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RED GIANT STARS: FROM MIXED MODES TO
ANGULAR MOMENTUM

K. Belkacem1

Abstract. Solar-like oscillations are ubiquitous to low-mass stars from
the main-sequence to the red-giant branch as demonstrated by the
space-borne missions CoRoT and Kepler. Understanding the physical
mechanisms governing their amplitudes as well as their behavior along
with the star evolution is a prerequisite for interpreting the wealth of
seismic data and for inferring stellar internal structure. In this paper,
I discuss our current knowledge of mode amplitudes with particular
emphasis on non-radial modes in red giants (hereafter mixed modes).
Then, I will show how these modes permit to unveil the rotation of
the inner-most layers of low-mass stars and how they put stringent
constraints on the redistribution of angular momentum.

1 Introduction: Mixed modes as a cornerstone for unveiling the core
of red giants

Low-mass main-sequence stars with an extended external convective region exhibit
acoustic standing waves (hereafter p-modes). Those modes, with high amplitudes
near the surface, mainly probe the external layers of these stars. It thus allows
us to perform stellar seismology as was successfully done using the CoRoT (e.g.,
Grotsch-Noels & Deheuvels 2016) and Kepler (e.g., Chaplin & Miglio 2013) obser-
vations. In contrast, g-modes, whose restoring force is buoyancy, are potentially
able to probe the innermost layers of stars. They have relatively low frequencies
and very low amplitudes at the stars surface because they are evanescent in the
outer convective region (e.g., Belkacem et al. 2009). However, except for the Sun
for which the detection remains controversial (e.g., Appourchaux et al. 2010),
those modes have not (yet) been detected in solar-like stars.
For evolved stars, the situation is more favourable. Indeed, while initially

thought as complex, oscillation spectra of subgiants and redgiants have proven to
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Fig. 1. Propagation diagram showing the squared buoyancy frequency (N2), the squared

Lamb frequency for dipolar modes (S2�=1) versus the normalized radius. The solid red

line corresponds to the squared νmax frequency computed using the now classical scaling

relation (e.g. Belkacem et al. 2011) and the dashed and dashed-dotted red lines cor-

respond to the typical frequency range in which modes are detected. The equilibrium

model correspond to an evolved red giant (RGB) stars (and more precisely to model M2

in Belkacem et al. 2015a).

be a rich harvest of information on the innermost layers of these stars. This was
made possible thanks to space-borne missions and the first detection by CoRoT
of thousands of oscillating redgiant stars (see Mosser & Miglio 2016, for a review
on early results obtained by CoRoT). Those stars exhibit solar-like oscillations
with high amplitudes and more importantly non-radial oscillations later identified
as mixed modes (e.g., De Ridder et al. 2009). Indeed, a star leaving the main-
sequence experiences major structural changes since its radiative core contracts
as the result of which its envelope expands. As the total radius increases, both
the mean density and the surface gravity decrease. It results in a situation for
which a p-mode (for a given radial order and angular degree) is found at a lower
frequency as does the frequency of the maximum in the power spectrum (as it scales
predominantly with the surface gravity, see Belkacem et al. 2011, for details). In
contrast, the frequencies of g modes increase because the core contracts while the
star evolves. This is due to the increase of the buoyancy frequency. This results in
an overlap of the frequency ranges of p and g modes and allow for the appearance
of the so-called mixed-modes (e.g., Dziembowski et al. 2001; Dupret et al. 2009).
The resonant cavities are depicted by Figure 1.
These modes have a dual nature because they propagate both in the outer and

inner cavities. This is a key advantage because they have amplitude at the surface
so that it is possible to detect them and bear information on the innermost regions
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of the star. Obviously, depending on frequency, each mixed mode bears a different
information. At first order, it is possible to define and characterize the degree of
mixity of a mode by introducing the normalized mode energy, i.e.

E =

∫ 1
0

ε dx with ε =
1

ξr(R)2
(
ξ2r + Λξ

2
h

)
(1.1)

where ξr, ξh are the radial and horizontal components for the eigenfunction, Λ =
�(�+1) with � the angular degree, x = m/M , and M,R the total mass and radius
respectively. The normalized mode energy given by Equation (1.1) is plotted in
Figure 2 (middle panel). For non-radial modes, the normalized mode energy varies
with frequency and is found always higher than for radial modes. It allow us to
define p and g-dominated modes that bear a different information. Indeed, p-
dominated modes have a low energy and mainly probe the upper layers while the
g-dominated modes have a high energy and mostly probe the inner-most regions
as shown by Figure 2 (bottom panel).
At the time of the first detection and identification of non-radial modes by

