Then, one has

U
′C
1,2,3(T ∗) = {(x1, y1, z1), (x1, y1 ∪ y2, z1),

(x1, y1, z1 ∪ z2), (x1, y1 ∪ y2, z1 ∪ z2), (x1 ∪ x2, y1, z1),

(x1 ∪ x2, y1 ∪ y2, z1), (x1 ∪ x2, y1, z1 ∪ z2),

(x1 ∪ x2, y1 ∪ y2, z1 ∪ z2), (x1 ∪ x2 ∪ x3, y1, z1),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z1), (x1 ∪ x2 ∪ x3, y1, z1 ∪ z2),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z1 ∪ z2), (x1, y1, z2),

(x1 ∪ x2, y1, z2), (x1 ∪ x2 ∪ x3, y1, z2),

(x1, y1 ∪ y2, z2), (x1 ∪ x2, y1 ∪ y2, z2),

(x1 ∪ x2 ∪ x3, y1 ∪ y2, z2)}

Compared to the UC
1,2,3(T1), U

′C
1,2,3(T ∗) contains six extra

elements. The (conjunctive) mass of belief of T ∗ is given by

m
′C
1,2,3(T ∗) = 0.56 +m1(x1)m2(y1)m3(z2)

+m1(x1 ∪ x2)m2(y1)m3(z2)

+m1(x1 ∪ x2 ∪ x3)m2(y1)m3(z2)

+m1(x1)m2(y1 ∪ y2)m3(z2)

+m1(x1 ∪ x2)m2(y1 ∪ y2)m3(z2)

+m1(x1 ∪ x2 ∪ x3)m2(y1 ∪ y2)m3(z2)

= 0.56 + 0 = 0.56.

The conflicting mass of T ∗ is given by the total mass value
(equal to one) minus the mass of belief of all the 18 triplets
compatible with T ∗, that is

m
′I(T∗)
1,2,3 (∅) = 1− 0.56 = 0.44.

Because U I(T∗)
1,2,3 (∅) has 36− 18 = 18 elements, one gets

m′1,2,3(T ∗) =m
′C
1,2,3(T ∗) +

1

18
m
′I(T∗)
1,2,3 (∅)

= 0.56 +
1

18
· 0.44 ≈ 0.5844.

IV. SUMMARY OF FUSION BASED ON RST

Figure 1 shows the whole diagram of our proposed com-
bination method and the most important steps are the con-
struction of GSs and calculation of belief mass of TFE. In
the following example, we choose conflict allocation in new
combination method to fuse sources with distinct FoDs.

V. APPLICATION EXAMPLE

Here, we will use the target identification example available
in the literature [8] to illustrate our new method for combining
SoE with distinct FoDs. This example is about an air surveil-
lance system, which determines the targets’ ID by combining
the outputs of multiple sensors. Suppose that the FoD for the
target allegiance is ΘA, and the FoD for the target classes
is Θref

B . In our example, one has ΘA = {f, n, s, h}, where
f , friend, n , neutral, s , suspect, h , hostile and
ΘB = {B1, B2, B3, B4}:



TABLE II: Available Sensor Reports.

Report ID Corresponding evidence BoE

Report(1) m
(1)
ΘB

(B2) = 0.7 m
(1)
ΘB

(B2, B3) = 0.2 m
(1)
ΘB

(ΘB) = 0.1

Report(2) m
(2)

Θ
ref
B

(b22) = 0.6 m
(2)

Θ
ref
B

(b23) = 0.3 m
(2)

Θ
ref
B

(Θref
B ) = 0.1

Report(3) m
(3)
ΘA

(s) = 0.6 m
(3)
ΘA

(ΘA) = 0.4 -

Report(4) m
(3)
ΘA

(f) = 0.9 m
(3)
ΘA

(ΘA) = 0.1 -

A Multi-source information system

Source 1 Source 2 Source q

Compatible Domain 

of TFE ( )

Incompatible Domain

of TFE ( )

Construction of GSs with respect to the relations

The known Granular Structures

( )
( )

Calculation of Belief Mass of TFE

Fig. 1: Diagram of the proposed combination method.

B1 = Commerical P lanes;

B2 = Fighter P lanes;

B3 = Bombers;

B4 = Military Transport P lanes.

Each basic target class consists of several platform types:

B1 = {b11, b12}; (e.g., b11 could be Airbus− 320)

B2 = {b21, b22, b23, b24, b25};
B3 = {b31, b32, b33};
B4 = {b41, b42}(e.g., b41 could be an A380M).

