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Abstract—Multiple classifier fusion belongs to the decision-
level information fusion, which has been widely used in many
pattern classification applications, especially when the single
classifier is not competent. However, multiple classifier fusion can
not assure the improvement of the classification accuracy. The
diversity among those classifiers in the multiple classifier system
(MCS) is crucial for improving the fused classification accuracy.
Various diversity measures for MCS have been proposed, which
are mainly based on the average sample-wise classification
consistency between different member classifiers. In this paper,
we propose to define the diversity between member classifiers
from a different standpoint. If different member classifiers in
an MCS are good at classifying different classes, i.e., there exist
expert-classifiers for each concerned class, the improvement of
the accuracy of classifier fusion can be expected. Each classifier
has a ranking of classes in term of the classification accuracies,
based on which, a new diversity measure is implemented using the
ranking distance. A larger average ranking distance represents
a higher diversity. The new proposed diversity measure is used
together with each single classifier’s performance on training
samples to design and optimize the MCS. Experiments, simula-
tions, and related analyses are provided to illustrate and validate
our new proposed diversity measure.

Index Terms—Multiple classifier system (MCS); multiple clas-
sifier fusion; diversity; ranking distance; pattern classification

I. INTRODUCTION

To handle pattern classification problems in a complicated

environment, a single classifier is usually incompetent. The

multiple classifier system (MCS) [1] theory and method have

been proposed to build multiple classifiers and then aggregate

their outputs for the final decision-making. In machine learning

community, MCS belongs to the ensemble learning. MCS

can also be considered as a decision-level information fusion.

Over the past decade, MCSs have been actively exploited for

improving classification accuracy and reliability over individ-

ual classifiers. MCSs have been widely used in areas such

as the handwriting character recognition [2], [3], biometric

identification [4], remote sensing [5], fault diagnosis [6],

network security [7] and automatic object recognition [8].

To implement an MCS, one should generate multiple in-

dividual member classifiers first. Note that using multiple

classifiers cannot assure the improvement of classification

accuracy in general. It would be meaningless to combine

multiple redundant classifiers. The complementarity among

member classifiers is crucial for the improvement of classi-

fication accuracy. Such a complementarity is called diversity

[9] in the field of MCS. The diversity can be implemented

qualitatively, e.g., using different samples, different feature

spaces (or subspaces), different types of classifiers, and dif-

ferent parameter settings for classifiers to generate different

member classifiers, and thus expect to obtain “larger” diversity.

For the convenience of practical use, the diversity is expected

to be implemented quantitatively.

Diversity measures have already become a research focus in

the field of MCSs, and various diversity measures have been

proposed so far. In 2005, the journal “Information Fusion”

published a special issue on “Diversity Measure in Multiple

Classifier Systems”, paying a special attention to definitions of

diversity measures (e.g., Q-statistics, Double Fault, Difficulty,

Correlation Coefficient, Disagreement, etc) in terms of their

prediction ability of the combining performance [9]. Fan et

al. [10] proposed a new diversity measure for the classifiers

with soft label output in 2008. In 2009, Trawinski et al.

[11] jointly use the diversity measure and the classification

accuracy for MCSs. In 2011, Nascimento et al. [12] proposed

an approach to jointly use the available diversity measures.

Haghighi et al. [13] used the support vector data descriptor

(SVDD) to implement a diversity measure for MCSs. In

2013, we proposed a dynamic diversity measure and modelled

the MCS with the theory of belief functions [14]. In 2014,

Krawczyk et al. [15] proposed the diversity measure for the

single-class member classifiers. Diez-Pastor et al. [16] studied

diversity measures for the MCS given the unbalanced data

set. In 2016, Kadkhodaei et al. [17] proposed an entropy-

based diversity measure. In 2016, Cavalcanti et al. [18] also

combined diversity measures for the MCSs. Till now, almost

all the available diversity measures are based on the average

sample-wise classification consistency between different mem-

ber classifiers, and there is no prominent relation between the

diversity and MCS accuracy.

In this paper, we attempt to design the MCS diversity

measure from a different standpoint. We think that if different

member classifiers are good at classifying different classes,

then the corresponding MCS is diverse. In another word, there



exists the corresponding expert-classifier(s) for the different

class(es). Note that each classifier has its own ranking of

classes in terms of the classification accuracies, therefore, we

implement the diversity measure for MCSs using the ranking

distance. A larger average ranking distance represents a higher

diversity in an MCS, since it means that different member

classifiers are likely to be “experts” of different classes. Our

new proposed diversity measure is illustrated and validated by

experiments, simulations, and related analyses provided.

