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A method to recover the elastic properties, thickness, or orientation of the principal symmetry axes

of anisotropic plates is presented. This method relies on the measurements of multimode guided

waves, which are launched and detected in arbitrary directions along the plate using a multi-

element linear transducer array driven by a programmable electronic device. A model-based inverse

problem solution is proposed to optimally recover the properties of interest. The main contribution

consists in defining an objective function built from the dispersion equation, which allows account-

ing for higher-order modes without the need to pair each experimental data point to a specific

guided mode. This avoids the numerical calculation of the dispersion curves and errors in the mode

identification. Compared to standard root-finding algorithms, the computational gain of the proce-

dure is estimated to be on the order of 200. The objective function is optimized using genetic algo-

rithms, which allow identifying from a single out-of-symmetry axis measurement the full set of

anisotropic elastic coefficients and either the plate thickness or the propagation direction. The effi-

ciency of the method is demonstrated using data measured on materials with different symmetry

classes. Excellent agreement is found between the reported estimates and reference values from the

literature. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5024353

[ANN] Pages: 1138–1147

I. INTRODUCTION

Elastic waves are frequently applied for nondestructive

material characterization and have been used with success in

the past decades. In particular, several attempts to identify

the anisotropic stiffness tensor have been made, which is an

essential task for modeling and evaluating the mechanical

behavior of polycrystalline metals and composite materials.

Initially, the anisotropic elastic properties of a number of

materials have been determined through bulk waves mea-

surements.1,2 Nonetheless, these experiments require the

measurements to be performed along many propagation

directions. In addition, for wave speed data processing, the

correct identification of the two transverse waves is not triv-

ial and some additional information is usually required for

this purpose.3 Alternatively, there are several advantages in

using elastic guided waves (EGWs) for the nondestructive

evaluation of anisotropic materials.4 Their dispersive and

multimodal nature is especially useful when it is desirable to

use wavelengths larger than the plate thickness or when it is

necessary to measure in-plane elastic properties,5 as the

components of the elastic tensor affect each mode differently

and with different sensitivities.6

To achieve the identification of anisotropic material

properties, two issues have to be addressed. The first one is

related to the ultrasonic measurement configuration and sig-

nal acquisition method, i.e., the use of both narrowband and

broadband excitations has been reported.7 Second, a robust

model-based inverse procedure is required to extract the

elastic properties from the measured data.8 Narrowband

signals are used to excite several pure modes by sweeping

the frequency and varying the transducer angle of incidence,

thus allowing the recording of phase velocities as discrete

points over a broad frequency range by means of the phase

shift method.5 This approach can be implemented in many

ways using, for example, variable angle wedges in pitch–

catch configuration,5 air-coupled transducers,9,10 oblique

insonification of a test specimen that is fully immersed in

water [so-called leaky Lamb wave (LLW) technique],6,11,12

or a piezoelectric transducer for the generation and full-field

interferometric techniques for the signal detection.7

However, the aforementioned techniques require a cumber-

some and non-portable equipment to control probe positions

or angles of incidence.

In contrast, broadband signals contain more information

than narrowband signals, but the separation of each mode

contribution and the dispersive effects within each mode are

key issues to address and require data processing. Broadband

signals can be acquired with a diversity of techniques, like a

piezoceramic transducer for emitting and a laser scanning

Doppler vibrometer for sensing,13 laser-ultrasound,14,15 or

line-focus acoustic microscopy.16 Spatio-temporal broad-

band signals recorded at equally spaced points are two-

dimensionally (2-D) Fourier transformed to obtain the fre-

quency spectrum of the different propagating modes in the

frequency-wave number plane.17 Then, for comparison with

theoretical results, this information is generally processed to

extract the ridges of the measured dispersion curves in terms

of frequency-wave number data pairs. Although scarcely dis-

cussed in the literature, their automatic detection can be

problematic due to mode superposition and limited spatial

resolution.18 To carefully extract the dispersion curves,a)Electronic mail: claire.prada-julia@espci.fr
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visual operator selection,19 peak-finding algorithms and

interpolation,13 image tracing algorithm,16 matrix pencil

method,20 and more advanced data processing algorithms, as

reviewed in Refs. 21 and 22, have been developed, often at

the cost of time-consuming procedures.

As a first limitation, most of the former techniques are

designed for the analysis of signals captured in a pointwise

scheme, and the change of the recording location is usually

performed by mechanically displacing the receiver.

