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we develop a new analytical tool for general regression models to obtain the non

asymptotic sharp oracle inequalities for both usual quadratic and robust quadratic

risks. Then, we show that the constructed sequential model selection procedure is

optimal in the sense of oracle inequalities.

Keywords: Non-parametric estimation; Non parametric autoregresion; Non-asymptotic
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1 Introduction

One of the standard linear models in general theory of time series is the autore-
gressive model (see, for example, Anderson (1994) and the references therein).
Natural extensions for such models are nonparametric autoregressive models which
are defined by

yk = S(xk)yk−1 + ξk and xk = a+
k(b− a)

n
, (1.1)

where S(·) ∈ L2[a, b] is unknown function, a < b are fixed known constants, 1 ≤
k ≤ n, the initial value y0 is a constant and the noise (ξk)k≥1 is i.i.d. sequence of

unobservable random variables with Eξ1 = 0 and Eξ2
1

= 1.
The problem is to estimate the function S(·) on the basis of the observations

(yk)1≤k≤n under the condition that the noise distribution is unknown.
It should be noted that the varying coefficient principle is well known in the

regression analysis. It permits the use of more complex forms for regression coef-
ficients and, therefore, the models constructed via this method are more adequate
for applications (see, for example, Fan and Zhang (2008), Luo et al. (2009)). In
this paper we consider the varying coefficient autoregressive models (1.1). There
is a number of papers which consider these models such as Dahlhaus (1996a),
Dahlhaus (1996b) and Belitser (2000). In all these papers, the authors propose
some asymptotic (as n → ∞) methods for different identification studies without
considering optimal estimation issues. To our knowledge, for the first time, the
minimax estimation problem for the model (1.1) has been treated in Arkoun and
Pergamenchtchikov (2008) and Moulines et al. (2005) in the nonadaptive case,
i.e. for the known regularity of the function S. Then, in Arkoun (2011) it is
proposed to use the sequential analysis method for the adaptive pointwise estima-
tion problem in the case where the unknown Hölder regularity is less than one, i.e
when the function S is not differentiable. Also it should be noted (see, Arkoun
(2011)) that for the model (1.1), the adaptive pointwise estimation is possible only
in the sequential analysis framework. That is why we study sequential estimation
methods for the smooth function S. In this paper we consider the quadratic risk
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defined as

Rp(Ŝn, S) = Ep,S‖Ŝn − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx , (1.2)

where Ŝn is an estimator of S based on observations (yk)1≤k≤n and Ep,S is the
expectation with respect to the distribution law Pp,S of the process (yk)1≤k≤n given
the distribution density p and the coefficient S. Moreover, taking into account
that the distribution p is unknown, we use the robust nonparametric estimation
approach proposed in Galtchouk and Pergamenshchikov (2006a). To this end we
set the robust risk as

R∗(Ŝn, S) = sup
p∈P
Rp(Ŝn, S) , (1.3)

where P is a family of the distributions defined in Section 2.
In order to estimate the function S in model (1.6) we make use of the estimator

family (Ŝλ , λ ∈ Λ), where Ŝλ is a weighted least square estimator with the Pinsker
weights. For this family, similarly to Galtchouk and Pergamenshchikov (2009a),

we construct a special selection rule, i.e. a random variable λ̂ with values in Λ, for
which we define the selection estimator as Ŝ∗ = Ŝλ̂. Our goal in this paper is to
show the non asymptotic sharp oracle inequality for the robust risks (1.3), i.e. to
show that for any %̌ > 0 and n ≥ 1

R∗(Ŝ∗, S) ≤ (1 + %̌) min
λ∈Λ
R∗(Ŝλ, S) +

Bn
%̌n

, (1.4)

where Bn is a rest term such that for any δ̌ > 0,

lim
n→∞

Bn
nδ̌

= 0 . (1.5)

