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Summary

Let X,U, Y be spherically symmetric distributed having density

ηd+k/2 f
(
η(‖x− θ|2 + ‖u‖2 + ‖y − cθ‖2)

)
,

with unknown parameters θ ∈ Rd and η > 0, and with known density f and constant c > 0.
Based on observing X = x, U = u, we consider the problem of obtaining a predictive density
q̂(y;x, u) for Y as measured by the expected Kullback-Leibler loss. A benchmark procedure is
the minimum risk equivariant density q̂mre, which is Generalized Bayes with respect to the prior
π(θ, η) = η−1. For d ≥ 3, we obtain improvements on q̂mre, and further show that the dominance
holds simultaneously for all f subject to finite moments and finite risk conditions. We also ob-
tain that the Bayes predictive density with respect to the harmonic prior πh(θ, η) = η−1‖θ‖2−d
dominates q̂mre simultaneously for all scale mixture of normals f .

The results hinges on duality with a point prediction problem, as well as posterior representa-
tions for (θ, η), which are of interest on their own. Namely, we obtain for d ≥ 3, point predictors
δ(X,U) of Y that dominate the benchmark predictor cX simultaneously for all f , and simultane-
ously for risk functions Ef

[
ρ (‖Y − δ(X,U)‖2 + (1 + c2)‖U‖2)

]
, with ρ increasing and concave

on R+, and including the squared error case Ef
[

(‖Y − δ(X,U)‖2
]

AMS 2010 subject classifications: 62C20, 62C86, 62F10, 62F15, 62F30
Keywords and phrases: Bayes estimators; Dominance; Duality; Kullback-Leibler; Multivariate
normal; Multivariate Student; Plug-in; Point prediction; Predictive densities; Scale mixture of
normals; Spherically symmetric.

1 Introduction and preliminary results

A. Prediction is at the heart of statistics, but the study of the efficiency of prediction
methods often takes a back seat to estimation. There is perhaps a reason for this. Indeed,
consider Z1, Z2 ∈ Rd independently and identically distributed (i.i.d.) random variables,
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with E(Z1) = θ, Cov(Z1) = Σ , and the problem of predicting Z2 based on Z1. If our
prediction is δ(Z1) and the penalty is squared error, then

E[‖Z2 − δ(Z1)‖2] = trΣ + E[‖δ(Z1)− θ‖2] , for all θ,

so that the frequentist squared error risk of δ(Z1) as a predictor of Z2 is determined by its
frequentist risk as a point estimator of θ. For instance, in the case of the distribution of
Z1, Z2 being a multivariate normal distribution with d ≥ 3, shrinkage or Stein-type esti-
mators δ(Z) that dominate Z1 as estimators of θ (e.g., Strawderman 2003) yield improved
predictors δ(Z1) of Z2 as described above. 2 If the prediction penalty is not squared error,
then the above correspondence is obviously different and relationships between prediction
and estimation are more subtle. Moreover, the decision-maker may well wish to select
an alternative to squared error penalty and, namely, a penalty that is non-convex or
bounded, or both.

B. Alternatively, predictive density estimation aims at providing the richest description
of an unobserved random variable in the form of a predictive density over the domain
of possible values. One obtains a surrogate density for a future or missing value, based
on current or historical data. Bayesian strategies for deriving predictive densities can be
naturally formulated in response to a given prior and a measure of divergence between
densities, such as Kullback-Leibler. There also arise issues of efficiency and frequentist
risk evaluation of predictive densities. In this regard, following seminal contributions
such as Aitchison (1975), Aitchison and Dunsmore (1975), and Komaki (2001), further
challenges relative to the efficiency of predictive densities, for various models and loss
functions, have generated much more recent interest, as exemplified by the work of Liang
and Barron (2004), George, Liang and Xu (2006), Komaki (2006, 2007), Brown, George
and Xu (2008), Fourdrinier et al. (2011), and many others including those referred to
below. Namely, several parallels between point and predictive density estimation have
surfaced (e.g., the inadmissibility of the minimum risk equivariant procedures for squared
error and Kullback-Leibler losses, for normal observables in three dimensions or more), in-
cluding Bayesian procedures. However, this is less the case for connections between point
prediction and predictive density estimation. As well, for general spherically symmetric
models with unknown location and scale parameters, including the normal model, much
less is known on the efficiency of predictive density estimators, Bayesian or otherwise.

