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Abbreviations: 
ER stress: Endoplasmic Reticulum stress

ERAD: ER-associated degradation

UPR: Unfolded Protein Response

IRE1: Inositol-requiring protein 1

PERK: PRKR-like endoplasmic reticulum kinase

ATF6: Activating transcription factor 6

XBP1: X-box-binding protein 1

RIDD: RNA IRE1a-dependent decay

Tg: Thapsigargin

Tm: Tunicamycin

DTT: Dithiothreitol

ERSE-I/II: Endoplasmic Reticulum Stress Element I/II

UPRE: UPR Element

sfGFP: superfolder Green Fluorescent Protein

GSH: Glutathione

TXN: Thioredoxin

rxYFP: redox sensitive YFP

roGFP: reduction-oxidation sensitive GFP

FLIM: Intrinsically Lower Fluorescence

AM: Acetomethoxy

GECIs: Genetically Encoded Calcium Indicators

FP: Fluorescent Protein

FRET: Forster resonance energy transfer

EM: Electron Microscopy

ThT: Thioflavin
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ABSTRACT
The endoplasmic reticulum (ER) is a multifunctional organelle that constitutes the entry into 

the secretory pathway. The ER contributes to the maintenance of cellular calcium 

homeostasis, lipid synthesis and productive secretory and transmembrane protein folding. 

Physiological, chemical and pathological factors that compromise ER homeostasis lead to 

ER stress. To cope with this situation, cells activate an adaptive signaling pathway termed 

the Unfolded Protein Response (UPR) that aims at restoring ER homeostasis. The UPR is 

transduced through post-translational, translational, post-transcriptional and transcriptional 

mechanisms initiated by three ER-resident sensors, IRE1, ATF6 and PERK. Determining 

the ins and out of ER homeostasis control and UPR activation still represents a challenge for 

the community. Hence, standardized criteria and methodologies need to be proposed for 

monitoring ER homeostasis and ER stress in different model systems. Here, we summarize 

the pathways that are activated during ER stress and provide approaches aimed at assess 

ER homeostasis and stress in vitro and in vivo mammalian systems that can be used by 

researchers to plan and interpret experiments. We recommend the use of multiple assays to 

verify ER stress because no individual assay is guaranteed to be the most appropriate one.
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INTRODUCTION
The endoplasmic reticulum (ER) represents a complex membranous network that beyond 

ensuring cell calcium and lipid homeostasis, mediates the productive folding and trafficking 

of transmembrane and secretory proteins. The ER is a multifunctional organelle crowded 

with many enzymes, foldases and chaperones that assist oxidative protein folding and other 

post-translational modifications which ensure the maintenance of ER homeostasis [1]. In 

addition, cells have developed different quality control systems in order to ensure that only 

properly folded proteins are exported through the other compartments of the secretory 

pathway, the improperly folded proteins being degraded by the proteasome in a process 

called ER-associated degradation (ERAD) [2]. Intrinsic (genetic mutations, aneuploidy) and 

extrinsic (environmental disturbances) factors compromise ER homeostasis leading to a 

situation called ER stress that occurs when the balance between the protein folding demand 

exceeds that of the ER. In this situation, cells adapt by adjusting their folding capacity 

through activation of an intracellular signaling pathway known as the unfolded protein 

response (UPR) (Figure 1). Once activated, the UPR outputs can be measured by different 

methods that are discussed below. Monitoring the UPR outputs through measuring the 

activation of the different signaling pathways of the UPR represents a powerful and easy tool 

but may not be enough to mirror ER proteostasis. In this article, we also review the available 

methods to assess ER homeostasis and stress as well as their use in biological research. 

Our recommendation is to test different outputs including signaling pathways, ER 

morphology, ER calcium flux in addition to assessing changes in the ER redox state to 

ensure the production of a proper representation of the ER functionality.

APPROACHES TO ASSESS ER STRESS

1. THE UNFOLDED PROTEIN RESPONSE

The UPR is transduced by three ER transmembrane sensor proteins (PERK, ATF6 and 

IRE1), through their luminal domains they are able to monitor and sense the protein folding 

status of the ER, then they signal through their cytosolic domain either directly through A
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specific catalytic activities or select post-translational processing (Figure 1). UPR signaling 

aims at alleviating stress, however if homeostasis cannot be restored the UPR activates cell 

death pathways [3]. Hence, ER stress and the UPR play an important role in physiology and 

in the development of numerous diseases.

1.1. The IRE1 arm

IRE1 (referred to IRE1 hereafter) is the most conserved sensor of the UPR, present from 

yeast to human. IRE1 is a type I transmembrane protein with a lumenal domain that senses 

misfolded proteins and a cytosolic domain comprising two catalytic activities, a 

serine/threonine kinase and an endoribonuclease (RNase) (Figure 1). Accumulation of 

misfolded proteins in the ER leads to IRE1 dimerization and trans-autophosphorylation. 

IRE1 activation can be directly measured by assessing the phosphorylation state at 

Serines724 or 729 which are phosphorylated upon its activation, antibodies specific for the 

phosphorylated IRE1 are available commercially (S724) or upon request (S729) (Table 1). 

Because IRE1 is poorly abundant, it is useful to concentrate the protein by 

immunoprecipitation (IP) prior to immunoblotting (IB) (IP-IB). Alternatively, a Phostag-based 

western blot approach, can be used. In particular, this method allows a direct visualization 

and quantitation of IRE1 signalling in various conditions [4] (Supplementary protocol 1). 

