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ABSTRACT

Space-borne missions such as CoRoT and Kepler have provided a rich harvest of high-quality photometric data for solar-like pulsators.
It is now possible to measure damping rates for hundreds of main-sequence and thousands of red-giant stars with an unprecedented
precision. However, among the seismic parameters, mode damping rates remain poorly understood and thus barely used for inferring
the physical properties of stars. Previous approaches to model mode damping rates were based on mixing-length theory or a Reynolds-
stress approach to model turbulent convection. While they can be used to grasp the main physics of the problem, such approaches are
of little help to provide quantitative estimates as well as a definitive answer on the relative contribution of each physical mechanism.
Indeed, due to the high complexity of the turbulent flow and its interplay with the oscillations, those theories rely on many free
parameters which inhibits an in-depth understanding of the problem. Our aim is thus to assess the ability of 3D hydrodynamical
simulations to infer the physical mechanisms responsible for damping of solar-like oscillations. To this end, a solar high-spatial
resolution and long-duration hydrodynamical 3D simulation computed with the ANTARES code allows probing the coupling between
turbulent convection and the normal modes of the simulated box. Indeed, normal modes of the simulation experience realistic driving
and damping in the super-adiabatic layers of the simulation. Therefore, investigating the properties of the normal modes in the
simulation provides a unique insight into the mode physics. We demonstrate that such an approach provides constraints on the solar
damping rates and is able to disentangle the relative contribution related to the perturbation (by the oscillation) of the turbulent
pressure, the gas pressure, the radiative flux, and the convective flux contributions. Finally, we conclude that using the normal modes
of a 3D numerical simulation is possible and is potentially able to unveil the respective role of the different physical mechanisms
responsible for mode damping provided the time-duration of the simulation is long enough.
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1. Introduction

The Kepler (Borucki et al. 2010) and CoRoT (Baglin et al.
2006a,b) space-borne missions provided a wealth of high-
quality and long-duration photometric data which allowed us to
detect thousands of solar-like oscillating stars from the main-
sequence up to the red clump (e.g. Chaplin & Miglio 2013).
A leap forward has then been achieved concerning our under-
standing of the internal structure of stars and their evolution
(e.g. Mosser et al. 2012, 2014; Hekker & Christensen-Dalsgaard
2017). This was made possible thanks to an in-depth under-
standing of the physics of the oscillations (e.g. Belkacem et al.
2006a,b, 2010, 2012; Dupret et al. 2009; Grosjean et al. 2014;
Samadi et al. 2015; Houdek & Dupret 2015) as well as of the
evolution of the properties of the power spectra along with the
stellar evolution (e.g. Belkacem et al. 2011; Belkacem & Samadi
2013). However, since the discovery of solar five-minute oscilla-
tions, our ability to understand the physical mechanisms under-
lying mode damping is still challenged. Indeed, mode damping
occurs in the uppermost layers of solar-like stars in which con-
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vection is highly turbulent. It also corresponds to the location
of the transition between convective and radiative energy trans-
port. This makes the problem highly intricate because there is a
concordance of several characteristic time-scales. The modal
period is found to be of the same order as both the convective and
thermal time-scales. Consequently, while it is notoriously difficult
to model turbulent convective boundary layers (see the review by
Kupka & Muthsam 2017), it is even more complex to address its
coupling with the oscillations.

Several attempts to model mode damping have neverthe-
less been proposed. The first to investigate this issue were
Ando & Osaki (1975) but no stable modes were found in
the whole frequency range. Goldreich & Kumar (1991) sub-
sequently proposed that the shear due to Reynolds stresses,
modelled by an eddy-viscosity, is of the same order of mag-
nitude as the non-adiabatic component of the perturbation of
gas pressure. Gough (1980) and Balmforth (1992; see also
Houdek et al. 1999) found that the damping is dominated by
the modulation of turbulent pressure, while Grigahcène et al.
(2005), Dupret et al. (2006), and Belkacem et al. (2012) also
include the perturbation of the dissipation rate of kinetic energy
into heat that acts to compensate the perturbation of turbulent
pressure. Those formalisms were based on the mixing-length
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theory of convection (see Houdek & Dupret 2015, for a detailed
discussion). It thus reduces the whole of the turbulent cascade to
a single length-scale. Therefore, the perturbation of the mixing-
length cannot account for the relation between oscillations and
the turbulent cascade. Xiong et al. (2000) proposed an alterna-
tive approach using a Reynolds stress formalism (Canuto 1992)
to model convection and, using a perturbation method, com-
puted mode damping rates. However, they found a number of
unstable modes, which is at odds with the observational evi-
dence. Indeed, such an approach, while being more physically
grounded than the use of the mixing-length, is highly sensitive
to the adopted closure models (see Kupka & Robinson 2007;
Kupka & Muthsam 2007a,b, for details).

Additional constraints were thus welcomed to gain more
insight into the problem of mode damping. Based on the CoRoT
and Kepler observations, which have provided accurate obser-
vations of solar-like oscillations of hundreds of main-sequence
stars and thousands of red-giant stars, it has been shown that
damping rates follow some scaling relations. Indeed, even if it
is possible to reproduce the solar damping rates by tuning some
parameters, it does not ensure to reproduce the damping in other
stars. The observed scaling relation of mode linewidths thus
provides an important additional constraint on the modelling.
First, using ground-based observations, Chaplin et al. (2009)
proposed that mode linewidths follow a power-law dependence
on effective temperature. This has been refined by Baudin et al.
(2011a,b) using a homogeneous sample of stars observed by
CoRoT and later by Appourchaux et al. (2012), Appourchaux
(2014) for main-sequence and sub-giants as well as Vrard et al.
(2018) for red giants using Kepler observations. From a theoret-
ical point of view, Chaplin et al. (2009) predicted a power-law
of Γ ∝ T 4

eff
, which disagrees with CoRoT and Kepler observa-

tions. Houdek (2012) attributed the failure of this theory to a
missing physical mechanism and proposed mode scattering as a
possible solution. However, based on the formalism developed
by Grigahcène et al. (2005), Belkacem et al. (2012) managed to
reproduce the scaling relations obtained by both CoRoT and
Kepler without invoking mode scattering.

Finally, despite some relative successes, much work is
still needed to properly understand the physics behind mode
linewidths. A novel approach is needed. The use of hydrody-
namical 3D numerical simulation is potentially able to offer us
such an opportunity. A possible way to proceed consists in con-
straining the free parameters of the modelling using a 3D solar
simulation as proposed by Houdek et al. (2017), Houdek (2017),
Aarslev et al. (2018). However, even though the observed damp-
ing rates are reproduced, some parameters have been tuned.
Therefore, it is difficult to get insight into the physics of mode
damping. A more promising approach thus consists in inves-
tigating directly the normal modes of the 3D numerical sim-
ulations. Indeed, turbulent convection generates acoustic noise
and, thanks to the boundary conditions, normal modes exist in
the simulation. Even if the spatial structure of the modes is not
realistic compared to the observed modes, they experience real-
istic driving and damping in the super-adiabatic layers of the
simulation. Therefore, investigating the properties of the normal
modes in the simulation provides a unique insight into the mode
physics. Indeed, contrary to the observed modes, it is possible to
access the perturbations associated with the oscillations in all the
physical quantities and as a function of height in the simulation.
For mode driving, such an approach has already been success-
fully used (e.g. Stein & Nordlund 2001; Samadi et al. 2003). In
this article, we aim at assessing our ability to investigate mode
damping using 3D numerical simulations.

This paper is organised as follows: in Sect. 2 we present the
solar 3D numerical simulation computed with the ANTARES
code. The properties of the normal modes of the simulation are
then described in Sect. 3. In Sect. 4, the normal mode work
integrals are computed and the contributions associated with
the modulation of turbulent pressure, gas pressure, radiative and
convective fluxes are investigated in Sect. 5. Finally, conclusions
are provided in Sect. 6.

2. The solar simulation

For our subsequent analyses we use data from a numerical,
hydrodynamical simulation of the solar surface. The simula-
tion was computed as part of a more extended research project
devoted to solar physics and the adequacy of numerical tools
used in modelling the solar surface (see Grimm-Strele et al.
2015a). One of the simulations computed for this purpose and
called cosc13 was used for the present work. Its setup and some
details of the simulation code are described in the following.