In this case the estimator Ŝ∗ is called optimal in the oracle inequality sense.
In this paper, in order to obtain this inequality for model (1.1) we develop a new
model selection method based on the truncated sequential procedures developed
in Arkoun and Pergamenchtchikov (2016) for the pointwise efficient estimation.
Then we use the non asymptotic analysis tool proposed in Galtchouk and Perga-
menshchikov (2009a) based on the non-asymptotic studies from Baron et al.
(1999) for a family of least-squares estimators and extended in Fourdrinier and
Pergamenshchikov (2007) to some other estimator families. To this end we use
the approach proposed in Galtchouk and Pergamenshchikov (2011), i.e. we pass
to a discrete time regression model by making use of the truncated sequential pro-
cedure introduced in Arkoun and Pergamenchtchikov (2016). To this end, at any
point (zl)1≤l≤d of a partition of the interval [a, b], we define a sequential procedure
(τl, S

∗
l
) with a stopping rule τl and an estimator S∗

l
. For Yl = S∗

l
with 1 ≤ l ≤ d,

we come to the regression equation on some set Γ ⊆ Ω:

Yl = S(zl) + ζl , 1 ≤ l ≤ d . (1.6)
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Here, in contrast with the classical regression model, the noise sequence (ζl)1≤l≤d
has a complex structure, namely,

ζl = ξ∗
l

+$l , (1.7)

where (ξ∗
l
)1≤l≤d is a ”main noise” sequence of uncorrelated random variables and

($l)1≤l≤n is a sequence of bounded random variables.
We will use the oracle inequality (1.4) to prove the asymptotic efficiency for the

proposed procedure, using the same method as it is been used in Galtchouk and
Pergamenshchikov (2009b). The asymptotic efficiency means that the procedure
provides the optimal convergence rate and the asymptotically minimal rate normal-
ized risk which coincides with the Pinsker constant. It should be emphasized that
only sharp oracle inequalities of type (1.4) allow to synthesis efficiency property in
the adaptive setting.

The paper is organized as follows: In Section 2 we state the main conditions
for the model (1.1). In Section 3 we describe the passage to the regression scheme.
In Section 4 we describe the sequential model selection procedure. In Section 5 we
announce the main results. In Section 6 we study the properties of the obtained
regression model (1.6). In Section 7 we prove all basic results. In Appendix A we
give all the auxiliary and technical tools.

2 Main Conditions

As in Arkoun and Pergamenchtchikov (2016) we assume that in the model (1.1) the
i.i.d. random variables (ξk)k≥1 have a density p (with respect to Lebesgue measure)
from the functional class P defined as

P :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
x p(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 and sup

k≥1

∫ +∞
−∞ |x|

2k p(x) dx

ςk(2k − 1)!!
≤ 1

 , (2.1)

where ς ≥ 1 is some parameter, which may be a function of the number observation
n, i.e. ς = ς(n), such that for any δ̌ > 0

lim
n→∞

ς(n)

nδ̌
= 0 . (2.2)

Note that the (0, 1)-Gaussian density belongs to P. In the sequel we denote
this density by p0. It is clear that for any q > 0

m∗
q

= sup
p∈P

Ep |ξ1|q <∞ , (2.3)
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where Ep is the expectation with respect to the density p from P. To obtain the
stable (uniformly with respect to the function S ) model (1.1), we assume that for
some fixed 0 < ε < 1 and L > 0 the unknown function S belongs to the ε - stability
set introduced in Arkoun and Pergamenchtchikov (2016) as

Θε,L =
{
S ∈ C1([a, b],R) : |S|∗ ≤ 1− ε and |Ṡ|∗ ≤ L

}
, (2.4)

where C1([a, b],R) is the Banach space of continuously differentiable [a, b] → R
functions and |S|∗ = sup

a≤x≤b |S(x)|.