CoRoT (De Ridder et al. 2009), most of the theoretical background was already
developed for decades. These mixed modes, as named in the early works of
Dziembowski (1971) for Cepheids and Scuflaire (1974) for a condensed polytropic
model, have been subject to an extensive investigation from a theoretical point
of view (e.g., Shibahashi 1979; Dziembowski et al. 2001; Christensen-Dalsgaard
2004). Consequently, the foundations being established, the wealth of observations
as provided by CoRoT and followed by Kepler gave us the opportunity of a new
grip on stellar physics of advanced evolutionary stages.
Nevertheless, a number of fundamental questions were still to be solved. The

first crucial issue was the mixed modes detectability and this is addressed in
Section 2. Before using those modes for doing seismology and inferring the
innermost structure of evolved stars, it was mandatory to be able to identify
them and thus to understand the evolution of their amplitude versus the duration
of the observations and across the Hertzsprung-Russell diagram. Subsequently, as
discussed in Section 3, once mode frequencies are extracted, one must be able to
disentangle between several physical effects affecting them such as the glitches, the
effect of mode trapping, as well as rotation. Given the complexity of oscillation
spectra of evolved stars, this was a crucial prerequisite to be able to properly infer
the structure of those stars. Eventually, the mean core rotation of a cohort of
evolved stars being inferred, it was possible to emphasize our deficient knowledge
about the redistribution of angular momentum in low-mass evolved stars. As we
will discuss in Section 4, a number of physical mechanisms are suspected to
operate but the picture is far from being grasped and it will certainly give grounds
for a harvest of theoretical works in the forthcoming years.

2 Mixed modes detectability

For using mixed modes as probes of the internal structure of stars, it is fundamental
to understand the physics governing mode amplitudes. Indeed, this knowledge is
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Fig. 2. Top panel: Normalized mode energy computed using Equation (1.1) as a function

of the frequency for radial and dipolar modes. Bottom panel: Integrand of the mode

energy ε (see Eq. (1.1)) versus the logarithm of the pressure where P0 is the pressure at

the surface.

mandatory to understand the structure of oscillation spectra. Mode amplitudes in
evolved stars is however a long-standing and still not completely solved issue (see
the review by Samadi et al. 2015). The problem can be split into two separate sub-
problems, namely; the amplitude of radial modes and the amplitude of non-radial
(or mixed) modes.

2.1 Radial mode amplitude for evolved stars

In this section we consider the amplitudes of radial modes in terms of both sur-
face velocity and intensity fluctuations. Based on our knowledge of the solar
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Fig. 3. Maximum height in the power spectrum (at ν = νmax) for stars observed by

Kepler. The color code indicates the evolutionary status; clump stars in red, giant branch

stars in blue, unknown status in dark grey. The black squares indicate low-amplitude

dipolar modes (see Mosser et al. 2017, for details on those particular stars). From Mosser

et al. (2012a).

oscillations, early attempts have been made to extrapolate the calculations to
more evolved stars (e.g., Christensen-Dalsgaard & Frandsen 1983; Kjeldsen &
Bedding 1995; Houdek et al. 1999; Samadi et al. 2007). However, as shown by
the space-borne mission (Baudin et al. 2011; Mosser et al. 2012a) the physical
picture is quite different for a red giant compared to the Sun and it needs a par-
ticular attention. Indeed, as shown by Figure 3 there is a clear dependence of the
maxmum height of the power spectrum to the frequency νmax which is not obvious
to reproduce using only our knowledge of mode amplitude in main-sequence stars.
This motivated several attempts to reproduce the evolution of mode amplitudes
across the HR diagram using empirical scaling relations (e.g., Kjeldsen & Bedding
2011; Huber et al. 2011; Corsaro et al. 2013) as well as theoretical studies (Samadi
et al. 2012).

To gain knowledge on mode amplitudes in red giants, the first step consisted
in considering radial mode amplitudes. To do so, let us first recall that the mean-
squared surface velocity of a mode is given by (Samadi 2011)

v2(ν, r) =
τ(ν)

2

P (ν)

M(ν, r) , (2.1)

where ν is the modal frequency, τ is the mode life-time (which is equal to the
inverse of the mode damping rate η), r is the radius in the atmosphere at which
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the mode velocity is measured, P is the excitation rate, andM is the mode mass
defined by

M = I

|ξr(R)|2
=

1

|ξr(R)|2
∫ R
0

(
ξ2r + Λξ

2
h

)
ρr2dr, (2.2)

where ρ is the density, and R is the total radius of the star.

