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Brief Communications

Actin Filaments Regulate Exocytosis at the Hair Cell Ribbon
Synapse

Marie Guillet, Gaston Sendin, Jérôme Bourien, Jean-Luc Puel, and X Régis Nouvian
Inserm, Unité Mixte de Recherche 1051, Institute for Neurosciences of Montpellier, 34295 Montpellier Cedex 5, France, and Université Montpellier, 34090
Montpellier, France

Exocytosis at the inner hair cell ribbon synapse is achieved through the functional coupling between calcium channels and glutamate-
filled synaptic vesicles. Using membrane capacitance measurements, we investigated whether the actin network regulates the exocytosis
of synaptic vesicles at the mouse auditory hair cell. Our results suggest that actin network disruption increases exocytosis and that actin
filaments may spatially organize a subfraction of synaptic vesicles with respect to the calcium channels.
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Introduction
Transmitter release at the first auditory synapse is a funda-
mental step in transducing acoustic stimulation into a neural
message. Incoming acoustic stimulation depolarizes the audi-
tory sensory hair cells, the inner hair cells (IHCs), to elicit
calcium influx through voltage-gated calcium channels so that
glutamate-filled synaptic vesicles can be released into the syn-
aptic cleft. Activation of postsynaptic glutamate receptors en-
able the afferent auditory fibers to convey the neural message
to the auditory nuclei (Nouvian et al., 2006). Therefore, the
synaptic transfer relies on the organization and recruitment of
synaptic vesicles with respect to the calcium channels (Brandt
et al., 2005; Frank et al., 2010; Wong et al., 2014). Two pools of
synaptic vesicles operate at the hair cell ribbon synapse, as
shown by presynaptic membrane capacitance measurements

and EPSC recordings: the readily releasable pool (RRP), which
reflects the fusion of the synaptic vesicles in the vicinity of the
calcium channels, and the sustained releasable pool (SRP),
which corresponds to the exocytosis of remote vesicles and/or
to the resupply of the RRP (Moser and Beutner, 2000;
Spassova et al., 2004; Johnson et al., 2005; Schnee et al., 2005;
Rutherford and Roberts, 2006; Goutman and Glowatzki, 2007;
Li et al., 2009). To date, only the multiple C2-domain otoferlin
protein has been shown to regulate the replenishment of the
RRP by the SRP in IHCs. In the Pachanga mutant mouse, RRP
exocytosis probed by short depolarization is not altered,
whereas SRP probed by longer depolarization is gradually af-
fected with the reduction of otoferlin expression (Pangršič et
al., 2010). Among the candidates that modulate the synaptic
vesicle supply in the nervous system’s synapses, actin fila-
ments are known to have a dual role. For example, disruption
of actin network increases the frequency of EPSCs in hip-
pocampal neurons (Morales et al., 2000). In contrast, depoly-
merization of actin filaments (F-actin) slows the vesicle
replenishment in the calyx of Held synapse (Sakaba and Ne-
her, 2003). Alternatively, synaptic vesicle exocytosis can be
completely independent of F-actin (Holt et al., 2003). Al-
though cytoskeleton proteins such as actin are localized near
the synaptic ribbon in bullfrog hair cells (Graydon et al.,
2011), the role of actin on synaptic vesicle exocytosis at the

Received Sept. 9, 2015; revised Oct. 29, 2015; accepted Nov. 8, 2015.
Author contributions: M.G., G.S., J.B., J.-L.P., and R.N. designed research; M.G., G.S., J.B., and R.N. performed

research; M.G., G.S., J.B., J.-L.P., and R.N. contributed unpublished reagents/analytic tools; M.G., G.S., J.B., and R.N.
analyzed data; M.G., G.S., J.B., J.-L.P., and R.N. wrote the paper.

This work was supported by the Agence Nationale pour la Recherche (Grant ANR-13-JSV1-0009-01 to R.N.) and
by the Fondation pour l’Avenir. G.S. is a recipient of a Montpellier University postdoctoral fellowship.