C. This paper’s contributions relate to both point prediction and predictive density esti-
mation, as well as connections which generate further findings for the latter. We consider
broadly a predictive density estimation problem based on

X,U, Y |θ, η ∼ ηd+k/2 f
(
η(‖x− θ|2 + ‖u‖2 + ‖y − cθ‖2)

)
, (1)

2Similarly, if the penalty is given by (Z2−δ(Z1))′Q(Z2−δ(Z1)) with Q positive definite, then we have
the decomposition

trQΣ + E ((δ(Z1)− θ)′Q(δ(Z1)− θ))

and another clear correspondence with a familiar point estimation problem.
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with x, y, θ ∈ Rd, u ∈ Rk, η−1/2 a scale parameter, c positive and known, and f a known
spherically symmetric density on R2d+k. Such a model arises quite generally as a canonical
form generated from a linear model (see for instance Fourdrinier and Strawderman, 2010).
It includes the multivariate normal model with independent components X, U , and Y

X ∼ Nd(θ, η
−1Id), Y ∼ Nd(cθ, η

−1Id), S = U ′U ∼ η−1χ2
k, independent, (2)

where the objective is to predict Y based on (X,S). Model (2) applies for the famil-
iar set-up where we observe X1, . . . , Xn independently distributed Nd(µ, σ

2Id) and wish
to predict Y as above. This is achieved by setting X =

√
nX̄, S =

∑n
i=1 ‖Xi − X̄‖2,

θ =
√
nµ, c = n−1/2, and k = (n − 1)d. Otherwise, model (1) encapsulates situations

where the signals X, Y are not independent of the residual vector U and exhibit a spher-
ically symmetric dependence.

Based on (X,U), we seek efficient predictive densities q̂(y;x, u), y ∈ Rd, for the condi-
tional density qθ,η(·|x, u) of Y given x, u. We evaluate the performance of such predictive
densities by Kullback-Leibler loss

LKL((θ, η), q̂) =

∫
Rd
qθ,η(y|x, u) log

(
qθ,η(y|x, u)

q̂(y;x, u)

)
dy , (3)

and associated frequentist risk taken with respect to the marginal density pθ,η of X,U ,
given by

RKL((θ, η), q̂) =

∫
Rd+k

LKL((θ, η), q̂) pθ,η(x, u) dx du

= EX,U,Y log

(
qθ,η(Y |X,U)

q̂(Y ;X,U)

)
. (4)

D. A benchmark predictive density is the Bayes predictive density estimator q̂π0,(·;X,U)
with respect to the prior measure π0(θ, η) = 1

η
. It is also minimax and the minimum risk

equivariant (mre) predictive density with respect to changes of location and scale (e.g.,
Kubokawa et al., 2013). It will be shown that it is given by a multivariate Student density,
that is

q̂π0(·; (x, u)) ∼ Td(k, cx,

√
((1 + c2)‖u‖2

k
) . (5)

Hereafter, we refer to multivariate Student densities as follows.

Definition 1.1. A d-variate Student distribution with degrees of freedom ν, location pa-
rameter ξ, scale parameter σ, denoted Td(ν, ξ, σ) has density given by

1

σd
Γ(ν+d

2
)

Γ(ν
2
)(πν)d/2

(
1 +
‖t− ξ‖2

νσ2

)− d+ν
2

, t ∈ Rd. (6)

For the normal case as in (2), the predictive density q̂π0 was obtained in Aitchison and
Dunsmore (1975), and shown to be minimax by Liang and Barron (2004). However, the
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Bayes predictive density q̂π0 is known to be inadmissible for d ≥ 3 in the normal case.
Indeed, Kato (2009) showed that it was uniformly improved with respect to Kullback-
Leibler risk by the Bayes predictive density estimator associated with the harmonic prior
πh(θ, η) = η−1‖θ‖2−d. Moreover, further improvements (still in the normal case), even for
some cases with d < 3, were obtained by Boisbunon and Maruyama (2014), and earlier
work by Komaki (2006, 2007) established the inadmissibility of q̂π0 in an asymptotic
framework.
E. Expression (5) is proved in Section 3.2. Moreover, we point out that the predictive
density q̂π0 does not depend on the model density f in (1) (and consequently matches the
normal case solution). In Section 3, we elaborate on this phenomenon from a more gen-
eral perspective, where a class of Bayesian inference methods, associated with separable
priors of the form π1(θ) η

a, do not depend on f ; and dominance results that hold in the
normal case carry-over to the whole class of scale mixture of normals.

