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Leaderless synchronization of heterogeneous oscillators by adaptively learning the group model Simone Baldi and Paolo Frasca

Abstract-This note addresses the problem of leaderless synchronization in a network of linear heterogeneous oscillators. It is well known that a synchronizing controller can be constructed when a common reference model is available to (some of) the agents. In this note, we show that synchronization can also be achieved without any access to such reference, by letting the agents cooperatively learn a suitable common model, which we refer to as group model. We show that there exists a group model that has the same structure as the oscillators and that the agents can learn its parameters and synchronize to it, by using a combination of consensus dynamics and adaptive regulation. This learning is even possible if the agents do not know their own dynamics, by using adaptive state observers. The distinguishing feature of this approach is making the agents collectively selforganize to their natural group model, instead of making them synchronize to an external reference.

Index Terms-Adaptive synchronization, heterogeneous oscillators, unknown dynamics.

I. INTRODUCTION

A N important problem in cooperative control is to achieve a common behavior for the entire network in a distributed way (i.e. using local information): this is the so-called synchronization problem [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF]- [START_REF] Kim | Adaptation and disturbance rejection for output synchronization of incrementally output-feedback passive systems[END_REF], which is sometimes referred to as the consensus problem when the behaviour to be achieved is a constant value [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]- [START_REF] Monshizadeh | Agreeing in networks: Unmatched disturbances, algebraic constraints and optimality[END_REF]. While static diffusive couplings between the agents are sufficient to ensure synchronization between homogeneous agents [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF], synchronizing heterogeneous agents is essentially harder and static couplings are not sufficient [START_REF] Seyboth | On robust synchronization of heterogeneous linear multiagent systems with static couplings[END_REF]. Crucially, the existence of a common reference model is necessary for linear output synchronization. If this common reference model is available to all agents, synchronization can be achieved under mild connectivity assumptions [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF], [START_REF] Kim | Output consensus of heterogeneous uncertain linear multi-agent systems[END_REF]. In some variations of the synchronization problem, the agents can also synchronize to a leader exosystem, provided at least some of the agents can access the exosystem signal. The idea behind this approach is that the agents that are not connected to the exosystem generating the reference signal will construct an observation of such signal in a distributed way, by coupling the so-called regulator equations with a distributed observer [START_REF] Su | Cooperative output regulation of linear multi-agent systems[END_REF]- [START_REF] Seyboth | Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization[END_REF]. A common assumption to all these works is that all the agents know the common dynamical model to which they need to synchronize: this assumption can be quite restrictive and, recently, the authors of [START_REF] Cai | The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems[END_REF] have relaxed it by showing that the common model can be known to some agents only, while being estimated in a distributed way by the others.

However, relevant questions remain open: what if none of the agents knows the common model? And pushing the boundary of uncertainty even further: what if the agents neither know their own dynamics? To the best of the authors' knowledge, the study of adaptive synchronization for heterogeneous uncertain systems is limited to special classes of systems/uncertainty, e.g. unknown control directions [START_REF] Chen | Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel Nussbaum-type function[END_REF], unknown leader parameters [START_REF] Su | Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader[END_REF], uncertain systems in output-feedback [START_REF] Ding | Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs[END_REF] or parametric strict-feedback [START_REF] Wang | Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances[END_REF] form. Leaderless consensus to a constant trajectory without resorting to any common model has been shown in classes of Euler-Lagrange [START_REF] Nuno | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] or passive systems [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF]Chap. 8]. However, synchronization to more complex trajectories (e.g. periodic) would necessarily require a leader for which a desired trajectory is explicitly defined.

In this note we answer, for a class of linear agents that are harmonic oscillators, two questions: how to achieve synchronization when a common model is unknown to all agents? How to achieve synchronization when even the agent dynamics are unknown? None of the aforementioned approaches answers these two questions.