2.1. The ANTARES simulation code

The solar 3D hydrodynamical simulation cosc13 has been com-
puted with the ANTARES code (Muthsam et al. 2010) which
numerically solves the Navier-Stokes equations (NSE) for a
fully compressible fluid and accounts for radiative heat transfer,
viscous processes, and realistic microphysics. ANTARES uses
a conservative, 5th order weighted essentially non-oscillatory
(WENO5) finite difference scheme (Shu 2003; Jiang & Shu
1996) to discretize pressure gradients and terms representing
advection in the NSE and a fourth order conservative finite
difference scheme (Happenhofer et al. 2013) to discretize dis-
sipative terms. Time integration is done by an explicit three-
stage, second order Runge–Kutta scheme known as SSP RK(3,2)
originally proposed by Kraaijevanger (1991) and analysed by
Kupka et al. (2012). Grimm-Strele et al. (2015b) demonstrated
that this scheme is more efficient than traditional, total varia-
tion diminishing schemes used for this purpose (the TVD2 and
TVD3 methods of Shu & Osher 1988, originally proposed by
Heun 1900 and Fehlberg 1970, respectively).

For cosc13 radiative transfer was treated in the non-grey
approximation as described in Muthsam et al. (2010) with a
multi-group technique that assigns frequencies to one of four
bins, according to the optical depth at which radiation is emit-
ted, in order to account for the full, line-blanketed spectrum in
the radiative transfer. The angular integration of the radiative
transfer equation required to compute the radiative flux was per-
formed using a three-point Gauss–Radau integration along polar
coordinates per hemisphere and a four-point equispaced integra-
tion along the azimuthal direction. Using a short-characteristics
method (cf. Muthsam et al. 2010) the scheme hence features
18 ray directions including two vertical rays into each hemi-
sphere. The latter was not the case for the scheme used by
Muthsam et al. (2010). As described in the latter the radiative
source and sink term, ∇ · Frad, is treated in a stationary approxi-
mation, since changes in the simulation occur on time-scales that
are orders of magnitude longer than the light crossing time of a
unity optical depth (see, e.g. Mihalas & Mihalas 1984, Chapters
6.5 and 7.2). The transition between the surface layers, for which
the radiative transfer equation is solved, and the lower lying lay-
ers, where the diffusion approximation holds, is obtained from
smooth interpolation between the two solutions for grid cells
always located in the optically thick region: the average tem-
perature there is typically around 12 500 K and thus the mean
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optical Rosseland depth is in a range from about 1000 to several
1000, so even for extreme events optical thickness is ensured
(cf. also Fig. 15 of Stein & Nordlund 1998).

2.2. Setup of the simulation: microphysics and simulation
grid

The sum of gas and radiative pressure, the thermodynam-
ical derivatives, and related thermodynamical quantities are
obtained from interpolating in the LLNL equation of state
tables (Rogers et al. 1996). Realistic (radiative) conductivi-
ties are obtained from interpolation in the opacity data of
Iglesias & Rogers (1996) for interior layers. Non-grey opacities
are obtained from the tables of Kurucz (1993a,b) with the bin-
ning procedure described in Muthsam et al. (2010) where also
further details on the construction of opacities and equation of
state from these tables are given (see Grimm-Strele et al. 2015a,
too). The old standard solar composition of Grevesse & Noels
(1993) was assumed.

The numerical simulation has been conducted for a box with a
Cartesian grid containing a volume of 3.88 Mm as measured ver-
tically and 6 Mm as measured horizontally. The spatial location
of this “box within the Sun” was chosen to contain the solar sur-
face such that layers with an optical Rosseland depth larger than
10−4 always remained inside the simulation box. Open boundaries
as in Grimm-Strele et al. (2015a, type BC3b, from their Table 1)
have been used in vertical directions as well as periodical bound-
ary conditions for both horizontal directions. A uniform resolu-
tion has been chosen with a grid spacing of 11.1 km from top
to bottom for cells which are 35.3 km wide. The computations
for this model have been done on the VSC-2 (Vienna Scientific
Cluster) on 144 CPU cores in parallel. MPI parallelization was
used and due to extra grid cells required to implement the bound-
ary conditions the total grid actually contained 359 grid points in
the vertical and 179 points along the two horizontal directions.
From this grid 350 vertical layers can be extracted which con-
sist of 170 by 170 cells that are used for computing horizontal
averages during post-processing of the simulation.

2.3. Initial conditions, model relaxation, and statistical
evaluation

The simulation was relaxed from its initial condition for about
5884 s or 18.58 sound crossing times. The latter are measured
from the top of the simulation box to its bottom for the initial
model. In the present case this has been the helioseismologically
calibrated standard solar model S (Christensen-Dalsgaard et al.
1996). Since that model is actually a bit too shallow at the top
we extended the simulation domain upwards by about 200 km.
In Grimm-Strele et al. (2015a) the procedures to do so have been
explained. It has also been shown there that the specific 1D start-
ing model is not crucial, as simulations started from different
solar structure models which agree in effective temperature and
input entropy in the quasi-adiabatic layers near the bottom all
yield the same mean stratification after relaxing the simulation
with respect to kinetic energy, that is, after about one solar hour.

The relaxed simulation was then evaluated every 1/20 of
a sound crossing time, that is at an interval of 15.84 s. This
way 2527 samples have been produced covering a time of
about 40 012 s or slightly more than 11 h. The samples are not
strictly equidistant in time, since the samples are picked from the
dynamically varying time-stepping of the simulation (variations
introduced this way are in any case less than about 0.2 s and most
of the time below 0.1 s). Statistical quantities have been com-
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Fig. 1. Super-adiabatic gradient (∇ − ∇ad) and Mach number (defined
as the ratio between the temporally and horizontally averaged convec-
tive vertical velocity and sound speed) versus the simulation depth. The
zero-point depth is chosen where the temporally and horizontally aver-
aged temperature equals the effective temperature.

puted for this output in a post processing step to calculate both
horizontally averaged variables for each output step, that is for
each of the 2527 samples, as well as ensembles averaged from
the horizontally averages quantities over the entire integration
time of more than 126.3 sound crossing times. The data gener-
ated this way was used in the analysis presented in the following
and the difference between the temperature gradient and the adi-
abatic gradient, as well as the Mach number, are displayed in
Fig. 1 as a function of depth in the simulation. From averaging
the vertical component of the radiative flux at the surface over
the entire simulation time an effective temperature can be deter-
mined for the numerical simulation. Over the entire simulation
time Teff is found to be on average 5750 K±18 K, with a negligi-
bly small drift of −1.1 K per hour over that time and rare extrema
not exceeding 52 K. The drift has been computed from a least
square fit of a linear function to Teff as determined at 0.1 Mm
below the top of the simulation, where Ftot = Frad within less
than 0.1%. Visual inspection and a comparison with a straight
mean, which is more than 1.6 K lower than the mean of the least
square fit line, confirm that the drift becomes smaller with time
and it is in any case well within the range of fluctuations of Teff

determined for our simulation. We hence conclude the simula-
tion to show an agreement with solar effective temperature. A
value for the effective temperature of the Sun which is com-
monly used in recent literature is 5779 K. It can be derived from
the results discussed in Christensen-Dalsgaard (2009) and is also
provided in Table 18.2 of Cox & Giuli (1968). However, values
differing from this result by a few K depending on the specific
measurements for radius and luminosity used are also com-
mon (see, e.g. Lebreton et al. 2008). This is certainly sufficiently
accurate to investigate solar p modes. The surface gravity natu-
rally remains fixed at its initial value of log(g) = 4.4377 as does
the chemical composition, (X,Y,Z) = (0.7373, 0.2427, 0.0200),
with its Grevesse & Noels (1993) metallicity distribution.