3 Passage to a discrete time regression model

We will use as a basic procedure the pointwise procedure from Arkoun and Perga-
menchtchikov (2016) at the points (zl)1≤l≤d defined as

zl = a+
l

d
(b− a) and d = [

√
n] , (3.1)

where [a] is the integer part of a number a. So we propose to use the first ιl
observations for the auxiliary estimation of S(zl). We set

Ŝιl =
1

Aιl

ιl∑
j=1

Ql,j yj−1 yj , Aιl =

ιl∑
j=1

Ql,j y
2
j−1

, (3.2)

where Ql,j = Q(ul,j) and the kernel Q(·) is the indicator function of the interval
[−1; 1], i.e. Q(u) = 1[−1,1](u). The points (ul,j) are defined as

ul,j =
xj − zl
h

. (3.3)

Note that to estimate S(zl) on the basis of kernel estimator with the kernel Q we
use only the observations (yj)k1,l≤j≤k2,l from the h - neighborhood of the point zl,

i.e.
k1,l = [nz̃l − nh̃] + 1 and k2,l = [nz̃l + nh̃] ∧ n , (3.4)

where z̃l = (zl − a)/(b − a) and h̃ = h/(b − a). Note that, only for the last point
zd = b, we take k2,d = n. We choose ιl in (3.2) as

ιl = k1,l + q and q = qn = [(nh̃)µ0 ] (3.5)

for some 0 < µ0 < 1. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =

m∑
j=k+1

Ql,j y
2
j−1

and Am = A0,m . (3.6)
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Next, similarly to Arkoun (2011), we use a kernel sequential procedure based on the
observations (yj)ιl≤j≤n. To transform the kernel estimator in a linear function of
observations and we replace the number of observations n by the following stopping
time

τl = inf{ιl + 1 ≤ k ≤ k2,l : Aιl,k ≥ Hl} , (3.7)

where inf{∅} = k2,l and the positive threshold Hl will be chosen as a positive
random variable which is measurable with respect to the σ-field {y1, . . . , yιl}.
Now we define the sequential estimator as

S∗
l

=
1

Hl

 τl−1∑
j=ιl+1

Ql,j yj−1 yj + κlQl,τl yτl−1 yτl

1Γl
, (3.8)

where Γl = {Aιl,k2,l−1 ≥ Hl} and the correcting coefficient 0 < κl ≤ 1 on this set

is defined as
Aιl,τl−1 + κ2

l
Ql,τly

2
τl−1

= Hl . (3.9)

Note that, to obtain the efficient kernel estimator of S(zl) we need to use all k2,l −
ιl − 1 observations. Similarly to Konev and Pergamenshchikov (1984), one can
show that τl ≈ γlHl as Hl →∞, where

γl = 1− S2(zl) . (3.10)

Therefore, one needs to choose Hl as (k2,l − ιl − 1)/γl. Taking into account that
the coefficients γl are unknown, we define the threshold Hl as

Hl =
1− ε̃
γ̃l

(k2,l − ιl − 1) and ε̃ =
1

2 + lnn
, (3.11)

where γ̃l = 1 − S̃2
ιl

and S̃ιl is the projection of the estimator Ŝιl in the interval

]− 1 + ε̃, 1− ε̃[, i.e.

S̃ιl = min(max(Ŝιl ,−1 + ε̃), 1− ε̃) . (3.12)

To obtain the uncorrelated stochastic terms in kernel estimator for S(zl) we choose
the bandwidth h as

h =
b− a

2d
. (3.13)

As to the estimator Ŝιl , we can show the following property.

Theorem 3.1. The convergence rate in probability of the estimator (3.12) is more
rapid than any power function, i.e. for any b > 0

lim
n→∞

nb max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Pp,S

(
|S̃ιl − S(zl)| > ε0

)
= 0 , (3.14)

where ε0 = ε0(n)→ 0 as n→∞ such that limn→∞ nδ̌ε0 =∞ for any δ̌ > 0.
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Now we set
Yl = S∗

l
(zl)1Γ and Γ = ∩d

l=1
Γl . (3.15)

Using the convergence (3.14), we study the probability properties of the set Γ in
the following theorem.