Furthermore, measurements are generally carried out in a

propagation plane that coincides with a principal symmetry

plane of the material and the principal symmetry axes and

plate thickness are assumed to be known. Last, to retrieve

elastic properties, least-squares fitting criteria are frequently

applied, i.e., a procedure is followed in order to minimize

the sum of the squared differences between extracted experi-

mental data and theoretical dispersion curves. For this

approach, it is necessary to identify the branches of the dis-

persion curves prior to the inversion process.5,23 However, it

should be noted that a clear identification of the modes in

experimental data is uncertain, especially for higher-order

modes.16,19 In this way, Karim et al.6 presented a numerical

procedure for the inversion of LLW data to determine certain

material properties of a composite laminate using a modified

version of the simplex algorithm. For this approach to be

effective, four broadband transducers were used to record

the phase velocities over a wide frequency range and three

measurements in different propagation directions were

needed to recover the full set of independent elastic coeffi-

cients. In another related study, Yan et al.16 described a

method for the inversion of the elastic properties of plates by

line-focus acoustic microscopy using a hybrid particle

swarm-based-simulated annealing optimization. However,

this approach required tedious data processing for converting

time-domain waveforms into dispersion curves and was

solely applied to a thin isotropic plate. An alternative user-

independent inversion scheme is thus highly desirable

towards real-time applications.

To face these limitations, the primary objective of the

present work is to develop an effective method to identify

the geometric and anisotropic elastic properties of plate

materials. To this end, an accurate and simple technique to

measure multimode dispersion curves is proposed. This tech-

nique takes advantage of the advent of multi-element probes,

together with multichannel electronics, initially devoted to

medical imaging. Therefore, applications to material charac-

terization are expanding, e.g., for cortical bone assess-

ment24,25 and structural health monitoring.26 This approach

offers several advantages: (1) the acquisition procedure is

significantly simpler than that delivered by other setups,

such as the LLW technique and laser-based devices; (2) it

requires minimal data processing and no extraction of the

experimental data; and (3) it is well suited for field use (i.e.,

single-side access, no mechanical displacement). Although

the probe induces leakage, we observe that it does not signif-

icantly modify the phase velocity of the propagating

modes.27 In addition to the experimental technique, a deci-

sive task is to develop a robust inverse procedure. To avoid

the difficult pairing between experimental data points and

theoretical guided modes, an objective function is built from

the dispersion equation and directly evaluated on experimen-

tal data points. This objective function does not require the

numerical calculation of the theoretical guided modes, and

thus drastically reduces the computational costs for solving

the inverse problem. Besides, we show that the method can

also be applied to simultaneously recover the elastic proper-

ties and the propagation direction angle. Genetic algorithms

are chosen for optimizing the objective function, owing to

their flexibility in solving multiparametric inversion

problem.28

The reconstruction method is applied to experimental

data measured on materials with various symmetry classes.

Results are presented for isotropic duralumin and fused

quartz plates, a silicon wafer with cubic symmetry and a

transversely isotropic titanium plate. The proposed inversion

procedure is proven feasible to recover the full set of elastic

coefficients, together with the plate thickness or the propaga-

tion plane, from a single dispersion curves measurement.

The paper is structured as follows: the experimental setup

used to measure guided waves is described in Sec. II. This

section also presents the forward model used to predict the

theoretical dispersion curves, along with the inverse proce-

dure employed to retrieve the material properties. The results

obtained for two case studies, i.e., the inference of plate

properties for a known propagation direction and the infer-

ence of elastic properties and propagation angle for a known

plate thickness are exposed in Sec. III. The results are com-

pared to reference values and discussed in the light of com-

putational costs, inverse problem errors, and measurement

uncertainties in Sec. IV.

II. MATERIALS AND METHODS

Measurements of EGWs, along with appropriate model-

ing, have the potential for yielding estimates of waveguide

properties such as thickness, elasticity and the angle of prop-

agation with respect to the principal symmetry axes. Such a

model-based approach requires solving a multiparametric

inverse problem to match the experimental dispersion curves

with the predicted guided modes. The experimental setup

used to measure guided waves in anisotropic plates is first

described. Then, the inverse procedure used to recover mate-

rial properties is presented.