A main focus of this paper is on providing improvements on q̂π0 applicable to model den-
sities in (1). Bayesian solutions are presented in Section 4. Namely, we prove that, for
d ≥ 3 and a given scale mixture of normals f in (1), the Bayesian predictive density q̂πh
with respect to the harmonic prior πh dominates the mre predictive density q̂π0 . Moreover,
both q̂πh and q̂π0 do not vary with the scale mixture and the dominance holds simultane-
ously for all scale mixtures.

As presented in Section 2, our findings include dominating predictive densities for d ≥ 3,

which are multivariate Student densities of the form Td(k, cθ̂(x, u),
√

(1+c2)‖u‖2
k

), and where

θ̂(x, u) is a point estimator of θ. The focus on such predictive densities, which we find
convenient to denote by qπ0,θ̂, leads to a key duality result presented in Lemma 2.1. More
precisely, the Kullback-Leibler risk performance of predictive density qπ0,θ̂(·;X,U) hinges

on the performance of cθ̂(X,U) as a point predictor of Y under “loss”

ρ
(
‖Y − cθ̂(X,U)‖2 + (1 + c2)‖U‖2

)
, (7)

with ρ(t) = log(t) , t > 0.3 A general dominance result for the point prediction problem,
applicable for ρ increasing and concave and d ≥ 3, is obtained with Theorem 2.1 and
leads immediately to the predictive density estimation finding of Theorem 2.2. Hence, the
findings of Section 2 are contributions to both: (A) point prediction of Y for model (1) and
losses (7), as well as (B) predictive density estimation of conditional density qθ,η(·|x, u) of
Y under Kullback-Leibler loss. Moreover, the dominance results for (A) are shown to be,
subject to risk-finiteness, robust with respect to model density f in (1,2) and loss (7) for
general ρ, while those for (B) are shown to be robust with respect to f . The techniques
used to derive the classes of dominating procedures involve a Stein identity for spherical
densities (Lemma 2.2), as well as a concave inequality technique analogous to earlier point
estimation work of Brandwein and Strawderman (1980), Brandwein and Strawderman
(1991), Brandwein, Ralescu and Strawderman (1993), and Kubokawa, Marchand and
Strawderman (2015).

3While it is standard to require that a loss function be bounded below, we will nonetheless refer to
ρ(t) = log(t) in (7) as a loss even though it is not so bounded.
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2 Results for point prediction with predictive density

estimation implications

We begin by connecting the predictive density estimation problem with a point prediction
problem.

Lemma 2.1. For a spherically symmetric model as in (1), the predictive density qπ0,θ̂ ∼

Td(k, cθ̂(X,U),
√

(1+c2)‖U |2
k

) dominates the predictive density q̂π0 given in (5) under Kullback-

Leibler loss if and only if

Ef
[
log
(
‖Y − cX‖2 + (1 + c2)‖U‖2

)]
≥ Ef

[
log(‖Y − cθ̂(X,U)‖2 + (1 + c2)‖U‖2)

]
,

(8)
for all θ, η, with strict inequality for at least one (θ, η).

Proof. We have as a difference in risks

RKL((θ, η), q̂π0)−RKL((θ, η), qπ0,θ̂) = Ef log
(
qθ,η(Y |X,U)

q̂π0,X(Y )

)
− Ef log

(
qθ,η(Y |X,U)

q̂π0,θ̂(X,U)(Y )

)

= Ef log

(
qπ0,θ̂(X,U)(Y )

q̂π0,X(Y )

)

= Ef log

(
1 + ‖Y−cθ̂(X,U)‖2

(1+c2)‖U‖2

)− d+k
2

(
1 + ‖Y−cX‖2

(1+c2)‖U‖2

)− d+k
2

=
d+ k

2

(
Ef
[
log
(
‖Y − cX‖2 + (1 + c2)‖U‖2

)])
− d+ k

2

(
Ef
[
log
(
‖Y − cθ̂(X,U)‖2 + (1 + c2)‖U‖2

)])
,

which establishes the result.
In the following, for a vector valued function g(t1, t2) with dim g(t1, t2) = dim t1,

divt1 g(t1, t2) represents the divergence with respect to t1. We will make use of the following
useful identity, a version of which can be found in Fourdrinier, Strawderman and Wells
(2003), obtained by integration by parts and reducing to the celebrated Stein identity in
the normal case.