Hence, the FoD Θref
B = B1 ∪B2 ∪B3 ∪B4 is the refinement

of ΘB . Target ID belongs to the FoD Θ = ΘA × Θref
B ,

for example, Target ID is s × b41, which means suspect an-
225 Mriya or h × b11 means hostile Airbus-320. The four
sensor reports are shown in Table II, and fusion center com-
bines all the sensor reports and generates a BBA for decision-
making. Suppose that the pairs {Report(1), Report(2)} and

{Report(3), Report(4)} are fused separately. The resulting
BBAs are vacuously extended and fused by the new com-
bination method in this paper so as to obtain the fused mass
mΘ(·) as

mΘ(·) = (m
(1)
ΘB

(·)⊕m(2)

Θref
B

(·))⊕ (m
(3)
ΘA

(·)⊕m(4)
ΘA

(·)).

Based on the original data given by four sensor reports in
Table II, we can obtain four initial GSs:

U1 = {B2, {B2, B3},ΘB};
U2 = {b22, b23,Θ

ref
B };

U3 = {s,ΘA};
U4 = {f,ΘA};

Based on definitions of self-domain, conflict-domain, we can
obtain some new and interesting results which are shown
in Table III, IV, V: In Table III, since focal elements in
U1 and U2 exist inclusion relations shown in Figure 2, for
example, {B2, B3} ∈ ΘB , b22 ∈ B2, b23 ∈ B2, thus,
the intersections between each element in U1 and U2 are
not ∅, and according to definitions 3, the conflict domain is
empty set, and the elements of its self domain are shown
in Table III. Furthermore, according to definition 4, we can
calculate the belief mass of B2: m(1)

ΘB
(B2)×m(2)

Θref
B

(Θref
B ) =

0.7 × 0.1 = 0.07. Similarly, we can also calculate belief
masses of {B2, B3},ΘB , b22, b23,Θ

ref
B ; Similarly, in Table

IV, the conflict between U3 and U4 is caused by s and
f , thus, conflict domain includes these two elements. Then,
based on Eq.(5) and Eq.(6), we can get the corresponding
masses of s, f and A, which are given in Table IV; Table
V shows that the fused results based on the sensor reports
above. Due to target ID belongs to ΘA × Θref

B and taking
into account the focal elements involved in Table II, the FoD
ΘA × Θref

B is reduced to ΘA′ × ΘB′ : ΘA′ = {s, f,ΘA}
and ΘB′ = {b22, b23, B2, {B2, B3},Θref

B }. Then, in Table
V, we can get the self domains and conflict domains of all
TFEs. Finally, we can get the belief masses of all elements in
ΘA′ ×ΘB′ . Based on the maximum of belief mass principle,
they appear to favor a target ID of f × b22 (i.e., a friendly
b22), which is consistent with the conclusions in [8] and [9].

Remark 3: This example shows two advantages of our
new combination method in this paper: (1) we do not need
to expand FoDs of four sensor reports to ensure that they are
under the unique FoD. For example, if we use the classical



TABLE III: Domains and belief masses of TFEs in
{Report(1), Report(2)}.

Target X Domain Mass of ΘB′

Compatible

domain

Incompatible

Domain

X = B2 {(B2,Θ
ref
B )} {∅} 0.07

X = {B2, B3} {(B2B3,Θ
ref
B )} {∅} 0.02

X = b22

{(B2, b22),

(B2B3, b22),

(ΘB , b22)}

{∅} 0.60

X = b23

{(B2, b23),

(B2B3, b23),

(ΘB , b23)}

{∅} 0.30

X = Θref
B {(ΘB ,Θref

B )} {∅} 0.01

TABLE IV: Domains and belief masses of TFEs in
{Report(3), Report(4)}.

Target X Domain Mass of ΘA′

Compatible

domain

Incompatible

Domain

X = s {(s,Θ(4)
A )} {(s, f)} 0.24

X = ΘA {(Θ(3)
A ,Θ

(4)
A )} {∅} 0.22

X = f {(f,Θ(3)
A )} {(s, f)} 0.54

(a) (b)

Fig. 2: Elements in U1, U2 (a) and U3, U4 (b).

combination method, first, we need to construct a common
FoD Θexpand = {s, f, A, b22, b23,Θ

ref
B , B2, (B2, B3),ΘB},

and then we update the BBAs by assigning zero masses to the
elements that are not in their specific FoDs. This expanded way
will obviously increase the computational complexity; (2) On
the other hand, the new combination method can effectively
get the belief mass of the special single target (for example in
this case, hostile Airbus-320) when there are no need to pay
more attentions to other potential targets. However, all belief
masses of targets will be calculated in a single calculation step
in traditional combination ways.