A. Guided waves measurements and investigated
samples

EGWs measurements were performed using a commer-

cially available 10-MHz standard probe (Imasonic,

Besançon, France), which consists in a 128-element linear

transducer array. The array pitch was 0.25 mm and the

dimensions of each rectangular element were 0:2� 10 mm2.

The probe was mounted on a rotational stage (ESP 301

Motion Controller, Newport, CA), allowing measurements

in any propagation direction / with respect to the principal

symmetry axes of the material. The probe was placed

directly in contact with the sample using tap water for cou-

pling. A Lecoeur Electronics Ltd system was used to trans-

mit a broadband chirp signal at a 8-MHz central frequency
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(�6 dB power spectrum spanning the frequency range from

4 to 12 MHz) and 4 ls duration to the first element eE
1 and to

record the received signals on all elements eR
j

(j ¼ 1;…; 128) during 25 ls. For each propagation direction

/, a set of 128 radio-frequency (RF) signals was digitized

(12 bits, 80 MHz, 8000 samples).

The experimental dispersion curves of the guided modes

were obtained as follows: (1) for each propagation direction /,

the 128 RF signals were Fourier transformed with respect to

time and space,17 and stored in a response matrix; (2) the mean

noise level (in dB) was evaluated in an area away from the

guided modes (i.e., low phase velocity area), and all components

of the response matrix below this threshold were set to zero; (3)

the remaining N non-zero components were stored into a N � 3

matrix ½kn fn wn� (n ¼ 1;…;N), where k, f, and w stand for

wave number, frequency and Fourier coefficients, respectively.

It is worth mentioning that these data processing steps were

only applied to remove a large part of the background noise and

decrease the amount of data, but the dispersion curves still con-

tain many spurious data (e.g., noise, side lobes). A flowchart of

the acquisition and data processing is depicted in Fig. 1. A video

for this is included as supplementary material.29

Measurements were performed on four samples: a 1-

mm thick duralumin plate, a 1.5-mm thick fused quartz

plate, a 0.8-mm thick silicon wafer, and a 1-mm thick tita-

nium plate. Reference thicknesses were determined using a

digital caliper (accuracy of 0.01 mm). The transversal

dimensions of the samples were larger than 50 mm, allowing

the modes to travel along the whole probe array before being

reflected at the plate boundaries. Table I summarizes the

nominal values for the elastic coefficients, the mass density

and the reference thickness of the samples.

B. Estimation of material properties and symmetry
axes

In the following, we introduce the forward waveguide

model used to analyze the elastic wave propagation in aniso-

tropic plates and we shortly recall the main constituent parts

FIG. 1. (Color online) Flowchart of the acquisition and data processing: (a) broadband chirp signal used as excitation; (b) schematic view of the multi-element

probe; (c) radio-frequency signals; (d) dispersion curves after applying a 2-D Fourier transform; (e) dispersion curves after denoising (i.e., the threshold was

set according to the noise level evaluated within the area inside the white box); and (f) final experimental data.

TABLE I. Reference values.

Reference values

Elastic coefficients

(GPa)

Density

(g cm�3)

Thickness

(mm)

c11 c12 c33 c13 c44 q d

Duralumina 114.4 – – – 27.2 2.795 0.992

Fused quartza 78.4 – – – 31.2 2.200 1.475

Siliconb 165.6 63.9 – – 79.5 2.329 0.779

Titaniumc 162.4 92.0 180.7 69.0 46.7 4.506 1.012

aBriggs and Kolosov (Ref. 30).
bPrada et al. (Ref. 31).
cRoyer et al. (Ref. 32).
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of the inverse problem, that are (i) the definition of an objec-

tive function as a metric to compare measured and predicted

guided modes and (ii) the use of an algorithm to iteratively

optimize the objective function and infer the optimal model

parameters.

1. Forward problem

The dispersion equations for elastic wave propagation in

anisotropic plates of monoclinic or higher symmetry were

implemented according to the numerical procedure

described by Li and Thompson,33 which establishes the rela-

tion between the material properties and the corresponding

guided waves by partial wave theory. Rayleigh-Lamb disper-

sion relations were derived for the specific cases of (1) iso-

tropic (two independent elastic coefficients), (2) cubic (three

independent elastic coefficients), and (3) transversely isotro-

pic (five independent elastic coefficients) materials. The

adopted formulation allowed accounting for propagation

along a material symmetry axis as well as propagation in an

arbitrary direction.