Our analysis focuses on harmonic oscillators, i.e. secondorder point-mass systems exhibiting periodic motion. These systems have recently attracted increasing attention, as some of the application fields include resonance phenomena, acoustic vibrations, electrical networks, motion coordination [START_REF] Ren | Synchronization of coupled harmonic oscillators with local interaction[END_REF]- [START_REF] Zhang | Synchronization of discretely coupled harmonic oscillators using sampled position states only[END_REF]. From a theory point of view, harmonic oscillators are also suitable to effectively using adaptive control tools, since they guarantee persistence of excitation. As compared to literature on nonlinear oscillators, e.g. limit-cycle or phase oscillators [START_REF] Strogatz | Sync: The emerging Science of spontaneous Order. Hyperion[END_REF], [START_REF] Dorfler | Synchronization in complex networks of phase oscillators: A survey[END_REF], harmonic oscillators allow, via linear regulation theory, for necessary and sufficient conditions regarding the existence of a group model: in fact, being the group model a priori unknown, it is fundamental to study a setting whose solution is well posed, even in the presence of uncertainty. For example, in synchronization of nonlinear agents via nonlinear regulation theory [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], a solution may not exist if parametric uncertainty is too large.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider n linear heterogeneous harmonic oscillators, indexed by i ∈ {1, . . . , n}

ẋi = 0 1 -ω 2 i 0 A i x i + 0 1 B i =B u i , y i = [0 1] C i =C x i (1)
where for i ∈ {1, . . . , n} we let x i ∈ R 2 be the state, y i ∈ R be the measurable output, u i ∈ R be the input, and ω i > 0. Without loss of generality, the oscillators (1) have been taken in the chain-of-integrators canonical form. Note that the pairs (A i , B) and (C, A i ) in (1) are stabilizable and detectable, respectively, by construction. The oscillators in (1) can communicate with each other according to an undirected connected graph (N , E ) with node set N = {1, . . . , n} and edge set E ⊂ N × N : its (weighted) adjacency matrix is A = [a i j ], which satisfies the relations a ii = 0 and a i j = a ji > 0 if ( j, i) ∈ E ; its (weighted) Laplacian matrix is L = [l i j ], which satisfies the relations l ii = ∑ n j=1 a ji and l i j = -a ji if j = i. A control strategy u i is said to be a distributed control strategy if it respects the communication flows described by the graph (N , E ).

We let v ∈ R 2 be the state of a group model to be found in the form v = Sv [START_REF] Turci | Adaptive pinning control: A review of the fully decentralized strategy and its extensions[END_REF] and let e i ∈ R be the regulated output in the form

e i = y i -[0 1] R i =R v. ( 3 
)
We are now ready to formulate the following two problems:

Problem 1 (Synchronization with unknown group model).

Given the network (1), find a distributed controller u i such that all systems synchronize to an a priori unknown group model in the form (2), i.e. lim t→∞ e i = 0, ∀i ∈ {1, . . . , n}.

Problem 2 (Synchronization with unknown dynamics and group model). Given the network (1), find a distributed controller u i such that, without the knowledge of the system parameters in [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF], all systems synchronize to an a priori unknown group model (2), i.e. lim t→∞ e i = 0, ∀i ∈ {1, . . . , n}.

The following Lemmas will be used for stability analysis.

Lemma 1 (Stability under decaying disturbances [START_REF] Cai | The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems[END_REF]). Consider the following system

ẋ = Fx + F 1 (t)x + F 2 (t) (4) 
where F ∈ R n×n is Hurwitz, F 1 (t) and F 2 (t) are bounded and piecewise continuous for all t ≥ t 0 . If lim t→∞ F 1 , F 2 = 0 (exponentially), then lim t→∞ x = 0 (exponentially).

Lemma 2 (Synchronization under decaying disturbances).

Consider the perturbed leaderless synchronization dynamics

ẋi = Sx i + K n ∑ j=1 a i j (x j -x i ) + f i (t)x i ( 5 
)
where x i ∈ R m , S ∈ R m×m is marginally stable, K ∈ R m×m is such that (S -λ k K)
is Hurwitz for all non-zero eigenvalues λ k of the Laplacian L , and f i (t) is bounded, continuously differentiable, and converges to zero exponentially. The definition of the error