3. Normal radial modes of the simulation

The first step is to identify the normal modes of the simulation
and thus to determine their characteristics throughout the sim-
ulation. To this end, we consider radial modes only so that, as
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Fig. 2. Power spectrum of the vertical velocity at the photosphere, nor-
malized by its maximum value, as a function of the frequency.

described in Sect. 2, we consider horizontal averages of the sim-
ulation for the physical quantities.

3.1. Mode profiles and fitting procedure

We Fourier transform the time-series described in Sect. 2 using
a Fast Fourier Transform algorithm. As shown by Fig. 2, one
can clearly distinguish three normal modes with a Lorentzian
profile that is characteristic for solar-like oscillations. Indeed, in
the time series, the vertical velocity of a radial solar-like mode
can be written as

vosc(ω0) = ω0 A ξr(r) cos (ω0t − φ) e−ηt, (1)

where A is the amplitude at t = 0. The observed signal is a sum
of many such terms, each with their own amplitude and zero-
point of time, and also phase. ξr is the radial displacement eigen-
function, ω0 = 2πν0 is the pulsational eigen-frequency, t is the
time, η is the damping rate, and φ the phase.

In the power spectrum, for ν ≈ ν0, the Fourier transform of
Eq. (1) can be approximated by a Lorentzian function such as
(e.g. Baudin et al. 2005; Appourchaux 2014)∣∣∣̂vosc

∣∣∣2 =
H

1 + x2 , with x = 2(ν − ν0)/Γ, (2)

and H stands for the mode height, Γ is the mode linewidth that
is related to the mode damping rate through Γ = η/π. The mode
height is subsequently related to the mode amplitude and mode
linewidth by (e.g. Samadi 2011)

v2
osc = πH Γ. (3)

Therefore, a normal mode in the Fourier spectrum can be char-
acterized by several quantities. First, through the global quanti-
ties (that do not vary with depth), that is frequency and mode
linewidth. Second, through the mode height and phase which
depend on the location in the simulation.

We then fitted the power spectrum of the vertical component
of the velocity by means of the maximum-likelihood estima-
tor (see e.g. Toutain & Appourchaux 1994; Appourchaux et al.
1998). Each mode is fitted separately using a constant back-
ground. The global parameters, that is mode frequencies and
linewidths, are obtained by performing a simultaneous fitting
in several layers. For the fundamental mode of the simulation

Table 1. Global characteristics of the three normal modes as displayed
in Fig. 2.

Mode ν0( µHz) ∆ν0( µHz) Γ( µHz) ∆Γ+( µHz) ∆Γ−( µHz)

1 2397.95 0.42 – – –
2 3540.41 0.98 50.00 2.17 2.08
3 4955.14 4.39 319.28 14.08 13.48

Notes. ν0 is the central frequency, ∆ν0 is the error on the frequency, Γ
is the mode linewidth, and ∆Γ+,∆Γ− are the upper and lower errors on
the mode linewidth, respectively. We note that the first mode (mode 1)
is not resolved so that the only constraint we get is that its linewidth is
lower than the frequency resolution, i.e. Γ ≤ 25 µHz.

(hereafter mode 1), we consider all layers except near the upper
and bottom boundaries.

The results for the frequencies and linewidths are summa-
rized in Table 11. We note that the linewidth of mode 1 is not
provided since it is lower than the actual resolution (which is
about 25 µHz). We also emphasize that although the values of
the global parameters in Table 1 are precise, due to the relatively
short duration of the simulation, it is difficult to obtain accurate
results. Indeed, as shown for instance by Appourchaux (2014),
the determination of mode linewidth is subject to many biases.
For example, an overestimation of the mode height leads to an
underestimation of the linewidth. Therefore, the values provided
in Table 1 should be considered with care and are only intended
to provide order of magnitudes.

To obtain the mode height and phase we consider the fre-
quency bin with the largest power, near the eigen-frequency.
We note that inferring those quantities from fits at each layer
within the simulation is possible, but it provides much more
noisy results. Figure 3 displays the mode velocity power den-
sities (top panel) and mode phases (bottom panel) as a func-
tion of depth. The first mode corresponds to the fundamental
mode with no node, while the second and third mode exhibit
one and two nodes, respectively. We note that both for the mode
velocity power densities and phases, there is a rapid variation
near the peak of the super-adiabatic gradient which is typical for
non-adiabatic effects. Indeed, this feature is the result of a rapid
variation of the entropy perturbations (e.g. Belkacem et al. 2011;
Samadi et al. 2012).

3.2. Comparison with adiabatic oscillations of a solar 1D
model

We can even go a step further and identify the normal modes
of the simulation with the observed modes. Indeed, as already
shown by Stein & Nordlund (2001), it is possible to compare and
identify the 3D modes with modes computed with a standard 1D
model. To this end, one has to identify modes that exhibit a node
at the bottom of the simulation and compare the mode velocity
profiles. To do so, the velocity of the normal modes of the sim-
ulation is computed in the Fourier domain using Eq. (3) for the
amplitude. For the first mode, we used the spectral resolution
instead of the linewidth since it is not resolved.

For consistency, we thus compute a 1D solar model that
matches both the solar gravity and effective temperature but
also the mean temperature at the bottom of the 3D numerical
simulation. This model has been obtained using the CESTAM

1 Internal errors are computed from the Hessian matrix as described in
Press et al. (2002).
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Fig. 3. Top panel: mode velocity power density as a function of the
depth for the three modes identified in Table 1. As for Fig. 1, the zero-
point depth is chosen where the temporally and horizontally averaged
temperature equals the effective temperature. Bottom panel: same as for
top panel except that the mode phases, computed directly in the Fourier
space, are displayed. The zero-point phases are chosen at a depth equal
to 3 Mm.

evolutionary code (Marques et al. 2013) assuming standard
physics: Convection was included according to Canuto et al.
(1996), with a mixing-length parameter α = 0.67, and turbulent
pressure is ignored. Microscopic diffusion was included. The
OPAL equation of state is assumed. The chemical mixture of the
heavy elements is similar to that of Grevesse & Noels (1993)’s
mixture. Subsequently, we constructed a 1D model following
Trampedach (1997) as detailed in Samadi et al. (2008, 2010) in
such a way that their outer layers are replaced by the averaged
3D simulations. Finally, 1D adiabatic oscillations are computed
using the ADIPLS code (Christensen-Dalsgaard 2011) and the
“gas Γ1” hypothesis to account for the turbulent pressure (see
Rosenthal et al. 1999; Sonoi et al. 2015, 2017).

Figure 4 (top panel) shows the comparison of normalized
velocities and the resulting mode identification for modes 1 and
2. The eigen-velocities from the 1D computation have been nor-
malized so that their kinetic energy equals the kinetic energy of
the corresponding mode in the 3D simulation. It turns out that
the three modes of the 3D simulation correspond to the observed

modes with respective radial orders n = 16, n = 24, and n = 33.
There is a very good match between the velocity profiles of both
modes 1 and 2 as a function of radius compared to the adiabatic
1D computation. The main differences occur in the atmospheric
layers since the upper boundary of the 1D model and the 3D
simulation are different as well as near the peak of the super-
adiabatic gradient (i.e. at the bottom of the photosphere). In the
latter region, the sharp variations exhibited by the 3D modes are
the result of purely non-adiabatic effects so that adiabatic com-
putations are unable to reproduce those features. As it will be
shown in the following sections, these patterns are important for
investigating the physics of mode damping. In the uppermost
region, the difference between the 1D and 3D models can be
attributed to the boundary condition of the 3D simulation, which
forces a node for the normal modes.

In Fig. 4 (bottom panel), we illustrate the mode identification
by showing the solar damping rates as a function of frequency.
The modes that correspond to the normal modes of the simula-
tion are over-plotted in red and it appears that modes 1 and 2 of
the 3D simulation bracket the frequency of the maximum height
(νmax = 3100 µHz) while mode 3 corresponds to a mode near the
cut-off frequency. Since the relative importance of the various
physical contributions to the damping rates is expected to vary
with frequency (e.g. Balmforth 1992; Belkacem et al. 2012), this
will allow us to probe different physical regimes with respect
to the mode damping. We also note that the frequencies of the
modes in the simulation and the frequencies of the observed
modes are comparable but not exactly the same. This is a conse-
quence of the location of the bottom of the simulation and, to a
lesser extent, to non-adiabatic effects (e.g. Sonoi et al. 2017).

