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costs in financial markets with jumps
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Abstract

We study the problem of option replication under constant proportional transaction
costs in models where stochastic volatility and jumps are combined to capture the mar-
ket’s important features. Assuming some mild condition on the jump size distribution we
show that transaction costs can be approximately compensated by applying the Leland
adjusting volatility principle and the asymptotic property of the hedging error due to dis-
crete readjustments is characterized. In particular, the jump risk can be approximately
eliminated and the results established in continuous diffusion models are recovered. The
study also confirms that for the case of constant trading cost rate, the approximate results
established by Kabanov and Safarian [22] and by Pergamenschikov [37] are still valid in
jump-diffusion models with deterministic volatility using the classical Leland parameter in
[25].

Key words: transaction costs; Leland strategy; jump models; stochastic volatility; approxi-
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1 Introduction

Many suggested mathematical models for stock prices have been trying to capture important
markets features, e.g. leptokurtic feature, volatility clustering effect, implied volatility smile.
These market properties are tractable in stochastic volatility models. However, diffusion-based
stochastic volatility models assume that the market volatility can fluctuate autonomously but
can not change suddenly and as a result, they could not take into account sudden and unpre-
dictable market changes. Hence, in more realistic settings (extensions of the famous Black-
Scholes framework), the continuity assumption of stock price should be relaxed to account
for sudden market shocks due to good or bad market news. These sudden events can arrive
according to a Poisson process. The change in the asset price right after the market receives
a (good/bad) news can be described by a jump size and between two consecutive jump times,
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the asset price follows a geometric Brownian motion as in the classical Black-Scholes mod-
els. Such a combination is called a jump-diffusion model. As shown in [24], jump-diffusion
models not only fit the data better than the classical geometric Brownian motion, but also
well reproduce the leptokurtic feature of return distributions. Moreover, [9] argues that the
presence of jumps in the asset price can be recognized as the presence of participants in the
option market. See [9, 38, 24] and the references therein for detailed discussions.

Note that in complete diffusion models, options can be completely replicated using the
delta strategy which is adjusted continuously. However, it is not the case for models with
jumps. In fact, the jump risk can not be released completely even under continuous time
strategies and the only way to hedge perfectly a Call option against the jump risk is to buy
and hold the underlying asset. In other words, in the presence of jumps, the conception
of replication does not indicate a right framework for risk management and hedging like in
diffusion-based complete market models where the Black-Scholes theory plays a central role.

The situation becomes more challenging if one takes transaction costs into account. Such
a consideration is realistic and has been attractive to researchers for the last two decades.
Intuitively, in the presence of transaction costs and/or jumps in the asset price, the option is
more risky and should be evaluated at higher price than that in the absence of these risks.
However, a more expensive option price would suggest an increase in its volatility values. This
is the essential intuition behind the Leland algorithm. In particular, to compensate trading
costs in the absence of jumps, Leland [25] proposed a modified version of the well-known
Black-Scholes PDE where the volatility is artificially increased as

σ̂2 = σ2 + σκn1/2−α√8/π, (1.1)

where n is the number of revisions and κn−α, 0 ≤ α ≤ 1/2 is the cost rate. He claimed that
the option payoff h(S1) (maturity T = 1) can be asymptotically replicated by V n

1 , the terminal
portfolio value of the discrete delta strategy, as the hedging time distances become small for
α = 0 (constant rate) or α = 1/2. Kabanov and Safarian [22] showed later that the Leland
statement for constant transaction cost is not mathematically correct and the hedging error
in fact converges to a non-zero limit min(S1,K)− J(S1) as the portfolio is frequently revised.
Here J(S1) is the limit of cumulative costs. The rate of convergence and the asymptotic
distribution of the corrected replication error was then investigated in [37]. In particular, the
latter paper showed that the sequence

n1/4(V n
1 − h(S1)−min(S1,K) + κJ(S1)) (1.2)

weakly converges to a mixed Gaussian variable as n → ∞. This result has initiated many
further studies in different directions: general payoffs with non-uniform readjustments [27,
28, 11], local volatility by [26], trading costs based on the traded number of asset by [12].
Recently, [33] has showed that the increasing volatility principle is still helpful for controlling
losses caused by trading costs which are proportional to the trading volume in stochastic
volatility frameworks with a simpler form for the adjusted volatility. Furthermore, the latter
paper also pointed out a connection to asset hedging in high frequency market, where the form
of bid-ask price could be an essential factor for deciding laws of trading costs. We refer the
reader to the papers mentioned above and the references therein for more detailed discussions.

The problem of hedging under transaction costs has been developed in various directions.
In the context of small proportional transaction costs, [19, 1, 17, 18] apply a sequence of
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stopping times as rebalancing dates to study the hedging error. As discussed in [8], non
of these strategies outperform the others. The latter paper [8] suggests a class of continuous
control strategies that lead to finite transaction costs and provides a condition under which the
option payoff is asymptotically replicated. However, as mentioned above continuous trading
strategies cannot be used in practice. In general, trading activities are only possible in a
specific period of day. Therefore, discrete time strategies with periodically rebalancing dates
are of highly important relevance.

In this paper, we contribute to the field of approximate hedging under transaction costs
using Leland’s algorithm by allowing for jumps. To our best knowledge, we are the first to
study the approximate hedging problem under trading costs for models with jumps, using a
discrete time strategy resulting from the Black-Schole pricing PDE with a modified volatility.
The aim of the present note is to build a bridge from the existing results in continuous diffusion
models studied by e.g. [22, 37, 27, 28, 11, 33, 34] to discontinuous models where jumps are
allowed in the asset price and/or volatility. In fact, we try to capture not only the dependence
structure (modelled by stochastic volatility) but also short term behaviors of the stock price
due to sudden market changes1. As stochastic volatility models well complement models with
jumps [24], this combination leads to a realistic and general model of financial markets.

As mentioned above, the jump risk in the hedging problem is challenging to handle and
can not be released completely even in simple framework e.g. jump-diffusion models where
continuous adjustments are possible. The contribution of this paper is twofold. First, we show
that impact of jumps can be partially negligible under some mild condition on jump sizes. In
fact, we prove that the asymptotic distribution of the hedging error is independent of jumps
and consistent with the result of pure diffusion models established in [33]. The same is true
when jumps are allowed in both the asset price and its volatility. Such general frameworks
provide some possibility to explain large movements in volatility which are usually observed
during crisis periods [14, 13]. As the second contribution, we show that the Kabanov-Safarian-
Pergamenshchikov results in [22, 37] also hold for jump-diffusion settings. We finally remark
that extensions of these results to the case of general convex payoffs that satisfy some decaying
assumption [27, 28, 11] are feasible.

The remainder of this paper is organized as follows. We shortly present the key idea behind
the Leland algorithm in Section 2. Section 3 is devoted to formulate the model and present
our main results. General stochastic volatility models with jumps are discussed in Section 4.
We consider a special case when volatility is deterministic in Section 5 and present a numerical
example in Section 6. Proof of main results are reported in Section 7. Some useful Lemmas
can be found in the Appendix.

2 Leland’s algorithm with a modified volatility

To explain the key idea in the Leland’s algorithm we assume that the stock price is given
by dSt = σStdWt in the hedging interval [0, 1] and the interest rate is zero so that S is a
martingale under the risk-neutral measure. Under the presence of proportional transaction
costs, it was proposed by [25] then generalized by [22, 23] that the volatility should be adjusted
as in equation (1.1) in order to create an artificial increase in the option price C(t, St) to

1This fact partially explains why jump-diffusion models are, in general, considered as a good choice, especially
in short-term situations.
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compensate possible trading fees. This form is inspired from the observation that the trading
cost κnSti |Cx(ti, Sti)−Cx(ti−1, Sti−1

)| in the interval of time [ti−1, ti] can be approximated by

κnSti−1
Cxx(ti−1, Sti−1

)|∆Sti | ≈ κnσS
2
ti−1

Cxx(ti−1, Sti−1
)E|∆Wti

|. (2.1)

For simplicity, we assume that the portfolio is revised at uniform grid ti = i/n, i = 1, . . . , n
of the option life interval [0, 1]. Taking into account that E|∆Wti

/(∆ti)
1/2| =

√
2/π one

approximates the last term in (2.1) by κnσ
√

2/π(∆ti)
1/2S2

ti−1
Cxx(ti−1, Sti−1

), which is the

cost paid for the portfolio readjustment in [ti−1, ti]. Hence, by the standard argument of the
Black-Scholes theory, the option price inclusive of trading cost should satisfy

Ct(ti−1, Sti−1
)∆ti +

1

2
σ2S2

ti−1
Cxx(ti−1, Sti−1

)∆ti + κnσ
√

2/π(∆ti)
1/2S2

ti−1
Cxx(ti−1, Sti−1

) = 0.

Since ∆ti = 1/n, one deduces that

Ct(ti−1, Sti−1
) +

1

2

(
σ2 + κnσ

√
n8/π

)
S2
ti−1

Cxx(ti−1, Sti−1
) = 0,

which implies that the option price inclusive trading cost should be evaluated by the following
modified-volatility version of the Black-Scholes PDE

Ĉt(t, x) +
1

2
σ̂2x2Ĉxx(t, x) = 0, Ĉ(1, x) = max(x−K, 0), (2.2)

where the adjusted volatility σ̂ is defined by (1.1).

(a) Mean-variance (b) Empirical density

Figure 1: Mean-variance of Leland strategy and its normalized corrected hedging error

The simulation results for the profit/loss V n
1 − h(S1) in Figure 1a suggest that in the

presence of transaction costs, Leland strategy outperforms 2 the Black-Scholes discrete delta

2 A strategy is better than the others if it offers the lowest risk for a given level of returns. In the literature,
the expectation replication error, also known as the expectation profit and loss, seems to be a good return
measure while the variance of replication error is the most popular risk measure. A highly-tolerant hedger
would prefer a position with high mean replication error and a high risk, whereas a highly risk-averse hedger
would prefer a point with a low risk and low mean replication.
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strategy even when they starts with the same initial cost. The empirical distribution and
density of the normalized corrected hedging error in the Pergamenschikov’s theorem [37] (see
eq.(1.2)) are shown in Figure 1b. It turns out that the corrected hedging empirically converges
to a centered variable that likely behaves as a normal distribution but with an asymmetric
tail.

As seen above, the Leland method is important for practical purposes since it requires only
a small change in parameter of the well-known Black-Scholes framework which is widely used
in practice. However, when volatility is random, say σ = σ(yt) where yt is another random
process, the strategy is no longer available from the Cauchy problem (2.2). In fact, pricing and
hedging in such stochastic volatility (SV) contexts are intrinsically different from the Leland
model and even in the absence of trading costs, the option price strongly depends on volatility
level and future information of the volatility process y. To see this issue, let us assume that
y is a Markov process. By the iterative property of expectation, the option price exclusive of
trading costs is then given by

C(t, x, y) = E[CBS(t, x;K,σ)|yt = y], (2.3)

where K is the strike price, CBS is the Black-Scholes option price functional and σ is the
averaged volatility defined by

σ2 =
1

1− t

∫ 1

t
σ2(ys)ds.

It means that the option price is the average of Black-Scholes price on all possible future
trajectories of the volatility process y, which in reality cannot be observed directly. Thus,
the option price and hence hedging strategy in SV models are very complicated and usually
studied via asymptotic analysis.

Now let us now turn our attention to the presence of transaction costs. The above dis-
cussion has emphasized that the well-known form (1.1) for adjusted volatility in Leland’s
algorithm is no longer helpful from a practical point of view. Furthermore, even for local
volatility models in which σ only depends on time and the spot price S, it is technically diffi-
cult to show the existence of a solution to (2.2) since the differential operator is not uniformly
parabolic. In addition, estimates for derivatives of the option price, which are essential for
approximation analysis, are not easy to achieve, see e.g. [27].

Fortunately, a deep study on the approximation of the hedging error shows that the limit
of the replication error does not strongly depend on the form of adjusted volatility but only
on the last term κn

√
n whenever the latter product diverges to infinity. This important

observation means that a simpler form %κn
√
n with some constant %, can be used to obtain

the same asymptotic property for the hedging error. This modification is fully investigated for
SV models in [33, 32]. Note that the option price and hedging strategy can be easily obtained
if the new form is applied for the Cauchy problem (2.2) while it is impossible in practice for
the classical one (1.1). In this paper we show that this suggestion is still useful even when
jumps in the asset price and/or in stochastic volatility are taken into account.

We conclude the section by mentioning some important features of hedging in jumps mod-
els. First, jump risks cannot be covered by simply using the classical delta strategy even with
a continuous-time adjustment policy. Second, if jumps are allowed in the stock price then
one should distinguish two types of hedging errors: one is due to the market incompleteness
concerning jumps and the other one is due to the discrete nature of the hedging portfolio.
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These two types of hedging errors have different behaviors. The literature of discrete hedging
with jumps is vast and we only mention to [40, 39] for recent achievements. However, none of
these mentioned papers discuss about trading costs.