ε i = ∑ n j=1 a i j (x j -x i ) leads to the error dynamics ε = [(I n ⊗ S) + (L ⊗ K)] ε + F(t)ε ( 6 
)
where ε = [ε ′ 1 ε ′ 2 • • • ε ′ n ] ′ = (L ⊗ I m )x, x = [x ′ 1 x ′ 2 • • • x ′ n ] ′ , and F(t) = diag( f 1 I m , • • • , f n I m ). Then, lim t→∞ ε i = 0, i ∈ {1, . . . , n}.
Proof. This proof is provided because, although similar results have appeared in the leader-follower setting [START_REF] Cai | The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems[END_REF], we are not aware of a leaderless counterpart. From the explicit solution of ( 6), superposition of a marginally stable autonomous linear system and a time-varying autonomous system with exponentially decreasing state matrix, we know that ε is bounded. For undirected and connected graphs, there exists a unitary matrix U ∈ R n×n such that U ′ L U = diag(0, λ 2 , . . . , λ n ) Λ, where λ k , k = 2, . . . , n, are the non-zero eigenvalues of the Laplacian matrix L . Define the transformation ε

= (U ⊗ I m )ε with ε = [ε ′ 1 ε′ 2 . . . ε′ n ] ′
, where it can be checked that ε1 = 0 [START_REF] Li | Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint[END_REF]. Consider the positive definite Lyapunov function candidate

V = 1 2 ε T (I n ⊗ P)ε
with P a positive definite matrix to be chosen later. Using ( 6)

V =ε ′ (I n ⊗ P) [[(I n ⊗ S) + (L ⊗ K)] ε + F(t)ε]
where we have used the property

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. Using the transformation ε = (U ⊗ I m )ε we have V = ε′ [(I n ⊗ PS) + (Λ ⊗ PK)] ε + ε ′ (I n ⊗ P)Fε = n ∑ i=2 ε′ i P(S -λ k K) + (S -λ k K) ′ P εi Vi + ε ′ (I n ⊗ P)Fε F . (7) 
Being (S -λ k K) Hurwitz for all non-zero eigenvalues λ k of the Laplacian L , there exists a matrix P such that P(S -λ k K) + (S -λ k K) ′ P < 0 that is, Vi is negative semidefinite: also, F goes to zero exponentially (being ε bounded). After integrating [START_REF] Fax | Information flow and cooperative control of vehicle formations[END_REF] we have

V (t) ≤ V (0) + Ξ, where Ξ = t 0 | F(τ)| dτ is finite since the exponentially decaying term is integrable. Therefore, V (t) is bounded. Furthermore, we derive that V (t) is a uniformly continuous function of time because V (t) is a bounded function of time. In fact V =2 ε′ [(I n ⊗ PS) + (Λ ⊗ PK)] • [(I n ⊗ S) + (Λ ⊗ K)] ε + (U ′ ⊗ I m )Fε + Ḟ ( 8 
)
where all variables are bounded. Barbalat's lemma [29, Lemma 3.2.6] implies that V → 0 as t → ∞ and hence ε → 0.

III. SYNCHRONIZATION WITH UNKNOWN GROUP MODEL

If a group model S in (2) were known, a distributed control strategy could be constructed, provided there exist solutions (Π i , Γ i ), i ∈ {1, . . . , n} such that the following equations, commonly referred to as the regulator equations, hold

A i Π i + BΓ i = Π i S CΠ i = R. ( 9 
)
Then, synchronization would be guaranteed by the distributed control scheme [1, Theorem 5]

u i = -F i (z i -Π i ζ i ) + Γ i ζ i (10a) żi =A i z i + B i u i + L i (y i -Cz i ) (10b) ζi =Sζ i + K n ∑ j=1 a i j (ζ j -ζ i ) (10c) provided K, F i , L i are chosen such that S -λ k K A i -BF i A i -L i C (11)
are Hurwitz for all i ∈ {1, . . . , n} and all non-zero eigenvalues λ k of the Laplacian L associated to A .

Remark 1 (On the controller stability conditions). The controller [START_REF] Su | Cooperative output regulation of linear multi-agent systems[END_REF] comprises: a static observer-based controller (10a), a Luenberger observer (10b), and a distributed observer (10c) for reference generation: therefore, for every agent, the controller has four states. The Hurwitz properties of A i -BF i and of A i -L i C can be guaranteed by design in decentralized way. Instead, the Hurwitz condition of S -λ k K in principle re- quires some knowledge about the network. However, provided S is in the form of a harmonic oscillator, any K = κI with κ > 0 guarantees the condition, irrespective of the network topology. In what follows, we take K = κI.