3.3. Scaling for mode amplitudes

Going beyond the shape of the eigenfunctions, one can expect
that the mode physics in the simulation is realistic enough to
gain some insight into the physical mechanisms responsible for
mode damping. Indeed, mode damping occurs in the upper-most
layers of the stars and more precisely when the thermal time-
scale becomes equal or higher than the modal period (see for
instance Belkacem et al. 2011, 2012). This occurs in the super-
adiabatic layers and in the atmosphere, but in the quasi-adiabatic
layers, mode damping and driving are negligible. Consequently,
the extent of the simulation appears to be sufficient to investi-
gate the physical mechanisms responsible for mode damping.
However, at first sight, the normal modes of the 3D numerical
simulation cannot be directly compared to the observed solar
oscillations or to the computed solar oscillations from a 1D
model. The fundamental difference is the size of the resonant
cavity, which modifies the mode masses (see Eq. 5) as well as
the large separation. Indeed, while for the Sun the large separa-
tion is ∆νsun ' 135 µHz, we found ∆ν3D ' 1930 µHz for the 3D
simulation by computing the first-order asymptotic expression
of the large separation (e.g. Tassoul 1980).

Using order of magnitude estimates, it is nevertheless pos-
sible to obtain a relation between the mode amplitude in the
3D simulation and in the Sun. To do so, let us first define the
energy of a mode as (e.g. Samadi 2011; Belkacem & Samadi
2013; Samadi et al. 2015)

Eosc =M v2
osc,s, (4)

where vosc,s is the mode velocity observed at the surface of the
Sun andM the mode mass defined as

M =
1

|vosc,s|
2

∫
|vosc|

2 dm, (5)
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Fig. 4. Top panel: mode velocity as a function of the radius normalized
by the total radius of the Sun obtained using the 1D solar model (i.e.,
where the temperature equals the effective temperature). For the normal
modes of the 3D simulation, the velocity profiles have been obtained as
described in Sect. 3.1 and using Eq. (3). For the normal modes com-
puted using the 1D solar model, the velocities are obtained as described
in Sect. 3.3 and they are normalized so that their kinetic energy
equals the kinetic energy of the corresponding mode in the simulation.
Bottom panel: mode damping rates observed by the GOLF instrument as
a function of frequency. The observations are taken from Baudin et al.
(2005). The over-plotted red vertical dashed lines correspond to the fre-
quencies of the modes in the 3D simulation (see Table 1) and are used
to emphasize the correspondence with the observed solar modes.

where vosc is the eigen-velocity.
To go further, we note that the eigen-velocity amplitude

becomes important near the surface layers so that its integration
over the vertical coordinate is similar within the 3D box and in
the 1D model. More precisely, using the 1D model, the relative
contribution of the mode mass in the upper most layers corre-
sponding to the 3D simulation domain is about 11%, 8%, and
7% for modes 1, 2, and 3 respectively. Consequently, in the 3D
and 1D models, they mainly differ due to the horizontal integral,
so that the mode masses per unit surface area are approximately
similar in the Sun and in the 3D simulation. Therefore

M3D

S
'
MSun

4πR2 , (6)

with

M3D =
S

|vosc,s,3D|
2

∫
dz ρ0 |vosc,3D|

2, (7)

and

MSun =
4πR2

|vosc,s,Sun|
2

∫
dr

( r
R

)2
ρ0 |vosc,Sun|

2, (8)

where R is the solar radius, S is the horizontal surface of the
simulation, ρ0 is the horizontally and time-averaged density, z
the depth of the 3D simulation, and the subscripts 3D and Sun
stand for the modes of the 3D simulation and the solar modes,
respectively. By considering the second mode of the 3D sim-
ulation (which is resolved and has a sufficient signal to noise
ratio) and the corresponding mode in our solar 1D model (see
Sect. 3.2), we found that Eq. (6) is verified to a few per cent.

Now using Eq. (4) together with Eq. (6), one obtains

Eosc,3D ' Eosc,Sun

( S
4πR2

) (
vosc,s,3D

vosc,s,Sun

)2

· (9)

We also note that the mode energy can be written as (see
Samadi et al. 2015, for details)

Eosc =
P

2η
, (10)

where P is the excitation rate. Consequently, mode energy is
independent of the mode mass (or mode inertia) since both the
excitation and damping rates can be written to be inversely pro-
portional to the mode mass. Now, if the 3D simulation is real-
istic enough, one can hence expect that the energies of a mode
in the 3D simulation and its equivalent in the Sun are similar
(i.e. Eosc,3D ' Eosc,Sun). We checked this relation by computing
directly the mode energies in the 3D simulation and in the solar
model using Eq. (4). For the 3D simulation, the mode velocity
at the surface is computed directly using the Fourier transform
of the velocity and for the solar surface velocity we consider
vosc,s,Sun from Baudin et al. (2005). It gives, using Eq. (3) and
Eq. (4), Eosc,3D ' 2.5 × 1019J and Eosc,Sun ' 1.9 × 1020J (for
` = 1), which is in a reasonable agreement given the uncertain-
ties of our fit2 (see Sect. 3.1).

Finally, using the aforementioned argument and using
Eq. (9), we get

vosc,s,3D

vosc,s,Sun
'

(
MSun

M3D

)1/2

'

(
4πR2

S

)1/2

' 400. (11)

Solar mode amplitudes are typically between 0.1 m s−1 and
0.3 m s−1 near the frequency of the maximum amplitude and
using Eq. (11) one recovers the order of magnitude of the ampli-
tudes of the normal modes in the 3D simulation, which are about
100 m s−1. Obviously, this estimate yields a very rough order
of magnitude and differences in mode physics between the 3D
model and the observations are still to be expected, for instance,
due to the boundary conditions of the simulation. Nevertheless,
this estimate favours the idea that mode damping and mode driv-
ing occurring within the 3D simulation is worth being considered
for constraining the underlying physical processes.

2 We also note that the observation made with the GOLF instrument
is obtained at an altitude much higher than the photosphere. Therefore,
the mode energy of the observed mode at the photosphere is expected
to be lower (see Kjeldsen et al. 2008, at the frequency of the maximum
power).
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4. Computation of the work integral

Mode damping can be directly inferred by fitting the modes in
the power spectrum of the vertical velocity. However, if one
wants to go further and decipher the contributions to this damp-
ing, it is necessary to compute the work integral. Indeed, such an
approach permits us to explicitly split the contributions but also
to infer information on the location of both driving and damping
regions in the simulations.

4.1. Averaged equations

The first step consists in averaging the primitive equations. To do
so, as we are considering a compressible flow, we will consider
both Reynolds and mass weighted averages (e.g. Canuto 1997a;
Nordlund & Stein 2001). In the following, we will approximate
the Reynolds average by the straight horizontal average in the
3D simulation. Therefore, any quantity X, can be decomposed
such that

X = X − X′ , with X′ = 0. (12)

This average will be applied to the density, pressure, radiative
and convective fluxes.

The second average is named as the mass weighted or Favre
average (Favre 1969), so that for a quantity X, it is defined as

X̃ =
ρX
ρ
· (13)

The quantity X can thus be decomposed such that

X = X̃ + X′′. (14)

It immediately follows

ρX′′ = 0 , and X′′ , 0. (15)

A more detailed description of the properties of the Favre aver-
age is provided in Appendix A.1. Notice that in our case,
the mass average will be applied to the velocity, and entropy
fields (see Canuto 1997a; Nordlund & Stein 2001, for details).
Because we consider a compressible flow, this choice permits
us to simplify the equations. Indeed, many correlation terms
involving density fluctuations are incorporated into the Favre
mean quantities and consequently are no longer present in the
governing equations by using the Favre average for the above-
mentioned quantities.