Moreover, IRE1 oligomerization state can be tested to measure its activity, for instance 

using the sfGFP-IRE1 construct in which the superfolder green fluorescent protein (sfGFP) 

is N-terminally fused to the luminal domain of IRE1 (Table 2) [5].

IRE1 phosphorylation causes a conformational change leading to the activation of 

the RNase domain which in turn leads to the excision of a 26-nt intron from the XBP1 

mRNA. The 5’ and 3’ fragments are then ligated by the tRNA ligase RTCB [6] This non-

conventional splicing shifts the open reading frame on the mRNA resulting in the translation 

into an active transcription factor XPB1s [7]. The abundance of XBP1s can be measured by 

using PCR with primers flanking the intron (Table 3). XBP1u (unspliced) amplicons migrate 

on agarose gel (3 or 4%) around 476bp while XBP1s amplicons’ mobility is faster (450bp). 

Alternatively, because the 26nt intron amplicon contains a Pst1 cleavage site, digestion with A
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Pst1 after PCR yields better separation of XBP1u/s with XBP1u producing two fragment of 

~186 and ~290 bp whereas the XBP1s corresponds to an amplicon of ~450bp 

(Supplementary protocol 2). In addition, is also possible to measure XBP1s mRNA by qPCR 

using primers that only recognize XBP1 spliced version (Table3) [8].

A genetic method to monitor XBP1 mRNA splicing has been developed by fusing 

XBP1 sequence to venus, a GFP variant or to luciferase (Table 2). Venus/luciferase was 

cloned downstream of the 26-nt ER stress-specific intron of human XBP1. Similar to 

endogenous XBP1, upon ER stress the frame shift allows expression of the chimeric XBP1-

venus/luciferase mRNA [9], which can in turn be detected using either microscopy or 

luciferase-based light emission thus making it a suitable method to monitor Xbp1 splicing in-

vitro and in-vivo models including mouse, worms and flies. Another Xbp1-Venus variant was 

developed (F-XBP1ΔDBD-venus) which lacks the DNA binding domain of Xbp1. Because it 

is unable to bind DNA and mainly localize to the cytosol, F-XBP1ΔDBD-venus is 

recommended in experiments that requires overexpression of the reporter without interfering 

in a dominant negative way with induction of UPR target genes. At last, the expression of the 

XBP1s protein can be measured using western blotting approaches (Table 1).

Once in the nucleus, XBP1s regulate the transcription of subset of genes that have a 

cis-acting element called unfolded protein response element (UPRE/[TGACGTGG/A]). The 

expression of these target genes can be monitored using real-time PCR and primers can be 

found in Table 3. IRE1 RNase can also regulate the stability of different RNAs through 

endonucleolytic cleavage of either mRNAs encoding for ER targeted proteins, mRNAs that 

localize to the ER membrane or miRNAs in a mechanism called Regulated IRE1-Dependent 

Decay (RIDD) of RNA [10-12]. RNA stability can be assayed by measuring the IRE1-

dependent decay and is usually assessed after pulsing cells with the transcription inhibitor 

actinomycin D in the presence and absence of ER stressor. As a control, RNAi-mediated 

silencing of IRE1 is usually used in cells lacking functional XBP1 [11] or alternatively, the 

IRE1 RNase activity can be blocked using select pharmacological inhibitors (Table 2). For 

assaying the cleavage of cellular RNA in vitro, recombinant IRE1 is incubated with total RNA 

for 2hrs. One good negative control for this reaction is the use of heat-denatured IRE1. This A
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is followed by qRT-PCR with primers flanking regions of potential cleavage sites and then 

the relative mRNA levels of each reaction is normalized to housekeeping gene such as 

GAPDH. Examples of RIDD target mRNA and corresponding primers are listed in Table 1.

Finally, IRE1 was shown to lead to the activation of JNK1 through interacting with 

TRAF2, an adaptor protein that couples plasma membrane receptors to c-Jun NH2-terminal 

kinase (JNK) activation. JNK1 phosphorylation can be tested using western blot, as a 

surrogate marker of its activation, using phospho-JNK1 antibodies (Table 1) [13].

1.2. The PERK arm
PERK is a type I transmembrane protein which is functionally and structurally related to 

IRE1 (Figure 1). The ER luminal portion of PERK contains a stress-sensing domain and the 

cytoplasmic portion of PERK has a protein kinase domain that is activated when PERK 

dimerize and/or oligomerize in stressed cells [14, 15]. PERK activity is mainly linked to 

global translation inhibition, anti-oxidative response and mitochondrial bioenergetics 

demands [16-18]. Once PERK is activated, it phosphorylates the α-subunit of the eukaryotic 

translation initiation factor 2 alpha (eIF2α) to attenuate global translation and to reduce ER-

lumen protein load [16]. To measure PERK activation, PERK and eIF2α phosophorylation 

status can be detected using antibodies for total and phospho-specific proteins (Table 1). 

We must note that proper controls (such as the use of PERK inhibitors) should be carried 

when assaying eIF2α phosphorylation as it can also be phosphorylated in PERK 

independent way through GCN2, PKR and HRI. Notably, since phospho-PERK specific 

antibodies do not work well in many cell types and because of the low abundancy of PERK 

protein, the anti-total PERK can be used to measure the band shift obtained upon 

Thapsigargin (Tg), tunicamycin (Tm) or dithiothreitol (DTT) treatments using western blot [4]. 

Alternatively, immunoprecipitating PERK before immunoblotting (IP-IB) with anti-phospho-

PERK antibodies increases the efficiency of this method.