The authors declare no competing financial interests.
Correspondence should be addressed to Régis Nouvian, Institute for Neurosciences of Montpellier, Inserm U1051,

80, rue Augustin Fliche, 34295 Montpellier Cedex 5, France. E-mail: regis.nouvian@inserm.fr.
DOI:10.1523/JNEUROSCI.3379-15.2016

Copyright © 2016 the authors 0270-6474/16/360649-06$15.00/0

Significance Statement

Inner hair cells (IHCs), the auditory sensory cells of the cochlea, release glutamate onto the afferent auditory nerve fibers to encode
sound stimulation. To achieve this task, the IHC relies on the recruitment of glutamate-filled vesicles that can be located in close
vicinity to the calcium channels or more remotely from them. The molecular determinants responsible for organizing these vesicle
pools are not fully identified. Using pharmacological tools in combination with membrane capacitance measurements, we show
that actin filament disruption increases exocytosis in IHCs and that actin filaments most likely position a fraction of vesicles away
from the calcium channels.
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hair cell ribbon synapse has never been determined. Taking
advantage of drugs that are known to depolymerize actin fila-
ments, we show that actin regulates the organization of a frac-
tion of vesicles at the hair cell ribbon synapse.

Materials and Methods
Animals. Swiss mice of either sex were bred and handled following the
animal welfare guidelines of the Institut National de la Santé et de la
Recherche Médicale (Inserm) and approved by the Ministère Français
de l’Agriculture et de la Pêche (authorization #A3417231).

Immunohistochemistry. Immunohistochemistry and confocal micros-
copy (Leica TCS SP8-UV) of apical turns were performed as described
previously (Sendin et al., 2007) with mouse IgG anti C-terminal binding
protein 2 (CtBP2; 1:1000; BD Biosciences) and rabbit polyclonal IgG anti
myosin VIIA (1:300; Proteus Biosciences) and the secondary antibodies
Alexa Fluor 488-labeled donkey IgG anti-mouse (1:1000; Invitrogen)
and Alexa Fluor 647-labeled donkey IgG anti-rabbit (1:1000; Invitro-
gen). To label F-actin in the cuticular plate and the basolateral mem-
brane, we used phalloidin TRITC (1:1000; Invitrogen).

Electrophysiology. Patch-clamp of IHCs (postnatal day 14 –30) from
apical coils of freshly dissected organs of Corti were performed
as described previously (Nouvian et al., 2011). The extracellular
solution contained the following (in mM): 105 NaCl, 35 tetra-
ethylammonium-Cl (TEA-Cl), 2.8 KCl, 1 MgCl2, 10 HEPES, 1 CsCl, 2
CaCl2, and 10 D-glucose. The pipette solution for whole-cell experi-
ments contained the following (in mM): 135 Cs-glutamate, 10 TEA-
Cl, 10 HEPES, 1 MgCl2, 10 4-aminopyridine, 2 Mg-ATP, 0.3 Na-GTP,
and 0.1 EGTA. All solutions were adjusted to pH 7.2 and had osmo-
larities between 290 and 310 mosmol/L. All chemicals were obtained
from Sigma-Aldrich. Latrunculin A, cytochalasin D, and phalloidin
were dissolved in DMSO, the final concentration of which in the
intracellular solution was 0.25– 0.75%. Ca 2�-triggered exocytosis

was probed after a 10 min infusion into IHCs of 20 �M latrunculin A,
20 �M cytochalasin D, or 100 �M phalloidin via the patch-pipette. For
control cells, the intracellular solution contained the corresponding
DMSO concentration (0.5% for latrunculin A and cytochalasin D,
0.25% for phalloidin, and 0.75% for latrunculin A plus phalloidin).
Control and drug-treated cells were probed over the same time frame
for better comparison. Except for the exocytosis amplitude plots
against the duration of stimulation (see Fig. 4), all of the controls were
pooled together. An EPC-10 amplifier (HEKA Elektronik) controlled
by Patchmaster software (HEKA Elektronik) was used for all mea-
surements as described previously (Nouvian et al., 2011). Membrane
capacitance jump (�Cm ) was estimated as the difference of the mean
Cm over 400 ms after the end of the depolarization (the initial 250 ms
were skipped) and the mean prepulse capacitance (400 ms). Data
analysis was performed using Igor Pro software (Wave-Metrics).
Means are expressed as �SEM and were compared by Wilcoxon test.