II. BASICS OF MCSS AND DIVERSITY

The construction of an MCS includes the generation of

member classifiers and the combination of the member clas-

sifiers’ outputs.

Various approaches to generating member classifiers have

been proposed, e.g., using different training samples, different

feature spaces (or subspaces), and different types of classifiers,

etc. The specific combination method for the MCS depends

on the output types of individual classifiers. Suppose that a

query sample is xq ∈ Rd. We consider that the class space is

{ci, i = 1, . . . , C}. The output of a member classifier can be

categorized into three types [2]:

1) Abstract Level: the classifier produces a unique class

label for xq. Classifier ek assigns a class label jk to sample

xq, i.e., ek(xq) = jk, k = 1, 2, ..., n, jk ∈ {c1, ..., cC}.

2) Rank Level: the classifier ek ranks all possible labels

and outputs a rank Λk with the label at top being the first

choice.

3) Measurement Level: the classifier assigns each label

a measurement value such as a posterior probability or

membership function value. For xq , each member classifier

ek brings out an output vector [ωk(c1), ωk(c2), ..., ωk(cM )],
where ωk(ci) ∈ [0, 1] can be considered as the membership

function for the given query sample belonging to class ci.
If the outputs are the abstract level, one can use the voting

rules to combine member classifiers; if the outputs are the rank

level, one can use the voting rules and ranking aggregation

rules to combine them; if the outputs are the measurement lev-

el, one can use various rules including voting rules, Behavior

Knowledge Space (BKS) [19], fuzzy logic and the theory of

belief functions to combine according to the outputs’ specific

representation (e.g., the probability, membership function or

belief function) at the measurement level.

MCS cannot assure the improvement of the classification

accuracy in general. Large diversity is a necessary condition

for improving the classification performance. Using different

ways to generate member classifiers can be considered as

qualitative ways to implement the diversity for MCSs. To

design diversity measures is the quantitative way.

Diversity measures quantify the diversity or complementari-

ty among member classifiers. Available diversity measures can

be categorized into two major types [15]:

1) Pairwise measures: Pairwise measures are calculated

between two member classifiers. Table I shows the joint counts

Nab
ij of two classifiers ei and ej . For example N01

ij denotes that

ei obtains an incorrect result and ej obtains a correct result.

Here, subscript ij for N has been omitted for the simplicity.

Some representative pairwise diversity measures, e.g., the Q-

statistic (Q), correlation coefficient (R), disagreement measure

(D) and double-fault measure (DF), are recalled in (1)–(4).

TABLE I
THE JOINT COUNTS FOR OUTPUTS OF TWO CLASSIFIERS

ej correct (1) ej incorrect (0)

ei correct (1) N11 N10

ei incorrect (0) N01 N00

Qi,j =
N11N00 −N01N10

N11N00 +N01N10
(1)

Ri,j =
N11N00

−N01N10

√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(2)

Di,j =
N01 +N10

N11 +N00 +N01 +N10
(3)

DFi,j =
N00

N11 +N00 +N01 +N10
(4)

For an ensemble of L classifiers, the averaged diversity mea-

sure over all classifiers is given by

Diversityave =
2

L(L− 1)

L−1∑

i=1

L∑

j=i+1

Diversityi,j (5)

where Diversityi,j can be either Qi,j , Ri,j , Di,j or DFi,j .

2) Non-pairwise measures: Non-pairwise measures are cal-

culated directly over all member classifiers. They can be

calculated using the proportion of classifiers that misclassify

randomly selected samples. A non-pairwise measure (Entropy

measure) is [20]

E =
1

N

N∑

j=1

1

(L− ⌈L/2⌉)
min{l(xj), L− l(xj)} (6)

where L is the number of classifiers, N is the number

of training samples, ⌈·⌉ is the ceiling function and l(xj)
represents the number of classifiers that correctly classify the

sample xj . If for all samples, all classifiers agree, then E
reaches its minimum value of 0. If for each sample xj , l(xj) is

close to L− l(xj), i.e., about half classifiers are not accordant

to their counterparts, then E is close to its maximum value 1.

As we see, traditional diversity measures are usually de-

signed using the classification results on training samples, i.e.,

the consistency or inconsistency of the classification results are

used to establish the diversity measures. They are defined in

a statistical sense. A good diversity measure should have the

relation with the MCS accuracy as shown in Fig. 1.

As argued by both Windeatt et al. [20] and Didaci et al.

[21], there is no prominent relation between existing diversity

measures and the MCS accuracy. Traditional ways to define

diversity measures might not lead to a fertile, but to a dead-

end. Therefore, we proose the MCS diversity measure from a

different viewpoint, and expect to obtain good properties.