Since we are assuming that all individual models are harmonic oscillators, it is natural to seek a group model that is a harmonic oscillator as well, namely

S = 0 1 -β 0 .
The following result ensures that a suitable harmonic oscillator is indeed a solution to the regulator equations.

Proposition 1 (Existence of a harmonic oscillator solution).

A solution to [START_REF] Kim | Output consensus of heterogeneous uncertain linear multi-agent systems[END_REF] for dynamics (1) is given by

S =   0 1 -1 n n ∑ ℓ=1 ω 2 ℓ 0   , Π i = Π = I, (12a) 
Γ i = 1 n n ∑ ℓ=1 (ω 2 i -ω 2 ℓ ) 0 . ( 12b 
)
Proof. The regulator equations ( 9) take the form

0 1 -ω 2 i 0 Π i + 0 1 Γ i = Π i S, 0 1 Π i = R.
If we assume the group model to be an oscillator, then, without loss of generality, Γ i = [γ 1 i γ 2 i ] and the first equation in (9) boils down to

(Π i ) 11 = (Π i ) 22 γ 1 i = -(Π i ) 11 (β -ω 2 i ) (Π i ) 21 = -β (Π i ) 12 γ 2 i = -(Π i ) 12 (β -ω 2 i
). If we choose Π i = I (from the second equation in ( 9)), then we obtain γ 2 i = 0 and γ

1 i = -β + ω 2 i . Let us now take β = 1 n ∑ n ℓ=1 ω 2 ℓ , i.e
. the group model is the average of the frequencies available in the network: this leads us to

γ 1 i = ω 2 i -1 n ∑ ℓ ω 2 ℓ .
Therefore, the solution to ( 9) is [START_REF] Seyboth | Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization[END_REF]. Proposition 1 suggests that the mean of the squared frequencies of oscillation gives a legitimate group model S. However, such an S is not directly known to the individual agents. For this reason, we propose to estimate S in a distributed way via consensus dynamics. More precisely, we replace each individual copy of S in (10c) by a local version

S i = 0 1 -β i 0 ( 13 
)
and update β i by the consensus dynamics

βi = n ∑ j=1 a i j (β j -β i ), β i (0) = ω 2 i . ( 14 
)
For an undirected connected graph, it is well known that ( 14) converges to β in [START_REF] Seyboth | Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization[END_REF] [30, Thm. 2.2].

The solution to Problem 1 arises from combining the distributed scheme [START_REF] Su | Cooperative output regulation of linear multi-agent systems[END_REF] with the consensus dynamics [START_REF] Chen | Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel Nussbaum-type function[END_REF], as formalized by the following result.

Theorem 1 (Group controller). Consider the network of harmonic oscillators (1) communicating according to an undirected connected graph (N , E ): then, the following distributed control strategy

u i = -F i (z i -ζ i ) + ω 2 i -β i 0 ζ i (15a) żi =A i z i + Bu i + L i (y i -Cz i ), z i (0) = 0 (15b) ζi = 0 1 -β i 0 ζ i + κ n ∑ j=1 a i j (ζ j -ζ i ), ζ i (0) = 0 (15c) βi = n ∑ j=1 a i j (β j -β i ), β i (0) = ω 2 i ( 15d 
)
achieves synchronization to the group model S as in [START_REF] Seyboth | Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization[END_REF], provided the Hurwitz conditions in [START_REF] Lu | Distributed feedforward approach to cooperative output regulation subject to communication delays and switching networks[END_REF]. In addition, we have lim t→∞ S i = S, i ∈ {1, . . . , n}.