Theorem 3.2. For any b > 0, the probability of the set Γ satisfies the following
asymptotic equality

lim
n→∞

nb sup
S∈Θε,L

Pp,S (Γc) = 0 . (3.16)

In view of this theorem we can shrink the set Γc. So, using the estimators (3.15)
on the set Γ we obtain the discrete time regression model (1.6) in which

ξ∗
l

=

∑τl−1

j=ιl+1
Ql,j yj−1 ξj + κlQ(ul,τl) yτl−1 ξτl

Hl

(3.17)

and $l = $1,l +$2,l, where

$1,l =

∑τl−1

j=ιl+1
Ql,j y

2
j−1

šl,j + κ2
l
Q(ul,τl) y

2
τl−1

šl,τl
Hl

, šl,j = S(xj)− S(zl)

and

$2,l =
(κl − κ2

l
)Q(ul,τl) y

2
τl−1

S(xτl)

Hl

.

Note that in the model (1.6) the random variables (ξ∗
j
)1≤j≤d are defined only on

the set Γ. For technical reasons we need to define these variables on the set Γc as
well. To this end, for any j ≥ 1 we set

Q̌l,j = Ql,j yj−1 1{j<k2,l} +
√
HlQl,j 1{j=k2,l} (3.18)

and Ǎιl,m =
∑m

j=ιl+1
Q̌2
l,j

. Note, that for any j ≥ 1 and l 6= m

Q̌l,j Q̌m,j = 0 . (3.19)

and Ǎιl,k2,l ≥ Hl. So now we can modify the stopping time (3.7) as

τ̌l = inf{k ≥ ιl + 1 : Ǎιl,k ≥ Hl} . (3.20)

Obviously, τ̌l ≤ k2,l and τ̌l = τl on the set Γ for any 1 ≤ l ≤ d. Now similarly to
(3.9) we define the correction coefficient as

Ǎιl,τ̌l−1 + κ̌2
l
Q̌2
l,τ̌l

= Hl . (3.21)

It is clear that 0 < κ̌l ≤ 1 and κ̌l = κl on the set Γ for 1 ≤ l ≤ d. Using this
coefficient we set

ηl =

∑τ̌l−1

j=ιl+1
Q̌l,j ξj + κ̌l Q̌l,τ̌l ξτ̌l

Hl

. (3.22)
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Note that on the set Γ, for any 1 ≤ l ≤ d, the random variables ηl = ξ∗
l
. Moreover

(see Lemma A.2), for any 1 ≤ l ≤ d and p ∈ P

Ep,S (ηl |Gl) = 0 , Ep,S

(
η2
l
|Gl
)

= σ2
l

and Ep,S

(
η4
l
|Gl
)
≤ m̌σ4

l
, (3.23)

where σl = H
−1/2
l , Gl = σ{η1, . . . , ηl−1, σl} and m̌ = 4(144/

√
3)4 m∗

4
. It is clear

that
σ0,∗ ≤ min

1≤l≤d
σ2
l
≤ max

1≤l≤d
σ2
l
≤ σ1,∗ , (3.24)

where

σ0,∗ =
1− ε2

2(1− ε̃)nh
and σ1,∗ =

1

(1− ε̃)(2nh− q− 3)
.

Now, taking into account that |$1,l| ≤ Lh, for any S ∈ Θε,L we obtain that

sup
S∈Θε,L

Ep,S1Γ$
2
l
≤
(
L2h2 +

υ̌n
(nh)2

)
, (3.25)

where υ̌n = sup
p∈P sup

S∈Θε,L
Ep,S max1≤j≤n y

4
j
. The behavior of this coefficient

is studied in the following theorem.