Lemma 2.2. Let Z ∈ Rd, U ∈ Rk have joint density f(‖z‖2 + ‖u‖2) and let w ∈ Rd be
fixed. Set F (t) = 1

2

∫∞
t
f(u) du, and γ =

∫
Rd+k F (‖z‖2 + ‖u‖2) du dz assuming the integral

is finite. Then, we have for weakly differentiable g : R2d+k → Rd and h : R2d+k → Rk∫
Rd+k

z′g(z, u, w) f(‖z‖2 + ‖u‖2) du dz =
1

γ

∫
Rp+k

divzg(z, u, w)F (‖z‖2 + ‖u‖2) du dz∫
Rd+k

u′h(z, u, w) f(‖z‖2 + ‖u‖2) du dz =
1

γ

∫
Rp+k

divu h(z, u, w)F (‖z‖2 + ‖u‖2) du dz ,

provided the integrals exist.
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We now are ready to present, establish, and comment on the main point prediction
result, which follows.

Theorem 2.1. Let X̃, Ỹ ∈ Rd, Ũ ∈ Rk have joint density proportional to

η
d+k/2
1 f

(
η1

(
‖x̃− µ‖2 +

‖ỹ − µ‖2

β
+
‖ũ‖2

1 + β

))
, (9)

where β > 0 (known) and d ≥ 3. Consider predicting Ỹ with δ(X̃, Ũ) under loss
ρ(‖δ − Ỹ ‖2 + ‖Ũ‖2), where ρ(·) is absolutely continuous, increasing and concave. Then,

the predictor X̃ + α‖Ũ‖2
k+2

g(X̃) dominates X̃ provided Eθ,η1‖g(X̃)‖2 < ∞ for all θ, η1,

Eη1(‖Ũ‖4) < ∞, the risks are finite, ‖g(x̃)‖2 + 2div g(x̃) ≤ 0 for all x̃ ∈ Rd, and
0 < α < 1

1+β
.

Proof. We can set η1 = 1 without loss of generality. The difference in risks is given by

∆ = E

[
ρ(‖X̃ +

α‖Ũ‖2

k + 2
g(X̃)− Ỹ ‖2 + ‖Ũ‖2) − ρ(‖X̃ − Ỹ ‖2 + ‖Ũ‖2)

]

≤ E

[
ρ′(‖X̃ − Ỹ ‖2 + ‖Ũ‖2){α

2(‖Ũ‖2)2

(k + 2)2
‖g(X̃)‖2 +

2α‖Ũ‖2

k + 2
g(X̃)T (X̃ − Ỹ )}

]
,

by virtue of the inequality ρ(A + b) − ρ(A) ≤ ρ′(A) b for concave ρ. With the change of
variables Z = X̃−Ỹ , W = Ỹ +βX̃, Ũ = Ũ so that (Z,W, Ũ) has joint density proportional
to f(‖z‖2/(1 + β) + ‖ũ‖2/(1 + β) + (‖w− (1 + β)µ‖2)/(β + β2)), and conditioning on W ,
we have

∆ ≤ E

{
E

[
ρ′(‖Z‖2 + ‖Ũ‖2) {α

2(‖Ũ‖2)2

(k + 2)2
‖g(
‖Z +W‖

1 + β
‖2 +

2α‖Ũ‖2

k + 2
g(
Z +W

1 + β
)TZ}

]
W

}
.