3 Model with jumps and main results

3.1 The market model

Let
(

Ω,F1, (Ft)0≤t≤1 ,P
)

be the standard filtered probability space with two standard inde-

pendent (Ft)0≤t≤1 adapted Wiener processes (W
(1)
t ) and (W

(2)
t ) taking values in R. Consider

a financial market that consists of one non-risky asset set as the numéraire and the risky one
(e.g. stock) St defined as{

dSt = St−
(
btdt+ σ (yt) dW

(1)
t + dζt

)
,

dyt = α1 (t, yt) dt+ α2 (t, yt) dW
(2)
t ,

(3.1)

where St− = lims↑t Ss and the jump Lévy process is defined as

ζt = x ∗ (J − ν)t, (3.2)

which is independent of the Wiener processes (W
(1)
t ) and (W

(2)
t ). Here J(dt,dx) is the jump

random measure of ζ having the deterministic compensator ν(dt,dx) = dtΠ(dx), where Π(·)
is the Lévy measure defined for any Borel set A ⊆ R∗ = R \ {0} as

Π(A) = E
∑

0≤s≤1

1{∆ζs∈A} and ∆ζs = ζs − ζs−. (3.3)

In order for St to be positive we assume that Π(]−∞,−1]) = 0. Moreover, we assume that

Π(x2) =

∫
R∗
z2Π(dz) <∞. (3.4)

In the sequel we use the notation Π(f) =
∫
R∗
f(z)Π(dz). We recall that the symbol ∗ means

the stochastic integral, i.e. for any t > 0 and any function h : [0, t]× R→ R,

h ∗ (J − ν)t =

∫ t

0

∫
R∗
h(u, x) dJ̃(du , dx) , J̃(dt , dx) = (J − ν)(dt ,dx).

We assume that the coefficients αi, i = 1, 2 are locally Lipschitz and linearly growth functions,
which provides the existence of the unique strong solution y to the second equation [16]. More-

over, we assume that the processes (W
(1)
t )0≤t≤1, (W

(2)
t )0≤t≤1 and (ζt)0≤t≤1 are independent.

Note that, if the volatility function σ(·) is constant, we obtain a Lévy financial market, which
is very popular in the finance, see e.g. [21] and the references therein. We assume further that
∆ζt > −1, i.e. Π(−∞ , −1]) = 0. So, in this case using the Doléans-Dade exponent we can
represent the price process as

St = S0 exp

{∫ t

0
b̌u du+

∫ t

0
σ (ys) dW (1)

s + ζ̌t

}
, (3.5)
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where ζ̌t = ln(1 + x) ∗ (J − ν)t and b̌t = bt − σ2(yt)/2 + Π(ln(1 + x)− x).
Note that the Lévy measure defined in (3.3) may be infinite, i.e. Π(R∗) = +∞. If

θ = Π(R∗) <∞, we can represent the jump process in (3.1) as

ζt =

Nt∑
j=1

ξj − θEξ1 t, (3.6)

where (Nt)t≥0 is a Poisson process with intensity parameter θ and (ξj)j≥1 are i.i.d. random
variables taking values in (−1,+∞). We assume further that the Poisson process Nt and the
jumps sizes (ξj)j≥1 are independent. In this case, the stock price can be expressed as

St = S0 exp


∫ t

0
b̌u du+

∫ t

0
σ (ys) dW (1)

s +

Nt∑
j=1

ln (1 + ξj)

 , (3.7)

where b̌t = bt − σ2(yt)/2− θE ξ1.

Remark 1. The drift bt plays no role in approximation. In fact, our asymptotic results are
valid for any bt satisfying sup0≤t≤1 E|bt| <∞.

Remark 2. In this paper we will not discuss about the problem of change of measure and
the jump risk but we accept the free-risk assumption of asset dynamics as the starting point.
Clearly, a jump-diffusion setting leads to an incomplete market, which is also an important
feature of stochastic volatility settings. Hence, there are many ways to choose the pricing
measure via Girsanov’s technique. Such a procedure makes an essential change not only on
the diffusion but also on the jump part of the asset dynamics [9, 31]. In [24], an expectation
equilibrium argument is used to obtain a simple transform from the original physical probability
to a risk-neutral probability for which many assets (bonds, stocks, derivatives on stocks) can
be simultaneously priced in the same framework.

3.2 Assumptions and examples

The following condition on the jump sizes is accepted in our consideration:
(C1) The Lévy measure of jump sizes satisfies

Π(R∗) <∞ and

∫
(−1,0]

(1 + z)−1Π(dz) <∞.

The first integrability condition is nothing than the condition of finite variance for the jump
size distribution. The second one is equivalent to E(1 + ξ)−1 <∞. These conditions are not
too strong and automatically fulfilled in Merton jump-diffusion models [31] where the jump
size distribution is assumed to be log-normal. In [24] within an equilibrium-based setting,
log-exponential distributions are suggested to achieve convenient features in an analytical
calculation. Note that this family of jump size distributions also satisfies Condition (C1).

Let us turn our attention to volatility assumptions. Following [33] we assume that the
volatility process satisfies the integrable condition.
(C2) σ is a twice continuously differentiable function satisfying

0 < σmin ≤ inf
y∈R

σ(y) and sup
0≤t≤1

E max{σ(yt), |σ′(yt)|} <∞.
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In fact, Condition (C2) is fulfilled for almost widely used stochastic volatility models, see [33]
for more discussions.

Remark 3. Remark that in the present setting, the combination of stochastic volatility and
jumps means that the asset price is not a Lévy process but a semi-martingale. As mentioned in
[33], finite moments of the asset process in SV models are not guaranteed in general, see [2, 29].
This crucial feature prevent us from making an L2-based approximation as in deterministic
volatility models [22, 27, 28]. Therefore, for the approximation procedures below we follow
the approach in [33, 34] which is based on a truncation technique. The convergence results
obtained in what follows are only achieved in probability.

We conclude this subsection with some well-known stochastic volatility models with jumps,
see [9] and Section 4 for more examples.

Bates model: The Bates model is a jump-diffusion stochastic volatility model obtained by
adding proportional log-normal jumps to the Heston stochastic volatility model:

dSt = St(a0dt+
√
ytdW

S
t + dZt); dyt = a(m− yt)dt+ b

√
ytdW

y
t , (3.8)

where WS ,W y are Brownian motions with correlation ρ and Z is a compound Poisson process
with intensity θ and log-normal distribution. Condition (C1) is clearly verified since jumps
follow the log-normal law. The Bates model exhibits some nice properties from a practical
point of view. Firstly, the characteristic function of the log-price is available in a closed-form,
which is important for pricing purposes. Secondly, the implied volatility pattern for long term
and short term options can be adjusted separately [9].

Ornstein-Uhlenbeck stochastic volatility models: It is possible to introduce a jump
component in both price and volatility processes. Such models are suggested by Barndorff-
Nielsen and Shephard to take leverage effects into account:

St = S0 e
Xt , dXt = (a0 + a1σ

2
t )dt+ σtdWt + ρdZt , dσ2

t = −θσ2
t dt+ dZt. (3.9)

If ρ = 0 the volatility moves with jumps but the price process has continuous paths. The
case ρ 6= 0, representing a strong correlation between volatility and price, is more flexible but
computation is now challenging. Remark that in this case σ is not the ”true” volatility as the
returns are also affected by changes of the Lévy process Zt. If jumps still follow a log-normal
law then Condition (C1) is fulfilled.

3.3 Approximate hedging with transaction costs: main result

In this section, we study the problem of discrete hedging under proportional transaction costs
using the increasing volatility principle as in Leland’s algorithm following the setting in [33].
More precisely, we suppose that for each successful transaction, traders are charged by a cost
that is proportional to the trading volume with the cost coefficient κ. Here κ is a positive
constant defined by market moderators. Let us suppose that the investor plans to revise his
portfolio at dates (ti) defined by

ti = g (i/n) , g(t) = 1− (1− t)µ , 1 ≤ µ < 2 , (3.10)

8



where n is the number of revisions. The parameter µ is used to control the rate of convergence
of the replication error. The bigger value of µ the more frequently the portfolio is revised.
Clearly one gets the well-known uniform readjustment for µ = 1.

To compensate transaction costs caused by hedging activities, the option seller is suggested
to follow the Leland strategy defined by the piecewise process

γnt =

n∑
i=1

Ĉx
(
ti−1, Sti−1

)
1(ti−1,ti] (t) , (3.11)

where Ĉ is the solution to the following adjusted-volatility Black-Scholes PDE

Ct(t, x) +
1

2
σ̂2
t x

2Cxx(t, x) = 0, 0 ≤ t < 1, C(1, x) = h(x) := (x−K)+ . (3.12)

Here the adjusted volatility σ̂2 is given by

σ̂2(t) = %
√
nf ′(t) with f(t) = g−1(t) = 1− (1− t)1/µ. (3.13)

The motivation of this simple form is discussed in Section 2, see more in [33]. We remark that
when volatility is deterministic the classical modified volatility form (1.1) can be used. This
special case will be treated in Section 5. Now, using strategy γnt requires a cumulative trading
volume measured in dollar value which is given by

Γn =

n∑
i=1

Sti |γ
n
ti
− γnti−1

| .

By Itô’s lemma one represents the payoff as

h(S1) = Ĉ(0, S0) +

∫ 1

0
Ĉx(t, St−)dSt

+

∫ 1

0

(
Ĉt(t, St) +

1

2
σ2(yt)S

2
t Ĉxx(t, St)

)
dt+

∑
0≤t≤1

B(t, St− ,∆St/St−) ,

where B(t, x, z) = Ĉ (t, x(z + 1))− Ĉ (t, x)− zxĈx (t, x) and ∆St = St − St− is the jump size
of the stock price at time t. The above sum of jumps can be represented as

I3,n =

∫ 1

0

∫
R∗

B (t, St− , z) J(dt , dz) . (3.14)

Assuming that the initial capital (option price) is given by V n
0 = Ĉ(0, S0) and using (3.12),

one represents 3 the hedging error as

V n
1 − h(S1) =

1

2
I1,n + I2,n − I3,n − κΓn, (3.15)

where I1,n =
∫ 1

0

(
σ̂2
t − σ

2(yt)
)
S2
t Ĉxx(t, St)dt and I2,n =

∫ 1

0

(
γn
t−
− Ĉx(t, St−)

)
dSt.

3Note that for Lebesgue and Itô’s integrals one can replace St− by St.
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The goal now is study asymptotic property of the replication error V n
1 −h(S1). To describe

asymptotic properties, let us introduce the following functions

v(λ, x) =
ln(x/K)√

λ
+

√
λ

2
, q(λ, x) =

ln(x/K)

2λ
− 1

4
and ϕ̃(λ, x) = ϕ (v(λ, x)) , (3.16)

where ϕ is the standard normal density function. As shown below, the rate of convergence of
our approximation will be controlled by the parameter β defined by

1

4
≤ β :=

µ

2(µ+ 1)
<

1

3
, for 1 ≤ µ < 2. (3.17)

Before stating our main result, let us emphasize that using an enlarged volatility which
diverges to infinity implies that the asymptotic property of the hedging error strongly depends
on trading times near by the maturity. But remember that jumps are rare events and hence,
possible jumps near by the maturity can be omitted with a very small probability. Therefore,
jumps in such contexts do not much affect the asymptotic property of the hedging error as
the hedging revision is taken more frequently. This implies that increasing volatility is still
helpful for models with jumps. The theorems below are generalizations of the achievement of
continuous stochastic volatility models in [33].

Theorem 3.1. Under conditions (C1)− (C2), the sequence of

nβ (V n
1 − h(S1)−min (S1,K) + κΓ (S1, y1, %))

converges to a centered-mixed Gaussian variable as n tends to infinity, where the positive
function Γ is the limit of trading volume defined as

Γ (x, y, %) = x

∫ +∞

0

λ−1/2ϕ̃(λ, x) E
∣∣σ(y)%−1Z + q(λ, x)

∣∣ dλ, (3.18)

in which Z is a standard normal variable independent of S1, y1.

The term q(λ, x) in the limit of transaction costs can be removed using a modified Leland
strategy (the so-called Lépinette’s strategy) defined by

γ̄nt =
n∑
i=1

(
Ĉx(ti−1, Sti−1)−

∫ ti−1

0
Ĉxt(t, St)dt

)
1(ti−1,ti](t). (3.19)

Theorem 3.2. Suppose that Lépinette’s strategy is used for option replication. Then, un-
der Conditions (C1) − (C2) the sequence of nβ

(
V̄ n

1 − h(S1)− ηmin (S1,K)
)

converges to a

centered-mixed Gaussian variable as n tends to infinity, where η = 1− κσ(y1)%−1
√

8/π.