Theorem 3.3. For any b > 0 the sequence (υ̌n)n≥1 satisfies the following limiting
equality

lim
n→∞

n−b υ̌n = 0 . (3.26)

Remark 3.1. It should be noted that the property (3.26) means that the asymptotic
behavior of the upper bound (3.25) is approximately as h−2 when n→∞. We will
use this in the oracle inequalities below.

Remark 3.2. It should be emphasized that to estimate the function S in (1.1)
we use the approach developed in Galtchouk and Pergamenshchikov (2011) for the
sequential drift estimation problem in the stochastic differential equation. On the
basis of the efficient sequential kernel procedure developped in Galtchouk and Perga-
menshchikov (2005), Galtchouk and Pergamenshchikov (2006b) and Galtchouk and
Pergamenshchikov (2015) with the kernel-indicator, the stochastic differential equa-
tion is replaced by regression model. It should be noted that to obtain the efficient
estimator one needs to take the kernel-indicator estimator. By this reason, in this
paper, we use the kernel-indicator in the sequential estimator (3.8). It also should
be noted that the sequential estimator (3.8) which has the same form as in Arkoun
and Pergamenchtchikov (2016), except the last term, in which the correction coef-
ficient is replaced by the square root of the coefficient used in Konev (2016). We
modify this procedure to calculate the variance of the stochastic term (3.17).
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4 Model selection

In this section we consider the nonparametric estimation problem in the non asymp-
totic setting for the regression model (1.6) for some set Γ ⊆ Ω. The design points
(zl)1≤l≤d are defined in (3.1). The function S(·) is unknown and has to be estimated
from observations the Y1, . . . , Yd. Moreover, we assume that the unobserved ran-
dom variables (ηl)1≤l≤d satisfy the properties (3.23) with some nonrandom constant
m̌ > 1 and the known random positive coefficients (σl)1≤l≤d satisfy the inequality
(3.24) for some nonrandom positive constants σ0,∗ and σ1,∗ Concerning the random
sequence $ = ($l)1≤l≤n we suppose that

u∗
d

= Ep,S1Γ‖$‖2d <∞ . (4.1)

The performance of any estimator Ŝ will be measured by the empirical squared
error

‖Ŝ − S‖2
d

= (Ŝ − S, Ŝ − S)d =
b− a
d

d∑
l=1

(Ŝ(zl)− S(zl))
2 .

Now we fix a basis (φj)1≤j≤n which is orthonormal for the empirical inner product:

(φi , φj)d =
b− a
d

d∑
l=1

φi(zl)φj(zl) = 1{i=j} . (4.2)

For example, we can take the trigonometric basis (φj)j≥ 1 in L2[a, b] defined as

φ1 = 1 , φj(x) =

√
2

b− a
Trj (2π[j/2]l0(x)) , j ≥ 2 , (4.3)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd j, [x]
denotes the integer part of x. and l0(x) = (x − a)/(b − a). Note that, using the
orthonormality property (4.2) we can represent for any 1 ≤ l ≤ d the function S as

S(zl) =

d∑
j=1

θj,d φj(zl) and θj,d =
(
S, φj

)
d
. (4.4)

So, to estimate the function S we have to estimate the Fourier coefficients (θj,d)1≤j≤d.
To this end, we replace the function S by these observations, i.e.

θ̂j,d =
b− a
d

d∑
l=1

Ylφj(zl) . (4.5)

From (1.6) we obtain immediately the following regression scheme

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d , (4.6)
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where

ηj,d =

√
b− a
d

d∑
l=1

ηlφj(zl) and $j,d =
b− a
d

d∑
l=1

$l φj(zl) .