We proceed by showing that the given conditions imply that the inner conditional expec-
tation, given W = w and denoted ∆(w), which is taken with respect to the conditional
density fw(‖z‖2 + ‖ũ‖2) ∝ f((‖z‖2/(1 + β) + (‖ũ‖2/(1 + β) + (‖w− (1 + β)µ‖2)/(β+ β2),
is non-positive for all w. Applying Lemma 2.2 twice for density fw and associated Fw, we
obtain

∆(w) ∝
∫
Rd+k

Fw(‖z‖2 + ‖ũ‖2){α2 div(‖ũ‖2ũ
(k + 2)2

‖g(
z + w

1 + β
)‖2 +

2α‖ũ‖2

k + 2
divzg(

w + z

1 + β
)} dũ dz

= α

∫
Rd+k

Fw(‖z‖2 + ‖ũ‖2) α‖ũ‖
2

k + 2
{α‖g(

z + w

1 + β
)‖2 +

2

1 + β
divzg(

w + z

1 + β
)} dũ dz,

≤ 0

for all w ∈ Rd, given the given conditions on g and α. This completes the proof.

The above dominance result is wide ranging and is doubly robust. First, the class of domi-
nating predictors is vast. It includes usual shrinkage estimators which satisfy the familiar
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differential inequality for minimaxity in a point estimation framework. These include
James-Stein, James-Stein positive-part, Baranchik type estimators, Bayesian estimators
with respect to a superharmonic prior, etc. Secondly, the dominance holds simultane-
ously for a large collection of losses ρ, including squared error penalty ‖δ − Y ′‖2, other
Lp losses with ρ(t) = tp and 0 < p < 1, the case ρ(t) = log(t) which will serve for our
predictive density estimation framework, and many bounded losses such as reflected nor-
mal loss ρ(t) = 1 − e−t/α with α > 0. Thirdly, the dominance holds simultaneously for
all model densities f provided the risks are finite and Eθ,η1‖g(X̃)‖2 < ∞. This includes
the normal case with independently distributed X̃ ∼ Nd(µ, Id/η1), Ỹ ∼ Nd(µ, (β/η1)Id),
Ũ ∼ Nk(0, ((1 + β)/η1)Ik), as well as scale mixture of normals with η1 random for the
above triplet. We point out that the above result does not necessitate that ρ be positive,
and negative values for ρ arise naturally for the connected predictive density estimation
problem, which we now address with the help of Theorem 2.1.

Theorem 2.2. Consider model (1) with d ≥ 3 and the problem of obtaining a predictive
density, based on (X,U), of the conditional density of Y given (X,U). Consider the Bayes

predictive density q̂π0(·; (X,U)) ∼ Td(k, cX,
√

(1+c2)‖U‖2
k

) , competing predictive density

estimators qπ0,θ̂(·; (X,U)) ∼ Td(k, cθ̂(X,U),
√

(1+c2)‖U‖2
k

) , and their efficiency as measured

by Kullback-Leibler risk. Then qπ0,θ̂(·; (X,U)) dominates q̂π0(·; (X,U)) with θ̂(X,U) =

X + a ‖U‖
2

k+2
g(X

c
), provided Eθ,η1‖g(X)‖2 <∞, E(‖U‖4) <∞, finiteness of risk, ‖g(t)‖2 +

2div g(t) ≤ 0 for all t ∈ Rd, and 0 < a < (1+c2)
c2(1+c)

.

Proof. We make use of Lemma 2.1 and Theorem 2.1. With Lemma 2.1’s duality result,
qπ0,θ̂ will dominate q̂π0 if and only if c θ̂(X,U) dominates cX as a predictor of Y under

prediction loss ρ0(‖Y − cθ̂‖2 + (1 + c2)‖U‖2) with ρ0(t) = log(t) and cθ̂ a given prediction.
With the change of variables

(X, Y, U)→ (X̃ =
X

c
, Ỹ =

Y

c2
, Ũ =

√
1 + c2

c2
U) ,

dominance will be achieved if and only if cθ̂
(
cX̃, c2√

1+c2
Ũ
)

dominates c2X̃ as a predictor

of c2Ỹ under loss

ρ0

(
‖c2Ỹ − c2

θ̂(cX̃, c2√
1+c2

Ũ)

c
‖2 + ‖c2Ũ‖2

)
= ρ

(
‖Ỹ − δ(X̃, Ũ)‖2 + ‖Ũ‖2

)
, (10)

with ρ(t) = ρ0(c
4t) (= 4 log c+ log t) for t > 0, and

δ(X̃, Ũ) =
θ̂(cX̃, c2√

1+c2
Ũ)

c
.