Subsequently, we average the mass conservation equation
(see Appendix. A.2.1 for a detailed derivation) to obtain

dρ
dt

+ ρ
∂ũz

∂z
= 0 , (16)

where ρ is the density, uz is the vertical component of the veloc-
ity. We also introduced the pseudo-Lagrangian derivative such
that

d
dt

=
∂

∂t
+ ũz

∂

∂z
z. (17)

Applying the same procedure, and omitting the terms that can-
cel from hydrostatic equilibrium, we get from the momentum
conservation equation (see Appendix A.2.1 for details)

ρ
dũz

dt
= −

∂δPg

∂z
−
∂δPt

∂z
− δρ g, (18)

where Pt is the turbulent pressure, Pg is the gas pressure, g is
the gravitational field that is considered constant as in the 3D
simulation. In addition, for any quantity X, we have defined δX ≡
X − 〈X〉t with 〈X〉t the time average of X. δX is therefore the
pseudo-Lagrangian perturbation of X. Finally, we introduced the
notation X0 ≡ 〈X〉t .

4.2. Integral expression of the damping rates

To get insight into the physics of mode damping, it is necessary
to determine the phase lag between the Lagrangian perturbations
of pressure and density for a given mode within the simulation
and the integral of this phase lag provides the total damping rate
for that mode (e.g. Samadi et al. 2015). This is what we call the
integral approach. Therefore, we will work in the time Fourier
space. To start, we thus consider the time Fourier transformation
of Eq. (18) and we multiply it by ρ0ûz

∗ to obtain

iωρ0
∣∣∣ûz

∣∣∣2 = −ûz
∗ ρ0

ρ

∂δ̂P
∂z
− ûz

∗ δ̂ρ

ρ
ρ0g, (19)

where δP = δPg+δPt is the total fluctuation of pressure, the sym-
bol (ˆ) stands for the temporal Fourier transform, the symbol (∗)
stands for the complex conjugate, and ω is the cyclic frequency3.
We note that the tilde has been omitted for ease of notation. This
equation can be further simplified if one keeps only the domi-
nant order in the LHS of Eq. (18). This is equivalent to assuming
ρ ' ρ0 in the RHS of Eq. (19) such that

iω
∣∣∣ûz

∣∣∣2 = −
ûz
∗

ρ0

∂δ̂P
∂z
− ûz

∗ δ̂ρ

ρ0
g. (20)

To go further, we integrate over the mean mass column den-
sity τ0 ≡ 〈τ〉t (defined as dτ0 = ρ0dz), perform integration by
parts and multiply by −iω to finally obtain

ω2 =
iω
E

∫
dτ0

− δ̂P
ρ0

∂ûz
∗

∂z
+

1
ρ0

∂
(
δ̂Pûz

∗
)

∂z
+ ûz

∗ δ̂ρ

ρ0
g

 , (21)

where

E =

∫
dτ0

∣∣∣ûz

∣∣∣2 . (22)

We note that at the modal frequencies, E can be identified with
the mode inertia.

It is now useful to take advantage of the Fourier transform of
the mass conservation equation that reads

iω
δ̂ρ

ρ0
= −

∂ûz

∂z
, (23)

where again ρ ' ρ0, so that Eq. (21) leads to

η =
Im(ω2)

2ωR
=

1
2ωRE

∫
dτ0 (T1 + T2 + T3) (24)

where

T1 ≡ |ω|
2Im

 δ̂P
ρ0

δ̂ρ
∗

ρ0

 , (25)

T2 ≡ Re

 ωρ0

∂
(
δ̂Pûz

∗
)

∂z

 , (26)

T3 ≡ −Im
(
ûz
∗ ∂ûz

∂z
g
)
. (27)

3 Notice that ω (the cyclic frequency in the time Fourier domain) is not
to be confused with ω0 (the modal frequency).
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We assumed that near the modal frequency (i.e. ω ' ω0) the
coherent contributions (associated with the oscillation) of the
pressure and density fluctuations dominate over the random con-
tributions (associated with the turbulence). The eigen-frequency
is complex σ0 = σR+iη, with η the damping rate, and in Eq. (24)
we assumed |σ0|

2 = σ2
R + η2 ' σ2

R since we are in the situation
for which σR � η.

At this step, several comments are necessary. The second
term of Eq. (24), that is T2, vanishes because ûz

∗ is null at the
bottom of the simulation box and both ûz

∗ and δ̂P tend to zero
at the upper boundary. We checked numerically that this contri-
bution is negligible as well as the contribution of the third term
(T3). Consequently, Eq. (24) reduces to

η =
ωR

2E

∫
dτ0 Im

 δ̂P
ρ0

δ̂ρ
∗

ρ0

 · (28)

Thus, the damping rate is determined by the phase lag
between mode compressibility and pressure fluctuations. This
is a classical result in 1D non-adiabatic calculations (e.g.
Ledoux & Walraven 1958; Unno et al. 1989).

An alternative approach, as proposed by Nordlund & Stein
(2001), is to split the pressure fluctuations in an adiabatic and
non-adiabatic component, that is

δP = δPad + δPnad, (29)

where

δPad = c2
s,0 δρ, (30)

with c2
s,0 the horizontal and time averaged squared sound speed

(see Appendix in Samadi et al. 2007). The adiabatic pressure
fluctuations are dominant over the non-adiabatic ones but do not
contribute to the damping. This can be easily seen by inserting
Eq. (29) into Eq. (28). Consequently, splitting explicitly the adi-
abatic and non-adiabatic contribution can help to improve the
accuracy of the computation. However, we checked that using
either the total or the non-adiabatic pressure fluctuations makes
almost no difference when computing Eq. (28).

4.3. Computation of the cumulative damping

We then computed Eq. (28). To do so, the pseudo-Lagrangian
quantities (δX) are computed by interpolating the physical vari-
ables (X) onto the time-averaged mean column density (τ0)
before subtracting their time-averaged values. Then, the ampli-
tudes and phases of each quantity (δX) are taken from the Fourier
transforms. Eventually, the damping rates are obtained at the fre-
quency of the modes. More precisely;

– For the first mode, since it is not resolved, we consider
the bin at the maximum height of the mode. The result is η1 =
5.13 µHz, which is consistent with our upper limit (i.e. the reso-
lution of 25 µHz) because of the relatively short duration of the
simulation.

– For the second mode, we adopt the same approach by
selecting the bin with the highest amplitude in the Fourier spec-
trum because this bin is the least affected by the noise. We find
η2 = 59.75 µHz, which is quite close to the value found from
fitting the mode-peak (see Table 1).

– For the third mode, the situation is more complex because
of its large width. In this case, and due to the low signal to noise
ratio, η is highly varying from bin to bin preventing us from mak-
ing conclusions.

Table 2. Global characteristics of the three first normal modes.

Mode ν0 ( µHz) Γ (fit) ( µHz) Γ (work integral) ( µHz)

1 2397.95 ≤25 5.13
2 3540.41 50.00 59.75
3 4955.14 319.28 –

Notes. ν0 is the central frequency and Γ is the mode linewidth (see text
for details).

Finally, given the inherent limitations of the simulation, one
can conclude that for the first two modes the damping rates com-
puted from Eq. (28) and the measured damping rates are roughly
consistent (see Table 2). However, for the third one, it is not pos-
sible to draw conclusions. Indeed, one can easily expect large
uncertainties on the fitted mode linewidths because of the rel-
atively short duration of the simulation compared to the fifteen
years of continuous observation of the Sun by the GOLF instru-
ment. The same is true for the damping rate computed using the
integral expression (Eq. (28)) because near the bottom of the
simulated box the imaginary part of mode perturbations becomes
smaller than stochastic convective fluctuations so that the esti-
mate of the phase lag between the non-adiabatic pressure and
the density is highly affected by the noise.

Figure 5 displays the cumulative damping for modes 1 and 2.
We stress that when cumulative damping increases (decreases)
outward there is a stabilizing effect (destabilizing effect). This
convention will be used in the following. For both modes one
can distinguish three regions, namely;

– The inner quasi-adiabatic region, for which log T0 & 4.1,
stabilizes the modes. In this region, however, the cumulative
damping is noisy since it exhibits some oscillations. This is
due to the Fourier transform (at the modal frequencies) of
the pseudo-Lagrangian density which is affected by the non-
coherent turbulent fluctuations in this region. This effect is small
but as we are considering phase differences it has an important
impact on the results.