Fig. 1. Expected relation between MCS accuracy and the diversity measure.

III. NEW DIVERSITY MEASURE BASED ON RANKING

DISTANCE

If different member classifiers in an MCS are good at

classifying different classes, then the MCS is diverse. That

is, the different class has its corresponding expert-classifiers

as the MCSA illustrated in Fig. 2, then the MCS is more

diverse, and the improvement of the classification accuracy

can be expected; if all the member classifiers have the same

expert-class as the MCSB illustrated in Fig. 2, then the

MCS is less diverse, and has less potential to improve the

classification accuracy. According to such an idea, we propose

a new diversity measure for MCSs. Suppose that ei is a

Fig. 2. Classification Accuracy Ranking.

member classifier, where i = 1, ..., L. There are M classes in

the classification task. Given a training set S, the class-wise

classification accuracy ranking of ei is denoted by Λi. For the

L member classifiers, there exist corresponding L rankings.

Given two member classifiers ei, ej and their corresponding

rankings Λi and Λj , their ranking distance can be calculated.

E.g., one can choose the commonly used Spearman distance1

as [23]:

ρ(Λi,Λj) = 2−
6 ·

∑M
k=1 (Λi(k)− Λj(k))

2

M(M2 − 1)
(7)

where M denotes the number of items to rank (the number

of classes). Clearly ρ ∈ [0, 2]. ρ = 2 means a total positive

correlation between the ranks, while ρ = 0 means a total

negative one.

If the distance between Λi and Λj is larger, then ei and ej’s

expert-class are more different. The average distance between

all the member classifiers in an MCS is large, then the expert-

classes are more diverse. Therefore, the ranking distance based

diversity measure is defined as

1There are also other ranking distance definitions such as the footrule
distance, Kendall distance, etc (see [22] for details). In this paper, we use
Spearman distance, since it is commonly used and easy to implement.

Div =

L
∑

i=1

L
∑

j=1

ρ(Λi,Λj)

C2

L

=
1

L(L− 1)

L
∑

i=1

L
∑

j=1,j 6=i

ρ(Λi,Λj) (8)

For example, the class-wise classification accuracy ranking of

Classifier 1 in MCSA is ΛA
1 = [1, 3, 2], which means that the

accuracy on class 1 is the highest (1st place); the accuracy on

class 2 is the lowest (3rd place); the accuracy on class 3 takes

the 2nd place. The class-wise classification accuracy ranking

of Classifier 2 in MCSA is ΛA
2 = [2, 1, 3], which means that

the accuracy on class 1 takes the 2nd place; the accuracy on

class 2 takes the 1st place; the accuracy on class 3 takes the

3rd place; The class-wise classification accuracy ranking of

Classifier 3 in MCSA is ΛA
3 = [3, 2, 1], which means that the

accuracy on class 1 takes the 3rd place; the accuracy on class

2 takes the 2nd place; the accuracy on class 3 takes the 1st

place. Therefore, the average ranking distance in MCSA is

Div(MCSA) =
ρ
(

ΛA
1 ,Λ

A
2

)

+ ρ
(

ΛA
1 ,Λ

A
3

)

+ ρ
(

ΛA
2 ,Λ

A
3

)

C2

3

=
1

3
[1.5 + 1.5 + 1.5] = 1.5

The class-wise classification accuracy ranking of Classifier

1 in MCSB is ΛB
1 = [2, 1, 3]; the class-wise classification

accuracy ranking of Classifier 2 in MCSB is ΛB
2 = [3, 1, 2];

the class-wise classification accuracy ranking of Classifier 3

in MCSB is ΛB
3 = [2, 1, 3]. Therefore, the average ranking

distance in MCSB is

Div(MCSB) =
ρ
(

ΛB
1 ,ΛB

2

)

+ ρ
(

ΛB
1 ,ΛB

3

)

+ ρ
(

ΛB
2 ,ΛB

3

)

C2

3

=
1

3
[0.5 + 0.0 + 0.5] = 1/3

Therefore, we have Div(MCSA) > Div(MCSB). This

is intuitive, since each member classifier in MCSA has

the different “expert-class”, while in MCSB, the different

member classifier has the same “expert-class” (class 2 here).