3.4 Super-hedging and price reduction

We first emphasize that it is impossible to obtain a non-trivial perfect hedge with the presence
of transaction costs even in constant volatility models. To cover completely the option return,
the seller can take the buy-and-hold strategy, but this makes the option price too expensive.
Cvitanić and Karatzas [10] show that the buy-and-hold strategy is the unique choice if one
wishes to successfully replicate the option and S0 is the super-replication price under the
presence of transaction costs. As proved in [33], a suitable choice of % can lead to super-
replication in the limit.
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Proposition 3.1. Let Conditions (C1)−(C2) hold and σ be a twice continuously differentiable
and bounded function. Then there exists %∗ > 0 such that limn→∞ V

n
1 ≥ h(S1) for any % ≥ %∗.

This property is true for both Leland’s strategy and Lépinette’s strategy.

The superhedging cost is too high from the buyer’s point of view though it indeed gives the
seller a successful hedge with probability one in the limit. More practically, one can ask how
much initial capital can be reduced by accepting a shortfall probability in replication objective.
From the Black-Scholes formula one observes that both strategies γnt and γ̄nt approach to the
buy-and-hold one as n → ∞. In [37, 33] a simple method is suggested to lower the option
price following the quantile hedging spirit. Let us adapt the main idea in these works for the
present setting. Since S1− = S1 almost surely, we define

δε = inf {a > 0 : Υ(a) ≥ 1− ε} , (3.20)

where Υ(a) = P ((1− κ) min(S1,K) > (1− a)S0). The quantity δε is called quantile price of
the option at level ε and the difference (1− δε)S0 is the reduction amount of the option price
(the initial cost for quantile hedging), see [15, 36, 37, 4, 7, 5] for more discussions. Clearly, the
smaller value of δε is, the cheaper the option is. We show that the option price is significantly
reduced, compared with power functions of the parameter ε.

Proposition 3.2. Let δε be the Leland price defined by (3.20) and assume that the jump sizes
are almost surely non-negative, i.e.

ξj ≥ 0, a.s. ∀j ∈ N, (3.21)

and σmax = supy∈R σ(y) <∞ . Then, for any r > 0,

lim
ε→0

(1− δε)ε−r = +∞ . (3.22)

Proof. Observe that 0 < δε ≤ 1 and δε tends to 1 as ε → 0. Set b = 1 − κ. Then for
sufficiently small ε such that δε > a > 1− bK/S0 one has

1− ε > P(min(S1,K) > (1− a)S0) = 1−P(S1/S0 ≤ (1− a)).

Therefore,
ε < P

(
S1/S0 ≤ (1− a)(1− κ)−1

)
= P (P1(ξ)E1(y) ≤ za) , (3.23)

where za = (1− a)(1− κ)−1eλEξ1 and

Et(σ) = exp

{∫ t

0

σ(ys)dW
(1)
s − 1

2

∫ t

0

σ2(ys)ds

}
and Pt(ξ) =

Nt∏
j=1

(1 + ξj). (3.24)

By (3.21), Pt(ξ) ≥ 1 for all t ∈ [0, 1], which implies that the probability in the right side
of (3.23) is bounded by P (E1(y) ≤ za). Therefore, ε < P (E1(y) ≤ za) . At this point, the
conclusion exactly follows from Proposition 4.2 in [33] and the proof is completed.
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4 General stochastic volatility models with jumps

4.1 Introduction

Stochastic volatility with jumps in price (SVJP) models have been very popular in the option
pricing literature as they provide flexibilities to capture important features of returns distri-
bution. However, empirical studies [14, 13] show that they do not well reflex large movements
in volatility assets during periods of market stress such as those in 1987, 1997, 2008. In other
words, SVJP models are misspecified for such purposes. These studies also suggest that it
would be more reasonable to add an extra component into the volatility dynamics so that
this new factor allows volatility to rapidly increase. Note that such expected effect can not be
generated by only using jumps in returns (as in jump-diffusion models) or diffusive stochastic
volatility. In fact, jumps in returns can only create large movements but they do not have
future impact on returns volatility. On the other hand, diffusive stochastic volatility driven by
a Brownian motion only generates small increase via sequences of small normal increments.
Many empirical studies [14, 13] show that incorporating jumps in stochastic volatility can
successfully capture rapid changes in volatility.

It is important to note that introducing jumps in volatility does not imply an elimination
of jumps in returns. Although jumps both in returns and volatility are rare, each of them plays
an important part in generating crash-like movements. In crisis periods, jumps in returns and
in volatility are more important factor than the diffusive stochastic volatility in producing
large increases. We refer the reader to [14, 13] for more influential discussions about financial
evidence for the use of jumps in volatility.

In this section, we study the problem of option replication under transaction costs in a
general SV model which allows for jumps in both the asset price and volatility. This is clearly
a generalization of the setting in Section 3. We show that jumps in volatility can be also
ignored as those in the asset price, i.e. the results obtained in Section 3 can be recovered.

4.2 Specifications of SV models with jumps

Assume that under the objective probability measure, the dynamics of stock prices S are
assumed to be given by

dSt = St−
(
bt(yt)dt+ σ(yt)dW

(1)
t + dζSt

)
, dyt = α1 (t, yt) dt+ α2 (t, yt) dW

(2)
t + dζyt . (4.1)

Here, ζSt =
∑NS

t
j=1

ξSj and ζyt =
∑Ny

t
j=1

ξyj are two compound Poisson processes. For a general

setting, two Poisson processes N r
t and two sequence of jump sizes (ξrj ), r ∈ {S, y} can be

correlated. Let us give some possible specifications for the jump components.

(i) Stochastic volatility model (SV): This corresponds to the case when there is no jump
in both the asset price and volatility, i.e. ζSt = ζyt = 0, ∀t. This basic SV model has
been widely investigated in the literature. The problem of approximate hedging under
proportional transaction costs is studied in [33, 34]. Roughly speaking, adding some
extra component generated by a diffusion to the returns distribution of a classic Black-
Scholes setting gives a SV model.
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(ii) Stochastic volatility with jumps in volatility (SVJV): By allowing jumps in volatility
process y one can obtain an extension of SV models, i.e. ζSt = 0, ∀t but ζyt 6= 0. In such
cases, option pricing implications are in fact inherited from SV models.

(iii) Stochastic volatility with jumps in price (SVJP): Assume now that ζSt 6= 0 but ζyt = 0.
This case is studied in Section 3.

(iv) Stochastic volatility with common jumps in price and volatility (SVCJ): Suppose that
both the asset price and its volatility in a SV model are influenced by the same extra
random factor modeled by a compound Poisson process. In other words, jumps in the
asset price and in volatility are driven by the same compound Poisson process ζSt = ζyt .

(v) Stochastic volatility with state-dependent and correlated jumps (SVJJ): This is the most
general case for the present setting (4.1).

4.3 Option replication with transaction costs in general SVJJ models

In this subsection we study the problem of option replication presented in Section 3 for general
SVJJ models (4.1). We show that in the same hedging policy as in SVJP defined in Section
3, jump effects can be ignored in asset as well as in volatility. First, let us recall from Section
3 that the hedging error takes the form

V n
1 − h(S1) =

1

2
I1,n + I2,n − I3,n − κΓn,

where Ii,n, i = 1, 2, 3 and Γn are defined as in (3.15). The following conditions on volatility
dynamics are needed in this section.

(C3) The coefficient functions αi, i = 1, 2 are linearly bounded and locally Lipschizt.

Condition (C3) implies that sup0≤t≤1 E y2
t < ∞, which is necessary for approximation

procedure.

Theorem 4.1. Under conditions (C1) − (C2) − (C3), the limit results in Theorems 3.1 and
3.2 still hold.

5 Deterministic volatility models with jumps

In this section we consider a simpler model where the asset volatility is a constant, i.e. σ(y) =
σ = constant > 0, ∀y. In the absence of jumps in the asset price, it is well-known that using
the classical adjusted volatility

σ̂2
t = σ2 + %0

√
nf ′(t), %0 = κσ

√
8/π (5.1)

leads to a non-zero discrepancy between asymptotic portfolio value and the option payoff. In
particular, [22] proved that V n

1 converges in probability to

h(S1) + min(S1,K)− κJ(S1, %0),

13



where Γ(x, %) defined by (3.18) with σ(y) = σ. It was then proved in [37] that asymptotic
distribution of the normalized corrected hedging error is a mixed Gaussian. In particular, for
Leland’s strategy and uniform revisions,

n1/4(V n
1 − h(S1)−min(S1,K) + κJ(S1, %))

converges weakly to a centered mixed Gaussian variable for any % > 0. In order to remove the
corrector in Pergamenshchikov’s result, the paper [11] applied the Lépinette strategy with σ̂2

defined in (5.1). In fact, it is proved that for general European options with a payoff function
h verifying a power decay property, nβ(V n

1 − h(S1)) converges to a mixed Gaussian variable.
Note that these mentioned results are obtained in the a diffusive models setting for the asset
price.

When jumps are present in the asset price, the approximation in these works should be
reconsidered heavily and seemingly this desired extension is far away from being obvious in
their approach.

One advantage of our method is that possible jumps in the asset price can be ignored with
a very small probability. In fact, as claimed below the same result is true for jump-diffusion
models.

Theorem 5.1. Assume that the asset dynamics is given by

dSt = St−

bt dt+ σdWt + d

( Nt∑
j=1

ξj

) ,

where Nt is a Poisson process with intensity θ and (ξj)j≥1 is an i.i.d sequence of random
variable whose common distribution satisfies Condition (C1), W is a Brownian motion inde-
pendent of the compound Poisson process

∑Nt
j=1 ξj and b is a bounded continuous deterministic

function. Suppose further that the adjusted volatility σ̂ is defined by (5.1) or by the simple
form (3.13). Then, for Leland’s strategy, the normalized hedging error

nβ
(
V n

1 − h(S1)−min(S1,K) + κJ(S1, %0)
)

converges weakly to a centered mixed Gaussian variable. This is still true for any % > 0 in the
place of %0 and hence the result in [37] is recovered.

If the Lépinette strategy with σ̂2 defined by (5.1) is applied one gets an asymptotic complete
replication, i.e. nβ(V

n
1 − h(S1)) converges weakly to a centered mixed Gaussian variable.

Remark 4. Theorem 5.1 can be extended to the case where the volatility is a bounded and
smooth deterministic function with a convex general payoff holding a power decaying condition
like in [11].

6 Numerical example

We present in this section a numerical example using Matlab 2012b. In particular, we assume
that the asset price follow the jump-diffusion model with stochastic volatility driven by an
Orstein-Uhlenbeck process dyt = (a−yt)dt+ bdWt and volatility function σ(y) = y0e

y +σmin.
This can be considered as a Hull-White’s model with jumps allowed in the asset price. The
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jump size distribution is N(0, 0.2) and the jump rate is θ = 3. The other parameters are
chosen as S0 = K = 1, a = −1, b = 0.2, σmin = 1, y0 = 2, % =

√
8/π. Figure 2a depicts the

numerical hedging error in the mean-variance space. The convergence to zero of the corrected
hedging error V n

1 − h(S1)−min(S1,K)− κJ(S1, y1, %) is somehow slow, see Figure 2b, where
the mean value of the corrector is 0.2465.

(a) Variance and mean of Leland strategy (b) Corrected hedging error with κ = 0.001

Figure 2: Mean-variance of Leland strategy and its normalized corrected hedging error

It can be observed in Figure 3 that the option price at time zero converges to the buy-
and-hold superhedging price S0 = 1. This numerically confirms that the quantile hedging
approach discussed in Section 3.4 could be used to reduce the price, see e.g. [37, 33] for more
detail.

Figure 3: Option price at time t = 0.

The empirical density of the normalized corrected hedging error is reported in Figure 4.
Not surprisingly, we observe that the hedging empirically converges to a centered variable that
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likely behaves as a normal distribution but with a significantly asymmetric tail. Indeed, the
tail of the limiting distribution is more complex than that corresponding to the case without
jumps illustrated in Figure 1. In Figure 5, we also observe that the normalized hedging

(a) % = 0.01, n = 1000 (b) % = 5,n = 1000

Figure 4: Empirical density of the normalized corrected hedging error

error for Lépinette strategy defined in (3.19) empirically converges to a centered variable that
behaves as a normal distribution. Compared to Leland strategy, the limiting variance is less
asymmetric. In addition, as observed in Figure 5b, increasing % leads to a more normal-liked
limiting distribution. This is due to the fact that the use of a correcting term (in integral
form) in (3.19) has reduced the limiting variance significantly. By the same reason, Figure
6 shows a numerically improved convergence for the hedging error, compared to the Leland
strategy.