Therefore, to reproduce the scaling relation as shown by Figure 3, one must be
able to provide physically-grounded scaling relations for the mode lifetimes, mode
excitation rates, and mode masses. This is a non-trivial task since the underlying
physics is complex and depends on the still poorly-known upper-most layers of
solar-like stars. To cope with this problem, Samadi et al. (2012) proposed to use
a grid of 3D hydrodynamical simulations to determine scaling relations for both
the excitation rates and mode masses at νmax. For τ(νmax), it is also possible to
use the relation derived by Belkacem et al. (2012). Consequently, the amplitudes
can be written such as

vmax = vmax,�
(
Teff

Teff,�

)−0.75(
νmax

νmax,�

)−1.15(
∆ν

∆ν�

)
. (2.3)

where Teff is the effective temperature, νmax the frequency of the maximum height
in the oscillation power spectrum, and ∆ν the large separation. The symbol �
denotes the solar reference values. Equation (2.3) then enable us to estimate the
variation of mode amplitude with the evolution of a star when leaving the main-
sequence. Indeed, as a star evolves, its surface gravity and effective temperature
decrease so that both the large separation and the frequency νmax significantly
decrease. It results in a significant increase of the mode amplitudes, together with
a decrease of the mode linewidths, and it explains why so many red giants have
been observed with solar-like oscillations.
However, most of the observations are obtained using photometric facilities

and mainly with CoRoT and Kepler space-scrafts. Therefore, in order to compare
predicted and measured mode amplitudes, it is necessary to convert mode-velocity
amplitudes to intensity amplitudes and more precisely to luminosity perturbations
δL/L where δL(t) is the mode Lagrangian (bolometric) luminosity perturbations.
This is a non-trivial task and a consistent calculation requires to take into account
the energy gain/lost by the pulsation. This can be done by using a non-adiabatic
pulsation code that takes into account coupling between oscillation, radiation and
turbulent convection. Due to the difficulties of consistently treating the under-
lying mechanisms, the use of the quasi-adiabatic relation has been proposed by
Kjeldsen & Bedding (1995) as well as Severino et al. (2008). However, those simple
estimates fail to reproduce the observations and one needs to abandon the quasi-
adiabatic assumption which is not justified in the upper-most layers of red giants.
It thus motivated Samadi et al. (2012) to use a more sophisticated approach and
more precisely the MAD non-adiabatic pulsation code (Grigahcène et al. 2005).
They established that the ratio between luminosity and velocity scales as the ratio
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(L/M)α with α = 0.25 (see Samadi et al. 2012, 2015, for details). Using this
result, it is quite straightforward to show that

δL

L
∝ T 0.125eff ν−0.75max . (2.4)

Because we are considering red giant stars, the dependence with the effective
temperature in Equation (2.4) is negligible, and we mainly have δL/L ∝ ν−0.75max .
When compared to the fit on theKepler observations (see Fig. 3) as done by Mosser
et al. (2012a), the agreement is quite satisfactory. Indeed, Mosser et al. (2012a)
obtained δL/L ∝ ν−0.751max (see their Table 3). Therefore, one can conclude that the
main physics underlying radial mode amplitudes is grasped. However, there are
still some discrepancies identified by Samadi et al. (2012) to be due to both the
conversion between luminosity and velocity amplitudes as well as non-adiabatic
effects affecting mode driving.

2.2 Non-radial mode amplitude for evolved stars

Let us now consider the case of non-radial modes. The absolute amplitudes of
those modes is subject to the same uncertainties as for radial modes as well as an
additional difficulty related to the inner radiative damping. To focus on the latter,
we will then consider the ratio between dipolar and radial modes of comparable
frequencies. For sake of clarity, we will also consider that all modes are resolved,
i.e. their lifetimes are smaller than the duration of the observations (τ � Tobs).
In practise this is not always the case and this introduces additional subtleties
but we refer the reader to Dupret et al. (2009) and Grosjean et al. (2014) for a
detailed discussion in this situation.
As shown by Benomar et al. (2014), the ratio between mode heights in the

power spectrum reads

H�

H0
=

(
P�

P0

)(M0

M�

)(
η0

η�

)2
, (2.5)

where radial modes (� = 0) are denoted by the subscript 0, and non-radial modes
by the subscript �. In term of mode amplitude, it gives

A2�
A20
=

(
P�

P0

)(M0

M�

)(
η0

η�

)
, (2.6)

where the relation between mode amplitude and mode height is A2 = Hη/2 (see
for instance Libbrecht 1988; Baudin et al. 2005; Chaplin et al. 2005; Belkacem
et al. 2006). Note that in our notation, the mode amplitude A can be expression in
term of both mode velocity or luminosity fluctuations as discussed in Section 2.1.
To go further, we note that at similar frequencies, the eigenfunctions of radial

and non-radial modes have similar shapes in the super-adiabatic layers (i.e., near
the photosphere). Therefore, the work done by the driving source on the modes
is the same. This has been shown by Dupret et al. (2009) and Benomar et al.
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(2014). Obviously, for very low frequencies and high angular degrees, this is no
longer verified since the horizontal component of the eigenfunction for non-radial
modes become non-negligible. This leads to