We consider a homogeneous free plate of thickness d
possessing at least a monoclinic symmetry with respect to the

x2x3-plane, as depicted in Fig. 1(b). By solving Christoffel

equations under consideration of stress-free boundary condi-

tions, the solutions of the corresponding dispersion equation

can be expressed as guided modes in the (k, f)-domain, which

are determined by the thickness d, mass density q, stiffness

coefficients cij (i; j ¼ 1;…; 6) and propagation direction /
according to the principal symmetry axes of the material.33

Because the plate possesses a symmetry plane normal to the

x1-direction, solutions can always be separated into symmetric

(S) and antisymmetric (A) modes. Hence, the dispersion equa-

tion accounting for each family of modes can be stated as

XMðk; f ; hÞ ¼ 0; with M ¼ A or S; (1)

where the vector h ¼ ½d cij q /� denotes the model parameters.

In practice, the dispersion equation can be formulated as a

function of the bulk wave velocities and stiffness ratios, with

the mass density being included in the velocities.34 For isotro-

pic, cubic or transversely isotropic materials, additional sym-

metry planes introduce significant simplifications in the

dispersion equation. Moreover, when the wave propagates in

a direction lying in a symmetry plane, partial waves polarized

in the sagittal plane become decoupled from the shear hori-

zontally polarized waves. In such a case, the characteristic

equation factorizes to a second-order polynomial. For exam-

ple, Fig. 2 depicts the guided modes for an isotropic duralu-

min plate and for a silicon wafer with cubic symmetry

(propagation along an oblique axis, with an angle / ¼ 22:5�).
As can be observed, shear horizontal (SH) modes that exist in

planes of symmetry degenerate into quasi-SH modes, denoted

here by qSH, if the sagittal plane is a non-principal symmetry

plane of the material.35

2. Inverse problem

Generally, the difference between experimental and mod-

eled guided modes is the most important constituent part of

the objective function, in which the inversion process can be

regarded as curve fitting (i.e., minimization of an Euclidean

distance, FLSðhÞ, in a least-squares sense), for instance,

FLSðhÞ ¼
XM

m¼1

XIm

i¼1

ðf mðkiÞ � f mðki; hÞÞ2; (2)

where f mðkiÞ and f mðki; hÞ are the measured and modeled

frequencies for a given mode m at a wave number ki

(i ¼ 1;…; Im).23,37 Such approach is robust but requires, for

each h, the explicit computation of the theoretical guided

modes using an iterative root-finding algorithm (e.g., Muller

or Newton-Raphson) and prior identification of the modes.

Depending on the complexity of the inspected medium, this

computation can be time-consuming (i.e., typically a few

seconds as small frequency steps are needed for numerically

inferring the roots of the dispersion equation) and can even

lead to numerical errors when two roots are in close proxim-

ity, which is typically the case in the vicinity of crossing

points,38 thus requiring further numerical refinements.39

Alternatively, few authors proposed to directly use the dis-

persion equation as objective function FDðhÞ.16,19 The idea

is to evaluate Eq. (1) on the experimental data (kn, fn), with

n ¼ 1;…;N,

FDðhÞ ¼
XN

n¼1

logðjXAðkn; fn; hÞ � XSðkn; fn; hÞjÞ: (3)

FIG. 2. Dispersion curves in the (kd,

fd)-plane for guided waves propagat-

ing in (a) an isotropic duralumin plate

and (b) a silicon wafer along an obli-

que axis (i.e., / ¼ 22:5�). The modes

are labeled according to Royer et al.
(Ref. 36).
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In such a case, solving the inverse problem consists in

finding the optimal model parameters ĥ that minimize the

function defined by Eq. (3). Unfortunately, this formula-

tion is not convenient, because the dynamics of the dis-

persion equation is inhomogeneous in the (k, f)-plane

[Fig. 3(a)]. In contrast, calculating the sign of

XAðk; f ; hÞ � XSðk; f ; hÞ delivers a function [Fig. 3(b)],

whose discontinuities can directly be associated with the

guided modes.

To evaluate whether or not an experimental data point

(kn, fn) is a solution of the dispersion equation, we introduce

the function

GM kn; fn; hð Þ ¼ 1

2
3�

����X1

j¼�1

sgn XM kn; fn þ jDf ; hð Þð Þ
����

0
@

1
A ¼ 1 if kn; fnð Þ is a solution to Eq: 1ð Þ

0 otherwise
with M ¼ A or S;

(

(4)

where Df is set to half the frequency step used in the tempo-

ral Fourier transform of the data. This simple function allows

us to track the sign changes of XMðk; f ; hÞ, with M¼A or S,

in the vicinity of an experimental data point (kn, fn), i.e.,

between (kn, fn � Df ) and (kn, fn þ Df ), as depicted in Fig.