(a) % = 0.01, n = 1000 (b) % = 5,n = 1000

Figure 5: Empirical density of the normalized corrected hedging error Lépinette strategy

7 Proof of Main Theorems

As usual, the main results established in three Sections 3, 4 and 5 are direct consequences of
some specific types of limit theorem for martingales that we are searching for. For this aim,
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Figure 6: Corrected hedging error of Lépinette strategy

we construct a special approximation procedure following the one in [33]. Our main attempt is
to prove that the jump terms appearing in the approximation can be neglected at the desired
rate nβ. For convenience, we recall in the first subsection the preliminary setup and refer to
[33] for the motivation.

7.1 Preliminary

Define m1 = n−
[
n (l∗/λ0)2/(µ+1)

]
and m2 = n−

[
n (l∗/λ0)2/(µ+1)

]
, where [x] stands for the

integer part of a number x and l∗ = ln−3 n, l∗ = ln3 n. Below we focus on the subsequence
(tj) of trading times and the corresponding sequence

(
λj
)
m1≤j≤m2

defined as

tj = 1− (1− j/n)µ and λj =

∫ 1

tj

σ̂2
udu = λ0(1− tj)

1
4β , λ0 =

4β
√
n

√
µ

. (7.1)

Note that
(
tj
)

is an increasing sequence with values in [t∗, t∗], where t∗ = 1 − (l∗/λ0)4β and

t∗ = 1− (l∗/λ0)4β, whereas
(
λj
)

is decreasing in [l∗, l
∗]. Therefore, in the sequel we make use

the notation ∆tj = tj − tj−1 whereas ∆λj = λj−1−λj , for m1 ≤ j ≤ m2 to avoid the negative
sign in discrete sums.

Below, Itô integrals will be discretized throughout the following sequences of independent
normal random variables

Z1,j =
W

(1)
tj
−W (1)

tj−1√
tj − tj−1

and Z2,j =
W

(2)
tj
−W (2)

tj−1√
tj − tj−1

. (7.2)

We set

p(λ, x, y) =
%

σ(y)

(
ln(x/K)

2λ
− 1

4

)
(7.3)
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Figure 7: Two sequences (λj) and (tj)

and write for short pj−1 = p(λj−1, Stj−1
, ytj−1

). This reduced notation is also frequently applied

for functions appearing in the approximation procedure. With the sequence of revision times
(tj) in hand, we consider the centered sequences{

Z3,j = |Z1,j + pj−1| −E
(
|Z1,j + pj−1| | Fj−1

)
,

Z4,j = |Z1,j | −E
(
|Z1,j | | Fj−1

)
= |Z1,j | −

√
2/π.

(7.4)

The sequences (Z3,j) and (Z4,j) will serve in finding the Doob decomposition of the considered
terms. To represent the limit of transaction costs, we introduce the functions{

G(a) = E (|Z + a|) = 2ϕ(a) + a (2Φ(a)− 1) ,

Λ(a) = E (|Z + a| −E |Z + a|)2 = 1 + a2 −G2(a),
(7.5)

for a ∈ R and Z ∼ N (0, 1). We also write o(n−r) for generic sequences of random variables
(Xn)n≥1 satisfying P− limn→∞ n

rXn = 0 while the notation Xn = O(n−r) means that nrXn

is bounded in probability. For approximation analysis, we will make use of the functions

φ(λ, x) = exp

{
−x

2

2λ
− λ

8

}
, φ̂(λ, x) = φ(λ, η(x)) with η(x) = | ln(x/K)|. (7.6)

7.2 Stopping time and technical condition

We first emphasize that in bounded volatility settings, it is possible to carry out an asymptotic
analysis based on L2 estimates as in the previous works [11, 27, 28]. For general stochastic
volatility frameworks, this approach is no longer valid because k-th moments of the asset prices
S which is not in general a martingale may be infinite for k > 1, see [2, 29]. We come over
this difficulty by applying a truncation technique. In particular, for any L > 0, we consider

18



the stopping time

τ∗ = τ∗L = inf
{
t ≥ 0 : 1{t≥t∗}ηt

−1 + σ̄t > L
}
∧ 1 , (7.7)

where ηt = η(St) and σ̄t = max{σ(yt), |σ′(yt)|}. Note that jumps may not be fully controlled
for stopped process St∧τ∗ as in [33]. Therefore, in the presence of jumps we consider its version
defined by

S∗t = S0 exp


∫ t

0
bs ds+

∫ t

0
σ∗sdW

(1)
s +

Nt∑
j=1

ln (1 + ξj)

 , (7.8)

where b̌∗t = bt−σ∗2t /2−θE ξ1 and σ∗t = σ (yt) 1{σ(yt)≤L}. Here the dependency on L is dropped
for simplicity. Then, it is clear that S∗t = St on the set {τ∗ = 1}. We easily observe that under
Condition (C2),

lim
L→∞

lim sup
t∗→1

P(τ∗ < 1) = 0 . (7.9)

For simplicity, in the sequel we use the notation S̆u = (Su, yu). We carry out an approximation
procedure for a class of continuously differentiable functions A : R+ ×R+ ×R→ R satisfying
the following technical condition, which is more general than the one proposed in [33].

(H) Let A be a R+ × R+ × R → R continuously differentiable function having absolutely
integrable derivative A′ with respect to the first argument and for any x > 0, y ∈ R,

lim
n→∞

nβ
(∫ l∗

0

|A(λ, x, y)|dλ+

∫ +∞

l∗
|A(λ, x, y)|dλ

)
= 0 .

Furthermore, there exist γ > 0 and a positive continuous function U such that

|A(λ, x, y)| ≤ (λ−γ + 1)U(x, y)φ̂(λ, x), (7.10)

where φ̂ defined in (7.6) and
sup

0≤t≤1
EU4(S̆∗t ) <∞. (7.11)

Remark 5. In approximation of hedging error, the function U(x, y) takes the form
√
x[c1σ(y)+

c2σ
′(y)]m (up to a multiple constant) for some constants c1, c2 and m ≥ 0. Therefore, for any

L > 0, Condition (7.11) is fulfilled as long as sup0≤t≤1 E (S∗t )2 <∞ but this is guaranteed by
the condition of finite second moment of jump sizes (C1). See Appendix B.

For some positive constant L, we introduce the function

g∗(x) = g∗L(x) = |x|1{|x|>L−1} + L−11{|x|≤L−1}. (7.12)

Putting η∗t = g∗(ηt), one observes that on the set {τ∗ = 1},

η∗t = L−1 and φ̂(λ, St) = φ(λ, η∗t ) = φ(λ, L−1) := φL(λ), for all t∗ ≤ u < 1. (7.13)
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7.3 Approximation for stochastic integrals

For the completeness of representation we recall here the asymptotic result established in [33],
which serves the central role in the proof of the main results.

Proposition 7.1. Let A(λ, x, y) be a function such that A and its first partial derivatives
∂xA, ∂yA satisfy (H). Then, for i = 1, 2,∫ 1

0

σ̂2
t

(∫ 1

t

A(λt, S̆u)dW (i)
u

)
dt = %−1

m2∑
j=m1

Aj−1 Zi,j∆λj + o(n−β), (7.14)

where Aj = A(λj , S̆tj ) and A(λ, x, y) =
∫∞
λ A(z, x, y)dz.

Proof. We follow the argument used in Proposition 7.1 in [33]. Although we are working
under the technical condition (H) which is slightly different from that in [33], the arguments are
similar. For the reader’s convenience let us present the proof in detail since the approximation
technique will be repeatedly used in our analysis. First, making use of the stochastic Fubini
theorem one gets

În =

∫ 1

0

σ̂2
t

(∫ 1

t

A(λt, S̆u)dW (i)
u

)
dt =

∫ 1

0

(∫ u

0

σ̂2
t A(λt, S̆u)dt

)
dW (i)

u .

Changing the variables v = λt for the inner integral, we obtain∫ u

0

σ̂2
t A(λt, S̆u)dt =

∫ λ0

λu

A(v, S̆u)dv = A(λu, S̆u)−A(λ0, S̆u).

In other words, În = Î1,n − Î2,n, where Î1,n =
∫ 1

0
Ău dW (i)

u , Ău = A(λu, S̆u) and Î2,n =∫ 1

0
A(λ0, S̆u) dW (i)

u . Moreover, we have

Î1,n =

∫ t∗∗

0

ĂudW (i)
u +

∫ t∗

t∗
ĂudW (i)

u +

∫ 1

t∗

ĂudW (i)
u := R1,n +R2,n +R3,n . (7.15)

Let use first show that Î2,n = o(n−β). For any ε > 0, one observes that

P(nβ|Î2,n| > ε) ≤ P(nβ|Î2,n| > ε, τ∗ = 1) + P(τ∗ < 1).

In view of (7.9), one needs to show that the first probability in the right side converges to 0.
Indeed, by (H) one has

|A(λ0, x, y)| ≤ CU(x, y)

∫ ∞
λ0

e−λ/8dλ ≤ CU(x, y)e−λ0/8.

Putting Ă∗u = Ău1{τ∗=1} and Î∗2,n =
∫ 1

0
Ă∗u dW (i)

u and making use of the notation S̆∗ = (S∗, y)
one has

P(nβ|Î2,n| > ε, τ∗L = 1) = P(nβ|Î∗2,n| > ε) ≤ ε−2n2βE (Î∗2,n)2

≤ Cε−2n2βe−λ0/8 sup
0≤t≤1

EU2(S̆∗t ),
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which converges to zero by Condition (H). Hence, Î2,n = o(n−β) as n → ∞. Next, let us

show that R2,n is the main part of Î1,n. For this aim, taking into account that l∗ ≤ λu ≤ λ0

for 0 ≤ u ≤ t∗, we get R1,n = o(n−β).
Next, let us show the same property for the last term R3,n in (7.15). To this end, note

again that

P
(
nβ|R3,n| > ε

)
≤ P

(
nβ|R3,n| > ε, τ∗ = 1

)
+ P (τ∗ < 1) . (7.16)

On the set {τ∗ = 1} one has the estimate |Ău| ≤ U(S̆∗u)
∫∞
λu

(1 + z−γ)φ̂(z, S∗u)dz = U(S̆∗u)f̆∗u ,

where f̆∗u =
∫∞
λu

(1 + z−γ)φL(z)dz. Again one obtains by the Chebychev inequality

P
(
nβ|R3,n| > ε, τ∗ = 1

)
= P

(
nβ|R̂3,n| > ε

)
≤ n2βε−2

∫ 1

t∗

E(Â∗u)2du,

which is bounded by n2βε−2C(U)
∫ 1

t∗
(f̆∗u)2du with C(U) = sup0≤u≤1 EU2(S̆∗

u−
) <∞. Taking

into account that∫ 1

t∗

(f̆∗u)2du = λ−4β
0

∫ l∗

0

(∫ ∞
λ

(1 + z−γ)φL(z)dz

)2

dλ ≤ Cλ−4β
0 l∗,

we conclude that limn→∞P
(
nβ|R3,n| > ε, τ∗ = 1

)
= 0 and hence R3,n = o(n−β) in view of

(7.9).
It remains to discretize the integral term R2,n using the sequence (Zi,j). The key steps for

this aim are the following. First, we represent R2,n =
∫ t∗
t∗ ĂudW (i)

u =
∑m2

j=m1

∫ tj
tj−1

ĂudW (i)
u .

and replace the Itô integral in the last sum with Aj−1Zi,j
√

∆tj . Next, Lemma A.1 allows to

substitute
√

∆tj = %−1∆λj into the last sum to obtain the martingale Mm2
defined by

Mk = %−1
k∑

j=m1

Aj−1Zi,j∆λj , m1 ≤ k ≤ m2.

We need to show that P− limn→∞ n
β|R2,n−Mm2

| = 0 or equivalently,
∑m2

j=m1
Bj,n = o(n−β),

where Bj,n =
∫ tj
tj−1

Ãu,jdW
(i)
u and Ãu,j = Ā(λu, S̆u) − Ā(λj−1, S̆tj−1

). We show this without

using the Itô’s formula. For this aim, let b > 0 and introduce the set

Ωb =

{
sup

t∗≤u≤1
sup
z∈R

(
|A(z, S̆u)|+

∣∣∣∂xĀ(z, S̆u)
∣∣∣+
∣∣∣∂yĀ(z, S̆u)

∣∣∣) ≤ b} .
Then, for any ε > 0, P

(
nβ|
∑m2

j=m1
Bj,n| > ε

)
is bounded by

P(Ωc
b) + P(τ∗ < 1) + P

nβ| m2∑
j=m1

Bj,n| > ε, Ωb, τ
∗ = 1

 .