P0M0 � P�M�. (2.7)

Finally, using Equation (2.6) together with Equation (2.7), one obtains the
desired relation for the mode amplitude ratio

A2�
A20
�
(M0

M�

)2(
η0

η�

)
. (2.8)

Equation (2.8) is quite enlightening because it explicitly shows that mainly two
physical ingredients are susceptible to affect the amplitude of non-radial modes
compared to the radial ones, namely; the mode trapping (through the inertia
ratio) and an extra-contribution of mode damping. We also note that in all cases1

one has A� ≤ A0. Indeed, if non-radial modes are efficiently trapped in the core
or experience a strong damping in the core, their amplitudes will be diminished
compared to the radial modes and the question of their detectability is obviously
raised.
Actually, in the radiative interiors, the dominant contribution of mode damping

is what we call the radiative damping since normal modes with a non-negligible
amplitude lose energy radiatively. The influence of radiative damping has already
been extensively investigated for other classes of pulsators (see Samadi et al. 2015,
for details) and even before the unambiguous detection by CoRoT of non-radial
modes in red giants, this question had been investigated from a theoretical point
of view by Dziembowski et al. (2001) following the detection of variability in the
red giant αUMa by Buzasi et al. (2000) using photometric data from the WIRE
satellite. Concomitantly with the detection of non-radial stochastically excited
modes in red giants by CoRoT (De Ridder et al. 2009; Dupret et al. 2009)
investigated the effect of radiative damping and trapping on the amplitude of non-
radial modes along with the evolution of stars with masses of 2M� and 3M�.
This early work was based on a full computation of mode driving as well as non-
adiabatic mode damping and was extensively used to qualitatively understand the
oscillation power spectrum observed by CoRoT (see the review by Mosser et al.
2016, for an account of the evolution of our understanding of redgiant spectra
at the time of the CoRoT mission). This work was supplemented by Grosjean
et al. (2014) who focused on low-mass red giants as mainly observed by the
CoRoT and Kepler spacecrafts (see Fig. 4). The main conclusion is that radiative
damping becomes dominant either for high-angular degrees or highly evolved red
giant stars. In those cases, the non-radial modes can be severely affected and
their amplitudes decrease so that they cannot be detected. The main physical

1 Note that this inequality does not take the visibilities into account.
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Fig. 4. Hertzprung-Russel diagram for a 1.5M� evolutionary track in red solid line and
1.7, 2M� in black. The dots are the selected models by Grosjean et al. (2014) for an
in-depth study. From Grosjean et al. (2014).

ingredient is thus the ratio between the work associated with the damping in the
core and in the envelope. To show it, let us remind that η� = W�/M�, with W�
the total work integral associated to the damping (e.g. Belkacem et al. 2011), so
that Equation (2.8) becomes

A2�
A20
�
(M0

M�

) (
W0

W�

)
. (2.9)

To go further, it is useful to write W� =Wenv +Wcore, where Wenv and Wcore are
the work integrals associated to the enveloppe and the core, respectively. More-
over, using the same argument as for the driving (see Eq. (2.7)) one can assume
Wenv =W0 so that

A2�
A20
�
(M0

M�

) (
1 +
Wcore

W0

)−1
. (2.10)

The evolution of the ratio Wcore/W0 is illustrated by Figure 5 and its influence
on the shape of the oscillation power spectra is shown in Figure 6. Guided by the
above-mentioned arguments and using complete computations of mode driving
and damping, Grosjean et al. (2014) were able to theoretically predict the limit
of mixed mode detectability commensurable with the observations. The authors
also demonstrated that the structure of oscillation spectra is identical for a given
ratio of the number of mixed modes between two consecutive p modes (ng/np) as
depicted by Figure 7.
Finally, it is worthwhile to note that the amplitude ratio can be easily estimated

using asymptotic developments. From Equation (2.10), there are two distinct
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Fig. 5. Core and envelope contributions to the work integral, normalised by GM2/R,

for the three models A,B,C (from top to bottom panels, respectively) of the 1.5M evo-

lutionary tracks as shown by Figure 4. From Grosjean et al. (2014).

cases, namely;

• if the work associated with the radiative damping in the core is negligible
compared to the work associated with the damping in the envelope, the mode
amplitude ratio Equation (2.10) reads (see also Belkacem et al. 2015a)

A2�
A20
�
(M0

M�

)
= 1− ζ, (2.11)

where we have introduced the now commonly used ζ function (e.g. Goupil
et al. 2013; Mosser et al. 2015) that represents the ratio between the mode
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Fig. 6. Power spectra of models A, B, and C (see Fig. 4). The heights are given in

m/s)2/µHz. From Grosjean et al. (2014).

inertia in the core and the total mode inertia. As we will show, in the
following section, this function can be easily determined using asymptotic
developments. Equation (2.11) holds for the low angular degrees in subgiants
and early red giants.