Although cap-dependent translation is inhibited, translation of certain transcripts is 

increased. In particular, transcription factor such as ATF4 is selectively induced in response 

to eIF2α phosphorylation [19, 20]. ATF4 acts as a transcriptional activator of various pro-A
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survival genes including many ER chaperones and antioxidative factors [21]. Interestingly, 

ATF4 target genes also include well-known factors that are associated with ER stress-

induced apoptosis such as CHOP/GADD153 and NOXA. The expression of ATF4 can be 

measured using western blotting (Table 1) and the expression of its target genes can be 

evaluated using real-time PCR (Tables 3). 

In addition, since it is well established that other eIF2α kinases exist, other controls 

should be included to confirm PERK dependent eIF2α phosphorylation. Other methods to 

measure PERK activity, could be testing both mRNA and protein levels of downstream 

targets such as ATF4 and CHOP. PERK activation induces the phosphorylation of the 

transcription factor NRF2. Normally, NRF2 is kept in check by interaction with the protein 

KEAP1. Upon phosphorylation by PERK, NRF2 is liberated from KEAP1 and translocates to 

the nucleus where it activates the transcription of genes encoding antioxidant proteins [22]. 

Thus, NRF2 protein levels and its target genes could represent a good strategy to test PERK 

activity. Finally, translational attenuation can be useful tool to test PERK activation by taking 

advantages from metabolic pulse labelling of newly synthesized proteins and polyribosome 

profiling [16] (Supplementary protocol 3). Pharmacological inhibition of PERK can be 

achieved using specific compounds as described in Table 2.

1.3 The ATF6 arm
ATF6 is a 90kDa type II single pass transmembrane protein that is present in two variants in 

mammalian cells -ATF6α and ATF6β (Figure 1). During ER stress, ATF6 translocate from 

the ER-to Golgi where it gets cleaved by two serine-proteases (S1P and S2P) to generate a 

50kDa active basic-leucine zipper (bZip) transcriptional factor (ATF6f) [23]. ATF6 activation 

can be monitored using western blot and specific antibodies to the C-terminus of the protein 

(Table 1). Upon ER stress ATF6 and ATF6f can be resolved as 90 kDa and 55 kDa proteins 

by SDS-PAGE, respectively. Alternatively, cells can be transfected with a 3xFLAG-human 

ATF6 plasmid (Addgene, Plasmid #11975) (Table 2) and the activation (processing) 

detected using anti-FLAG antibodies (Table 2). Of note, it is important to ensure the 
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amounts of plasmid transfected are appropriate for each cell type studied as too much of 

ATF6 expression promotes its activation.

In the nucleus, ATF6f promotes transcription of UPR target genes through binding of 

three different consensus sequences: (ERSE)-I (CCAAT-N9-CCACG/A), ERSE-II (ATTGG-

N1-CCACG) and the UPRE [24, 25]. ATF6f transcriptional activity can be assayed by 

measuring the expression and transcription of most of its cognate targets [26-28]. The 

expression of these target genes can be monitored at the transcript level using real-time 

PCR (Table 3) or using western blot with specific antibodies (Table 1). Another way to 

evaluate the ATF6f activity is by introducing cells with a luciferase construct, that was made 

by adding five repetitions of a specific binding sequence for ATF6f upstream to the luciferase 

gene (p5xATF6-GL3, Addgene, Plasmid #11976) [25]. This construct is highly specific for 

ATF6 activity allowing researchers to measure ATF6 activation both in untreated conditions 

and during ER stress induction. In vivo, the ATF6 activity can be monitored using the ERSE-

LacZ mouse model that was constructed by using LacZ reporter gene driven by the GRP78 

promoter [29]. As a control and in order to control specificity of this system it is important to 

use the ERSE model lacking the GRP78 promoter [29]. The selective pharmacological 

inhibition or activation of ATF6 can be achieved using specific drugs as described in Table 
2.

2. MONITORING CHANGES IN THE ER REDOX STATE
ER unique redox metabolism supports disulfide bond formation in protein substrates. These 

are catalyzed by the FAD containing ER oxidase (ERO1), and proteins from the disulfide 

isomerase (PDI) family, yielding to H2O2 as a by-product  [30-34]. Poorly defined ER 

reducing pathways are also needed to reduce non-native disulfides and terminally unfolded 

proteins, thus maintaining/restoring ER homeostasis. To function, these are linked to the 

cytosolic reduction pathways, namely the glutathione (GSH) and the thioredoxin (TXN) 

pathways. While the way TXN pathway operates in ER reduction remains enigmatic, GSH is 

imported in the ER where it can reduce PDI and reset ERO1 activity, both of which shall help 

relieve ER stress conditions. Yet, irremediable misfolded protein accumulation may engage A
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futile cycles of oxidation and reduction, triggering H2O2 production and exhausting GSH 

pools [35]. The UPR control of few redox enzymes and the sensitivity of the UPR to redox 

cues further highlight the reciprocal interconnection linking ER stress to redox metabolism 

[36]. 

Monitoring ER redox parameters shall thus be informative to rationalize if and how  they 

deviate during ER stress, which could then  be used as independent measures of ER health. 

As non-proteinaceous molecules, monitoring GSH and H2O2 ER redox state and levels is 

challenging. It benefited from the development of  genetically-encoded redox sensitive 

fluorescent proteins which dynamically measure, in living cells and in a given compartment, 

the redox state of specific redox couples [37-41]. Stemming from the initial work on the first 

redox sensitive YFP, rxYFP [42], the repertoire of these redox biosensors now includes a 

family of ratiometric roGFPs (for reduction- oxidation sensitive GFP) [37, 43]. 