Note that limb→∞ limn→∞P(Ωc
b) = 0 by Lemma A.4. In view of (7.9), one needs to prove

that the latter probability converges to zero. To this end, put Âu,j = Ãu,j1{|Ãu,j |≤bδu,j}
and
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B̂j,n =
∫ tj
tj−1

Âu,jdW
(i)
u , where δu,j = |λu−λj−1|+ |S∗u−−S

∗
t−j−1

|+ |yu−−yt−j−1
|. Then, the above

probability is equal to P
(
nβ|
∑m2

j=m1
B̂j,n| > ε

)
, which is smaller than ε−2n2β

∑m2
j=m1

E B̂2
j,n

by the Chebychev inequality. Clearly, E B̂2
j,n is bounded by

2b2
∫ tj

tj−1

((λu − λj−1)2 + E(S∗u − S
∗
tj−1

)2 + E(yu − ytj−1
)2)du ≤ C

(
(∆λj)

3 + (∆tj)
2
)
.

Consequently, n2β
∑m2

j=m1
E B̂2

j,n ≤ Cn
2β
∑m2

j=m1
(∆λj)

3 + (∆tj)
2. Taking into account Lemma

A.1 we conclude that the latter sum converges to 0 hence, the proof is completed.

Lemma 7.1. Let ι(t) = sup{ti : ti ≤ t} and A(λ, x, y) is a function satisfying Condition (H).
Then,

(i).
∫ 1

0

(∫ t
ι(t)

σ̂2
uA(λu, S̆u)du

)
dW

(i)
t = o(n−β), i = 1, 2,

(ii).
∫ 1

0

(∫ t
ι(t)

A(λu, S̆u)dW
(i)
u

)
dW

(j)
t = o(n−β), i, j ∈ {1, 2}.

Proof. By assumption, |A(λ, x, y)| ≤ U(x, y)φ̂(λ, x)(1+λ−γ) for some constant γ and positive
function U(x, y) verifying (7.11). Denote by rn the double stochastic integral in (i). Put
Ãt =

∫ t
ι(t)

σ̂2
uA(λu, S̆u)du, we represent rn as

rn =

∫ t∗

0
dÃtW

(i)
t +

∫ 1

t∗
ÃtdW

(i)
t := r1,n + r2,n.

We will prove that ri,n = o(n−β), i = 1, 2. To this end, let L > 0 and consider τ∗ = τ∗L defined
as in (7.7). For i = 1, 2, by r∗i,n we mean the ”corrected” version of ri,n, i.e. Su, yu are replaced
by S∗u and y∗u respectively in A. Now, for any ε > 0,

P
(
nβ|rn| > ε

)
≤ P

(
nβ|rn| > ε, τ∗ = 1

)
+ P(τ∗ < 1) . (7.17)

Taking into account λt ≥ l∗ →∞ for t ∈ [0, t∗] and using Chebychev’s inequality, one bounds
the first probability in the right side by

n2βε−2Er∗21,n = n2βε−2

∫ t∗

0
EÃ∗2t dt ≤ Cn2βε−2EU2(S̆∗t )

∫ t∗

0
b2
tdt ,

where bt =
∫ t
ι(t)

σ̂2
u(1 + λ−γu )e−λu/8du. Recall from (3.13) that

σ̂2
u = %

√
n(1− u)

1−µ
2µ = %

√
n(λ0/λu)µ̂, with µ̂ = (µ− 1)/(1 + µ). (7.18)

Then, splitting the integral as the sum of integrals on the intervals [ti−1, ti] and changing
variable one gets

n2β

∫ t∗

0
b2
tdt ≤ Cn2βn−2

∫ t∗

0
σ̂4
u(1 + λ−γu )2e−

λu
4 du

≤ Cn2β−3/2λµ̂0

∫ t∗

0
σ̂2
uλ
−µ̂
u (1 + λ−γu )2e−

λu
4 du,

22



which is smaller up to some constant than n2β−3/2λµ̂0
∫∞
l∗ λ

−µ̂(1 + λ−γ)2e−
λ
4 dλ. This implies

that the convergence to zero of the first probability in the right side of (7.17). In view of (7.9),
one obtains r1,n = o(n−β). Let us prove the same property for r2,n. In fact, the singularity
at t = 1 requires a more delicate treatment. We make use of the stopping time τ∗ again.

Put Â∗u = A(λu, S̆
∗
u)1{|Au|≤U(S̆∗

u
)f̂∗u}

, f̂∗u = (1 + λ−γu )φL(λ) and r̂2,n =
∫ 1
t∗

(∫ t
ι(t)

σ̂2
uÂ
∗
udu

)
dW

(i)
t .

Then, by the Chebychev inequality one gets P
(
nβ|r2,n| > ε, τ∗ = 1

)
= P

(
nβ|r̂2,n| > ε

)
. The

latter probability is bounded by

n2βε−2 sup
0≤u≤1

EU2(S̆∗u)

∫ 1

t∗

(∫ t

ι(t)

σ̂2
uf̂
∗
udu

)2

dt ≤ Cn2βε−2

∫ 1

t∗
(ι(t)− t)

∫ t

ι(t)

σ̂4
uf̂
∗2
u dudt := an.

On the other hand, for some constant Cε,% independent of n,

an ≤ Cn2β− 3
2 ε−2%λµ̂0

∫ 1

t∗
λ−µ̂u σ̂2

uf̂
∗2
u du ≤ Cε,%n

−2
1+µ

∫ l∗

0
λ−µ̂(1 + λu

−γ)2φ2
L(λ)dλ,

which converges to 0 as n → ∞. Hence, by taking into account (7.9) one concludes that
P
(
nβ|r2,n| > ε

)
converges to 0. The second equality can be proved by the same way.

Lemma 7.2. Suppose that A = A(λ, x, y) satisfies Condition (H). Then, the following asymp-
totic properties hold in probability:

(i).
∫ 1

0

(∫ t
0 A(λt, S̆s)dW

(i)
s

)
dW

(j)
t = O(n−2β), i, j ∈ {1, 2}.

(ii).
∫ 1

0 A(λt, S̆t)dt = O(n−2β).

(iii).
∫ 1

0

(∫ 1
t A(λt, S̆s)ds

)
dt = O(n−4β).

Proof. The procedure used in the proof of Lemma 7.1 can be applied straightforwardly to
obtain the first equality. Indeed, we can check directly that∫

[0,t∗]∪[t∗,1]

(∫ t

0
A(λt, S̆s)dW

(i)
s

)
dW

(j)
t = o(n−2β).

Now, consider again the set {τ∗ = 1} one can prove that n2β
∫ t∗
t∗

(∫ t
0 A(λt, S̆

∗
s )dW

(i)
s

)
dW

(j)
t is

bounded in probability using again the truncation technique hence, (i) is verified. Next, let us
prove (iii). By making use of the change of variable λt = λ0(1− t)1/(4β), the double integral
is written as

ε̂n := 16λ−8β
0 β2

∫ λ0

0
λ4β−1

(∫ λ0

λ
z4β−1A(z, S̆v(z/λ0))dz

)
dλ, v(z) = 1− z4β.

By hypothesis, A(λ, x, y) is bounded by U(x, y)(1+λ−γ)φ̂(λ, x) for some constant γ and some

positive function U satisfying (7.11). Hence, λ8β
0 |ε̂n| is bounded (up to a multiple constant)

by the double integral∫ λ0

0
λ4β−1

(∫ λ0

λ
z4β−1(1 + z−γ)U(S̆v(z/λ0)−)φ̂(z, Sv(z/λ0))dz

)
dλ.
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Let ω be outside the set {S1 = K}, which has zero probability by Lemma A.2. It is clear that
the integrand of the above integral is dominated by a continuous function depending on ω,
which exponentially decreases to 0 at 0 and infinity hence, it is integrable on [0,∞). Therefore,
the double integral converges to∫ ∞

0
λ4β−1U(S̆1)

(∫ ∞
λ

z4β−1(1 + z−γ)φ̂(z, S1)dz

)
dλ

by the dominated convergence theorem. Thus, n4β ε̂n is bounded in probability. The equality
(ii) is proved by the same way.

7.4 Eliminating jumps

In this subsection, we establish asymptotic results which will serve in eliminating jump effects
in our approximation.

Lemma 7.3. Suppose that

|A(λ, x, y, z)| ≤ $(z)ψ(λ)U(x, y), for all x > 0, z ∈ R, λ > 0,

where Π($+$2) <∞, U is a continuous function satisfying sup0≤t≤1 EU2(S̆∗t ) <∞ for any
L > 0 in the definition of τ∗ in (7.7). Suppose furthermore that

nr
∫ ∞
l∗

λ4β−1(ψ2(λ) + ψ(λ))dλ→ 0, for any r > 0. (7.19)

Then, for any r > 0, ∫ 1

0

∫
R∗
A(λt, St− , yt− , z)J(dt , dz) = o(n−r). (7.20)

Proof. For notation simplicity, one abbreviates B(t, z) := |A(λt, St− , yt− , z)|. Let us decom-
pose the integral in (7.20) as∫ t∗

0

∫
R∗
B(t, z)J(dt , dz) +

∫ 1

t∗

∫
R∗
B(t, z)J(dt , dz). (7.21)

Using the representation (3.7), we conclude that for any δ > 0 and r > 0, the probability

P
(
nr
∣∣∣∫ 1
t∗

∫
R∗
B(t, z)J(dt , dz)

∣∣∣ > δ
)

is smaller than P(N1 −Nt∗ ≥ 1) = 1 − e−θ(1−t∗), which

converges to 0, when t∗ goes to 1. Hence, it suffices to prove the same property for the first
integral in (7.21). Indeed, this term can be represented as∫ t∗

0

∫
R∗
B(t, z)J̃(dt , dz) +

∫ t∗

0

∫
R∗
B(t, z)dtΠ(dz) .

We recall that J̃(dt , dz) = J(dt , dz) − dtΠ(dz). We prove now that the last term is almost
surely exponentially negligible, i.e. for any r > 0

lim
n→∞

nr
∫ t∗

0

∫
R∗
B(t, z)dtΠ(dz) = 0 a.s . (7.22)
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Indeed, by assumption and the change of variable defined in (7.1), it is estimated by

4 Π($)β max
0≤t≤1

U(S̆t)n
rλ−4β

0

∫ ∞
l∗

λ4β−1ψ(λ)dλ ,

which a.s. converges to zero due to (7.19) and the continuity of U , where t(λ) = 1− (λ/λ0)4β.

Hence, it remains to prove that for any r > 0,
∫ t∗

0

∫
R∗
B(t, z)J̃(dt , dz) = o(n−r) in probability

as n→∞. To this end, note that B(t, z) ≤ U(S̆∗
t−

)ψ(λt)$(z) := B̃∗(t, z) on the set {τ∗ = 1},
i.e. B(t, z) = B(t, z)1{|B(t,z)|≤B̃∗(t,z)} := B̌(t, z) on this set. So, for any δ > 0 and L > 0 and

using the Chebyshev inequality we obtain that

P

(
nr

∣∣∣∣∣
∫ t∗

0

∫
R∗
B(t, z)J̃(dt , dz)

∣∣∣∣∣ > δ

)
≤ P(τ∗ < 1) + P

(
nr

∣∣∣∣∣
∫ t∗

0

∫
R∗
B̌(t, z)J̃(dt , dz)

∣∣∣∣∣ > δ

)

≤ P(τ∗ < 1) +
n2rE

(∫ t∗
0

∫
R∗
B̌(t, z)J̃(dt , dz)

)2

δ2
.

Using here the inequality (C.2) for p = 2 and taking into account that

E

∫ t∗

0

∫
R∗
B̃∗2(t, z)Π(dz)dt ≤ Π($2) sup

0≤t≤1
EU2(S̆∗t )

∫ t∗

0
ψ2(λt)dtΠ($2) ≤ C

∫ ∞
l∗

λ4β−1ψ(λ)dλ ,

the limit equation (7.20) follows from (7.19).

7.5 Limit theorems for approximations

We first recall the following result in [20], which is useful for studying asymptotic distribution
of discrete martingales.

Theorem 7.1. [Theorem 3.2 and Corollary 3.1, p.58 in [20]] Let Mn =
∑n

i=1
Xi be a zero-

mean, square integrable martingale and ς be an a.s. finite random variable. Assume that the
following convergences are satisfied in probability:

n∑
i=1

E
(
X2
i 1{|Xi|>δ}|Fi−1

)
−→ 0 for any δ > 0 and

n∑
i=1

E
(
X2
i |Fi−1

)
−→ ς2.

Then, the sequence (Mn) converges in law to X whose characteristic function is E exp(−1
2 ς

2t2),
i.e. X has a Gaussian mixture distribution.

Below we will establish some special versions of Theorem 7.1. In particular, our aim is to
study the asymptotic distribution of discrete martingales resulting from approximation (7.14)
in Proposition 7.1.