VI. CONCLUSION

In this paper we did propose a new combination method
to solve the fusion problem of sources with distinct FoDs.

Specifically, the new fusion process is divided into two steps:
1) according to GSs provided by original sources, we construct
the compatible domain and the incompatible domain of TFE
based on several rules; and 2) we calculate the belief mass
of TFE with very basic belief allocation strategy. Experiments
show that the approach presented in this paper can provide a
solution to the fusion of sources with distinct FoDs compatible
with more sophisticate methods. In future works, we will
continue to explore more rules to get better relevant sets of
TFE and to improve the conflict redistribution strategies in
order to combine more efficiently (hopefully) different sources
defined on distinct FoDs.
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TABLE V: Fused BoE generated from four sensor reports.
Target X Domain Belief Mass

Compatible domain Incompatible Domain

s× b22

{(s, b22), (s,B2),(s,B2B3),

(s,Θref
B ),(ΘA, b22),(ΘA, B2),

(ΘA, B2B3),(ΘA,Θref
B )}

{(s, b23),(ΘA, b23),(f, b22),

(f, b23),(f,B2),(f,B2B3),

(f,Θref
B )}

0.1601

s× b23

{(s, b23), (s,B2),(s,B2B3),

(s,Θref
B ),(ΘA, b23),(ΘA, B2),

(ΘA, B2B3),(ΘA,Θref
B )}

{(s, b22),(ΘA, b22),(f, b22),

(f, b23),(f,B2),(f,B2B3),

(f,Θref
B )}

0.0984

s×B2
{(s,B2),(s,B2B3),(s,Θref

B ),

(ΘA, B2),(ΘA, B2B3),(ΘA,Θref
B )}

{(f, b22),(f, b23),(f,B2),

(f,B2B3),(f,Θref
B )}

0.0504

s×B2B3
{(s,B2B3),(s,Θref

B ),

(ΘA, B2B3),(ΘA,Θref
B )}

{(f, b22),(f, b23),(f,B2),

(f,B2B3),(f,Θref
B )}

0.0399

s×Θref
B {(s,Θref

B ),(ΘA,Θref
B )}

{(f, b22),(f, b23),(f,B2),

(f,B2B3),(f,Θref
B )}

0.0369

f × b22

{(f, b22), (f,B2),(f,B2B3),

(f,Θref
B ),(ΘA, b22),(ΘA, B2),

(ΘA, B2B3),(ΘA,Θref
B )}

{(f, b23),(ΘA, b23),(s, b22),

(s, b23),(s,B2),(s,B2B3),

(s,Θref
B )}

0.1961

f × b23

{(f, b23), (f,B2),(f,B2B3),

(f,Θref
B ),(ΘA, b23),(ΘA, B2),

(ΘA, B2B3),(ΘA,Θref
B )}

{(f, b22),(ΘA, b22),(s, b22),

(s, b23),(s,B2),(s,B2B3),

(s,Θref
B )}

0.1321

f ×B2
{(f,B2),(f,B2B3),(f,Θref

B ),

(ΘA, B2),(ΘA, B2B3),(ΘA,Θref
B )}

{(s, b22),(s, b23),(s,B2),

(s,B2B3),(s,Θref
B )}

0.0406

f ×B2B3
{(f,B2B3),(f,Θref

B ),

(ΘA, B2B3),(ΘA,Θref
B )}

{(s, b22),(s, b23),(s,B2),

(s,B2B3),(s,Θref
B )}

0.0232

f ×Θref
B {(f,Θref

B ),(ΘA,Θref
B )}

{(s, b22),(s, b23),(s,B2),

(s,B2B3),(s,Θref
B )}

0.0182

ΘA × b22
{(ΘA, b22),(ΘA, B2),

(ΘA, B2B3),(ΘA,Θref
B )}

{(s, b23),(f, b23)} 0.0887

ΘA × b23
{(ΘA, b23),(ΘA, B2),

(ΘA, B2B3),(ΘA,Θref
B )}

{(s, b22),(f, b22)} 0.1054

ΘA ×B2 {(ΘA, B2),(ΘA, B2B3),(ΘA,Θref
B )} {∅} 0.0072

ΘA ×B2B3 {(ΘA, B2B3),(ΘA,Θref
B )} {∅} 0.0022

ΘA ×Θref
B {(ΘA,Θref

B )} {∅} 0.0006