• if Wcore cannot be neglected compared to W0 one can also estimate the
amplitude ratio using asymptotic developments by writting

A2�
A20
� 1− ζ
1 + ηcore

η0
ζ
, (2.12)



200 Astro Fluid 2016

Fig. 7. The same as in Figure 4 except that the color scale indicates models with the same

number of mixed modes by large separation. The red line represents the detectability

limit found for the dipole modes by Grosjean et al. (2014) (assuming that all modes are

fully resolved). From Grosjean et al. (2014).

where η0 can be easily determined using observations or scaling relation as for
instance given by Belkacem et al. (2012), and ηcore is the radiative damping
which can be written as (e.g. Dziembowski et al. 2001; Godart et al. 2009)

η (�max, ν) =
[�max(�max + 1)]

3/2

8πσ3R
∫ Rc
0
kr dr

∫ Rc
0

∇ad −∇
∇

∇adNgL
Pr5

dr. (2.13)

where k2r � �(�+1)
r2

(
N2

σ2R

)
, N is the buoyancy frequency, P is the pressure, L

is the luminosity, Rc is the base of the convective region, σR = 2πν, ∇ is the
temperature gradient and ∇ad its adiabatic counter-part.

Finally, one can conclude that the main physics underlying the oscillation power
spectra of evolved stars among the HR diagram is now grasped. It was a crucial
and even mandatory step before using the mixed modes for inferring the internal
structure of red giants. However, even if the structure and evolution of the spectra
is understood, one still must be able to properly know what king of information
bear the oscillation frequencies and this is not a trivial task as shown in the
following section.
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3 Mixed mode frequencies: Disentangling mode trapping, glitches,
and rotational splittings

Once detected, mixed modes are not directly usable to infer the internal structure
of evolved stars. Indeed, a number of physical mechanisms influence their frequen-
cies. The main challenge is thus to disentangle all the contributions. This is a
non-trivial task and quite a number of studies focused on that objective (see the
review by Hekker & Christensen-Dalsgaard 2016) but it is safe to realize that all
those works rely directly or implicitly on asymptotic expansions. They allow us to
link the frequencies with structural properties of stars in idealized situations. As-
ymptotic developments are therefore unique and essential tools to gain knowledge
on the structure of oscillation spectra.

3.1 Asymptotic expansion for mixed modes

Pure gravity mode frequencies are equally spaced in periods. It is the counterpart
of the large separation for pure acoustic modes. Indeed, gravity mode periods
follow the relation (Tassoul 1980)

Π = ∆Π(n+ εg), (3.1)

where εg is a phase shift, n is the radial order, and ∆Π is the period spacing
given by

∆Π =
2π2√
�(�+ 1)

(∫ r2
r1

N
dr

r

)−1
, (3.2)

where r1 and r2 are the radius of the inner and outer turning points of the g-mode
cavity. It is worth to note that the integral in Equation (3.2) is related to the evo-
lutionary state of the star since it provides information on the inner-most layers
of evolved stars. For instance, it has been possible to unambiguously distinguish
between low-mass stars on the ascending red-giant branch (RGB) and on the cen-
tral helium burning phase (clump stars) by using the period spacings while it was
impossible to conclude only with surface properties such as effective temperature
and surface gravities (Bedding et al. 2011; Mosser et al. 2011). For both RGB
and clump stars it is possible to go a step further since the period spacing is very
sensitive to the internal structure of the core and thus to the evolutionary stage.
However, if one uses directly the period spacing between two consecutive mixed

modes, ∆P , as in Bedding et al. (2011) and Mosser et al. (2011), the diagnos-
tic remains limited. Actually, the period spacing between two consecutive observed
mixed modes does not follow exactly the asymptotic relation as given by
Equation (3.2). This is related to the mixed nature of the modes. The observed
modes are not pure g-modes because they are affected by their acoustic nature in
the envelope that induces a departure from Equation (3.2). This is illustrated by
Figure 8.
To cope with this issue, Mosser et al. (2012a) proposed an asymptotic relation

adapted for mixed modes, essentially a matching between asymptotic solution in
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Fig. 8. Gravity-mode period spacing ∆Π as a function of the pressure-mode large fre-

quency spacing ∆ν. RGB stars are indicated by triangles; clump stars by diamonds;

secondary clump stars by squares. The seismic mass is given by the color code. Small

gray crosses indicate the bumped periods ∆P . The solid colored lines correspond to a

grid of stellar models with masses of 1, 1.2 and 1.4M�, from the ZAMS to the tip of the
RGB. From Mosser et al. (2012a).

the acoustic and buoyancy cavities (this is based on the original work by
Shibahashi 1979b). It allows us to express the mixed mode frequencies as a func-
tion of p-mode frequencies, i.e.