Proof. Let us define Γi = ω 2 i -β i 0 to be an estimate of

Γ i = - ∑ℓ ω 2 ℓ n + ω 2 i 0 . Also, let us define F η i = Γ i -F i , Fη i = Γi -F i and Fη i = Γ i -F i -F η i .
Motivated by the manifold to which we want to converge, we define the coordinate change xi = x iv and zi = z iv, where v satisfies v = Sv. The dynamics of these two signals are

ẋi = A i x i + Bu i -Sv = A i x i + Bu i -A i v -BΓ i v = A i xi + B ũi żi = A i zi + B ũi + L i C( xi -zi )
where we have used the fact that e i = Cx i -Cv = C xi , and we have defined ũi

= u i -Γ i v = -F i zi + Fη i (ζ i -v) + Fη i v.
Therefore, it is convenient to write the following dynamics ẋi ẋiżi

= A i -BF i BF i 0 A i -L i C xi xi -zi + B 0 Fη i (ζ i -v) + B 0 Fη i v. ( 16 
)
Observe that from (15c) and defining āi j = κa i j we obtain

ζi = Sζ i + n ∑ j=1 āi j (ζ j -ζ i ) + (S i -S)ζ i .
The first two terms of the right-hand side constitute the synchronization dynamics of homogeneous oscillators, while the third one is a disturbance that converges to zero exponentially, because lim t→∞ β i = β and lim t→∞ S i = S exponentially for all i ∈ {1, . . . , n}. Thus, Lemma 2 allows to conclude lim t→∞ ζ i -v = 0, i ∈ {1, . . ., n}. Finally, the term Fη i goes to zero exponentially. By looking at [START_REF] Ding | Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs[END_REF], we notice that the Hurwitz properties of A i -BF i and of A i -L i C make the system matrix of ( 16) Hurwitz and, in addition, the system is driven by decaying disturbances: therefore, Lemma 1 guarantees that xi converges to zero, from which we obtain convergence of e i to zero. This concludes the proof.

Remark 2 (Extension to chains-of-integrators). Even though this note focuses on harmonic oscillators, we can show that the proposed results directly extend to the wider class of systems in the chain-of-integrators canonical form, resulting in

Y i (s) U i (s) = 1 s m + a 1 i s m-1 + . . . + a m i . ( 17 
)
For all systems in the form [START_REF] Wang | Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances[END_REF], a possible solution to [START_REF] Kim | Output consensus of heterogeneous uncertain linear multi-agent systems[END_REF] is

S = 0 I m-1 -1 n ∑ i a m i . . . -1 n ∑ i a 1 i , Π i = I (18a) Γ i = 1 n ∑ n ℓ=1 (a m i -a m ℓ ) . . . 1 n ∑ n ℓ=1 (a 1 i -a 1 ℓ ) . ( 18b 
)
The extension to Theorem 1 follows directly.

IV. SYNCHRONIZATION WITH UNKNOWN DYNAMICS AND GROUP MODEL

The implementation of ( 15) requires the knowledge of the parameter ω i , i.e. of the agent dynamics. In the following, we would like to remove this assumption and endow the agents with the ability to estimate it. To this purpose, we propose the following adaptive state observer

żi = 0 1 -ωi 0 Âi z i + 0 1 B u i + l 1 i (t) l 2 i (t) L i (y i -x2 i ) x2 i = 0 1 z i ( 19 
)
where ωi is the estimate of ωi =ω 2 i and L i (t) must be such that Âi (t) -L i (t)C is Hurwitz at every time instant.

In order to produce the estimate ωi , we derive the following parametric model by exploiting the chain-of-integrators form of the oscillators

s 2 s 2 + λ 1 s + λ 2 x 2 i - s s 2 + λ 1 s + λ 2 u i ξ i = ω 2 i -1 s 2 + λ 1 s + λ 2 x 2 i φ i (20)
where the state has been decomposed as x i = x 1 i x 2 i , and λ 1 , λ 2 > 0 are such that s 2 + λ 1 s + λ 2 is a Hurwitz polynomial. Similarly to [START_REF] Ioannou | Robust Adaptive Control[END_REF]Sect. 4.2], we have used a Laplace streamlined notation to indicate the filtering of the signals x 2 i and u i . The parametric model ( 20) is a linear-inthe-parameter model for which the following gradient-based adaptation law [START_REF] Ioannou | Robust Adaptive Control[END_REF]Sect. 5.3] 

can be designed ωi = Pro j[γ(ξ i -ωi φ i )φ i ], ωi (0) = ω0 i > 0 (21) =    γ(ξ i -ωi φ i )φ i if ωi < 0 or if ωi = 0 and (ξ i -ωi φ i )φ i ≥ 0 0 otherwise
where γ > 0 is an adaptive gain, ω0 i is an initial estimate of the squared frequency ω 2 i , ωi is the on-line estimate of ωi and Pro j [•] is the projection operator to keep ωi > 0. In addition, the following proposition gives another suitable group model (2) for the network.