Although the diversity is crucial, it is only a necessary con-

dition but not a sufficient condition for MCSs’ improvement

of classification performance. That is, only a larger diversity

can not assure a better performance. If the MCS has higer

diversity and at the same time the member classifiers have

high classification accuracies, then the higher fusion-based

classification accuracy can be expected. Therefore, one can

construct an MCS by jointly using the diversity and individual

classification accuracy as illustrated in Fig. 3.

eOi
(·)(i = 1, ..., V ) in Fig. 3 represent the overproduced

individual classifiers based on training samples, and ej(·)
(j = 1, ..., L) represent the member classifiers selected out

of the overproduced ensemble. Here the “overproduce” means

that the number of the produced classifiers is no less than

that of classifiers chosen for constructing the MCS. The se-

lection of member classifiers is converted into an optimization

problem whose objective function is based on the joint use of



Fig. 3. Implementation of MCS based on diversity.

the proposed diversity measure and the average classification

accuracy of the selected individual classifiers:

Obj(MCS) = wD ·Div(MCS)/2+wA ·Accave(MCS) (9)

where Accave(MCS) is the average classification accuracy

of the member classifiers in an MCS. wD, wA are the weights

of the diversity and average accuracy, respectively. Note that

the ranges of Div(MCS)/2 and that of the accuracy are

both [0, 1]. The weighting parameters selection depends on the

users’ preference. wD = wA = 1 is suggested indicating an

equal-treat attitude. One can use some optimization algorithm

to find the best MCS by maximizing Obj(MCS) in (9):

MCSBest = argmax
MCS

{Obj(MCS)} (10)

MCSBest obtained is with high diversity and simultaneously

with high average accuracy of the member classifiers included.

Note that when the member classifiers are generated based

on different feature subspaces, the classification accuracy can

also be replaced by the discriminability defined as [24]

J = tr(Sw)/tr(Sb) (11)

where tr denotes the trace of a matrix. Suppose that there are

C classes and each class ci has Ni samples.

Here x is a feature (vector) of a sample and

M =
1

C

C
∑

i=1

(

1

Ni

∑

x∈ci

x

)

(12)

is the mean of all the classes’ centroids. If J of some feature

(or set of features) in Eq. (11) is smaller, then such a feature

(or set of features) is crisper and more discriminable.

Here, an illustrative example is provided to show the s-

election of member classifiers. Suppose that there are four

candidate classifiers as shown in Fig. 4.

Fig. 4. Individual classifiers for member classifier selection.

TABLE II
MEMBER CLASSIFIERS SELECTION

MCS
Ranking Dist.

Div(MCS)/2
Average Accu.

Accave(MCS)
Obj(MCS)

Classifiers {1, 2, 3} 0.75 0.73 1.48

Classifiers {1, 2, 4} 0.50 0.73 1.23

Classifiers {1, 3, 4} 0.75 0.70 1.45

Classifiers {2, 3, 4} 0.50 0.73 1.23

Assume that three member classifiers will be selected to

construct an MCS. Then, there will be C3
4 = 4 possible MCSs.

Their objective function values are shown in Table II.

According to Eq. (9) and Eq. (10), classifiers 1, 2, and

3 are selected as member classifiers to construct an MCS,

which has larger diversity and at the same time has higher

average classification accuracy, therefore, better fusion-based

classification accuracy can be expected.

IV. EXPERIMENTS

Experiments based on artificial datasets are provided to

verify our proposed diversity measure and MCS construction.

A. On 1-D artificial dataset with Gaussian distribution

A three-class artificial dataset is generated. Each class has

100 samples. We generate five feature subspaces for the

samples, where each feature subspace has one dimensions with

Gaussian distribution. The five subspaces are shown in Fig. 5.
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Fig. 5. 1-D artificial dataset.

The Gaussian distribution parameter is listed in Table III.

As we can see in Fig. 5, Feature 1 can well discriminate

Class 1 and Class 3, while it cannot well discriminate Class 2

from both Class 1 and Class 3; Feature 2 can well discriminate

Class 2 and Class 3, while it cannot well discriminate Class 1

from both Class 2 and Class 3; Feature 3 can well discriminate



TABLE III
DISTRIBUTION PARAMETERS OF DIFFERENT FEATURES

Feature Mean Std

1

Class 1 0.0 1.0

Class 2 4.0 1.5

Class 3 8.0 0.8

2

Class 1 4.0 1.5

Class 2 8.0 0.8

Class 3 0.0 1.0

3

Class 1 8.0 0.8

Class 2 0.0 1.0

Class 3 4.0 1.5

4

Class 1 8.0 3.2

Class 2 4.0 4.5

Class 3 0.0 1.0

5

Class 1 4.0 4.5

Class 2 0.0 1.0

Class 3 8.0 3.2

Class 1 and Class 3, while it cannot well discriminate Class

2 from both Class 1 and Class 3. The feature discriminability

calculated based on Eqs. (11) is show in Table IV.