ν = νnp +
∆ν

π
arctan

[
q tanπ

(
1

∆Π ν
− εg
)]
, (3.3)

where ν is the mixed mode frequency, νnp the frequency of pure p modes, and
q a coupling factor. Therefore, using Equation (3.3) with the measured ν yields
a determination of the asymptotic period spacing (∆Π) through a simple fitting.
This is a crucial step for comparing the observations and the modelling as well as
for determining the evolutionary stage (Mosser et al. 2014; Vrard et al. 2016).
As illustrated by Figure 8, the observed asymptotic period spacing can be easily
compared to the period spacing computed by the models using Equation (3.2).
It is possible to go a step further and to relate directly ∆P and ∆Π by con-

sidering that it mainly depends on the ratio between the inertia contribution in
the g-mode cavity and the total inertia of a mixed mode. More precisely, one has
(Christensen-Dalsgaard 2012; Mosser et al. 2015)

∆P = ∆Π ζ, (3.4)
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where an asymptotic expression of ζ can be obtained as demonstrated by Goupil
et al. (2013) and generalized by Deheuvels et al. (2015) and Mosser et al. (2015),
i.e.

ζ(ν) =


1 + 1q

ν2∆Π

∆ν(νp)

cos2
π

∆Π

(
1

ν
− 1
νg

)

cos2 π
ν − νp
∆ν(νp)

,



−1

. (3.5)

where νp and νg are the frequencies of pure p and g modes, respectively.
This ratio is fundamental for understanding mixed mode spectra because, at

leading order, it controls almost all the physical parameters such as mode ampli-
tudes (see Sect. 2), period spacing, but also rotational splittings as we will discuss
in Section 3.2. Therefore, for inferring precisely the internal structure of red gi-
ants, it is essential to remove this dominant dependency. It motivated the work
by Mosser et al. (2015). The authors proposed an elegant way for extracting
higher-order effects from the mixed mode frequencies by introducing a change of
variable, named to as stretched periods. Assuming that the frequencies and the
periods are continuous functions, one can write

dτ =
1

ζ

dν

ν2
, (3.6)

where τ is the stretched period and ζ is given by Equation (3.5). Figure 9 displays
an example for a star observed by Kepler in which the rotation is not detected.

3.2 Measurements of core rotation and evidence of spin-down

When rotation is non-negligible, non-antisymmetric modes (i.e. with m �= 0,
where m is the azimuthal) can be detected albeit it depends on the inclination of
the star. Therefore, the frequency difference between the modes with m = 0 and
m �= 0 can be measured. These are the rotational splittings, δν (see Goupil 2011
for a review on the influence of rotation on mode frequencies). In red giants, the
frequency dependence of the splittings with the frequency is intimately intertwined
with the frequency dependence of ∆P . To disentangle between the effects of the
trapping (through ζ) and the rotation, the stretched periods are again very useful.
If one defines δτ as the difference between the stretched periods of two modes of
consecutive radial orders and the same azimuthal order, one has (Mosser et al.
2015)

δτ = ∆Π+
2mδν

ν
∆P = ∆Π

(
1 +
2mδν

ν
ζ

)
. (3.7)

Note that Equation (3.7) has been derived assuming the rotation of the envelope
can be neglected. This is quite a safe assumption for RGB stars and particularly
for g-dominated modes. Equation (3.7) immediately shows that an échelle dia-
gram using the stretched period modulo ∆Π immediately exhibits the rotational
splittings as illustrated by Figure 10.
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Fig. 9. Échelle diagrams of the RGB star KIC 9882316. The left panel shows the classical

period chelle diagram, where the abscissa is the period modulo the period spacing. The

most prominent mixed modes are marked with blue filled squares (in light blue for peaks

in the vicinity of p-dominated modes). The right panel displays the stretched period

chelle diagram, where the abscissa is the stretched period modulo the period spacing.

Pressure-dominated mixed modes are coded in light blue. From Mosser et al. (2015).