Dominance will thus be achieved if the above δ(X̃, Ũ) dominates X̃ as a predictor of Ỹ
under loss (10). Since the triplet (X̃, Ỹ , Ũ) has density as in (9) with µ = θ/c, β = 1/c,

7



η1 = c2η, we can apply Theorem 2.1. Hence, if θ̂(X,U) = X + a ‖U‖
2

k+2
g(X

c
), we have

corresponding δ(X̃, Ũ) = X̃ + a c3

1+c2
‖Ũ‖2
k+2

g(X̃), and a sufficient condition for dominance is
indeed

0 < a
c3

1 + c2
<

1

1 + β
⇐⇒ 0 < a <

(1 + c2)

c2(1 + c)
,

since β = 1/c.

We conclude this section by pointing out that above dominance holds simultaneously
for all f subject to the finiteness conditions.

3 Bayesian representations and robustness results

3.1 On posterior robustness under separable priors

We expand here on a general robustness property where a class of Bayesian inference
methods are robust with respect to a model density. Consider the following canonical
set-up represented by spherically symmetric densities, with residual vector U ,

X,U |θ, η ∼ η(d+k)/2 f
(
η(‖x− θ|2 + ‖u‖2)

)
, (11)

with x, θ ∈ Rd, u ∈ Rk, η−1/2 a scale parameter, and f(‖t‖2) a spherically symmetric
density on Rd+k. Further consider Bayesian inference for separable priors of the form:

θ, η ∼ π1(θ) η
a ; θ ∈ Rd, η > 0, a ∈ R; (12)

with π1(θ) absolutely continuous with respect to a σ−finite measure ν. We point out
that these priors are necessarily improper. Whenever the posterior distribution of (θ, η)
is well-defined, we have the following general representation.

Theorem 3.1. Consider model (11), a prior distribution as in (12) and, for a given
(x, u), τ = η (‖θ − x‖2 + ‖u‖2). Assume that∫

R+

ta+
d+k
2 f(t) dt <∞ and

∫
Rd

π1(z)

(‖z − x‖2 + ‖u‖2)a+1+ d+k
2

dz <∞ .

Then, conditional on (x, u), θ and τ are independent with densities

τ |x, u ∝ τa+
d+k
2 f(τ) and θ|x, u ∝ π1(θ)

(‖θ − x‖2 + ‖u‖2)a+1+ d+k
2

. (13)

Moreover, the marginal posterior distribution of θ is independent of f , while the marginal
posterior distribution of τ is independent of π1.

Proof. We have, for the given model and prior, the posterior density

π1,a(θ, η|x, u) ∝ ηa+
d+k
2 f

(
η(‖x− θ|2 + ‖u‖2)

)
π1(θ) . (14)

8



The change of variables (θ, η) → (θ, τ) yields (13), with the densities well defined given
the finiteness assumption. Finally, the conditional independence and posterior marginal
distributions follow from (13).

The above independence representation now paves the way to the following results.

Corollary 3.1. Consider model (11) and a prior distribution as in (12) for which the
posterior distribution of (θ, η) is well-defined. Then,

(a) Bayesian posterior inference about θ, based solely on the posterior distribution of θ,
such as Bayesian confidence regions, tests, and predictors, as well as Bayes point
estimators such as E(θ|X,U), do not depend on the model density f ;

(b) For
∫
R+
ta+b+

d+k
2 f(t) dt <∞ , Bayes point estimators of θ under losses of the form

ηb ρ(‖δ − θ‖2) are, provided they exist, independent of the model density f ;

(c) In particular for b = 1, ρ(t) = t, corresponding to scale invariant squared-error loss
η ‖δ − θ‖2, the Bayes point estimator of θ is given by:

δπ1,a(x, u) =

∫
Rd

θ(
(‖θ−x‖2+‖u‖2)a+2+ d+k2

) π1(θ) dν(θ)∫
Rd

1(
(‖θ−x‖2+‖u‖2)a+2+ d+k2

) π1(θ) dν(θ)
, (15)

provided that
∫
R+
ta+1+ d+k

2 f(t) dt <∞ and that E
(

‖θ‖`
‖θ−x‖2+‖u‖2 |x, u

)
<∞.