Mechanistically, both rxYFP and roGFPs surface-expose two redox-active cysteines, located 

close to the fluorophore whose protonation status is then affected by the structural 

modifications brought about by the reversible cysteine oxidation. Consequently, in the 

oxidized probe, the excitation peak at 400 nm increases at the expense of the peak at 490 

nm. The ratio of fluorescence after excitation at these two wavelengths reports on the redox 

state of the probe and thus on the redox potential of the equilibrating couple, somehow 

independently of the probe concentration. Ratiometric measurement of roGFPs redox status 

can be determined in living cells by FACS, confocal microscopes or plate readers and by 

non-reducing western-blotting, after quenching of free cysteines with alkylating agents and 

cell lysis. (Table 1 and Table 2). 
rxYFP/roGFPs equilibrates with the GSH/GSSG couple, a reaction enhanced by fusing the 

probes to the glutaredoxin-1 (GRX) enzyme [44-46]. Targeted to the ER, (GRX1-) 

rxYFP/roGFPs locally reports on the reduction potential of GSH (EGSH), which integrates 

both the extent of ERO1-PDI dependent oxidation of GSH and of its ER transport. 

Nevertheless, measuring EGSH in the ER with rxYFP/roGFPs should be taken cautiously. 

First, as targets of ERO1-PDI,  rxYFP/roGFPs may also directly report on their activity 

independently of GSH [47, 48]. Second, the probe may wrongly report on ER redox A
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modulation if mistargeted or refluxed from the ER to the cytosol upon stress [49]. A solution 

is to tether the probe to the ER membrane [40]. Third, it is critical  to consider the range of 

redox potentials the probe linearly reports on, which typically lies within +/- 40 mV from the 

probe midpoint redox potential [50]. As the ER is more oxidizing than the cytosol, ER-

specific probes with shifted midpoint redox potentials have been developed [43] by inserting 

either a leucine or a glutamic acid at GFP position 147. Because these probes have an 

intrinsically lower fluorescence, FLIM imaging, based on the distinct fluorescence life time 

between the reduced and oxidized probe [51], and insertion of additional GFP superfolder 

mutations have been worked out for these variants [52] [53]. Fusing roGFP probes to 

peroxide sensors instead of GRX1 shifts the probe specificity toward H2O2 detection([54-56]. 

Targeted to the ER, these probes however also behave as PDI substrate and thus do not 

strictly report on ER H2O2 production [57]. To overcome this caveat, several modifications of 

disulphide-based reporters and protocols were suggested [57, 58]. A better way to solve this 

issue would be the development of disulphide independent ER probes that are actively being 

searched for [59, 60]. Peroxide probes will however never report on H2O2 levels as 

dynamically and accurately as GSH/GSSG reporting probes. Indeed, the H2O2 / H2O redox 

couple being unproductive in the reduction reaction, the probe redox state will also depend 

on in situ reductase activities, which will differ among cellular compartments. Alternatively, 

irreversibly oxidized probes oxidation will not provide dynamic monitoring. Quantifying H2O2 

ER production thus faces important intrinsic challenges. Finally, directly reporting the redox 

state of ER proteins, especially endogenous ones, shall provide a complementary and 

necessary approach to map redox events triggered by ER stress. Different technics are 

currently carried out ranging from non-reducing western blotting to elaborated mass-

spectrometry analyses [61]. Proteins to be followed should include ERO1 and PDI family 

members, but also disulfide containing substrates to scrutinize oxidative folding efficiency. 

3. MEASURING CALCIUM DISTRIBUTION:
Although it is considered mainly as a factory for protein folding, the ER is the largest Ca2+ 

store in the cell. Calcium release from this compartment can be monitored using several A
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chemical and genetic tools. Since the synthesis more than 30 years ago of quin2 then fura2, 

tens of chemical fluorescent markers of calcium that vary in their Ca2+ dissociation 

constants (Kd) or Ca2+ response range, excitation/emission wavelengths and spectral shift 

have been proposed [62-64]. Acetomethoxy (AM) derivatives of these probes allow the dyes 

to readily enter cells. Once inside, non-specific intracellular esterases cleave the AM groups 

off, thus trapping the dyes within the cells [65]. These markers have also a very good 

signal/noise ratio and a large dynamic range. Moreover, they are easy to calibrate and some 

of them are ratiometric, i.e. that upon binding to calcium, they undergo a shift either in 

excitation wavelength, emission wavelength, or both, therefore avoid artifacts, for example 

related to the geometry of the cells. The most used dyes are the fura2 which allows 

ratiometric measurements, the fluo4 which shows a very good signal/noise ratio and a newer 

marker the cal520 which is retained longer in the cells (Table 2). In the context of the UPR, 

the genetic indicators of calcium are probably a better choice for calcium measurements 

since they allow to observe calcium variations over long periods of time, compatible with 

kinetics of the expression patterns of UPR-target genes induced by UPR-inducing 

compounds such as Tg or tunicamycin, and which are observed at least 4 hours after 

treatment[66]. In addition, the large color palette of these calcium indicators available now, 

makes it easy to observe at the same time, variations in calcium in different compartments.