– The atmosphere stabilizes the mode 2 while the cumula-
tive damping is almost constant for mode 1. We also note that
near the upper boundary (log T0 ' 3.65) the cumulative damp-
ing suddenly increases. This is related to the rapid decrease of
the eigenfunctions (see Fig. 4, top panel). It is likely an effect of
the boundary condition of the simulation.

– Finally, the superadiabatic region, which corresponds to
the region of hydrogen ionisation (3.9 . log T0 . 4.0), desta-
bilizes. Indeed, this region corresponds to the region where the
opacity mechanism related to the ionisation of hydrogen is effec-
tive. In the eigenfunctions, this can be seen to be responsible for
the rapid variations of the eigen-velocities (see Fig. 4, top panel)

Despite of the effect of the non-coherent turbulent fluctua-
tions in the quasi-adiabatic region, the behavioural patterns of
the cumulative damping (as described above) are in qualitative
agreement with 1D non-adiabatic calculation (e.g. Balmforth
1992; Belkacem et al. 2011).

5. Contributions to the mode damping

As shown in the previous section, the measured and computed
damping rates are found consistent even if the inherent limita-
tions of the simulation prevents us from getting a perfect match.
This encourages us to go further by disentangling the different
physical contributions to this damping rate.
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Fig. 5. Cumulative damping computed using Eq. (28) (normalized to
the total mode damping rate) starting from the bottom of the simula-
tion, as a function of the logarithm of temperature. Note that due to
boundary condition effects, the upper-most layers (log T < 3.64) must
be considered with care (see text for details).

5.1. The role of gas and turbulent pressure fluctuations

Let us start by splitting the perturbation of total pressure appear-
ing in Eq. (28) as

δP = δPg + δPt, (31)

where δPg is the perturbation of gas pressure and δPt the pertur-
bation of turbulent pressure. Therefore, Eq. (28) can be rewritten
such that

η = ηgas + ηturb, (32)

where

ηgas =
ωR

2E

∫
dτ0 Im

 δ̂Pg

ρ0

δ̂ρ
∗

ρ0

 , (33)

ηturb =
ωR

2E

∫
dτ0 Im

 δ̂Pt

ρ0

δ̂ρ
∗

ρ0

 . (34)

For these individual contributions to η, shown in Fig. 6, we
stress again that for log T & 4.1 the results must be considered
with care because of the fluctuations of the density perturbation
but also of the perturbation of the turbulent pressure. The Fourier
spectra of turbulent pressure are rather noisy, even at modal fre-
quencies, making it difficult to conclude that the signal is dom-
inated by the coherent oscillating signal. Notwithstanding these
words of caution, we suggest to distinguish between mainly two
regions (for log T . 4.1).

First, in the atmospheric layers both modes and both con-
tributions behave the same way, i.e. the cumulative damping
is almost neutral or only slightly damping. This is due to the
fact that, for the contribution associated with the gas pressure,
the modal period is much longer than the local thermal time-
scale. Consequently, the medium adapts almost instantaneously
to any perturbation so that the total energy flux is frozen (see
Samadi et al. 2015, for a detailed explanation). For the contri-
bution associated with the turbulent pressure, its contribution
is very small in the uppermost layers and turns destabilizing in
the inner-layers. This behaviour is in qualitative agreement with
previous findings by Balmforth (1992) and Sonoi et al. (2017).

The latter had shown that the turbulent pressure contribution is
mainly controlled by both the Mach number and the ratio of the
local convective time-scale to the modal frequency. In the atmo-
spheric layers, both factors are small but increase towards the
inner layers to become non-negligible for log T & 3.9.

Secondly, in the super-adiabatic layers (and more precisely
for 3.9 . log T . 4.0), the modal period is of the same order
of magnitude as the local thermal time-scale. Consequently, it
corresponds to the region where the destabilization effect due
to the κ mechanism associated with the ionisation of hydro-
gen is at work. It also corresponds to the location of the rapid
variation of the eigen-velocity shown by Fig. 4. This explains
the destabilizing effect of the gas pressure contribution. For the
work associated with the turbulent pressure modulation, the sit-
uation is equivalent in this region, i.e. it destabilizes the modes.
In contrast, in the inner layers (i.e. log T & 4.0 for mode 1 and
log T & 4.05 for mode 2), excitation by δPg competes against
damping by δPt, resulting in a net stabilizing effect for both
modes. We note that those behavioural patterns support previ-
ous findings using a time-dependent, mixing-length formulation
of convection (e.g. Fig. 14 in Balmforth 1992).

Figure 7 show the contributions to the mode damping from
the perturbation of the gas pressure (Eq. (33)) and the turbu-
lent pressure (Eq. (34)). It is worth mentioning that, for the two
considered normal modes, both the gas and turbulent pressure
contributions have an overall stabilizing effect. For mode 1, the
contribution of the turbulent pressure is slightly dominant
while the two contributions are of the same order of magni-
tude for mode 2. This is in line with previous findings (see
Houdek & Dupret 2015, for a detailed discussion) that the role
of the perturbation of turbulent pressure is an essential ingredient
for stabilizing the modes. However, our result further suggests
that the contribution related to the perturbation of the gas pres-
sure also stabilizes the modes and that its contribution becomes
dominant, compared to the contribution of turbulent pressure, for
high-frequency modes.

5.2. The contributions to the gas pressure

To disentangle the various terms that contribute to the pertur-
bation of gas pressure, it is first necessary to use the perturbed
equation of state

δ̂Pg

Pg,0
= PT

δ̂s
cν

+ Γ1
δ̂ρ

ρ0
, (35)

with

PT = (Γ3 − 1)
cνρ0T0

Pg,0
and (Γ3 − 1) =

(
∂ ln T0

∂ ln ρ0

)
s
· (36)

Since the adiabatic part of the gas pressure perturbation (second
term of Eq. 35) cancels in the integrand of Eq. (28), the gas com-
ponent of the damping rate becomes

ηgas =
ωR

2E

∫
dτ0 (Γ3 − 1)Im

T0δ̂s
δ̂ρ
∗

ρ0

 · (37)

As a consistency check, we computed Eq. (37) and recover the
values obtained for the gas contribution of the damping as pro-
vided by Eq. (28).

To go further, it is necessary to write down the equation
governing the perturbation of entropy. This is obtained from
the equation of conservation of the internal energy, which after
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Fig. 6. Cumulative work integrals contributions (see Eq. (32)) asso-
ciated with the gas pressure (top panel) and the turbulent pressure
(bottom panel), integrated from the bottom of the simulation, as a func-
tion of the logarithm of temperature. The total mode damping of each
mode is used to normalize the work integrals. We note that due to
boundary condition effects, the upper-most layers (log T < 3.64) must
be considered with care (see text for details).

some manipulations permits us to get to the lowest order (see
Appendix A.2.3 for details)

iωρ0T0 δ̂s = −
∂

∂z

(
δ̂Frad,z + δ̂Fconv,z

)
+ δ̂ε, (38)

where s is the specific entropy, Frad,z is the vertical component
of the radiative flux, Fconv,z is the vertical component of the con-
vective flux defined by

Fconv,z = ρe′′u′′z + Pgu′′z , (39)

where e is the specific internal energy and the perturbation of dis-
sipation rate of turbulent kinetic energy into heat (ε) is defined by

ε ≡ u′′j
∂Pg

∂x j
+ Qdiss, (40)

with Qdiss standing for viscous dissipation. Equation (38)
is the perturbation of the energy equation and is simi-
lar to what is obtained from the linear perturbation theory
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Fig. 7. Cumulative work integrals contributions (see Eq. (32)) associ-
ated with mode 1 (top panel) and mode 2 (bottom panel), starting from
the bottom of the simulation, as a function of the logarithm of tem-
perature. The total mode damping of each mode is used to normalize
the work integrals. We note that due to boundary condition effects, the
upper-most layers (log T < 3.64) must be considered with care (see text
for details).