Proposition 2 (Alternate harmonic oscillator solution). A solution to [START_REF] Kim | Output consensus of heterogeneous uncertain linear multi-agent systems[END_REF] is given by

S = 0 1 -1 n ∑ n ℓ=1 ω0 ℓ 0 , Π i = Π = I, ( 22a 
)
Γ i = 1 n n ∑ ℓ=1 ( ω0 i -ωℓ ) 0 (22b)
Proof. The proof follows the same steps as Proposition 1.

Notice that, differently from ( 12), the group model S is now chosen to be the average of the initial estimates ω0 i of the squared frequencies in the network. It is important to mention that, even in the presence of uncertain dynamics, the solution ( 22) is always well defined when ω0 i , ωi > 0, i ∈ {1, . . . , n}.

The solution to Problem 2 arises from combining the distributed scheme [START_REF] Su | Cooperative output regulation of linear multi-agent systems[END_REF] with the adaptive state observer [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF] and adaptive law [START_REF] Liu | Design of coupled harmonic oscillators for synchronization and coordination[END_REF], as formalized by the following result.

Theorem 2 (Group controller with unknown dynamics). Consider the network of harmonic oscillators (1) interconnected according to an undirected connected graph (N , E ): then, the following distributed control strategy

u i = -F i (z i -ζ i ) + ωi -β i 0 ζ i (23a) żi = Âi z i + Bu i + L i (y i -Cz i ), z i (0) = 0 (23b) ζi = 0 1 -β i 0 ζ i + κ n ∑ j=1 a i j (ζ j -ζ i ), ζ i (0) = 0 (23c) βi = n ∑ j=1 a i j (β j -β i ), β i (0) = ω0 i (23d) ωi =Pro j[γ(ξ i -ωi φ i )φ i ], ωi (0) = ω0 i , ( 23e 
)
achieves synchronization to an a priori unknown group model S, with S as in [START_REF] Tuna | Synchronization of harmonic oscillators under restorative coupling with applications in electrical networks[END_REF], provided F i , L i (which can be time-varying) are chosen such that

Âi -BF i Âi -L i C
are Hurwitz at every time instant. In addition, we have lim t→∞ S i = S, i ∈ {1, . . . , n}, with S as in [START_REF] Tuna | Synchronization of harmonic oscillators under restorative coupling with applications in electrical networks[END_REF].

Proof. Similarly to the derivation of Theorem 1, we can find the dynamics of xi = x iv and zi = z iv, which are

ẋi = A i xi + B ũi żi = Âi zi + B ũi + L i C( xi -zi ) + Ãi v
where Ãi = Âi -A i : also, we have used the fact that e i = Cx i -Cv = C xi , and we have defined ũi

= -F i zi + Fη i (ζ i -v) + Fη i v.
This leads to the following dynamics ẋi ẋi

-żi = Âi -BF i BF i 0 Âi -L i C xi xi -zi + -Ãi xi + B Fη i (ζ i -v) + B Fη i v -Ãi x i . (24) 
In addition, it is convenient to write the dynamics of

z i -ζ i żi -ζi = ( Âi -BF i )(z i -ζ i ) + L i C(x i -z i ) -κ n ∑ j=1 a i j (ζ j -ζ i ). (25) 
By observing the terms on the right-hand side of (25), we have that lim t→∞ C(x iz i ) = 0 (because a well-known result of the adaptive observer [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF] is that the output observation error y i -x2 i converges to zero for t → ∞ [29, Thm. 5.3.1]) and lim t→∞ ∑ n j=1 a i j (ζ j -ζ i ) = 0 (by applying Lemma 2 as in the proof of Theorem 1). Therefore, being Âi -BF i Hurwitz, we have that the system matrix of ( 25) is Hurwitz. Therefore, similarly to (4), we have stable dynamics driven by decaying disturbances. From Lemma 1 we obtain convergence to zero of the state of (25), i.e. lim t→∞ z i -ζ i = 0. Now, by looking at (23), we have that u i is the sum of two terms: a vanishing one (z i -ζ i ) and a sinusoidal one (ζ i ). It is well known that the state of a harmonic oscillator is persistently exciting: using standard properties on persistently exciting signals [START_REF] Ioannou | Robust Adaptive Control[END_REF]Lemma 4.8.3], we have that u i is sufficiently rich of order 2 [29, Def. 5.2.1].