Proof. Part (a) follows immediately from Theorem 3.1. For part (b), the expected
posterior loss associated with point estimate δ is given by (recall τ = η (‖θ − x‖2 + ‖u‖2))

E
(
ηb ρ(‖δ − θ‖2) |x, u

)
= E

(
τ b

ρ(‖δ − θ‖2)
(‖θ − x‖2 + ‖u‖2)b

|x, u
)

= E
(
τ b |x, u

)
E
(

ρ(‖δ − θ‖2)
(‖θ − x‖2 + ‖u‖2)b

|x, u
)
,

with the given finiteness assumption and by making use of Theorem 3.1. It is thus the
case that the minimizing δπ1,a(x, u) depends only on the posterior distribution of θ|x, u,
and consequently is independent of f . Finally, for part (c), we have:

δπ1,a(x, u) = argminδ E
(

‖δ − θ‖2

‖θ − x‖2 + ‖u‖2
|x, u

)

=
E
(

θ
‖θ−x‖2+‖u‖2 |x, u

)
E
(

1
‖θ−x‖2+‖u‖2 |x, u

) ,
by a familiar weighted squared-error loss Bayes estimator representation. The result then
follows by incorporating the posterior density given in (13).
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The above results are indeed quite striking and analogous results for predictive densities
will be elaborated on below. However, from a historical perspective, the findings above
add to, extend, or clarify earlier findings. More precisely, the robustness of the point esti-
mators in (15) was observed by Maruyama (2003) for π1(θ) of the form ‖θ‖b, Fourdrinier
and Strawderman (2010) as well as Maruyama and Strawderman (2005) for further sep-
arable priors, and Jafari Jozani, Marchand and Strawderman (2013) for the univariate
case of a positive θ with π1(θ) = I(0,∞)(θ). The results of Theorem 3.1 and Corollary
3.1 are much more general though. This includes numerous possible forms of π1. For
instance, in the univariate case d = 1, and with the restriction θ ∈ [−m,m], and the
two-point uniform boundary prior (i.e., π1(m) = π1(−m) = 1/2), expression (15) yields

m(B−A)/(B+A) with B = {(x+m)2 + u2}a+(k+5)/2
and A = {(x−m)2 +u2}a+(k+5)/2.

Although the focus of this paper is not on frequentist risk comparisons of point estimators,
we conclude with a robust dominance result illustrating how naturally a dominance finding
in the normal case can carry-over to dominance findings for scale mixture of normals.

Theorem 3.2. Consider model (11) and the problem of estimating θ based on (X,U) and
loss L((θ, η), θ̂). Suppose that θ̂1(X,U) dominates θ̂0(X,U) with smaller expected loss for
all (θ, η). Then, θ̂1(X,U) also dominates θ̂0(X,U) for all scale mixture of normals f as
long as the corresponding risks are finite.

Proof. We have the representation (X,U)|Z ∼ Nd(θ, (Z/η)Id) that permits to write the
difference in risks as equal to

EZ
{
EX,U |Z

(
L((θ, η), θ̂1(X,U))− L((θ, η), θ̂0(X,U))

)}
.

The result follows since the inner expectation is negative with probability one (with respect
to Z) by virtue of the dominance assumption in the normal case.

3.2 On a predictive density estimation representation and ro-
bustness property

We follow-up with a further robustness result applicable in the predictive density estima-
tion framework presented in part C. of the Introduction.

Reconsider model (1) and the problem of obtaining a predictive density for the con-
ditional density qθ,η(y|x, u), y ∈ Rd and assessing its efficiency with respect to Kullback-
Leibler loss (3). Now, for separable priors as in (12), we have the following robustness
property.

Theorem 3.3. Suppose
∫
R+
td+k/2+a f(t) dt < ∞. Assuming the posterior distribution

of θ, η is well-defined, Bayesian predictive densities under Kullback-Leibler loss, for prior
densities of the form θ, η ∼ π1(θ) η

a , are independent of the model density f and given by

q̂π1(y;x, u) =

∫
Rd(‖x− θ‖

2 + ‖u‖2 + ‖y − cθ‖2)−n π1(θ) dν(θ)∫
R2d(‖x− θ‖2 + ‖u‖2 + ‖y − cθ‖2)−n π1(θ) dν(θ) dy

(16)

with n = d+ k/2 + a+ 1 .
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Proof. From Aitchison (1975), we have

q̂π1(y;x, u) =

∫
Rd+1

qθ,η(y|x, u) π(θ, η|x, u) dν(θ) dη . (17)

As in Theorem 3.1, we re-express the posterior in terms of θ, τ , with τ = η(‖x − θ‖2 +
‖u‖2 + ‖y − cθ‖2), to obtain

q̂π1(y;x, u) ∝
∫
Rd+1

τ d+a+k/2f(τ)
π1(θ)

(‖x− θ‖2 + ‖u‖2 + ‖y − cθ‖2)n
dτ dν(θ) . (18)

This now yields the result as the term
∫
R+
τ d+a+k/2f(τ) dτ is constant and factors in both

the numerator and denominator of (16).