(e.g. Ledoux & Walraven 1958; Ledoux 1958; Grigahcène et al.
2005). It emphasizes that the perturbation of gas pressure is the
combination of three main physical ingredients, namely the per-
turbation of the radiative flux, the perturbation of the convec-
tive flux and the perturbation of the dissipation rate of turbulent
kinetic energy into heat.

Using Eq. (37) together with Eq. (38), finally gives

η = ηrad + ηconv + ηε + ηturb, (41)

where ηturb is given by Eq. (34) and

ηrad =
1

2E

∫
dτ0 (Γ3 − 1)Re

 1
ρ0

∂δ̂Frad

∂z
δ̂ρ
∗

ρ0

 , (42)

ηconv =
1

2E

∫
dτ0 (Γ3 − 1)Re

 1
ρ0

∂δ̂Fconv

∂z
δ̂ρ
∗

ρ0

 , (43)

ηε = −
1

2E

∫
dτ0 (Γ3 − 1)Re

 δ̂ε2

ρ0

δ̂ρ
∗

ρ0

 · (44)

A20, page 10 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834223&pdf_id=6
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834223&pdf_id=7


K. Belkacem et al.: Solar p-mode damping rates: Insight from a 3D hydrodynamical simulation

The last term (ηε) balances the contribution of the tur-
bulent pressure in the quasi-adiabatic region as shown by
Ledoux & Walraven (1958) and Grigahcène et al. (2005). It is
thus a non-negligible contribution to the total damping rate but is
difficult to estimate directly from the simulation. There are two
main reasons, one which is method dependent while the other
one is related to the physics of dissipation of turbulent kinetic
energy. To compute the former in the case of ANTARES would
require to evaluate the dissipation through the (Smagorinsky-
Lilly type) sub-grid scale model (see Muthsam et al. 2010, and
in particular Sect. 2.6 of Mundprecht et al. 2013). But this were
only a lower limit, since shocks and steep gradients in general
would be dealt with by a local, non-linear viscosity which is
built into the weighted essentially non-oscillatory scheme used
by ANTARES (Muthsam et al. 2010). One of the advantages of
the latter is that it aims at minimizing the amount of viscosity
added by the scheme to the numerical solution. On the other
hand, it is difficult to accurately quantify the exact amount of
numerical viscosity introduced this way, at least from a single
simulation. A more fundamental, physical problem is that the
dissipation of turbulent kinetic energy is dominated by variations
of the numerical solution close to the grid scale. Computed val-
ues are thus very sensitive to both the numerical method used
and to the resolution of the simulation. Since kinetic energy
is dissipated down to scales orders of magnitudes smaller than
can reasonably be resolved in a simulation of solar convection
(a classical result, see also Kupka & Muthsam 2017, for refer-
ences and estimates), any direct computation of this quantity is
necessarily inaccurate. To get a better insight would require an
expensive series of simulations down to very high resolutions to
see if some simple scaling estimates were adequate.

An alternative which provides a first approximation and is
available from the present calculations is to estimate ηε from its
definition, that is,

ηε = ηgas − ηrad − ηconv. (45)

We use this relation in the following, although we will focus on
the radiative and convective flux contributions to the damping
rates, i.e. Eqs. (42) and (43), respectively.

Figures 8 display the contributions of the divergence of the
radiative and convective fluxes to the damping for modes 1 and
2. For both modes, the behavioural patterns are the same for both
the perturbation of radiative and convective fluxes. In the supera-
diabatic region, the perturbation of the divergence of the radiative
flux stabilizes the modes while the perturbation of the divergence
of the convective flux destabilizes them. In the atmospheric layers,
the situation is reversed, except for the upper layers, where contri-
butions from both fluxes are close to zero, and the layers at the very
top, which are influenced by the boundary conditions. It is worth
noting that both contributions are quite large in absolute values
but they compensate each other so that the resulting contribution
remains small. In addition, if we do not consider the uppermost
layers in which the effect of the boundary conditions of the numer-
ical simulation are important, the convective contribution domi-
nates over the radiative one. The total contribution to the damping
rate is thus a residual that results from a balance between the two
flux divergences (see Houdek & Dupret 2015, for a detailed dis-
cussion on this issue). Finally, we note that since the contribution
of the two fluxes nearly cancels each other, the role of the per-
turbation of the dissipation rate of turbulent kinetic energy into
heat becomes important. This is shown in Fig. 8. Indeed, these
contributions seem to dominate the effect of the perturbation of
gas pressure on the mode damping as they essentially destabilize
the modes. But as already mentioned, it is difficult to estimate it
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Fig. 8. Cumulative work integrals contributions of the gas pressure asso-
ciated with mode 1 (top panel) and mode 2 (bottom panel), starting from
the bottom of the simulation, as a function of the logarithm of tem-
perature. The total mode damping of each mode is used to normalize
the work integrals. We note that due to boundary condition effects, the
upper-most layers (log T < 3.64) must be considered with care (see text
for details).

directly from the numerical simulation, therefore Eq. (45) is used
to circumvent the problem and as such must be considered with
care. Nevertheless, the fact that the contributions of the pertur-
bation of the radiative and convective fluxes nearly cancel each
other still emphasizes the essential role of the perturbation of the
dissipation rate.

6. Concluding remarks

Using a 3D hydrodynamical simulation of the Sun computed
with the ANTARES code and with a time-duration of about 11 h,
we have shown that it is possible to identify at least three radial
normal modes in the simulation, two of which were usable for
our purposes. Those modes have been shown to have properties
similar to the normal modes of 1D solar models that happen to
have a node at the bottom of the simulation domain. In contrast,
the amplitudes of simulation modes are found to be much higher
than in the Sun due to the relatively very small horizontal area of

A20, page 11 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834223&pdf_id=8


A&A 625, A20 (2019)

the simulation. Assuming that the physical background experi-
enced by those modes is realistic enough, we have demonstrated
that it is possible to gain some insight into the physics governing
the mode damping rates.

For the two first normal modes of the simulation, it has been
possible to investigate the work related to their damping. Except
for the quasi-adiabatic region of the simulation, for which the
ratio of the mode amplitude compared to the turbulent noise
is not large enough, we have been able to exhibit the differ-
ent regions in which the modes are destabilized and stabilized.
Going further, we disentangled the respective role of both the
perturbation of the gas and turbulent pressure. From a qualitative
point of view our results are in good agreement with previous
findings (e.g. Balmforth 1992; Belkacem et al. 2012). However,
from a quantitative point of view, it appears that both contri-
butions have an overall stabilizing effect. Indeed, in contrast to
previous results based on time-dependent extensions of the 1D,
mixing-length formulation, the relative contribution associated
with the perturbation of the turbulent pressure is not found to be
always dominant over the contribution associated with the per-
turbation of the gas pressure. In addition, it has also been possi-
ble to gain insight into the contributions of the perturbation of the
divergence of both the radiative and convective fluxes. It appears
that those two contributions nearly cancel each other both in the
atmospheric and in the super-adiabatic layers. Indeed, while each
of them has an important absolute contribution, the sum of the
two remains small since they tend to cancel each other. How-
ever, it appears that while the radiative contribution destabilizes
the modes, the convective one stabilizes the mode. The latter is
found to be dominant, even if only slightly.

Consequently, we have shown that investigating the proper-
ties of the normal modes of a 3D simulation is of great help to
gain some physical insight into the physics of mode damping.
From this work, such an approach is found to be feasible. How-
ever, the main limitation has been found to be the duration of the
simulation. Indeed, it is a crucial point which affects our ability
to provide reliable quantitative estimates. A much longer simula-
tion is thus highly desirable. First, it would ensure that the mode
of the lowest frequency is resolved, that is that the linewidth
of the mode is higher than one bin in the Fourier domain. It
would also ensure that high frequency modes with a very large
linewidth could be fitted properly. Second, a longer duration of
the simulation is important to improve the ratio between the
amplitudes of the normal modes and the turbulent noise in the
Fourier spectrum. This is particularly important in the inner-
most layers of the simulation. Indeed, mode 2 can already be suc-
cessfully analysed in detail with the present simulations though
of course a longer simulation would be desirable to do the same
for mode 1 at log T > 4.1 and possibly also for mode 3.