Results
Actin distribution at the IHC basolateral side
Although the abundant distribution of actin at the apical side
of the hair cell—that is, in the stereocilia bundle and the cu-
ticular plate—is well documented, its distribution at the baso-
lateral side of the hair cells has received little attention
(Furness et al., 2005). Phalloidin–rhodamin staining and my-
osin VIIA immunofluorescence show that some actin fila-
ments run below the nucleus into the hair cells’ basolateral
side (Fig. 1). Although F-actin localized nearby the synaptic
area in our confocal microscopy observations, we did not de-
tect enrichment near the synaptic ribbons labeled with anti-
CtBP2 antibody. Together with the large expression of actin at

Figure 1. Expression of actin in IHCs. A–D, Single confocal section through four neighboring IHCs. A, Synaptic ribbons were stained with antibody against CtBP2 (green). Note that the
IHC nucleus is also labeled due to the nuclear expression of CtBP2. B, IHCs were labeled with anti-myosin VIIA antibody (blue). C, Actin was visualized with rhodamine-conjugated
phalloidin (red). D, Merged image revealing that actin is localized thoughout the cytoplasm. n, Nucleus. Scale bar, 5 �m. E, F, Isosurface 3D reconstruction using the stack of 2D confocal
images (two viewpoints: E, azimuth ��30°, elevation � 70°; F, azimuth ��30°, elevation � 70°). Green, CtBP2/RIBEYE immunofluorescence; red, colocalization of actin and myosin
VIIA.
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the apical side, this result suggests that actin filaments also
populate the basolateral side of the hair cells.

Actin depolymerization increases exocytosis
The regulation of calcium-triggered exocytosis by the actin net-
work was investigated using drugs that are known to depolymer-
ize actin filaments. We first infused latrunculin A, a drug that
sequesters the G-actin monomer and therefore leads to the depo-
lymerization of actin, into hair cells for 10 min. In response to a
20 ms depolarizing pulse to �27 mV, infusion of 20 �M latrunculin
A increased exocytosis, probed by capacitance measurements as a
proxy of synaptic vesicle fusion (Fig. 2; 29.6 � 5.7 fF for control cells
vs 101.5 � 22.1 fF for latrunculin A-treated cells; p � 0.001). To
confirm these results, we then probed the effect of cytochalasin D,
which caps the barbed end of F-actin to depolymerize the actin fila-
ments (Fig. 2). Here again, we found out that infusion of 20 �M

cytochalasin D for 10 min increased the synaptic vesicle exocytosis
evoked by the 20 ms depolarization step (29.6 � 5.7 fF vs 113.8 �
22.5 fF for control and cytochalasin D-treated cells, respectively; p �

0.001). Although 100 �M phalloidin, which
stabilizes actin, alone did not significantly
affect IHC secretion (33.2 � 8.5 fF), coap-
plication of 20 �M latrunculin A together
with 100 �M phalloidin (36.3�10.4 fF) pre-
vented the increase of synaptic vesicle exo-
cytosis elicited by latrunculin A alone (Fig.
2). Together, these effects suggest that the
actin filament network regulates neu-
rotransmitter release at the hair cell ribbon
synapse.

Actin depolymerization does not alter
the calcium current amplitude
The facilitating effect of actin depoly-
merization may result from an increase
of the calcium current. However, the
calcium current amplitude did not show
any significant difference between con-
trol and latrunculin A- or cytochalasin
D-treated cells (calcium peak current
�100.3 � 6.1 pA, �109.8 � 3.7 and
�95.4 � 4.5 pA for control, latrunculin
A, and cytochalasin D, respectively; Fig.
3A). In addition, a higher release effi-

ciency given by the ratio of the capacitance jump over the
corresponding calcium charge was observed in cells exposed
to latrunculin A as well as cytochalasin D (Fig. 3B; 13.8 � 2.6
fF/QCa 2� vs 47.9 � 12.1 fF/QCa 2� and 43.9 � 7.5 fF/QCa 2�

for control, latrunculin A and cytochalasin-treated cells, re-
spectively; p � 0.001).

Restricted effect of actin depolymerization on exocytosis
Next, we investigated whether actin filament network disrup-
tion also affects SRP or the RRP–SRP relationship. To do so,
we probed exocytosis evoked by steps of different duration
because short durations of stimulation mostly recruit exocy-
tosis of the RRP, whereas longer pulses mobilize mainly the
synaptic vesicles belonging to the SRP (Nouvian et al., 2006).
The exocytosis plot against the time duration of the stimula-
tion shows that latrunculin A (20 �M) or cytochalasin D (20
�M) mainly affected exocytosis evoked by a 20 ms step depo-
larization, leaving the secretion elicited by shorter (5 ms, con-

Figure 2. Actin network depolymerization increases exocytosis. A, Whole-cell Ca 2� current (ICa 2�), membrane capacitance (Cm ), membrane resistance (Rm), and series resistance
(Rs) average traces. Data were recorded from IHCs after 10 min infusion with 20 �M latrunculin A, 20 �M cytochalasin D, 100 �M phalloidin, or 100 �M phalloidin plus 20 �M latrunculin
A through the patch-pipette. Calcium-triggered exocytosis was evoked in response to a single 20 ms depolarization to �27 mV from a holding potential of �87 mV. B, Average �Cm

(top) and Ca 2� charges (bottom) evoked by 20 ms depolarization after 10 min infusion of latrunculin A (LatA, 20 �M), cytochalasin D (CytD, 20 �M), phalloidin (Phall, 100 �M), or
phalloidin plus latrunculin A (Phall, 100 �M � LatA, 20 �M). All of the controls (black) are pooled together. Only one depolarization step was evoked per IHC and the numbers of IHCs
recorded are indicated in white. ***p � 0.001.