The minimum risk equivariant predictive density q̂π0 solution, previously stated in (5), is
obtained as a particular case of (16) with π1(θ) = 1, ν the Lebesgue measure on Rd, and
a = −1. It can be computed directly, or inferred from the normal case solution (e.g..,
Aitchison and Dunsmore, 1975; Kato, 2009). Illustrating the former, as a particular case

of priors (12) with π1 ≡ 1, we have setting B = ( ‖y−cx‖
2

(1+c2)‖u‖2 +1) and with the decomposition

‖x− θ‖2 + ‖y − cx‖2 = (1 + c2) (‖θ − (x+cy
1+c2

)‖2 + ‖y−cx‖2
(1+c2)2

):

q̂π0,a(y;x, u) ∝
∫
Rd

(‖x− θ‖2 + ‖u‖2 + ‖y − cθ‖2)−n dθ

∝ B−(d+k+2a+2)/2

∫
Rd
B−d/2

(
‖θ − (x+cy

1+c2
)‖2

B
+ 1

)−(d/2+(d+k+2a+2)/2)

dθ

∝ (
‖y − cx‖2

(1 + c2)‖u‖2
+ 1)−(d+k+2a+2)/2 ,

which is a Student Td(k+ 2a+ 2, cx,
√

(1+c2)‖u‖2
k+2a+2

) density, and which yields (5) indeed for

a = −1.

4 A Bayesian dominance result for scale mixture of

normals

We consider here Bayes predictive densities q̂π1 with respect to separable prior densities
θ, η ∼ π1(θ) η

−1 and comparisons with the particular case q̂mre = q̂π0 , which is a Bayes
predictive density for prior density θ, η ∼ η−1. The next result, stated a little more
generally, will imply that a dominance result which holds in the normal case f(t) = φ(t)
in (1) will necessarily hold simultaneously for all variance mixture of normals densities
with f(t) =

∫
R+
z−dφ(z−1t) dG(z), G being the c.d.f. of the mixing scale parameter.

Theorem 4.1. Consider model (1) and the problem of obtaining a predictive density for
Kullback-Leibler loss (3), based on (X,U), for the conditional density of Y given (X,U).
Then, subject to the finiteness of risks, if q̂1 dominates q̂0 in the normal case, then q̂1
dominates q̂0 simultaneously for all scale mixtures of normals.
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Proof. We have from (4), for the difference in risks,

RKL((θ, η), q̂0) − RKL((θ, η), q̂1)

= EZEX,U,Y |Z log

(
q̂1(Y ;X,U)

q̂0(Y ;X,U)

)
= EZ∆(θ, η, Z) ( say ),

with X,U, Y |Z normally distributed, as in (1) with f(t) = z−(2d+k)φ(z−1t), and Z having
c.d.f. G on (0,∞). Now, the assumptions imply that ∆(θ, η, Z) ≥ 0 for all θ ∈ Rd, η > 0
with probability one, with strict inequality for some (θ, η), thus establishing the result.

Corollary 4.1. Consider model (1) with a scale of mixtures of normals f , d ≥ 3, and
the problem of obtaining a predictive density, based on (X,U), of the conditional density
of Y given (X,U). Then, the Bayes predictive density estimator q̂πh with respect to the
harmonic prior density πh(θ, η) = η−1‖θ‖2−d dominates the MRE predictive density q̂π0
under Kullback-Leibler loss. Furthermore, the dominance holds simultaneously for all
scale mixture of normals f .

Proof. With q̂πh dominating q̂π0 in the normal case by virtue of Kato (2009), since both
q̂πh and q̂π0 do not vary with f by Theorem 3.3, the result is a direct consequence of
Theorem 4.1.
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