Note that the upper bound (3.24) and the Bounyakovskii-Cauchy-Schwarz inequal-
ity imply that

|$j,d| ≤ ‖$‖d ‖φj‖d = ‖$‖d . (4.7)

We estimate the function S on the grid (3.1) by the weighted least-squares estimator

Ŝλ(zl) =

d∑
j=1

λ(j) θ̂j,d φj(zl) 1Γ , 1 ≤ l ≤ d , (4.8)

where the weight vector λ = (λ(1), . . . , λ(d))′ belongs to some finite set Λ ⊂ [0, 1]d,
the prime denotes the transposition. We set for any a ≤ t ≤ b

Ŝλ(t) =

d∑
l=1

Ŝλ(zl)1{zl−1<t≤zl} . (4.9)

Moreover, denoting λ2 = (λ2(1), . . . , λ2(n))′ we define the following sets

Λ1 = {λ2 , λ ∈ Λ} and Λ2 = Λ ∪ Λ1 . (4.10)

Denote by ν the cardinal number of the set Λ and

ν∗ = max
λ∈Λ

d∑
j=1

1{λ(j)>0} .

In order to obtain a good estimator, we have to write a rule to choose a weight
vector λ ∈ Λ in (4.8). We define the empirical squared risk as

Errd(λ) = ‖Ŝλ − S‖2d .

Using (4.4) and (4.8) we can rewrite this risk as

Errd(λ) =

d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j)θ̂j,d θj,d +

d∑
j=1

θ2
j,d
. (4.11)

Since the coefficient θj,d is unknown, we need to replace the term θ̂j,d θj,d by some
of its estimators which we choose as

θ̃j,d = θ̂2
j,d
− b− a

d
sj,d with sj,d =

b− a
d

d∑
l=1

σ2
l
φ2
j
(zl) . (4.12)
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Note that from (3.24) - (4.2) it follows that

sj,d ≤ σ1,∗ . (4.13)

Similarly to Galtchouk and Pergamenshchikov (2011) one needs to introduce a
penalty term in the cost function to compensate such modification of the empirical
risk. We choose it as

Pd(λ) =
b− a
d

d∑
j=1

λ2(j)sj,d . (4.14)

Finally, we define the cost function in the following form

Jd(λ) =

d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j) θ̃j,d + δPd(λ) . (4.15)

where 0 < δ < 1 is some positive constant which will be chosen later. We set

λ̂ = argmin
λ∈Λ

Jd(λ) (4.16)

and define an estimator of S(t) of the form (4.9):

Ŝ∗(t) = Ŝλ̂(t) for a ≤ t ≤ b . (4.17)

Remark 4.1. We use the procedure (4.17) to estimate the function S in the autore-
gressive model (1.1) through the regression scheme (1.6) generated by the sequential
procedures (3.15).

5 Main results

In this section we formulate all main results. First we obtain the sharp oracle
inequality for the selection model procedure (4.17) for the general regression model
(1.6).

Theorem 5.1. There exists some constant l∗ > 0 such that for any weight vectors
set Λ, any p ∈ P, any n ≥ 1 and 0 < δ ≤ 1/12, the procedure (4.17), satisfies the
following oracle inequality

Ep,S‖Ŝ∗ − S‖2d ≤
1 + 4δ

1− 6δ
min
λ∈Λ

Ep,S‖Ŝλ − S‖2d

+ l∗
νς2

δ

(
σ2

1,∗

σ0,∗d
+ u∗

d
+ δ2

√
PS(Γc)

)
. (5.1)

Using now Lemma A.7 we obtain the oracle inequality for the quadratic risks (1.2).
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Theorem 5.2. There exists some constant l∗ > 0 such that for any weight vectors
set Λ, any continuously differentiable function S, any p ∈ P, any n ≥ 1 and
0 < δ ≤ 1/12, the procedure (4.17) satisfies the following oracle inequality

Rp(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
Rp(Ŝλ, S)

+ l∗
ς2ν

δ

(
‖Ṡ‖2

d2 +
σ2

1,∗

σ0,∗d
+ u∗

d
+ δ2

√
PS(Γc)

)
. (5.2)

Now we assume that the cardinal ν of Λ and the parameter ς in the density
family (2.1) are functions of the number observations n, i.e. ν = ν(n) and ς = ς(n)
such that for any δ̌ > 0

lim
n→∞

ν(n)

nδ̌
= 0 . (5.3)

Using Theorems 3.2 – 3.3 and the bounds (3.24) - (3.25) we obtain the oracle
inequality for the estimation problem for the model (1.1).