Let Ai = Ai(λ, x, y), i ∈ I := {1, 2, 3, 4} be functions having property (H) and consider
discrete martingales (Mk)m1≤k≤m2

and (Mk)m1≤k≤m2
defined by

Mk = %−1
k∑

j=m1

∑
i∈I\{4}

Ai,j−1 Zi,j∆λj and Mk = %−1
k∑

j=m1

∑
i∈I\{3}

Ai,j−1 Zi,j∆λj , (7.23)
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where Ai,j = Ai(λj , S̆tj ) and Zi,j are defined as in (7.2) and (7.4). To describe the limiting

distributions let us introduce

L = A2
1 + 2A1A3(2Φ(p)− 1) +A2

3 Λ(p) +A2
2, L = A2

1 +A2
2 + (1− 2/π)A2

4, (7.24)

where p is defined in (7.3). Define now

ς2 = µ̆%
2

µ+1

∫ +∞

0

λµ̂L(λ, S̆1)dλ and ς2 = µ̆ %
2

µ+1

∫ +∞

0

λµ̂ L(λ, S̆1)dλ (7.25)

with

µ̆ =
1

2
(µ+ 1)µ̃

2
µ+1 and µ̂ = (µ− 1)/(µ+ 1). (7.26)

Proposition 7.2. Assume that Ai = Ai(λ, x, y), i = 1, 2, 3 and their first partial derivatives
∂λAi, ∂xAi, ∂yAi are functions satisfying Condition (H). Then, for any fixed % > 0 the
sequence (nβMm2

) weakly converges to a mixed Gaussian variable with mean zero and variance

ς2 defined as in (7.25). The same property still holds if some (or all) of the functions Ai are
replaced by

∫∞
λ Ai(z, x, y)dz.

Proof. Note that the square integrability property is not guaranteed for the random vari-
ables (υj). To overcome this issue let us recall the stopping time τ∗ = τ∗L defined in (7.7)

and put Ãi(λ, x, y) = Ai(λ, x, y)φ̂−1(λ, x)φL(λ), where φL(λ) defined in (7.12). Let υ∗j =∑3
i=1

Ãi(λj , S̆
∗
tj

)Zi,j∆λj and M∗k =
∑k

j=m1
υ∗j .

Step 1: We will show throughout Theorem 7.1 that for any L > 0 the martingale nβM∗m2

weakly converges to a mixed Gaussian variable with mean zero and variance ς∗2(L) defined as

ς∗2(L) = µ̆%
2

µ+1

∫ +∞

0

λµ̂L̃(λ, S̆1)dλ , (7.27)

where L̃ is obtained by replacing all Ai in the formula of L in (7.24) by the corresponding
modified functions Ãi, i = 1, 2, 3 . To this end, setting a∗j = E (υ∗2j 1{∣∣∣υ∗j ∣∣∣>δ}|Fj−1), we first

show that P
(
n2β|

∑m2
j=m1

a∗j | > ε
)

converges to 0. By hypothesis,

max
i=1,2,3

∣∣∣Ãi(λu, S̆∗u)
∣∣∣ ≤ U(S̆∗u)(1 + λ−γu )φL(λ) ≤ U(S̆∗u)(1 + λ−γu ) (7.28)

for some γ > 0 and positive function U(S̆) satisfying (7.11). We observe that

P

n2β|
m2∑
j=m1

a∗j | > ε

 = P

n2β|
m2∑
j=m1

a∗j | > ε

 ≤ ε−1n2β

m2∑
j=m1

E a∗j

by Markov’s inequality. Using the Chebychev inequality and then again the Markov inequality
one gets

E a∗j = E

(
υ∗2j 1{∣∣∣υ∗j ∣∣∣>δ}

)
≤
√

E υ∗4j

√
P(|υ∗j | > δ) ≤ δ−2E υ∗4j

≤ 9δ−2(1 + λ−γu )4(∆λj)
4EU4(S̆∗u)

3∑
i=1

Z4
i,j .
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Taking into account that all of Zi,j have bounded moments and using (7.28) we obtain

ε−1 n2β

m2∑
j=m1

E a∗j ≤ 9Cε−1δ−2n2β

m2∑
j=m1

(1 + λ−γu )4(∆λj)
4,

which converges to 0 by Lemma A.1.
Let us verify the limit of the sum of conditional variances E(υ∗2j |Fj−1). Setting υ∗i,j =

Ã∗i,j−1 Zi,j ∆λj , one obtains E
(
υ∗1,jυ

∗
3,j |Fj−1

)
= E

(
υ∗2,jυ

∗
3,j |Fj−1

)
= 0 since Z1,j and Z2,j are

independent. It follows that

E(υ∗2j |Fj−1) = E(υ∗21,j |Fj−1) + E(υ∗22,j |Fj−1) + E(υ∗23,j |Fj−1) + 2E(υ∗1,jυ
∗
2,j |Fj−1).

Observe that for Z ∼ N(0, 1) and some constant a, E(Z |Z + a|) = 2Φ(a)−1 and E (Z + a)2−
(E|Z + a|)2 = Λ(a), where Φ is the standard normal distribution function and Λ is defined in

(7.5). On the other hand, ∆λj = n−2β(1 + o(1))µ̆ %
2

µ+1λµ̂j−1 by Lemma A.1. So,

n2βE(υ∗2j |Fj−1) = (1 + o(1))µ̆ %
2

µ+1 λµ̂j−1 L̃(λj−1, S̆
∗
t−j−1

)∆λj .

Therefore, by Lemma A.5, the sum n2β
∑m2

j=m1
E(υ∗2j |Fj−1) converges in probability to ς∗2(L)

defined in (7.27). Thus, nβM∗m2
weakly converges to N (0, ς∗2(L)) throughout Theorem 7.1.

Step 2: Let us show that supε>0 limL→∞ lim supn→∞P
(
|nβM∗m2

− nβMm2
| > ε

)
= 0. To

this end, recall that φ̂(λ, St) = φL(λ) and hence, Ãi = Ai for i = 1, 2, 4 on the set {τ∗ = 1}.
Then, the conclusion directly follows from

P
(
nβ|M∗m2

−Mm2
| > ε

)
≤ P

(
nβ|M∗m2

−Mm2
| > ε, τ∗ = 1

)
+ P(τ∗ < 1)

and (7.9). Moreover, taking into account that ς∗2(L) converges a.s. to ς2 as L → ∞, we
conclude that nβMm2

converges in law to N (0, ς2), which completes the proof.

Let us consider martingales of the following form, resulting from the approximation for
Lépinette’s strategy, Mk =

∑k
j=m1

(
A1,j−1 Z1,j +A2,j−1 Z2,j +A4,j−1 Z4,j

)
∆λj . Their limit-

ing variance is defined throughout the function

L(λ, x, y) = A2
1(λ, x, y) +A2

2(λ, x, y) + (1− 2/π)A2
4(λ, x, y). (7.29)

The following result is similar to Proposition 7.2.

Proposition 7.3. Suppose that Ai = Ai(λ, x, y), i = 1, 2, 4 and their first partial derivatives
satisfying Condition (H). Then, for any fixed % > 0 the sequence (nβMm2

) weakly converges

to a mixed Gaussian variable with mean zero and variance ς2 given by (7.25). The same
property still holds if some (or all) of the functions Ai are replaced by

∫∞
λ A0

i (z, x, y)dz.

Proof. The conclusion follows directly from the proof of Proposition 7.2 and the observation
that EZ2

4,j = E(|Z1,j | −
√

2/π)2 = 1 − 2/π, and E (Zi,jZ4,j) = 0, for i = 1, 2 and m1 ≤ j ≤
m2.

27



The remaining part of the section is devoted to prove main results following the scheme
of [33]. Our first step is to establish the asymptotic representation at rate nβ for each term
contributing in the hedging error. The approximation procedure also provides the residual
parts as discrete martingales for which Propositions 7.2 and 7.3 will be applied to achieve the
limiting distribution in the last step.

7.6 Approximation for I1,n

The following approximation is obtained in [33].

Proposition 7.4. Let H̆ =
∫∞
λ (z−1/2/2− z−3/2 ln(x/K))ϕ̃(z, x)dz and define

U1,k = %−1
k∑

j=m1

σ(ytj−1
)Stj−1

H̆j−1 Z1,j ∆λj , m1 ≤ j ≤ m2.

Then, under (C1) and (C2), P− limn−→∞ n
β
∣∣I1,n − 2 min(S1,K)− U1,m2

∣∣ = 0.

Proof. By (3.15), one represents I1,n as

I1,n =

∫ 1

0

σ̂2
t S

2
t Ĉxx(t, St)dt−

∫ 1

0

σ2(yt)S
2
t Ĉxx(t, St)dt.

The last term is nβ negligible by (ii) of Lemma 7.2. To study the first integral let us introduce
the function A(λ, x) = x2Ĉxx(t, x) and split it as∫ 1

0

σ̂2
t S

2
t Ĉxx(t, St)dt =

∫ 1

0

σ̂2
t S

2
1Ĉxx(t, S1)dt+

∫ 1

0

σ̂2
t (A(λt, St)−A(λt, S1)) dt.

The first integral
∫ 1

0
σ̂2
t S

2
1Ĉxx(t, S1)dt almost surely converges to 2 min(S1,K) faster than nr

for any r > 0, see [33]. Let us study the last term which describe jumps of A. Using the Itô
Lemma for A(λt, St)−A(λt, S1), we rewrite it as

ε1,n + ε2,n +

∫ 1

0

∫ 1

t
σ̂2
t ∂xA(λt, Su)σ(yu)SudW (1)

u dt, (7.30)

where

ε1,n :=

∫ 1

0

∫ 1

t
σ̂2
tA1(λt, Su, yu)du dt and ε2,n :=

∫ 1

0

σ̂2
t

∫ 1

t

∫
R∗
Ā(λt, Su− , z)J(du , dz)dt

with

A1(λ, x, y) = ∂tA(λ, x) + ∂xxA(λ, x)σ2(y)x2, Ā(λ, x, z) = A(λ, x(1 + z))−A(λ, x).

Then, the approximation procedure of Proposition 7.1 is used to get a discrete martingale
approximation U1,m2

for the Itô’s integral of (7.30).

Now, let us show that εi,n = o(n−β), i = 1, 2. In fact, ε1,n = o(n−β) by (iii) of Lemma 7.2.

The jump term ε2,n can be represented as ε2,n =
∫ 1

0

∫
R∗

(∫ u
0 σ̂

2
t Ā(λt, Su− , z)dt

)
J(du , dz) by

Fubini’s theorem [3]. Changing variable v =
∫ 1
u σ̂

2
t dt as in (7.1), one gets∫ u

0
σ̂2
t Ā(λt, ·, z)dt =

∫ λ0

λu

Ā(v, ·, z)dv := D(λu, ·, z)
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and hence, ε2,n =
∫ 1

0

∫
R∗
D(λu, Su− , z)J(du , dz). On the other hand, for any Υ > 0

D(λu,Υ, z) =

∫ λ0

λu

Ā(v,Υ, z)dv =

∫ Υ(1+z)

Υ

∫ λ0

λu

∂xA(v,x)dvdx.

Direct computation shows that ∂xA(v,x) = 2xĈxx(v,x) + x2Ĉxxx(v,x) and

Ĉxx(v,x) =
1

x
√
v
ϕ̃(v,x), Ĉxxx(v,x) = − 1

x2v
ϕ̃(v,x)

(
3

2

√
v +

ln(x/K)√
v

)
,

where

ϕ̃(v,x) =
1√
x
φ0(v)e−

ln2(x/K)
2v with φ0(v) =

√
K

2π
e−v/8 .

Using the fact that zke−z
2/2 is uniformly bounded for all k, one has

|∂xA(v,x)| ≤ C 1√
x

(1 + v−1)φ0(v),

for some positive constant C. This estimate implies that for any Υ > 0

|D(λu,Υ, z)| ≤ C

∣∣∣∣∣
∫ Υ(1+z)

Υ

1√
x

dx

∣∣∣∣∣
∫ λ0

λu

(1 + v−1)φ0(v)dv ≤ C|z|φ̃0(λu)
√

Υ , (7.31)

where φ̃0(λ) =
∫∞
λ (1 + v−1)φ0(v)dv. Clearly, Condition (7.19) in Lemma 7.3 holds, hence,

ε2,n = o(n−r) for any r > 0.

7.7 Approximation for I2,n

Proposition 7.5. Under (C1) and (C2), nβI2,n converges to 0 in probability as n→∞.

Proof. We represent I2,n as∫ 1

0

σ(yt)StA(t)dW
(1)
t +

∫ 1

0

∫
R∗
zSt−A(t−)J̃(dt , dz) := b1,n + b2,n, (7.32)

where A(t) = Ĉx(ι(t), Sι(t))− Ĉx(t, St). We first claim that the Itô’s integral of (7.32) can be
omitted by Lemma 7.1. To see this, it suffices to apply the Itô’s formula, one represents the
difference At as∫ t

ι(t)

(
Ĉxt(u, Su) + σ2(yu)S2

uĈxxx(u, Su)
)

du+

∫ t

ι(t)

Ĉxx(u, Su)σ(yu)SudW (1)
u

+

∫ t

ι(t)

∫
R∗

(Ĉx(u, Su−(1 + z))− Ĉx(u, Su−))J(du , dz).