Figure 3. Actin network depolymerization does not alter IHC calcium influx. A, Ca 2� current I/V relationships of IHCs infused for
10 min with latrunculin A (LatA, 20 �M) and cytochalasin D (CytD, 20 �M). B, Release efficiency of IHCs treated with latrunculin A
(LatA, 20 �M), cytochalasin D (CytD, 20 �M), phalloidin (Phall, 100 �M), and phalloidin plus latrunculin A (Phall, 100 �M � LatA,
20 �M). Release efficiency was measured as the �Cm /QCa 2� ratio from Figure 2B. ***p � 0.001.
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trol: 6.8 � 1.6 fF; latrunculin A: 6.6 � 0.5 fF; cytochalasin D:
5.9 � 1.1 fF) and longer (50 ms; control: 166.5 � 27.7 fF;
latrunculin A: 201.6 � 39.5 fF; cytochalasin D: 198.5 � 31.1
fF) pulses unchanged (Fig. 4). Because the exocytosis mea-
surement assay used in our study is cumulative, the observed
effect for a 20 ms pulse duration suggests that a fraction of
vesicles normally recruited in response to a 50 ms pulse dura-
tion becomes available for release at a shorter pulse (20 ms)
after the actin filament disruption.

Discussion
In our study, depolymerization of actin filaments increased IHC
secretion. However, this effect was prevalent for an intermediate
duration of stimuli (20 ms), excluding a facilitatory action on the
RRP. We propose that the actin filament network might organize
the location of a fraction of the SRP synaptic vesicles with respect
to calcium channels.

Actin and hair cell exocytosis
In most of the studies, the role of the actin network has been
inferred using drugs known to disrupt actin filaments (Casella et
al., 1981; Spector et al., 1983; Cooper, 1987). Here, the compara-
ble effects of latrunculin A and cytochalasin D support a similar
mechanism of action: to inhibit actin polymerization. In addi-
tion, we validated the drug’s specificity of action by coinfusing
latrunculin A and phalloidin (an actin network stabilizer), a ma-
nipulation that prevented the action of latrunculin A and resulted
in normal exocytosis. However, phalloidin itself does not alter the
calcium-triggered exocytosis, suggesting that the actin network
does not act in a dynamic fashion on secretion. Although actin
filaments populate the hair cell cytoplasm (our study and Furness
et al., 2005), synapsin is absent in hair cells (Layton et al., 2005;
McLean et al., 2009; Uthaiah and Hudspeth, 2010). Synapsin is a
synaptic protein known to interact with actin to cluster and mo-
bilize a reserve pool of vesicles upon dephosphorylation and
phosphorylation cycling, respectively (Greengard et al., 1993).
Therefore, the lack of synapsin in hair cells calls for alternative
mechanisms of action.

Potential mechanisms for the increase of exocytosis after
actin disruption
The increase of exocytosis in response to a 20 ms pulse duration
indicates that a higher number of vesicles undergo fusion during
this depolarizing step. The increase in cell capacitance may there-
fore reflect the addition of a newly arrived vesicle pool, which is
not recruited in normal conditions or the premature exocytosis
of preexisting vesicles. In the scenario of additional vesicles being
added to the preexisting pool, the amplitude of exocytosis after
disruption should still be higher at 50 ms depolarization step
because of the cumulative nature of our measurement of exocy-
tosis. However, there is no difference between control and latrun-
culin A- or cytochalasin D-treated cells for longer depolarization
pulses. This result can be explained if a subfraction of the SRP,
which is normally recruited at 50 ms step depolarization, be-
comes available in advance and is engaged in release at a shorter
step depolarization once the actin network has been disrupted.
Different mechanisms may account for the change in stimula-
tion–secretion coupling. For example, actin may set a position
between the synaptic vesicles and the calcium channels to prevent
a premature priming step of the vesicles (i.e., to become compe-
tent for fusion) by being closer to the calcium source (Voets,
2000; Neher and Sakaba, 2008; Lee et al., 2012, 2013). However,
we cannot completely exclude that actin disruption converts re-
luctant synaptic vesicles into releasing vesicles within a spatially
mixed population of vesicles (Sankaranarayanan et al., 2003).