There are plenty of Genetically Encoded Calcium Indicators (GECIs), which consist in 

general of a calcium-binding domain (calmodulin or troponin C), fused to one or two 

fluorescent proteins (FP). These markers can be thus divided into two main groups: single-

FP vs. double-FP GECIs (see [67] for review). In the first case, the fluorescence intensity of 

a circularly permuted or split FP is modulated by calcium binding–dependent changes in the 

chromophore environment. Single-FP-type GECIs show generally a high dynamic range and 

because they show narrow excitation and emission spectra, allow to use them with other 

fluorescent molecules. Double-FP GECIs, rely on the principle of Förster resonance energy 

transfer (FRET) is that the fluorescence variation of the two FPs allows ratiometric 

measurements. Indeed, Ca2+ binding to the Ca2+ sensitive element induces a 

conformational change in the indicator, which modifies the FRET efficiency between the two A
cc

ep
te

d 
A

rt
ic

le



FPs, resulting in a change in FP fluorescence intensity. Note that certain single-FP 

indicators can be used also for ratiometric imaging. The first ER GECIs, such as the YC3er 

developed as early as 1997, were based on FRET and were subsequently improved to 

generate D1ER family and others YCer [68-70]. More recently, several groups introducing 

mutations in calcium binding sites of calmodulin, have developed different types of single-FP 

GECIer [71]. Among them, our preference is for the CEPIA family (Table 2). In our hands, 

these GECIs show a large dynamic and a very good signal-to-noise ratio.

Although it is interesting to measure calcium in the ER, it is also important to visualize 

the calcium coming out of the ER. Experiments with chemical fluorophores have shown that 

calcium release from ER occurred at specific ER sites rich in RInsP3 [72] particularly in 

areas of contact with mitochondria called MAMs (mitochondria associated membranes). 

Thus, in order to measure Ca2+ release from the ER at subcellular resolution, several GECI 

have been developed, targeted either to the outer ER membrane , or to the outer 

mitochondria membrane (Table 2) [72, 73].

4. ASSESSING ER STRUCTURE AND FUNCTIONS
The ER is an organelle of many different functions that must be tightly regulated to carry out 

the proper functions. When there is an increase in protein folding demand, translational 

inhibition, degradation of unfolded or misfolded proteins, and an increase in the production 

of chaperones and folding enzymes are part of the adaptive response. In this case the cell 

must be capable to adjust the morphology, architecture, dimension and molecular 

composition of specific organelle to meet the increase in protein folding demand. The ER 

has the plasticity to expand its surface in response to cargo load and in order to increase the 

expression of resident chaperones and other factors to assist protein folding. The same 

observation was also documented in the case of B -lymphocytes differentiating into plasma 

B-cells that need to secrete huge amounts of immunoglobin. Using Electron Microscopy 

(EM) it was shown that the ER in this case fills all the cytoplasm [74, 75]. The use of EM or 

the use of immunofluorescence against ER membrane proteins including Calnexin and 

Sec63 which are powerful methods to assess the size and shape of the ER, do not allow to A
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follow the kinetics of the morphological change of this organelle [76]. Fluorescent dyes such 

as the long-chain carbocyanines DiIC16(3) and DiIC18(3), have long been used to monitor 

the ER morphology in living cells [77]. In most of the above cases measuring ER stress 

needs either introducing of exogenic proteins or assaying mRNA/Protein levels indirectly. In 

order to be able to look at protein aggregation during ER stress, a small molecule called 

Thioflavin T (ThT) was developed. Thioflavin can give us a direct quantifiable measure of ER 

stress in living cell in Real Time. ThT exhibits enhanced fluorescence when it binds to 

protein aggregates -particularly β-sheets - and it correlates with the induction of the UPR. 

ThT can be used in different cell types and responds to different ER stress stimulators. It has 

an advantage that can be assayed in-vivo and in mouse tissue samples without the need to 

in-vivo introduction of an exogenous transgene reporter like measuring the decrease in 

activity of secreted alkaline phosphatase (SEAP), XBP1-Venus or the Ca+2 indicator GLuc. 

Thus, it makes ThT a more handy technique to rapidly detect and quantify misfolded 

proteins [78-82]. At last, the ER function in protein biogenesis can be monitored either by 

measuring the secretion of cargo proteins in the culture medium using western blot (Table 1) 

or by using a secretion reporter with Gaussia luciferase (Table 2).

CONCLUSION
No doubt that the ER plays an important function in development and in different diseases. 

Monitoring the folding state of the ER and to be able to measure and quantify the stress 

within this organelle is an important feature that will help many labs that are interested to 

monitor the function of the ER and the subsequent ER stress response in different disease 

models. We believe that the experimental approaches reviewed here should help researcher 

to better evaluate ER protein folding stress in-vitro and in-vivo. As mentioned before, we 

highly recommend not to rely on one assay for this task and to try and test as many outputs 

as possible. 
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Antibody Source Reactivity Application Company/Cat#

IRE1 Rabbit H, M IP1, IF1, WB1, IHC1 CST/3294S

IRE1 (B12) Mouse M,R,H IP1, IF1, WB1, IHC1 SCBT/sc390960

p-IRE1 pS724 Rabbit M,R,H WB2 Abcam/ab48187

p-IRE1 pS729 Rabbit M WB1 Tang et al, [83]