TABLE IV
FEATURE DISCRIMINABILITY FOR 1D DATA

Feature J

1 0.1268

2 0.1332

3 0.1100

4 0.8926

5 1.0782

We use the k-nearest neighbors (k-NN) as the individual

classifier. Suppose that there are M classes. For a test sample,

find its k nearest neighbors. In k nearest neighbors, calculate

the ratio of the each class’s samples, respectively, as:

P (ci) = kk(i)/

M∑

j=1

kk(j) (13)

where P (ci) represents the ratio of class i and kk(i) represents

the number of samples belonging to class i in the k nearest

neighbors, i = 1, 2, ...,M.. Obviously, k =
∑M

j=1 kk(j).
There are five individual classifiers according to the five

different features. Three member classifiers are selected to

form an MCS. The fusion rule of the MCS is

P f (ci) =

3∑

m=1

Pm(ci)/3 (14)

where P f is the classification probability obtained based on

fusion, and Pm is the member classifier m’s classification

probability. The class who takes the maximum probability is

assigned to the query sample.

5-fold cross-validation is used here for evaluation. The av-

erage classification accuracy and the corresponding objective

function value in Eq. (8) are calculated. Suppose that the

number of member classifiers in an MCS is 3, the results

(including the best MCS, the worst MCS and the middle one’s

corresponding accuracy and value of the objective function)

are listed in Table V. Here member classifier i uses feature i.

TABLE V
MCS’ OBJECTIVE FUNCTION VALUE AND FUSION-BASED CLASSIFICATION

ACCURACY ON 1D DATA

Members in MCS Fusion-based Accuacry Obj(MCS)

{1, 2, 3} 99.98% 10.8132

{2, 3, 4} 98.00% 3.0418

{2, 4, 5} 95.98% 1.9012

As we see, the MCS with the maximum (minimum) Obj value

has the highest (lowest) fusion-based classification accuracy.

B. On 2-D artificial dataset with uniform distribution

A three-class artificial dataset with samples is generated.

Each class has 200 samples. We generate six feature subspaces

for the samples, where each feature subspace has two dimen-

sions with uniform distribution, as shown in Fig. 6.
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Fig. 6. 2-D artificial dataset.

As we see in Fig. 6, Feature subspace 1 can well discrim-

inate Class 1 (Red) and Class 3 (Blue), while it cannot well

discriminate Class 2 (Green) from both Class 1 and Class 3;

Feature subspace 2 can well discriminate Class 1 and Class 2,

while it cannot well discriminate Class 3 from both Class 1 and

Class 2; Feature subspace 3 can well discriminate Class 2 and

Class 3, while it cannot well discriminate Class 1 from both

Class 2 and Class 3. Feature subspace 4 (5 and 6) is similar

to Feature subspace 1 (2 and 3), however, Feature subspace

4 (5 and 6) is more ambiguous (i.e., with a deeper overlap).

The feature discriminability is show in Table VI.

TABLE VI
FEATURE DISCRIMINABILITY FOR 2D DATA

Feature subspace J

1 0.3842

2 0.3822

3 0.3907

4 0.5716

5 0.5983

6 0.5697

We still use the k-NN classifier [24] and generate the

probability according to Eq. (13) and apply the fusion rule in



Eq. (14). 5-fold cross-validation is used here for evaluation,

and the average classification accuracy and the corresponding

objective function value in Eq. (8) are calculated. We can

use our new diversity based approach to generate the optimal

MCS. Suppose that the number of member classifiers in an

MCS is 3, the results (including the best MCS, the worst MCS

and the middle one’s corresponding fusion-based accuracy and

objective functions) are listed in Table VII. As we see in

TABLE VII
MCS’ OBJECTIVE FUNCTION VALUE AND FUSION-BASED CLASSIFICATION

ACCURACY ON 2-D DATA

Members in MCS Fusion-based Accuacry Obj(MCS)

{1, 2, 3} 99.83% 3.4567

{1, 3, 4} 98.48% 2.9129

{3, 4, 5} 96.32% 2.2994

this experiment, the MCS with the maximum (minimum) Obj
value has the highest (lowest) classification accuracy.

V. CONCLUSION

A new ranking distance based diversity measure for the

MCS is proposed, which is positively correlated to the MCS’s

classification accuracy in experiments provided. In future

work, our proposed diversity measure will be compared with

prevailing ones and we will also try to use more types

of ranking distance in defining the ranking distance based

diversity measure and make related comparisons and analyses.

Note that the construction of MCS based on the diversity

measure is actually an optimization, which might cause the

local optimal problem and high computational cost especially

when the number of classifiers to select is large. Therefore, we

will analyze the characteristic of the object function, and try

to propose more efficient construction method for the MCS.
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