In view of (3.12),

Ĉxt(u, x) = −1

2
σ̂2
u

(
2xĈxx(u, x) + x2Ĉxxx(u, x)

)
:= σ̂2

uÃ(u, x). (7.33)

29



Therefore, b1,n equals the following sum∫ 1

0

∫ t

ι(t)

σ̂2
uσ(yt)StÃ(u, Su)dudW

(1)
t +

∫ 1

0

∫ t

ι(t)

σ(yt)Stσ
2(yu)S2

uĈxxx(u, Su)dudW
(1)
t

+

∫ 1

0

∫ t

ι(t)

∫
R∗
σ(yt)St(Ĉx(u, Su−(1 + z))− Ĉx(u, Su−))J(du , dz)dW

(1)
t . (7.34)

The first two integrals converge to 0 more rapidly than n−β by Lemma 7.1. Let us study the
jump term in (7.34), which will be denoted by an. Clearly, by Fubini’s theorem an equals

∑
1≤i≤n

∫ ti

ti−1

∫
R∗

Ψ(u, Su− , z)

(∫ ti

u

σ(yt)StdW
(1)
t

)
J(du , dz), (7.35)

where Ψ(u, x, z) := Ĉx(u, x(1 + z)) − Ĉx(u, x). We prove that an = o(n−r) for any r > 0
following the demonstration of Lemma 7.3 with some modification. In particular, we decom-
pose the sum in (7.35) into two parts: a1,n, the first concerns the index i with m2 ≤ i ≤ n
and the second one a2,n, which is the sum over the rest of index i, 1 ≤ i ≤ m2. Clearly,

P(nr|a1,n| < δ) ≤ P(N1 −Nt∗ ≤ 1) = 1− e−θ(1−t∗), which converges to 0.
To study a2,n, we run again the argument used to to obtain the estimate (7.31). In

particular, |Ψ(u, x, z)| is bounded by

φ1(λu)

∣∣∣∣∣
∫ x(1+z)

x

da

a3/2

∣∣∣∣∣ ≤ 2φ1(λu)
√
x$0(z) ,

where

φ1(λ) =
√
K/2πλ

−1/2
t e−λ/8 and $0(z) =

|z|√
1 + z

. (7.36)

Denote by ac2,n the compensator of a2,n. Then, it is clear that

|ac2,n| ≤
∑

1≤i≤m2

∫ ti

ti−1

∫
R∗
|Ψ(u, Su, z)|

∣∣∣∣∫ ti

u

σ(yt)StdW
(1)
t

∣∣∣∣Π(dz)du

≤
∑

1≤i≤m2

∫ ti

ti−1

φ1(λu)
√
Su

∣∣∣∣∫ ti

u

σ(yt)StdW
(1)
t

∣∣∣∣duΠ($0) . (7.37)

Note that in view of Condition (C1) the integral Π($0) < ∞. It is important to highlight

that Xu :=
√
Su

∣∣∣∫ ti
u
σ(yt)StdW

(1)
t

∣∣∣ may not be squared integrable. To overcome this issue,

consider the stopping time τ∗ defined in (7.7) for some L > 0. On the set {τ∗ = 1}, one has
for u ∈ [ti−1, ti],

E(X∗u)2 = E

(√
S∗u

∫ ti

u

σ(y∗t )S
∗
t dW

(1)
t

)2

≤ ES∗u

∫ ti

u

S∗2t dt ≤ CL2n−1
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and hence, EX∗u ≤
√

E(X∗u)2 ≤ CLn−1/2 by Cauchy-Shwart’s inequality. Therefore,

P(nr|ac2,n| > δ, τ∗ = 1) ≤ nrδ−1
∑

1≤i≤m2

∫ ti

ti−1

φ1(λu)EX∗uduΠ($0)

≤ nrδ−1CLn−1/2
∑

1≤i≤m2

∫ ti

ti−1

φ1(λu)duΠ($0)

≤ nrδ−1CLn−1/2

∫ t∗

0

φ1(λu)duΠ($0). (7.38)

Taking into account that nr
∫ t∗

0
φ1(λu)du goes to 0, one concludes that for any r > 0,

limn→∞P(nr|ac2,n| > δ, τ∗ = 1) = 0. Noting that

P(nr|ac2,n| > δ) ≤ P(nr|ac2,n| > δ, τ∗ = 1) + P(τ∗ < 1)

and using (7.9) one obtains nrac2,n → 0 in probability for any r > 0.

Now, putting α̃2,n = α2,n − αc2,n, we need to show that P(nr|α̃2,n| > δ)→ 0. To this end,

consider again the stopping time τ∗ defined in (7.7) for some L > 0. On the set {τ∗ = 1}, one
has

|Ψ(u, Su, z)| ≤
√
S∗uφ1(λu)$0(z) ,

where S∗u is the stopped version of Su. Clearly,

sup
1≤i≤n

sup
ti−1≤u≤ti

ES∗u|W
(1)
ti−1
−W (1)

u |
2 ≤ Cn−1

for some positive constant C. It then follows by the Chebychev inequality that

P(nr|α̃2,n| > δ, τ∗ = 1) ≤ n2rδ−2E α̃∗22,n ,

where α̃∗22,n is obtained by substituting Su by S∗u in the function Ψ(u, Su, z). Now, the well-

known isometry for jump integrals applying to α̃2,n = α2,n−αc2,n implies that E α̃∗22,n is bounded
by ∑

1≤i≤m2

E

∫ ti

ti−1

∫
R∗
|Ψ(u, S∗u, z)|

2|W (1)
ti−1
−W (1)

u |
2Π(dz) du ,

which is smaller than∫ t∗

0

φ2
1(λu)E(X∗u)2du

∫
R∗
$2

0(z)Π(dz) ≤ Cn−1

∫ t∗

0

φ2
1(λu)du

∫
R∗
$2

0(z) Π(dz) .

Again,
∫
R∗
$2

0(z)ν(dz) < ∞ by Condition (C1). Therefore, for some constant depending on

L,

P(nr|α̃2,n| > δ, τ∗ = 1) ≤ C(L)n2rδ−2n−1

∫ t∗

0

φ2
1(λu)du×

∫
R∗
$2

0(z)Π(dz) ,

which converges to 0 for any r > 0. Letting now L → ∞ and using (7.9) we obtain that
|α̃2,n| = o(n−r) for any r > 0. By the same way, one can show that nrb2,n → 0 in probability
for any r > 0 and the proof is completed.
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7.8 Approximation for I3,n

Proposition 7.6. Suppose that (C1) and (C2) hold. Then, for any r > 0, nr|I3,n| → 0 in
probability as n→∞.

Proof. By (3.15), one has B(t, St− , z) =
∫ St(1+z)

St

∫ v
St
Ĉxx(t, u)dudv. Recall that Ĉxx(t, u) =

u−1λ
−1/2
t ϕ̃(λt, u) ≤ u−3/2φ1(λt), where φ1(λ) =

√
K/(2π)λ

−1/2
t e−λ/8. Direct calculus leads

to |B(t, St, z)| ≤ CS
1/2
t φ1(λt)|z|. Therefore all assumptions in Lemma 7.3 are fulfilled and the

conclusion follows.

7.9 Approximation for Γn

Let us study the trading volume Γn. It is easy to check that for v ≥ 0, 1−Φ(v) ≤ Cv−1ϕ(v)

and
∫ t∗

0 ϕ̃(λu, Su)du +
∫ 1
t∗
ϕ̃(λu, Su)du almost surely converges to 0 more rapidly than any

power of n. Therefore, one can truncate the sum and keep only the part corresponding to
index m1 ≤ j ≤ m2. Next, one can ignore jumps terms that may appear in approximations
via Itô’s formulas in the interval [t∗, 1]. For convenience, let us recall here the approximation
result for Γn obtained in [33].

Proposition 7.7. Under Conditions (C1) − (C2), the total trading volume Γn admits the
following asymptotic form

Γn = Γ(S1, y1, %) + (U2,m2
+ U3,m2

) + o(n−β).

7.10 Proof of Theorem 3.1

By Propositions 7.4-7.7, the hedging error is represented as V n
1 − h(S1) = min (S1− ,K) −

κΓ (S1− , y1, %) +Mm2
, where the martingale part of the hedging error is given by Mk =

1
2U1,k−κ(U2,k+U3,k) and hence, the sequence

(
nβMm2

)
converges in law to a mixed Gaussian

variable by Proposition 7.2 and Theorem 3.1 is proved.

7.11 Proof of Theorem 3.2

Suppose now that the Lépinette strategy γ̄nt is applied for the replication problem. Analogously
one can represent the corresponding hedging error as V̄ n

1 − h(S1) = 1
2I1,n + Ī2,n − I3,n − κΓ̄n,

where

Ī2,n = I2,n +
∑
i≥1

∆Sti

∫ ti−1

0

Ĉxt(u, Su)du

and Γ̄n =
∑n

i=1
Sti |γ̄

n
ti
− γ̄nti−1

| is the trading volume. Recall that I2,n est negligible by

Proposition 7.5. Let us investigate the above sum. By (7.33), it can be represented as

∑
i≥1

∫ λ0

λi−1

Ã(u, Su)dv

∫ ti

ti−1

σ(yt)StdW
(1)
t +

∑
i≥1

∫ λ0

λi−1

Ã(u, Su)dv

∫ ti

ti−1

zdSt− J̃(dt , dz)

using the above change of variable, where Ã is defined in (7.33). Now, the approximation
technique of Proposition 7.1 can be applied to replace the first sum by the martingale U2,m2
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defined by

U2,k = %−1
k∑

j=m1

σ(ytj−1
)St−j−1

Yj−1 Z1,j ∆λj , m1 ≤ k ≤ m2

and Y (λ, x) =
∫∞
λ z−3/2 ln(x/K)ϕ̃(z, x)dz. On the other hand, one obtains the same estimate

(7.31) for the integrand, which implies that the second sum can be omitted at order nr for
any r > 0 by Lemma 7.3.

Now, we consider the approximation representation for the trading volume Γn following
the procedure in the approximation of Γn. The following is established in [33].

Proposition 7.8. Under Conditions (C1)− (C2),

P− lim
n→∞

nβ|Γn − ηmin(S1,K)− (U2,m2
+ U3,m2

)| = 0.

Hence, Mm2
= U1,m2

+ U1,m2
− κ∗(U2,m2

+ U3,m2
) is the martingale part of the hedging error

for Lépinette’s strategy, which can be represented in the form

Mk = %−1
k∑

j=m1

(A1,j−1Z1,j +A4,jZ4,j−1 +A2,j−1Z2,j)∆λj

for some explicit functions Ai satisfying the assumption of Proposition 7.3. Then, the con-
vergence in law to a mixed Gaussian variable of the sequence

(
nβMm2

)
is guaranteed by

Proposition 7.3 and hence, Theorem 3.2 is proved.

7.12 Proof of Theorem 4.1

Note first that the approximation representation for the replication error is the same as in the
SVJ case. In particular, the approximations of Ii,n, i = 1, 2, 3 are the same since the martingale
sums are obtained by one-dimension Itô’s formula. The only difference is that in finding the
limit of the total transaction costs one has replaced St−j−1

and yt−j−1
by terminal values S1− and

y1− . Now, the two-dimension version of Itô’s formula applied for the difference provides the
sums concerning the dynamics of yt. By an elementary property of Poisson process one can
ignore the jump part of yt in the time interval [t∗, 1]. Hence, the martingale approximation for
this difference is the same as in the SVJ case. However one needs to check the integrability
of αi(t, yt), i = 1, 2. For this aim, the condition sup0≤t≤1 E y2

t < ∞ is needed but this is
fulfilled under Condition (C3) together with the linear growth and Lipshitz properties of these
coefficients, see Appendix C.