3(b). Note that this finite difference is evaluated with respect

to f (and not to k), because the slope Df=Dk, which approxi-

mates the group velocity, is always finite and smaller than

the longitudinal bulk wave velocity, whereas around zero-

group velocity points (e.g., cut-off frequencies and zero-

group velocity resonances40) Df=Dk diverges. The objective

function can thus be written as

FðhÞ ¼
XN

n¼1

wnðGAðkn; fn; hÞ þ GSðkn; fn; hÞÞ; (5)

where wn is the weighting factor introduced in Fig. 1. Solving

the inverse problem now consists in maximizing the objective

function FðhÞ, that is to maximize the number of experimental

data points that fulfill the dispersion equation. To serve as an

example, Fig. 4(a) depicts the underlying idea of Eq. (5), where

experimental data points (kn, fn) that contribute to the objective

function FðhÞ are displayed as colored dots according to their

weight wn, while those that do not contribute to FðhÞ are dis-

played in light gray color. For sake of clarity, in the following,

we will use the traditional representation depicted in Fig. 4(b)

to display the results. This objective function FðhÞ presents sev-

eral advantages for multimodal inversion of guided waves:

computational costs are drastically reduced by avoiding the

numerical calculation of the theoretical dispersion curves, as

the dispersion equation is only evaluated on 3� N experimen-

tal data and the identification of experimental modes prior to

the inversion process is not required. Formally, the optimal

model parameters ĥ result from

ĥ ¼ arg max
h2H

FðhÞ; (6)

where H denote the bounds of the model parameters h.

Genetic algorithms are applied to solve Eq. (6), because of

their ability in finding a near global solution for non-convex

multidimensional objective function, without the need of an

accurate initial guess for the model parameters.28

A large searching domain was chosen by setting the

bounds for the elastic coefficients cij to ½0:6 1:4� � the nomi-

nal values reported in Table I and those for the thickness d to

620% the reference thickness measured by a caliper. For

material with unknown symmetry axis, the bounds for the

propagation direction angle / were set to ½0 p=2� �� for

cubic symmetry and ½0 p� �� for transverse isotropic sym-

metry, where �� p=180 represents a small angle used to

avoid periodic-equivalent solutions due to material symme-

try. To ensure physically acceptable solutions,

FIG. 3. (Color online) (a) Map of

the values of logðjXAðk; f ; hÞ �
XSðk; f ; hÞjÞ obtained by sweeping

the wave number k and frequency f,
whose positions of the loci display

the dispersion curves; (b) binary map

obtained by computing the sign of

XAðk; f ; hÞ � XSðk; f ; hÞ, whose sign

changes on the dispersion curves.

Solid symbols stand for experimental

data points (kn, fn), whereas hollow

symbols stand for their two neigh-

bours, i.e., (kn, fn � Df ) and (kn,

fn þ Df ), used to track the sign change

of XMðk; f ; hÞ, with M¼A or S.
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thermodynamics constraints requiring the elasticity tensor to

be positive-definite were adopted.41 For the isotropic, cubic

and transverse isotropic cases, this, respectively, lead to

c11 >
4
3

c44 > 0
� �

; c11 > c12 > 0; c44 > 0f g, and fc11 > c66

> 0; c44 > 0; c33ðc11 � c66Þ > c2
13g. For all tests, the inverse

procedure was solved using a random initial population of

Np¼ 20 chromosomes within the genetic algorithms. The

number of generations Ng was adaptive in the sense that the

algorithm stopped if the optimal solution ĥ remained

unchanged along 50 generations. The empirical variables Np

and Ng, along with the probabilities of the genetic operators,

were set so that the convergence to a near global optimum

was guaranteed, while establishing a trade-off between

inverse problem errors and computational cost.42 For a com-

prehensive description of the genetic algorithms-based inver-

sion of multimode guided waves, the reader is referred to

our former paper.43

III. RESULTS

To evaluate the performance of the proposed inversion

procedure, two case studies were investigated. First, we

assumed that the propagation direction / (i.e., angle between

the probe and material principal symmetry axes) was known,

and the inverse procedure was applied to infer the elastic

coefficients cij and the plate thickness d of the tested materi-

als. Second, for anisotropic plates of known thickness d, the

inverse procedure was applied to infer the elastic coefficients

cij and propagation direction /.