Theorem 5.3. Assume that the conditions (2.2) and (5.3) hold. Then for any
p ∈ P, S ∈ Θε,L, n ≥ 3 and 0 < δ ≤ 1/12, the procedure (4.17) satisfies the
following oracle inequality

Rp(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
Rp(Ŝλ, S) +

B̌n(p)

δn
, (5.4)

where the term B̌n(p) is such that for any δ̌ > 0

lim
n→∞

B̌n(p)

nδ̌
= 0 .

We obtain the same inequality for the robust risks

Theorem 5.4. Assume that the conditions (2.2) and (5.3) hold. Then for any
n ≥ 3, any S ∈ Θε,L and any 0 < δ ≤ 1/12, the procedure (4.17) satisfies the
following oracle inequality

R∗(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
R∗(Ŝλ, S) +

B∗
n

δn
, (5.5)

where the term B̌n is such that for any δ̌ > 0

lim
n→∞

B∗
n

nδ̌
= 0 .

It is well known that to obtain the efficiency property we need to specify the
weight coefficients (λ(j))1≤j≤n (see, for example, Galtchouk and Pergamenshchikov
(2009b)). Consider for some fixed 0 < ε < 1 a numerical grid of the form

A = {1, . . . , k∗} × {ε, . . . ,mε} , (5.6)
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where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are functions of
n, i.e. k∗ = k∗(n) and ε = ε(n), such that

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδ̌ε(n) = +∞

(5.7)

for any δ̌ > 0. One can take, for example, for n ≥ 2

ε(n) =
1

lnn
and k∗(n) = k∗

0
+
√

lnn , (5.8)

where k∗
0
≥ 0 is some fixed constant. For each α = (β, l) ∈ A, we introduce the

weight sequence
λα = (λα(j))1≤j≤n

with the elements

λα(j) = 1{1≤j<j∗} +
(
1− (j/ωα)β

)
1{j∗≤j≤ωα}, (5.9)

where j∗ = 1 + [lnn], ωα = (dβ ln)1/(2β+1) and

dβ =
(β + 1)(2β + 1)

π2ββ
.

Now we define the set Λ as

Λ = {λα , α ∈ A} . (5.10)

Note that these weight coefficients are used in Konev and Pergamenshchikov (2012,
2015) for continuous time regression models to show the asymptotic efficiency. It
will be noted that in this case the cardinal of the set Λ is ν = k∗m. It is clear that
properties (5.7) imply condition (5.3).

6 Properties of the regression model (1.6)

In order to prove the oracle inequalities we need to study the conditions introduced
in Konev and Pergamenshchikov (2012) for the general semi-martingale model. To
this end we set for any λ ∈ Rd the functions

B(λ) =
b− a√
d

d∑
j=1

λ(j) η̃j,d , η̃j,d = η2
j,d
−Ep,S η

2
j,d
. (6.1)

Property 6.1. For any d ≥ 1 and any λ = (λ1, . . . , λd) ∈ Rd

Ep,S 1Γ B2(λ) ≤ 10(b− a)σ1,∗m̌ Ep,S Pd(λ) . (6.2)

where m̌ is defined in (3.23).
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Proof. First note that the random variable η̃j,d can be represented as

η̃j,d =
b− a
d

d∑
l=1

(
φ2
j
(zl) η̌l + 21{l≥2} υ̌j,lηl

)
,

where η̌l = η2
l
− σ2

l
and υ̌j,l = φj(zl)

∑l−1

r=1
φj(zr)ηr. Therefore, we can rewrite the

term B(λ) as
B(λ) = B1(λ) + 2B2(λ) .