An adaptive observer with sufficiently rich inputs guarantees that the state observation error x iz i and the parameter error ωiωi converge to zero exponentially fast [START_REF] Ioannou | Robust Adaptive Control[END_REF]Thm. 5.3.1]. The last convergence implies that the term Ãi in (24) also converges to zero exponentially fast. At this point we are in a similar situation as in Theorem 1, with an asymptotically stable system affected by decaying disturbances: therefore, Lemma 1 guarantees that xi converges to zero, from which we obtain convergence of e i to zero. This concludes the proof.

Remark 3 (Actual ωi =ω 2

i and estimated ωi ). The difference between the consensus dynamics in (23d) and those in (15d) is the initial condition, which reflects the a priori knowledge. In fact, in (15d) we can use the known ω 2 i as initial conditions, while in (23d), being the actual dynamics unknown, we can use only their initial estimates ω0 i . Despite unknown dynamics, a solution [START_REF] Tuna | Synchronization of harmonic oscillators under restorative coupling with applications in electrical networks[END_REF] is always guaranteed to exist.

A. Average model as group model

It must be noted that the solution to Problem 2 presented so far in this section does not guarantee the group model to be the average of the actual individuals models, as instead was the case in our solution to Problem 1. In other words, S in (12) (average of the actual individuals models) might be different from S in [START_REF] Tuna | Synchronization of harmonic oscillators under restorative coupling with applications in electrical networks[END_REF] (average of the estimated individuals models). With the pursuit of bridging this gap, we now provide an extension to our framework [START_REF] Song | Leader-following synchronization of coupled homogeneous and heterogeneous harmonic oscillators based on relative position measurements[END_REF] that is able to converge to a group model S, with S as in [START_REF] Seyboth | Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization[END_REF], i.e. being the average of the actual individuals models. We propose the following adaptive controller

u i = -F i (z i -ζ i ) + ωi -β i 0 ζ i (26a) żi = Âi z i + Bu i + L i (y i -Cz i ), z i (0) = 0 (26b) ζi = 0 1 -β i 0 ζ i + κ n ∑ j=1 a i j (ζ j -ζ i ), ζ i (0) = 0 (26c) βi = ωi + n ∑ j=1 a i j (β j -β i ), β i (0) = ω0 i (26d) ωi =Pro j[-γ(R ω ωi + Q ω )], ωi (0) = ω0 i (26e) Ṙω = -µR ω + φ 2 i , R ω (0) = 0 (26f) Qω = -µQ ω + φ i ξ i , Q ω (0) = 0, (26g)
with γ, µ > 0 being adaptive gains, and provided the Hurwitz conditions on Âi -BF i and Âi -L i C. The essential differences with respect to [START_REF] Song | Leader-following synchronization of coupled homogeneous and heterogeneous harmonic oscillators based on relative position measurements[END_REF] lie in the modified consensus (26d) and in the estimation scheme (26e)-(26g). The former exploits the availability of ωi in order for β i to converge to the actual average of squared frequencies, while the latter is a gradientbased estimation with integral cost [START_REF] Ioannou | Robust Adaptive Control[END_REF]Thm. 4.3.3].

Remark 4 (Convergence proof for [START_REF] Dorfler | Synchronization in complex networks of phase oscillators: A survey[END_REF]). As compared to [START_REF] Song | Leader-following synchronization of coupled homogeneous and heterogeneous harmonic oscillators based on relative position measurements[END_REF], the additional difficulty in the analysis of [START_REF] Dorfler | Synchronization in complex networks of phase oscillators: A survey[END_REF] Despite the difficulty in generalizing the algorithm ( 26), numerical experiments (cf. Sect. V) suggest that the combination of (26a)-( 26d) and (23e) (i.e. the modified consensus with the standard gradient-based estimation) is able to converge to the actual average of squared frequencies.