One must now relate the rotational splittings (δν) and the mean rotation of
the core. As above-mentioned and demonstrated by Goupil et al. (2013) in the
case of linear splitting (see Ouazzani et al. 2013 when rotation can no longer be
treated as a perturbation), the ratio ζ is still an important factor and one has for
g-dominated modes

δν � 1
2

〈
Ω

2π

〉
core

ζ, (3.8)

where Ω is the rotational angular frequency. Before going further, it is fundamental
to stress out that the symbol 〈〉core denotes the seismic average and must not be
directly compared to the core rotation rate inferred in models as unfortunately
done in several works. Indeed, one has

〈
Ω

2π

〉
core

=
1

2π

(∫ xcore
0

Ω(x)K(x)dx

)(∫ xcore
0

K(x)dx

)−1
, (3.9)
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Fig. 10. The same as for Figure 9 but for the star KIC 6144777. The three main ridges

are due to the dipolar modes and more precisely to the m = −1, 0, 1 modes. From Mosser
et al. (2015).

with xcore the normalized radius of the upper turning point of the g modes which
can be approximated by the normalized radius of the radiative core, and

K(x) =
1

I

(
ξ2r + (Λ− 1)ξ2h − 2ξrξh

)
ρx2, (3.10)

where I the mode inertia.
Using first-order asymptotic developments as well as numerical calculation,

Goupil et al. (2013) have shown that this seismic average can be approximated by

〈
Ω

2π

〉
core

� 1
τg

∫ xcore
0

Ω(x)

2π

N

x
dx, (3.11)

where N is the buoyancy frequency and τg is the time spent in the g-mode cavity
by a mode defined by

τg =

∫ xcore
0

N
dx

x
. (3.12)

Therefore, one must be cautious when comparing seismic core rotation of evolved
stars with rotation rates derived from evolutionary models because, as shown by
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Fig. 11. Rotation rate of the core as a function of the stellar radius. The open dots

and open squares correspond to the RGB and clump stars, respectively, investigated

by Mosser et al. (2012b). The filled symbols indicate the subgiant stars studied by

Deheuvels et al. (2012, 2014). Figure from Deheuvels et al. (2015).

Equation (3.11), the seismic average crucially depends on the rotation profile and
how it compares with the buoyancy frequency profile. Moreover, it allows ones
to see that the seismic average probes the rotation rate in the inner most layers
where N is important. Indeed, it is of no help for the rotation rate in-between the
hydrogen burning shell and the base of the upper convective zone.

Such a methodology has been used by Mosser et al. (2012b) to infer core
rotation of hundreds of RGB and clump stars. For less-evolved stars, namely
subgiant stars, Deheuvels et al. (2012, 2014) used a different methodology by
using inversion techniques. It was made possible mainly because the reciprocal
influence of the p and g cavities are less severe so that the information is less
degenerated than for more evolved RGB stars. The overall result is well illustrated
by Figure 11. Since the total radius is a proxy of the evolutionary stage, one can
draw several conclusions, namely

• For subgiant stars, even if the number of stars remains limited, it seems that
the radiative core spins-up as expected by considering the local conservation
of angular momentum (hereafter AM). Indeed, when a star evolves off-main-
sequence, its core contracts. However, anticipating on the following section,
the spin-up is not high enough to be compatible with the local conservation
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of AM. It means that angular momentum transport is needed to explain the
observation.

• For red giant stars, the situation is even more critical since their core spin-
down along with their evolution. It is the signature of a powerful physical
mechanism able to redistribute AM from the core to the envelope.

• The edge between subgiants and redgiants clearly raises a number of ques-
tions. Does the slope change results from a different physical mechanism
of AM transport at work and does it simply comes from a difference in the
efficiency of a single physical process? The lack of observational data clearly
amplifies the questioning but we need to rely on modelling before space-borne
missions such as PLATO (Rauer et al. 2014) would be able to conclude.

Finally, we can draw a relatively simple conclusion. One or several physical
processes must be invoked to explained the efficient angular momentum trans-
port from the core to the envelope of evolved stars.

4 The aftermath: The quest for angular momentum transport

With the measurement of the core rotation of evolved stars it was soon realized that
current models including angular momentum redistribution processes are unable
to explain the spin-down of red giant stars. Eggenberger et al. (2012) investigated
the particular case of the star KIC8366239 observed by Kepler and tried to re-
produce the rotational splittings as measured by Beck et al. (2012). Within the
approximation of shellular rotation (Zahn 1992), the authors included the angu-
lar momentum advection by meridional circulation as well as diffusion of AM by
shear mixing and showed that using classical values for turbulent viscosities is not
sufficient. This was independently confirmed by Marques et al. (2013) (see also
Ceillier et al. 2013) who showed that even by accounting for the large uncertainties
related to the horizontal viscosities as well as to the surface braking law meridional
circulation and shear instabilities are unable to explain the low rotation rates of
subgiants and red giants. Note, however, that the issue is not completely settled
because the the horizontal diffusion coefficient is still subject to discussion (see
L. Amard in this Volume). Eggenberger et al. (2012) also proposed to constrain
the unknown additional mechanism by fitting the turbulent viscosity. This has
been be generalized by Eggenberger et al. (2017) who showed that the efficiency
of the missing mechanism increases with the stellar mass. We note, however, that
such an approach, while putting stringent constraint on the AM transport, as-
sumes that the additional mechanism is a diffusion process.
Meridional circulation and shear instabilities being helpless for explaining the