In the hypothesis in which the SRP vesicles are remote from
the calcium channels (Pangršič et al., 2015), actin filaments could
slow down or prevent the movement of the synaptic vesicles to-
ward the release sites, similar to chromaffin cells, in which the
actin network forms a submembrane matrix that impedes mor-
phological docking of granules to the plasma membrane (Vitale
et al., 1995; Toonen et al., 2006). Together with an actin-free
domain close to the synaptic ribbon, such a mechanism would
allow the vesicles to quickly attach to the ribbon and avoid a
traffic jam of vesicles for synaptic release. In the case of prolonged
stimulation, calcium buildup at the synaptic region would favor

Figure 4. The facilitating effect of actin depolymerization is limited to 20 ms pulse duration. A, B, Exocytic �Cm (top) and the corresponding Ca 2� current integrals (QCa 2�, bottom) are
represented versus the duration of depolarization for control IHCs (black) or infused with latrunculin A (LatA, 20 �M; A) or cytochalasin D (CytD, 20 �M; B). Calcium-triggered exocytosis was evoked
in response to a single depolarization to �27 mV from a holding potential of �87 mV. Only one depolarization step was evoked per IHC. Numbers of IHCs recorded are indicated for each
depolarization step. *p � 0.05; ***p � 0.001. C, Hypothetical mechanism underlying the increase of exocytosis after actin filament depolymerization. In this scenario, actin filaments organize a
fraction of synaptic vesicles with respect to the calcium channels. Disruption of actin leads to the displacement of a group of vesicles toward the calcium channels (arrow) so that these vesicles, which
are normally recruited in response to a 50 ms pulse duration in the control condition, are mixed with the ones fusing within 20 ms. Alternative scenarios are possible (see Discussion).
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the depolymerization of actin because this process is calcium
dependent (Bennett and Weeds, 1986), thus increasing the num-
ber of synaptic vesicles available for transmitter release.

If the resupply of the RRP by the SRP becomes faster after
actin depolymerization, then the high rate of the RRP replenish-
ment (Moser and Beutner, 2000; Spassova et al., 2004; Cho et al.,
2011) may lead to SRP exhaustion (Voets et al., 1999), so longer
pulses do not elicit an increase in exocytosis as we observed in our
recordings. Therefore, the actin network might provide an effi-
cient means for hair cells to operate vesicle replenishment at a
high rate (Moser and Beutner, 2000; Spassova et al., 2004; Cho et
al., 2011). In addition, our recordings at room temperature most
probably underestimate the relevance of actin in vesicle traffick-
ing because actin depolymerization, synaptic replenishment,
and hair cell exocytosis are all temperature dependent (Wendel
and Dancker, 1986; Kushmerick et al., 2006; Nouvian, 2007).
Conversely, calcium channels themselves might undergo a higher
mobility after the actin network disruption, as has been shown in
cone and rod photoreceptors (Mercer et al., 2011). In this case,
the extension of the area where calcium channels are confined
could lead to the dispersion of calcium channels and enable the
fusion of remote vesicles. According to this framework, the inter-
action between actin filaments and Cav�2, an auxiliary subunit of
the Cav1.3 channel expressed in the IHCs (Neef et al., 2009), has
been reported recently (Stölting et al., 2015).

Finally, actin depolymerization may affect the spatial organi-
zation of organelles within the presynaptic terminal such as the
endoplasmic reticulum (Joensuu et al., 2014). Bringing a local
calcium source close to the active zone could amplify the calcium
concentration through a calcium-induced calcium-release pro-
cess leading to a larger secretion (Kennedy and Meech, 2002;
Schnee et al., 2011; Castellano-Muñoz et al., 2015). Although we
favor a change in the distance between synaptic vesicles and cal-
cium channels because actin has been shown to have a structural
role in other synapses (Cole et al., 2000; Cingolani and Goda,
2008), future examinations of the synaptic ultrastructure and
calcium channel dynamics after actin disruption are required to
test the above hypotheses.
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Brose N, Binz T, Moser T (2011) Exocytosis at the hair cell ribbon syn-
apse apparently operates without neuronal SNARE proteins. Nat Neuro-
sci 14:411– 413. CrossRef Medline
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