7.13 Proof of Theorem 5.1

The proof can be proceeded in a similar way to that for Theorem 3.1 and Theorem 3.2 but
with a simpler argument. In fact, the difference between the use of σ̂2 = σ2 + %0

√
nf ′(t)

and that of the simple form σ̂2 = %0

√
nf ′(t) only comes from the approximation due to the

substitution λ̂ =
∫ 1
t σ̂

2
sds. In particular,

λ̂t = σ2(1− t) + %
√
n

∫ 1

t

√
f ′(t) = σ2(1− t) + λt,
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where λt is defined by the same formula with the simple form. Then, Lemma A.1 is still true
for the sequence (λ̂j) constructed from the classical form (5.1). Note that the index m1,m2

are now replaced by m̂1, m̂2 which are defined by

m̂1 = n− [nϑ−1(l∗)], m̂2 = n− [nϑ−1(l∗)],

where ϑ(z) = σ2zµ + λ0z
(1+µ)/2, which is an increasing function for µ ≥ 1. Here the notation

[x] stands for the integer part of a number x and l∗ = ln−3 n, l∗ = ln3 n. Similarly, we consider

a subsequence (tj) of trading times and the corresponding sequence
(
λ̂j

)
defined as

tj = 1− (1− j/n)µ and λ̂j = σ2(1− tj) + λ0(1− tj)
1
4β , m̂1 ≤ j ≤ m̂2. (7.39)

The rest of the approximation is the same as that of Theorem 3.1 and Theorem 3.2.

8 Concluding remark

Diffusion-based stochastic volatility models well account for volatility clustering, dependence
in increments and long term smiles and skews but can not capture jumps or realistic short-term
implied volatility patterns. These shortcomings can be fixed by adding jumps into the model.
In this paper, we contribute to the field of approximate hedging under transaction costs using
Leland’s algorithm by allowing for jumps. We showed that jumps in such frameworks do not
affect asymptotic property of the replication error in approximate hedging with transaction
costs. As a direct implication of our main result, we confirm that for constant cost rate, the
Kabanov-Safarian-Pergamenshchikov results in [22, 37] also hold for jump-diffusion settings. It
would be interesting to investigate the asymptotic properties of jump risk in small transaction
costs models.
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Appendix

A Auxiliary Lemmas

Lemma A.1. There exist two positive constants C1, C2 such that

C1 n
−2β%

2
µ+1 ν0(l∗) ≤ inf

m1≤j≤m2

|∆λj | ≤ sup
m1≤j≤m2

|∆λj | ≤ C2n
−2β%

2
µ+1 ν0(l∗), (A.1)

where ν0(x) = x(µ−1)/(µ+1). Moreover, let µ̆ = 1
2(µ+ 1)µ̃

2
µ+1 , then

∆λj = µ̆n−2β%
2

µ+1 ν0(λj−1)(1 + o(1)) and ∆λj (∆tj)
−1/2 = %(1 + o(1)). (A.2)

Proof. It follows directly from relation (7.1).
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Lemma A.2. For any K > 0 and 0 < t ≤ 1, P(St = K) = 0.

Proof. We prove that for 0 < t ≤ 1 and any real number a, P(ψt = a) = 0, where

ψt =
∫ t

0 bt dt +
∫ t

0 σ (ys) dW
(1)
s − 1

2

∫ t
0 σ

2 (ys) ds +
∑Nt

j=1 ln (1 + ξj) . Indeed, one can represent

W
(1)
t = ρBt +

√
1− ρ2Zt, where Bt is the Brownian driving yt and Z is another Brownian

independent of B. Now, conditionally on the Brownian B and jump terms
∑Nt

j=1 ln (1 + ξj),
ψt is a Gaussian variable.

Lemma A.3. For any K > 0, limε→0 lim supv→1 P(infv≤u≤1 | ln(Su/K)| < ε) = 0.

Proof. For any ε > 0, the probability in the lemma is bounded by

P( inf
v≤u≤1

| ln(Su/K)| < ε,N1 −Nv = 0, ψ∗v ≤ ε) + P(ψ∗v > ε,N1 −Nv = 0) + 2P(N1 −Nv ≥ 1),

where ψ∗v = supv≤u≤1 |lnSu/S1|. Noting ψ∗v → 0 almost everywhere in the set {N1 −Nv = 0}
as v → 1 and P(N1 −Nv ≥ 1) = 1− e−θ(1−v) → 0 as v → 1 we get

lim sup
v→1

P( inf
v≤u≤1

| ln(Su/K)| < ε) ≤ lim sup
v→1

P( inf
v≤u≤1

| ln(Su/K)| < ε,N1 −Nv = 0, ψ∗v ≤ ε)

≤ P(| ln(S1/K)| ≤ 2ε). (A.3)

To see (A.3) we remark that for any u ∈ [v, 1],

|ln(S1/K)| ≤ |ln(S1/Su)|+ |ln(Su/K)| ≤ ε+ |ln(Su/K)|

on the set {infv≤u≤1 | ln(Su/K)| < ε, ψ∗v ≤ ε}. Therefore,

|ln(S1/K)| ≤ ε+ inf
v≤u≤1

| ln(Su/K)| ≤ 2ε.

Hence,
P( inf

v≤u≤1
| ln(Su/K)| < ε) ≤ P(| ln(S1/K)| ≤ 2ε) + P(ψ∗v > ε)

and (A.3) is obtained by taking into account ψ∗v → 0 a.s. as v → 1. Letting now ε→ 0 we get
limε→0 P(| ln(S1/K)| ≤ 2ε) = P(S1 = K) = 0 by Lemma A.2, which proves Lemma A.3.

Lemma A.4. Suppose that A = A(λ, x, y) and its partial derivatives ∂λA, ∂xA, ∂yA satisfy
Condition (H). Set

rn = sup
(z,r,d)∈[l∗,l

∗]×B

(
|∂λA(z, r, d)|+ |∂xA(z, r, d)|+ |∂yA(z, r, d)|

)
,

where B = [Smin, Smax]× [ymin, ymax] with

Smin = inf
t∗≤u≤t∗

Su, Smax = sup
t∗≤u≤t∗

Su, ymin = inf
t∗≤u≤t∗

yu, ymax = sup
t∗≤u≤t∗

yu .

Then, limb→∞ limn→∞P(rn > b) = 0.

Proof. See Lemma A.4 in [33] with the remark that the left continuity of St− and yt− gives
the same argument.
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Lemma A.5. Suppose that A = A(λ, x, y) and its first partial derivatives satisfy Condition

(H). Set A(λ, x, y) =
∫
λA(z, x, y)dz and Ã(λ, x, y) = A

2
(λ, x, y). Then, for any γ > 0,

P− lim
n→∞

∣∣∣∣∣∣
m2∑
j=m1

λγj−1Ã(λj−1, S̆tj−1
)∆λj −

∫ ∞
0

λγÃ(λ, S̆1)dλ

∣∣∣∣∣∣ = 0,

where S̆t = (St, yt). The same property holds if A(λ, x, y) = A(λ, x, y) or the product of these
above functions.

Proof. See Lemme A.5 in [33].

B Some moment estimates

Lemma B.1. Let yt be an Itô’s process and St be the asset process given by

St = S0 exp

{∫ t

0
bt dt+

∫ t

0
σ (ys) dW (1)

s − 1

2

∫ t

0
σ2 (ys) ds

} Nt∏
j=1

(1 + ξj) ,

where Nt is a homogeneous Poisson process with intensity θ independent of (ξj)j≥1 (a sequence
of i.i.d. variables). We assume that the jumps ingredient (ξj)j≥1 and Nt are independent of

the Brownian motion W (1) and of that of y. If b and σ are two bounded functions then, for
any m > 0, for which E(1 + ξ1)m <∞, we have

ESmt ≤ C(m) exp{θt(E(1 + ξ1)m − 1)}, for all t ∈ [0, 1],

where C(m) is some constant depending on m.

Proof. Let us represent St = b̃tEt(σ)Xt with Xt =
∏Nt
j=1 (1 + ξj) and

b̃t = S0e
∫ t
0 bs ds, Et(σ) = exp

{∫ t

0
σ (ys) dW (1)

s − 1

2

∫ t

0
σ2 (ys) ds

}
.

By hypothesis, the stochastic exponential Et(σ) is a martingale with expectation 1, indepedent
of Xt. Therefore, ESmt ≤ CEEmt (σ)EXm

t since sup0≤t≤1 b̃
m
t ≤ C. Because σ is bounded one

has
E Emt (σ) = E Et(mσ)e(m2−m)/2

∫ t
0 σ

2(ys)ds ≤ C E Et(mσ) = C.

On the other hand, by the usual conditioning technique we get

EXm
t = E

Nt∏
j=1

(1 + ξj)
m = exp{θt(E(1 + ξ1)m − 1)},

which implies the desired conclusion.

Lemma B.2. Under the assumptions of Lemma B.1, for 0 ≤ u ≤ v ≤ 1,

E(Su − Sv)2 ≤ C|u− v|,

for some constant C.
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Proof. For 0 ≤ u < v ≤ 1, put b̃v/u := e
∫ v
u bs , Xu/v :=

∏Nv
j=Nu+1 (1 + ξj) and

Ev/u(σ) := exp

{∫ v

u
σ (ys) dW (1)

s − 1

2

∫ v

u
σ2 (ys) ds

}
.

Then, Ev/u(σ) and Xu/v are independent and

sup
0≤u≤v≤1

(EE2
v/u(σ) + Ee2

∫ v
u bs) <∞ (B.1)

since b ans σ are bounded. Denote δ = θ(v − u). It is easy to check that

E(Xu/v − 1)2 = eδ(Eξ1+Eξ21) − 2eδEξ1 + 1. (B.2)

Let us first show that E(Xu/v − 1)2 ≤ Cδ, for some constant C. Obviously, for any finite

interval [a, b], |ex − 1| ≤ Cx by Taylor’s approximation. From Condition (C3), Eξ2
1 < ∞.

Now, if Eξ1 = 0 then E(Xu/v − 1)2 = eδEξ
2
1 − 1 ≤ Cδ. Similarly, in case Eξ1 + Eξ2

1 = 0 one

has Eξ1 6= 0 and hence E(Xu/v − 1)2 = eδξ1 − 1 ≤ Cδ. Lastly, if both Eξ1 and Eξ1 + Eξ2
1

are non zero one can estimate E(Xu/v − 1)2 by |eδ(Eξ1+Eξ21 − 1|+ 2|eδEξ1 − 1| ≤ Cδ. Using the
same argument one can easily prove that

E(Eu/v(σ)− 1)2 ≤ Cδ and E(̃bv/u − 1)2 ≤ Cδ2. (B.3)

Clearly, E(Su − Sv)2 = ES2
uE
(
Sv
Su
− 1
)2

and

(
Su
Sv
− 1

)2

≤ 2
(
b̃2v/u(Eu/v(σ)− 1)2 + (̃bv/u − 1)2 + b̃2v/uE

2
u/v(σ)(Xu/v − 1)2

)
. (B.4)

By Lemma B.1, sup0≤u≤1 ES2
v <∞. Now, taking expectation in (B.4) and using (B.1), (B.2)

and (B.3) one obtains the conclusion.

C Stochastic differential equations with jumps

In this section we recall the basic result in the theory of stochastic differential equations with
jumps (SDEJ) of the form

dyt = α1 (t, yt) dt+ α2 (t, yt) dWt + dζt, (C.1)

on the time interval [0, T ] with initial value y0, where the process ζt defined in (3.2) is inde-
pendent of the Brownian motion (Wt)t≥0 and Ey2

0 <∞.
We first recall the Novikov inequalities [35] (also referred to as the Bichteler–Jacod in-

equalities, see [6, 30]) which provides upper bounds of the moments of the supremum of
purely discontinuous local martingales:

E sup
0≤t≤n

|Υ ∗ (J − ν)t|p ≤ Cp
(
E
(
|Υ|2 ∗ νn

)p/2
+ E

(
|Υ|p ∗ νn

))
, (C.2)

for p ≥ 2 and for any n ≥ 0, where Cp is some positive constant.
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Theorem C.1. Assume that αi, i = 1, 2 are locally Lipschitz and linearly bounded functions,
Ey2

0 < ∞ and that Condition (3.4) holds. Then, there exists a unique solution yt to (C.1)
with initial value y0 and

E ( sup
0≤t≤T

yt)
2 < C(T )(1 + E y2

0) <∞. (C.3)

Furthermore, for any 0 ≤ s ≤ t ≤ T , there exists a positive constant C such that

E|yt − ys|2 ≤ C|t− s|. (C.4)

Proof. The existence and uniqueness of the solution follows by adapting the classical method
used for SDEs, see for instance Theorem 2.2 in [16]. To prove (C.4), we note that

E|yt − ys|2 ≤ 3E

(∫ t

s
α1 (u, yu) du

)2

+ 3

∫ t

s
Eα2

2 (u, yu) du+ 3E (ζt − ζs)
2 .

By the linear boundedness of α1, α2 and (C.3) one gets

E

(∫ t

s
α1 (u, yu) du

)2

≤ C|t− s|
∫ t

s
(1 + Ey2

u)du ≤ C|t− s|2.

Similarly, Eα2
2 (u, yu) du ≤ C

∫ t
s (1 + Ey2

u)du ≤ C|t − s|. The inequality (C.2) (with p = 2)
implies directly that

E (ζt − ζs)
2 ≤ C|t− s|

for some constant C > 0. So, the conclusion follows.
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