A. Case study I

Four different plates are considered, for which the prop-

agation direction / is supposed to be known. The results

obtained for the isotropic duralumin and fused quartz plates

are presented in Fig. 5. The optimal matching between the

experimental data and the estimated Lamb modes shows a

remarkable agreement.

For the silicon wafer, the results obtained for propaga-

tion along the ½0 1 1� symmetry axis (i.e., / ¼ 45�) and for

an oblique propagation (i.e., / ¼ 65�) are presented in

Fig. 6. The optimal matching between the experimental data

and the estimated guided modes shows again a good agree-

ment. If the plane of propagation coincides with a plane of

symmetry [Fig. 6(a)], the probe only detects pure Lamb

modes, while, if the sagittal plane is not a plane of symmetry

[Fig. 6(b)], then, in addition to quasi-Lamb modes, quasi-SH

modes having a non-zero normal displacement are also

detected (e.g., qSH1 between 5 and 8 MHz, and qSH2

between 9 and 12 MHz).35 In both cases, the multiparametric

inversion method delivers estimates ĥ that are in close agree-

ment, with an absolute difference lower than 1.5 GPa for the

elastic coefficients and lower than 2 lm for the thickness.

Last, results obtained for the titanium plate are pre-

sented in Fig. 7. For this transverse isotropic material, the

concurrent inference of all model parameters h is particularly

challenging, as the multiparametric inverse problem involves

five independent elastic coefficients and the plate thickness.

In such a case, it is useful to take advantage of two measure-

ments on different symmetry planes of propagation, thus

reducing the dimensionality of the searching domain H.

Hence, if the first propagation plane coincides with the isot-

ropy plane of symmetry (i.e., x1x2-plane, / ¼ 0�), a first set

of model parameters leads to h1 ¼ ½c11 c12 d�. Then, if the

second propagation plane coincides with the transverse iso-

tropic plane of symmetry (i.e., x1x3-plane, / ¼ 90�), a sec-

ond set of model parameters leads to h2 ¼ ½c11 c33 c13 c44 d�.
Consequently, the initial six-parameter inverse problem can

be reduced to two problems with three unknown model

parameters each [Figs. 7(a) and 7(b)].

Even more interesting, the multiparametric inverse

problem can also be solved using a single measurement

along a non-principal symmetry axis [e.g., / ¼ 45�, see Fig.

7(c)], for which the dispersion equation depends on all elas-

tic coefficients (i.e., h ¼ ½c11 c12 c33 c13 c44 d�). For both

approaches, the multiparametric inverse problem delivers

estimates ĥ that are in close agreement with an absolute

FIG. 4. (Color online) Computation of

the objective function FðhÞ: (a)

Experimental data points (kn,fn) that

contribute to the objective function are

displayed as colored dots according to

their weight wn, while points that do

not contribute to the objective function

are displayed in light gray color; (b)

equivalent representation: Points of the

Fourier transformed data that are used

in the inversion, along with the theoret-

ical dispersion curves obtained with

the estimated model parameters.
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difference lower than 3 GPa for the elastic coefficients and

lower than 3 lm for the plate thickness. However, as dis-

cussed below in Table II, the inverse problem errors associ-

ated with a searching domain H of higher dimensionality are

typically larger. Again, for the case where the plane of prop-

agation does not coincide with a plane of symmetry [Fig.

7(c)], quasi-SH modes that have a non-zero normal displace-

ment are also detected in addition to quasi-Lamb modes

(e.g., qSH5 between 6.5 and 7.5 MHz, qSH6 between 8 and

9 MHz, qSH7 between 9.5 and 12 MHz, and qSH8 between

11 and 12 MHz).

B. Case study II

The propagation direction / is now supposed to be

unknown, but the thickness is assumed to be known and

equal to the values found in case study I. Results obtained

for the silicon wafer for propagation along the ½0 1 0� sym-

metry axis (/ ¼ 0�) and for a propagation direction / ¼ 75�

are presented in Figs. 8(a) and 8(b). As can be observed, the

propagation angle / is correctly estimated with an absolute

error lower than 1:5�. For both angles, the multiparametric

inversion delivers estimates ĥ that are in close agreement,

with an absolute difference lower than 3 GPa for the elastic

FIG. 5. (Color online) Optimal matching between the experimental data (color dots) and the Lamb modes (continuous lines) for the isotropic plates: (a) 1-mm

thick duralumin plate and (b) 1.5-mm thick fused quartz plate.