observations, the potential contribution of the magnetic field was soon to be ad-
dressed. Cantiello et al. (2014) investigated the effect of a magnetic field generated
through the Tayler-Spruit dynamo (see the seminal papers by Spruit 1999, 2002)
and reached almost the same negative conclusion. An alternative mechanism,
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involving magnetic field, was proposed by Rüdiger et al. (2015). The authors in-
vestigated the effect of the magneto-rotational instabilities of a toroidal magnetic
field (AMRI). They suggest that it could explain the angular momentum redistri-
bution in subgiants and early red giants (see also Maeder & Meynet 2014). Even if
their modelling is idealized, for instance assuming chemically homogeneous fluid,
the transport of AM by an azimuthal magneto-rotational instability as proposed
by Rüdiger et al. (2015) constitutes a promising candidate to further investigate.
Interestingly enough, Spada et al. (2016) fitted to the observations a power law
(of the ratio between the rotation frequency of the radiative and convective layers)
for the AM diffusion coefficient and showed that the power is compatible with the
AMRI.
A second class of non-standard physical process can help in solving the prob-

lem of the rotation of evolved stars, namely; waves. This includes both progres-
sive (hereafter mentioned as waves) and standing waves (hereafter mentioned as
modes). The former, and mainly internal gravity waves (IGW) can transport
angular momentum (e.g., Press 1981) and it has been demonstrated that they
could explain the nearly flat rotation profile in the inner radiative zone of the Sun
(Charbonnel & Talon 2005). For evolved stars, Fuller et al. (2014) have found
that internal gravity waves are likely to couple the convective region and the upper
radiative region, but not the innermost layers, i.e. the core of redgiants. More
precisely, they demonstrated that IGW could not reach the core of RGB stars
because they are highly damped near hydrogen burning shell (i.e. near the peak
of the buoyancy frequency). We note however, that it also means a strong lo-
cal extraction of AM which can potentially have non-negligible influence on other
processes such as meridional circulation. This interaction as well as many others
remain a weak point in current modelling of angular momentum transport and
would deserve attention in the future. In contrast, for subgiants and early red-
giants, the recent work by Pinçon et al. (2016b) provides new insight on the role of
IGW. Based on the formalism developed by Pinçon et al. (2016a) to model exci-
tation of IGW by convective plumes, the authors suggest that IGW could explain
the observed differential rotation of subgiants and early red giants as observed by
Deheuvels et al. (2014).
However, for more evolved red giants, IGW are helpless but mixed modes can

be decisive. Indeed, mixed modes allowed us to unveil the internal rotation of
evolved stars but they can also play an active role. Actually, redistribution of
angular momentum by normal modes has been considered for a long time with
the pioneer work by Ando (1983) who addressed the question of the interaction of
wave and rotation through wave momentum stresses in the mean angular momen-
tum equation, and many works followed in the context of massive stars (e.g., Ando
1986; Lee & Saio 1993; Lee 2007; Townsend & MacDonald 2008; Townsend 2014;
Lee et al. 2014). To estimate the influence of mixed modes in low-mass evolved
stars, Belkacem et al. (2015a, 2015b) revisited the formalism to account properly
for the influence of both the wave momentum and heat fluxes on the mean flow.
Then, using realistic estimates of mode amplitudes, they were able to show that
mixed modes are able to efficiently slow-down RGB stars but not subgiants. Thus,
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one can conclude that the combination of IGW for sugiants and mixed modes for
RGB stars is a competitive candidate to account for the observations. No doubts
this will be further investigated in the near future to reach a definitive conclusion.

5 Concluding remarks

Finally, since the unambiguous detection of mixed modes in red giants by CoRoT
(De Ridder et al. 2009), huge efforts have been made to unveil the interior structure
and rotation of these stars. They were highly successful and we can bet that we
are only at the beginning of the story. The analysis of existing observational
data are still ongoing and the forthcoming grounded-based, such as SONG facility
(Grundahl et al. 2006), and space-borne missions, such as TESS (Ricker et al.
2015) and PLATO (Rauer et al. 2014), will certainly be decisive to grasp to
physics of angular momentum transport in low-mass stars. Jean-Paul Zahn has
always been at the forefront in this topic and no doubt much of the recent advances
would have not been made possible without his precursor contributions.

K. B. is grateful to the organizers for their invitation. The author also thanks B. Mosser
and R. Samadi for reading the manuscript and for providing useful remarks.
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