XBP1s (9D11A43) Mouse H,M IF1, WB1 Biolegends/658802

XBP1s (D2C1F) Mouse H WB2 CST/12782S

RTCB Rabbit H,M IP1, IF1, WB1, IHC1 Ptg/19809-1-AP

PERK (C33E10) Rabbit H,M,R,Mk WB1 CST/3192S

PERK (D11A8) Rabbit H IP2, IF2, WB1 CST/5683S

p-PERK (16F8) (Thr980) Rabbit R WB3 CST/3179S

p-PERK (Thr982) Rabbit H,M IP2, IF1, WB2, IHC1 Abcam/Ab192591

eIF2a (L57A5) Mouse H,M,R,Mk WB1 CST/2103S

p-eIF2a(119A11) (S51) Rabbit H,M,R,Mk WB2 CST/3597S

ATF4 mouse M,R,H WB1 Sigma-aldrich/ 

WH0000468M1

ATF6 (1-7) Mouse H IP1, IF1, WB1 Abcam/ab122897

CHOP (L63F7) Mouse H,M,R IP1, IF1, WB1 CST/2895S

BIP (C50B12) Rabbit H,M WB1 CST/3177S

PDIA3 (3G4G7) Mouse H,M,R IP2, IF1, WB1, IHC1 Ptg/66423-1-Ig

SAPK/JNK Rabbit H,M,R WB2 CST/9252S

p-SAPK/JNK(81E11) 

(Thr183/Tyr185)

Rabbit H,M,R WB2 CST/4668S

p-SAPK/JNK(G9) 

(Thr183/Tyr185)

Mouse H,M,R WB2 CST/9255S

TXNIP Mouse H,M,R WB1 [7, 9, 84-88][7, 9, 83-

87][7, 9, 82-86][7, 9, 81-

85][7, 9, 81-85][7, 9, 81-

85][7, 9, 81-85][7, 9, 81-

85][7, 9, 81-85][7, 9, 81-

85][7, 9, 81-85][7, 9, 81-

85]MBL/ K0205-3

Insulin (2D11-H5) Mouse H,M,R IP1, IF1, WB1, IHC1 SCBT/8033

PRDX4 Rabbit H,M,R IP1, IF1, WB1, IHC1 Ptg/10703-1-APA
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BLOS1 Rabbit H,M,R IP1, IF1, WB1, IHC1 Ptg/19687-1-AP

MANF Rabbit H,M WB1 Bethyl/A305-572A

GADD34/PPP1R15A Rabbit H,M,R IP1, IF1, WB1, IHC1 Ptg/10449-1-AP

Table 1: List of antibodies used to assess ER stress by WB, IF, IHC and IP. CST= Cell 

Signaling Technology, SCBT= Santa Cruz Biotechnology, Ptg=ProteinTech. H=Human, 

M=Mouse, R=R. Application score: 1= Good, 2=medium, 3= bad. 
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THE UNFOLDED PROTEIN RESPONSE ASSAYS

Method Notes Ref

XBP1s PCR/qPCR/WB/F

lorescence

DnaJ/Hsp40-like genes, EDEM, 

p58IPK, ERdj4, HEDJ, protein 

disulfide isomerase-P5 and 

RAMP4

[7, 9, 84-88]

IRE1 

Phosphorylation

WB/Phostag pIRE1a antibodies, Phostag 

Gels

-

RIDD WB/qPCR RTN4, PRDX4, Galnt2, Gyltl1b, 

Pdia4 and Blos1 (see Refs for 

list of genes)

[5, 10, 11, 89, 

90]

miRNA qPCR miRNA-17, miRNA-34a, 

miRNA-96 and miRNA-125b

[91, 92]

IRE1 Oligomerization WB/Florescence sfGFP-IRE1a construct

EGFP-IRE1a construct

[5, 93, 94]

Cell death WB/Annexin V CHOP/ pJNK/ TXNIP-NLRP3 [5, 13, 91, 92]

IRE1 

“ER stress-activated 

indicator” (ERAI)

Florescence Transgenic mouse [9]

IRE1

Inhibitors

Kinase and RNAse 

Inhibitor

WB/qPCR on 

IRE1 and 

IRE1 targets.

Compound 18, MKC-3946, 

MKC-8866, STF-083010, 4μ8c.

[95-98]

PERK phosphorylation WB/Phostag pPERK antibodies, Phostag 

Gels

[16, 99]

ATF4 target genes WB/qPCR CHOP/GADD153 and Noxa [19-21]

eIF2α 

phosophorylation

WB peIF2 antibodies [16, 99]
PERK 

NRF2-KEAP1 WB/qPCR of the 

NRF2 target 

genes

GCLC, NQO1 [22]

PERK 

Inhibitors

phosphorylation 

inhibitors

WB/qPCR on 

PERK and its 

targets

GSK-2606414*, GSK2656157*
ISRIB

* also known to inhibit RIPK1

and/or cKIT [100, 101]

[102, 103]

ATF6f localization WB/Luciferase p5xATF6-GL3, Plasmid #11976 [25]A
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assay

ATF6f target genes WB/qPCR GRP78, GRP94, ERp72, 

PDIA4, SEL1L, OS9, HerpUD 

and Hyou1

[104]ATF6 

ERSE-LacZ model 

mouse model

Florescence Transgenic mouse [29]

ATF6 

Inhibitor

ATF6-f transport 

inhibitor, S1p protease 

inhibitors.