FIG. 6. (Color online) Optimal matching between experimental data (color dots) and guided modes (continuous lines) for the silicon wafer for propagation (a)

along the ½0 1 1� symmetry axis (/ ¼ 45�) and (b) for an oblique axis (/ ¼ 65�).

1144 J. Acoust. Soc. Am. 143 (2), February 2018 Bochud et al.



coefficients. Note that these estimates are also in close agree-

ment with those depicted in Fig. 6.

Results obtained for the titanium plate along an oblique

axis (i.e., / ¼ 33�) are presented in Fig. 8(c). Again, the

retrieved propagation angle / is in good agreement with the

expected one. The inversion method delivers estimates ĥ

that are also in close agreement with those obtained in the

first case study (Fig. 7).

IV. DISCUSSION

As often required for industrial applications, single-side

access to the tested plates is satisfied by the proposed experi-

mental technique. The measured dispersion curves contain

numerous higher-order modes, which makes a precise inver-

sion of the model parameters h possible. For all the tested

samples, the reported estimates are in excellent agreement

with the reference values from Table I. It is noteworthy that

the acquisition of a single set of dispersion curves can be per-

formed in real-time (�0:01 s), which represents an appealing

aspect compared to other experimental techniques where

numerous measurements are required. In addition, the main

advantage of the proposed inversion procedure is that it drasti-

cally reduces the computational costs, because the calculation

of the theoretical dispersion curves is not required. For a given

set of model parameters h, the forward calculation for wave

propagation along a principal symmetry axis (i.e., characteris-

tic equation is a second-order polynomial) and an oblique axis

(i.e., third-order polynomial) approximately takes �0.01 and

�0.04 s, respectively. In contrast, numerical iterative root-

finding algorithms used for the calculation of the dispersion

curves last around a few seconds (i.e., a factor of 200)18 and

are prone to numerical errors.38 All computations were per-

formed using Matlab
VR

on a standard desktop computer (Intel

Xeon CPU E5–2623 v3 @ 3.00 GHz). For isotropic materials,

convergence to a near global solution was typically achieved

FIG. 7. (Color online) Optimal matching between experimental data (color dots) and guided modes (continuous lines) for the titanium plate and for propaga-

tion (a) along the ½0 1 0� symmetry axis (i.e., / ¼ 0�; plane of isotropy); (b) along the ½0 0 1� symmetry axis (i.e., / ¼ 90�; plane of transverse isotropy); and

(c) out-of-symmetry axis (i.e., / ¼ 45�).

TABLE II. Optimal model parameters for the investigated samples (the parameters in bold were kept constant within the inverse procedure).

Optimal model parameters ĥ

Elastic coefficients (GPa) Thickness (mm) Angle (�)

c11 c12 c33 c13 c44 d /

Duralumin
113.0 6 1.2 – – – 27.2 6 0.2 0.988 6 0.006 0

112.6 6 1.4 – – – 27.1 6 0.3 0.986 6 0.007 [0:5:180]

Quartz
79.0 6 1.1 – – – 31.5 6 0.3 1.472 6 0.010 0

79.4 6 1.2 – – – 31.7 6 0.3 1.476 6 0.010 [0:5:180]

Silicon

164.0 6 4.8 61.9 6 4.3 – – 80.2 6 1.3 0.775 6 0.008 45

161.9 6 4.6 60.4 6 4.8 – – 80.6 6 1.0 0.775 87.5 6 7.6

163.8 6 6.5 61.7 6 5.6 – – 80.2 6 2.1 0.774 6 0.012 [0:5:180]

Titanium

168.9 6 2.2 85.1 6 1.6 171.8 6 3.6 80.2 6 1.9 45.4 6 0.4 1.000 6 0.008 [0,90]

169.0 6 3.1 82.4 6 2.1 175.0 6 5.0 86.3 6 3.4 46.6 6 1.0 1.007 6 0.011 45

165.7 6 6.5 80.4 6 2.6 171.5 6 2.2 84.7 6 2.9 45.5 6 0.9 1.004 35.1 6 4.3

164.1 6 9.4 77.1 6 4.9 173.8 6 6.3 82.3 6 5.5 45.3 6 1.7 1.009 6 0.014 [0:5:180]

J. Acoust. Soc. Am. 143 (2), February 2018 Bochud et al. 1145



after Ng¼ 200 generations, thus leading to a computation

time of approximately 40 s. For anisotropic materials, the con-

vergence rate is somewhat slower (i.e., Ng¼ 300), yielding

computation times of 60 s for propagation along a principal

symmetry axis and 240 s for an oblique axis.