V. NUMERICAL EXAMPLES

ω 2 i ω0 i x 0 ζ i #1 1 1.5 [ 1 -1]' [0 -1]' #2 5 3 [ 1 1]' [0 1]' #3 0.5 1 [-1 -1]' [0 -1]' #4 4 5 [-1 0]' [0 0]' #5 2 1.5 [ 0 -1]' [0 -1]' #6 6 4 [ 1 0]' [0 0]' #7 3 2 [-1 1]' [0 1]'
Fig. 1: The undirected communication graph Simulations are carried out on the undirected graph shown in Fig. 1, where the table reports the squared frequencies ω 2 i of each oscillators and the initial estimates ω0 i (the latter to be used for the case in which ωi = ω 2 i is unknown). The other parameters are: F i are chosen such that A i -BF i (or Âi -BF i ) have poles in -0.75 and -1.5; L i are chosen such that A i -L i C (or Âi -L i C) have poles in -2.25 and -4.5; κ = 3 for all i, z i (0) = 0 for all i, λ 1 = 2, λ 2 = 1 and γ = 100.

On this set-up, we simulated the evolution of the controlled dynamics by using controllers ( 15), ( 23) and ( 26). In case ω 2 i are known, the outputs y i and inputs u i resulting from [START_REF] Su | Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader[END_REF] are shown in Fig. 2: synchronization of the outputs to the same frequency is achieved, whereas it can be noted that each agent has a different input in view of the heterogeneous dynamics. The frequency to which the systems converge is defined by the convergence of β i , as shown in Fig. 3. In case ω 2 i are unknown, they cannot be used for control design and ( 23) is employed. The resulting outputs y i and inputs u i are shown in Fig. 4. The frequency to which all agents synchronize depends upon the consensus dynamics over ω0 i as shown in Fig. 5: therefore the synchronizing frequency is not necessarily the same as in the previous case (around 2.57 in Fig. 5 and around 3.07 in Fig. 3). In addition, Fig. 5 shows that the estimates ωi converge to ω 2 i asymptotically. Finally, as anticipated after Remark 4, Figs. 6 and7 show the effectiveness of (26a)-(26d) and (23e) in practice. Note the convergence of β i to a value around 3.07, exactly as in Fig. 3: therefore, convergence occurs to a group model being the average of the actual individuals models.

VI. CONCLUSION

In order to construct a distributed controller to make heterogeneous agents synchronize to a common trajectory, prior works postulated that a reference model be known to at least some agents. The goal of this work was to lift this assumption, by letting the agents cooperatively learn the parameters of a common model (the group model) that are initially unknown to all agents. We have also shown that even when the agents do not know the parameters of their own dynamics, the group model exists and the agents can cooperatively learn its parameters and synchronize to its dynamics. Future work can address some of the restrictive assumptions of our results. First, in our learning scheme the observer gain κ is common to all systems, in line with the literature on synchronization for heterogeneous systems [START_REF] Cai | The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems[END_REF]: a relevant open problem is to design or adapt such gain independently for each agent, similarly to what can be done for homogeneous agents [START_REF] Turci | Adaptive pinning control: A review of the fully decentralized strategy and its extensions[END_REF]. Second, our work focused on harmonic oscillators as a specific relevant class of (heterogeneous) systems, but we are confident that its ideas can be extended to more general systems. Considering harmonic oscillators has allowed us to derive the structure of the group model analytically and just leave to the agents the task of learning its parameters. Such a structural knowledge, which in the linear case is justified by the fact that the regulation problem typically considers a marginally stable exosystem [START_REF] Francis | The linear multivariable regulator problem[END_REF], might be restrictive for more general classes of systems. In future work, it would be interesting to study whether the group model structure can be learned by the agents themselves, e.g. via neural-network approaches.
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 67 Fig. 6: Unknown ω 2 i , average model: outputs y i and inputs u i .