WB/qPCR on 

ATF6 protein and 

ATF6 targets

Ceapins, 

Nelfinavir

PF-429242

[105-107]

ASSESSING THE REDOX STATE OF THE ER

Redox 

state of 

the ER 

lumen

Assaying the redox 

state of redox sensitive 

Fluorescent Proteins

Non reducing 

WB/ 

Fluorescence/FA

CS/Microscopy

eroGFP, ER-rxYFGP, Grx-

rxYFP, PDI redox state, ERO1 

redox state

[37-41, 43, 45-

47, 51, 53]

MEASURING CALCIUM DISTRIBUTION

Fura-2, Fluo3, Fluo4, Calcium 

Green-1, Indo1, Cal-520, etc…

Chemical Indicators Fluorescent dyes

Cytosol : 

ER lumen

Mag-Fura2, Mag-Fluo4, Fluo-

4FF, Fluo-5N, Calcium Green-

5N, Magnesium Green NTA

[62-64, 108]

GECIs Florescence/Micr

oscopy

CEPIA family, YC family, D1ER 

and CatchER

[68-70]

  (TED) Florescence/Micr

oscopy

GFPCES3, Fluo 5N/Ca+2 [109]

membrane-targeted 

GECIs

Florescence/Micr

oscopy

OER-GCaMP6f, Lck-GCaMP6f, 

LcK-RCaMP2

[73]

Gaussia Luciferase 

SERCaMP

Luminescence SERCaMP [110]

FUNCTIONAL CHANGES

Morpho ER size and shape EM, Fluorescent 

Microscopy 

Immunofluoresce

nce

EM, ER-Tracker™, DiIC16(3) 

and DiIC18(3),

PDI, SERCA, GPR78 etc…

GFP-Sec63, Calnexin IF

[74, 75]
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Function Secretion Luciferase assay Gaussia luciferase [111]

MISFOLDED PROTEIN AGGREGATION

Protein Aggregation Fluorescence Thioflavin [78-82]

THE UNFOLDED PROTEIN RESPONSE GENETICS TOOLS

Method Notes Ref

Xbp1s XBP1-venus

F-XBP1ΔDBD-

venus

monitoring the fluorescence 

activity of venus in the nucleus

[7, 9, 84-88]

IRE1 RNAse activity RFP-GFP fusion Flow Cytometry [112]

IRE1 Oligomerization WB/Florescence sfGFP-IRE1 construct

EGFP-IRE1 construct

[5, 93, 94]IRE1 

IRE1 Transfection IRE1 KA-pcDNA3.EGFP

IRE1-pcDNA3.EGFP

[113]

PERK

NRF2-KEAP1 Luciferase assay Neh2-luciferase to monitor 

drug-induced Nrf2 

stabilizationin

[114]

ATF6f localization Luciferase assay p5xATF6-GL3, Plasmid #11976 [25]

ATF6 localization Immufluorescenc

e

p5xFLAG-ATF6, Plasmid 

#11974

[115]

ATF6 ATF6f localization Immunofluoresce

nce

pCGN-ATF6 (1-373), Plasmid 

#27173

pCGN-ATF6 (1-373)m, Plasmid 

#27174

[25]

ATF6 nuclear 

localization

Western 

blot/Immunofluor

escence, 

Selective ATF6f 

induction

DHFR:ATF6 [116]

ASSESSING THE REDOX STATE OF THE ER

Redox 

state of 

the ER 

lumen

Assaying the redox 

state of redox sensitive 

Fluorescent Proteins

Fluorescence/FA

CS/Microscopy/ 

western blot

eroGFP, ER-rxYFGP, Grx-

rxYFP, 

[37-41, 43, 45-

47, 51, 53]

MEASURING CALCIUM DISTRIBUTIONA
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GECIs Florescence/Micr

oscopy

CEPIA family, YC family, D1ER 

and CatchER

[68-70]

 (TED) Florescence/Micr

oscopy

GFPCES3, Fluo 5N/Ca+2 [109]

membrane-targeted 

GECIs

Florescence/Micr

oscopy

OER-GCaMP6f, Lck-GCaMP6f, 

LcK-RCaMP2

[73]

Gaussia Luciferase 

SERCaMP

Luminescence SERCaMP [110]

Table2: Chemical and genetic tools to assess ER stress in mammalian cells
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Table3: List of sequences of published primers used to assess ER stress and the unfolded 

protein response by RT-qPCR and PCR reactions in human and mouse samples. 
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Pathway Gene Human Mouse (5’- ‘3)

BLOC1S1 5’-CCCAATTTGCCAAGCAGACA-‘3

5’-CATCCCCAATTTCCTTGAGTGC-‘3            [117]

5’-CAAGGAGCTGCAGGAGAAGA-‘3 

5’-GCCTGGTTGAAGTTCTCCAC-‘3        [11]

SCARA3 5’- CGCTGCCAGAAGAACCTATC-‘3

5’- AACCAGAGAGGCCAACACAG-‘3       [118] 

5’-TGCATGGATACTGACCCTGA-‘3 

5’-GCCGTGTTACCAGCTTCTTC-‘3        [11]

PDGFRB TCCATCCCTCTGTTCTCCTG

CTGCCCTCTCCCAGTTATCA           [118]

5’-AACCCCCTTACAGCTGTCCT-‘3

5’-TAATCCCGTCAGCATCTTCC-‘3        [11]

PMP22 5’-CTGGTCTGTGCGTGATGAGTG-‘3      

5’-ATGTAGGCGAAACCGTAGGAG-‘3      [119]      

5’-TGCGATACAGCAGAATGGAG-‘3 

5’-TTGGTGGCCAATACAAGTCA-‘3        [11]

Col6A1 5’- CCCTCGTGGACAAAGTCAAG-‘3

5’- GTTTCGGTCACAGCGGTAGT-‘3        [118]

5’-TGCTCAACATGAAGCAGACC-‘3 

5’-TTGAGGGAGAAAGCTCTGGA-‘3       [11]

RIDD

GALNT10 5’-ACAGCCAGGTAATGGGTGAG-‘3      

5’-GAAGATGGGATGGCTTTTCA-‘3   

[120]  

5’-CCTTAGAGATGCTGGGATCG-‘3 

5’-TGAGGACTCAACTCCCCTTG-‘3        [11]

XBP1s XBP1spl. 