We conclude that using 3D hydrodynamical simulations to
investigate the physics of mode damping reveals to be a promis-
ing approach. A drawback is that such an approach is highly
demanding in terms of computational efforts because, to get pre-
cise and accurate constraints, one would need simulations with
a time-duration of several days. This is certainly an objective
to attain for our future works on the issue of mode damping.
Another important issue that will certainly deserve further work
is related to the top boundary conditions. Indeed, in the very top
layers of the simulation the normal modes must be considered
with care. This emphasises the need of investigating systemati-
cally the influence of boundary conditions on the normal modes
of the simulation.

Finally, we emphasize that the estimate of the influence of
the dissipation on the oscillation remains to be consolidated.

Indeed, due to the ENO scheme employed by ANTARES, it
is not possible to directly and properly estimate the dissipation
within the simulation. A future work dedicated to this issue is
thus highly desirable. A possible approach would be to include
artificial viscosities in ANTARES and compute the advective
fluxes from standard centred stencil. Such a procedure, while
being less accurate for the modelling of the dissipation, presents
the advantage of permitting to quantify directly its impact on the
oscillations and thus to verify that our indirect estimate is valid.
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Appendix A: Averaged equations

A.1. Reynolds and mass (or Favre) averages

Two types of horizontal averages are defined, the first of which
is commonly known as the Reynolds average. In the following
we will approximate the Reynolds average by the straight hori-
zontal average in the 3D simulation. Therefore, any quantity X,
is decomposed such that

X = X + X′, (A.1)

so that we obviously have

X′ = 0. (A.2)

The second average is called the mass or Favre average, so that
for a quantity X, it is defined as

X̃ =
ρX
ρ
, (A.3)

with

X = X̃ + X′′. (A.4)

It immediately follows

ρX′′ = 0, (A.5)

X′′ , 0. (A.6)

From the above equations, it is quite straightforward to derive
the following relations

ζ′′ = ζ − ζ̃ = −
ρ′ζ

ρ
= −

ρ′ζ′′

ρ
(A.7)

ρ′ζ′′ = ρ′ζ = ρ′ζ′ (A.8)

ρζξ = ρζ′′ξ′′ + ρζ̃ ξ̃ = ρ
[
ζ̃′′ξ′′ + ζ̃ ξ̃

]
, (A.9)

which will be used in the following.

A.2. Mean equations

The Reynolds averages will be applied to the density and pres-
sure while mass averages will be applied to the velocity, temper-
ature and entropy fields.

A.2.1. Mass conservation

∂ρ

∂t
+

∂

∂x j

(
ρu j

)
= 0 , (A.10)

where ρ stands for the density and u j is the j component of the
velocity field. After averaging it gives

∂ρ

∂t
+

∂

∂x j

(
ρ ũ j

)
= 0. (A.11)

To go further, we assume that there is no large scale horizontal
flow, like meridional circulation, so that there is no mean hori-
zontal momentum flux. Therefore, Eq. (A.11) reduces to

∂ρ

∂t
+
∂

∂z
(ρ ũz) = 0. (A.12)

If we now introduce the pseudo-Lagrangian derivative as

d
dt

=
∂

∂t
+ ũz

∂

∂z
, (A.13)

we finally get

dρ
dt

+ ρ
∂ũz

∂z
= 0. (A.14)

This equation is the same as used by Nordlund & Stein (2001).

A.2.2. Momentum conservation

∂ρu j

∂t
+

∂

∂xk

(
ρu juk

)
= −

∂Pg

∂x j
− ρg j, (A.15)

with Pg the gas pressure and g the gravitational acceleration.
After averaging, one gets

∂ρ ũ j

∂t
+

∂

∂xk

(
ρ ũ jũk

)
+

∂

∂xk
ρ u′′j u′′k = −

∂Pg

∂x j
− ρg j. (A.16)

Using the same approximation as for Eq. (A.12), it reduces to

∂ρ ũ j

∂t
+
∂

∂z

(
ρ ũ jũz

)
+
∂

∂z
ρ u′′j u′′z = −

∂Pg

∂x j
− ρg j. (A.17)

Because we are interested in radial modes, we consider j = z to
obtain

∂ρ ũz

∂t
+
∂

∂z

(
ρ ũ2

z

)
+
∂

∂z
ρ u′′2z = −

∂Pg

∂z
− ρg. (A.18)

In the pseudo-Lagrangian frame this simplifies to

ρ
dũz

dt
= −

∂Pg

∂z
−
∂Pt

∂z
− ρg, (A.19)

with

Pt = ρ u′′2z . (A.20)

From Eq. (A.19), the stationary solution in the pseudo-Lagragian
frame reads

−
∂
〈
Pg

〉
t

∂z
−
∂
〈
Pt

〉
t

∂z
− 〈ρ〉t g = 0, (A.21)

where 〈〉t denotes the temporal average. Thus, one can use
Eqs. (A.19) and (A.21) to finally get

ρ
dũz

dt
= −

∂δPg

∂z
−
∂δPt

∂z
− δρg, (A.22)

where δX ≡ X −
〈
X
〉

t
.
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A.2.3. Energy equation

To go further, and disentangle the various contributions of the
perturbation of gas pressure, it is necessary to derive the equation
governing the perturbation of entropy. To this end,

∂

∂t
( ρe) +

∂

∂x j

(
ρeu j

)
= −Pg

∂u j

∂x j
−
∂Frad, j

∂x j
+ Qdiss, (A.23)

where e is the specific internal energy, Frad is the radiative
flux, and Qdiss stands for viscous dissipation. After averaging,
Eq. (A.23) becomes

∂

∂t
( ρ ẽ) +

∂

∂x j

[
ρ e′′u′′j + ρ ẽ ũ j

]
= −Pg

∂ũ j

∂x j
−
∂Pgu′′j
∂x j

+ u′′j
∂Pg

∂x j
−
∂Frad, j

∂x j
+ Qdiss. (A.24)

Finally, after some rearrangements the pseudo-Lagrangian
energy equation is

ρ
d̃e
dt

= −
∂

∂z

(
Frad,z + Fconv,z

)
− Pg

∂ũ j

∂x j
+ u′′j

∂Pg

∂x j
+ Qdiss, (A.25)

with

Fconv,z = ρe′′u′′z + Pgu′′z . (A.26)

Now, to the lowest order, we use the relation

d̃e
dt

= T
ds̃
dt
−

Pg

ρ2

dρ
dt

= T
ds̃
dt
−

Pg

ρ

∂ũ j

∂x j
, (A.27)

where T is the temperature and s the specific entropy.
Consequently, Eq. (A.25) becomes to the lowest order

ρT
ds̃
dt

= −
∂

∂z

(
Frad,z + Fconv,z

)
+ ε, (A.28)

where we have defined

ε ≡ u′′j
∂Pg

∂x j
+ Qdiss. (A.29)

Finally, we note that while contributions by viscosity can be
neglected in Eq. (A.15) and thus also in Eq. (A.22), the same
does not hold true for Eq. (A.23) and hence Eqs. (A.28)–
(A.29), as has been critically discussed by Canuto (1997b).
Hence, in Canuto (1997a) the viscous flux was dropped in
the dynamical equation for the large scale velocity field,
whereas the dissipation rate of turbulent kinetic energy into
heat, ε, was kept in the dynamical equations for the Reynolds
stresses and for the temperature field, that is, for the energy
equation.

A20, page 15 of 15


	Introduction
	The solar simulation
	The ANTARES simulation code
	Setup of the simulation: microphysics and simulation grid
	Initial conditions, model relaxation, and statistical evaluation

	Normal radial modes of the simulation
	Mode profiles and fitting procedure
	Comparison with adiabatic oscillations of a solar 1D model
	Scaling for mode amplitudes

	Computation of the work integral
	Averaged equations
	Integral expression of the damping rates
	Computation of the cumulative damping

	Contributions to the mode damping
	The role of gas and turbulent pressure fluctuations
	The contributions to the gas pressure

	Concluding remarks
	References
	Averaged equations
	Reynolds and mass (or Favre) averages
	Mean equations
	Mass conservation
	Momentum conservation
	Energy equation