In order to test the statistical stability of the optimization

algorithm,16 the inversion procedure was run 36 times on the

same measurement for each sample. Then, to evaluate the

uncertainty due to measurements variability, the procedure

was run on 36 measurements (acquired each 5� between 0

and 180�). Results (mean 6 standard deviation) obtained for

each sample are listed in Table II.

As can be observed, the errors on the estimated material

properties increase with the number of model parameters.

Moreover, the uncertainties due to measurements variability

given in the last rows are generally larger than the inversion

errors. This was expected since measurement uncertainties

cannot be separated from the uncertainties due to the recon-

struction algorithm. For the isotropic plates (i.e., duralumin

and fused quartz), the inversion errors are lower than 2% and

1% for the longitudinal and transverse elastic coefficients,

respectively, and lower than 1% for the plate thickness. For

the silicon wafer, the inversion errors are lower than 3%,

8%, and 2% for the longitudinal, off-diagonal and transverse

elastic coefficients, respectively, around 1% for the plate

thickness, and lower than 9% for the propagation angle. For

the titanium plate, when the inverse problem is solved in two

steps, the errors are lower than 2%, 2%, and 1% for the lon-

gitudinal, off-diagonal and transverse elastic coefficients,

respectively, and around 1% for the plate thickness. When

the inverse problem is solved in one step, errors tend to

increase, and reach 12% for the angle of propagation.

For anisotropic materials, i.e., silicon wafer and titanium

plate, the larger errors reported for the off-diagonal elastic

coefficients can be explained as follows: it has been shown

that they have little influence on the dispersion behavior and

are therefore difficult to measure accurately. In addition,

they are generally small compared to the other elastic coeffi-

cients and ambiguous to differentiate.11 In contrast, the

larger errors reported for the angle of propagation may be

partly caused by a slight misalignment between the probe

and the principal symmetry axis of the material at the initial

stage of the measurements (accuracy of 1�). As a further

source of error, it should be noted that the Fourier coeffi-

cients (i.e., wn) corresponding to the qSH-modes are typi-

cally lower than that of quasi-Lamb modes, and thus

contribute to a smaller extent to the objective function,

which could in turn lead to modes misidentification or biased

elastic coefficients in the inverse procedure.

V. CONCLUSION

This paper reported on the assessment of material proper-

ties from elastic guided wave measurements on anisotropic

plates. Experiments were performed using a linear piezoelectric

transducer array, which allowed the real-time measurements of

many guided modes in arbitrary directions. The proposed

reconstruction procedure using genetic algorithms was proven

feasible to identify the full set of anisotropic elastic coefficients

and either the plate thickness or the propagation direction from

a single out-of-symmetry axis measurement. For all the tested

samples, the reported estimates were in excellent agreement

with reference values from the literature. The model-based

inverse problem solution presents several advantages: (1) it

requires minimal data processing and allows higher-order

modes to be taken into account without any prior identification

and (2) it avoids the numerical resolution of the dispersion

equation. This results in a very low computational cost, thus

opening perspectives towards real-time material characteriza-

tion and defect detection. Future works will extend this study to

layered (composite) structures. To this end, signal-to-noise ratio

enhancement could be achieved by applying a singular value

decomposition to the complete inter-element array response

matrix. We will also investigate the feasibility of exploiting

FIG. 8. (Color online) Optimal matching between experimental data (color dots) and guided modes (continuous lines): for the silicon wafer for propagation (a)

along the ½0 1 0� symmetry axis (/ ¼ 0�) and (b) out-of-symmetry axis (/ ¼ 75�); and (c) for the titanium plate for an oblique propagation axis (/ ¼ 33�).
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targeted data of the dispersion spectrum, such as cut-off fre-

quencies and zero-group velocity modes, that exhibit a particu-

lar sensitivity to one or another model parameter, in order to

speed up the inversion process.
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