(PCR)

5’-GGAGTTAAGACAGCGCTTGGGGA-‘3

5’-TGTTCTGGAGGGGTGACAACTGGG-‘3    [121]

5’-AGGAAACTGAAAAACAGAGTAGCAGC-‘3

5’-TCCTTCTGGGTAGACCTCTGG-‘3    [122]

XBP1 spl.

(qPCR)

5'-TGCTGAGTCCGCAGCAGGTG-‘3

5'- GCTGGCAGGCTCTGGGGAAG-‘3       [123]

5'-GAGTCCGCAGCAGGTG-‘3

5'-GTGTCAGAGTC-CATGGGA-‘3         [124]

MANF 5′-TCACATTCTCACCAGCCACT-‘3

5′-CAGGTCGATCTGC TTGTCATAC-‘3    [125]

5’-AGGTCCACTGTGCTCAGGTC-‘3

5’-CCACCATATCCCTGTGGAAA-‘3            [126]

IRE1

XBP1s
miR-17 TXNIP 5’-CTTGCGGAGTGGCTAAAGTG-‘3

5’-TTGAAGGATGTTCCCAGAGG-‘3         [127]

5’-TCAAGGGCCCCTGGGAACATC-‘3

5’-GACACTGGTGCCATTAAGTCAG-‘3  [91]

BIP 5'- TGTTCAACCAATTATCAGCAAACTC-‘3       

5'- TTCTGCTGTATCCTCTTCACCAGT-‘3      [123]

5’-TCAGCATCAAGCAAGGATTG-‘3

5’-AAGCCGTGGAGAAGATCTGA-‘3      [122]

PDIA4 5′-AGTGGGGAGGATGTCAATGC-‘3

5′-TGGCTGGGATTTGATGACTG-‘3    [116]

5′-GGGCTCTTTCAGGGAGATGG-‘3

5′-GGGAGACTTTCAGGAACTTGGC-‘3   [83]

HYOU1 5′-GCAGACCTGTTGGCACTGAG-‘3

5′-TCACGATCACCGGTGTTTTC-‘3          [116]

5’-GTGATAGTGCAGCCGGCAT-‘3

5’-AACGGAGCGTAGCCTTTGG-‘3  [104]

SEL1L 5′-ATCTCCAAAAGGCAGCAAGC-‘3

5′-TGGGAGAGCCTTCCTCAGTC-‘3         [116] 

5’-TGGGTTTTCTCTCTCTCCTCTG-‘3

5’-CCTTTGTTCCGGTTACTTCTTG-‘3        [128]

EDEM1 5′-TTCCCTCCTGGTGGAATTTG-‘3

5′-AGGCCACTCTGCTTTCCAAC-‘3    [116] 

5’-GGGACCAAGAGGAAAAGTTTG-‘3

5’-GAGGTGAGCAGGTCAAATCAA-‘3        [128]

HERPUD1 5′- CGTTGTTATGTACCTGCATC-‘3

5′- TCAGGAGGAGGACCATCATTT-‘3      [129]

5′-CAGTTGGAGTGTGAGT-‘3

5′-CAACAGCAGCTTCCCAGAATA-‘3         [129]

ATF6 ATF6

XBP1 5’-TAAGACAGCGCTTGGGGATG-‘3

5’-GCACGTAGTCTGAGTCGTGC-‘3         [123]

5′-AAGAACACGCTTGGGAATGG-‘3

5′-ACTCCCCTTGGCCTCCAC-‘3           [124]

CHOP 5'- CAGAACCAGCAGAGGTCACA-‘3

5'- AGCTGTGCCACTTTCCTTTC-‘3          [123]

5’-CACATCCCAAAGCCCTCGCTCTC-‘3

5’-TCATGCTTGGTGCAGGCTGACCAT-‘3 [122]

GADD34 5’- CCTCTACTTCTGCCTTGTCTCCAG-‘3     

5’-TTTTCCTCCTTCTTCTCGGACG-‘3            [118]   

5’- CTTTTGGCAACCAGAACCG-‘3     

5’-CAGAGCCGCAGCTTCTATCT-‘3            [130]

ATF4

NOXA 5’-TTTCTTCGGTCACTACACAACG-‘3

5’-GAGCATTTTCCGAACCTTTAGA--‘3     [131]

5’-GACAAAGTGAATTTACGGCAGA-‘3

5’-GGTTTCACGTTATCACAGCTCA-‘3       [131]

PERK

NRF2 HMOX1 5’-ACTGCGTTCCTGCTCAACATC-3’ 5’-GCCGAGAATGCTGAGTTCATG-3’A
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5’-GCTCTGGTCCTTGGTGTCATG-‘3       [132]  5’-TGGTACAAGGAAGCCATCACC-3’         [132]

NQO1 5’-ATGTATGACAAAGGACCCTTCC-‘3

5’-TCCCTTGCAGAGAGTACATGG-‘3             [133]

5’-CGCCTGAGCCCAGATATTGT-3’

5’-GCACTCTCTCAAACCAGCCT-3’      [132]
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Figure Legend
Figure 1: Summary of the activation of the different signaling outputs during ER stress. in 

green Redox state: eroGFP, rxYFP (1,2); in black ER structure: ThioflavinT (ThT) (3); in red 

Calcium status: CEPIA (4); Unfolded Protein Response: in orange PERK pathway (5), in 

violet ATF6 pathway (6); in blue IRE1a pathway (7).
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