The terms B1(λ) and B2(λ) are defined as

B1(λ) =
(b− a)2

d
√
d

d∑
l=1

ψ1,l(λ)η̌l and B2(λ) =
(b− a)2

d
√
d

d∑
l=2

ψ2,l(λ)ηl ,

where

ψ1,l(λ) =

d∑
j=1

λ(j)φ2
j
(zl) and ψ2,l(λ) =

d∑
j=1

λ(j)υ̌j,l .

So,
Ep,S B2(λ) ≤ 2Ep,S B2

1
(λ) + 8Ep,S B2

2
(λ) . (6.3)

Taking into account property (4.2) and Bounyakovskii - Cauchy - Schwarz inequality
we get

ψ2
1,l

(λ) ≤
d∑
j=1

λ2(j)φ2
j
(zl)

d∑
j=1

φ2
j
(zl) =

d

b− a

d∑
j=1

λ2(j)φ2
j
(zl) .

In view of properties (3.23) we obtain that

Ep,S B2
1
(λ) =

(b− a)4

d3

d∑
l=1

ψ2
1,l

(λ) Ep,S η̌
2
l
≤ (b− a)4

d3

d∑
l=1

ψ2
1,l

(λ) Ep,S η
4
l

≤
σ1,∗m̌(b− a)3

d2
Ep,S

d∑
j=1

λ2(j)

d∑
l=1

σ2
l
φ2
j
(zl)

= σ1,∗ (b− a)m̌ Ep,S Pd(λ) .

To estimate the last term in the right hand side of the inequality (6.3), noting that
the term ψ2,l can be represented as

ψ2,l(λ) =

l−1∑
r=1

gl,r ηr ,
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where gl,r =
∑d

j=1
λ(j)φj(zl)φj(zr), we use properties (3.23) to obtain

Ep,S B2
2
(λ) =

(b− a)4

d3

d∑
l=2

Ep,S ψ
2
2,l

(λ) η2
l
≤
σ1,∗(b− a)4

d3

d∑
l=2

Ep,Sψ
2
2,l

(λ)

=
σ1,∗(b− a)4

d3

d∑
l=2

l−1∑
r=1

g2
l,r

Ep,Sσ
2
r

≤
σ1,∗(b− a)4

d3

d∑
r=1

Ep,Sσ
2
r

d∑
l=1

g2
l,r

= σ1,∗ (b− a) Ep,S Pd(λ) .

Hence Property 6.1. 2

Now we need the following moment bound.

Property 6.2. For any non random v1, . . . , vd

E

 d∑
j=1

vj ηj,d

2

≤ σ1,∗

d∑
j=1

v2
j
. (6.4)

Proof. Note that

E

 d∑
j=1

vj ηj,d

2

=
b− a
d

E

d∑
l=1

σ2
l

 d∑
j=1

vjφj(zl)

2

≤
σ1,∗(b− a)

d

d∑
l=1

 d∑
j=1

vjφj(zl)

2

.

By applying the orthonormal property (4.2) we obtain the desired inequality. Hence
Property 6.2. 2

7 Proofs

7.1 Proof of Theorem 3.1

First recall that

Ŝιl =
1

Aιl

ιl∑
j=1

Ql,jyj−1yj and S̃ιl = min(max(Ŝιl ,−1 + ε̃), 1− ε̃) ,
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where ε̃ = 1/(2 + lnn). Note that for sufficiently large n, for which we have ε̃ < ε
and then S(zl) ∈ [−1 + ε̃; 1− ε̃]. We can write

|S̃ιl − S(zl)| ≤ |Ŝιl − S(zl)| ≤

ιl∑
j=k1,l

y2
j−1
|S(xj)− S(zl)|

ιl∑
j=k1,l

y2
j−1

+ |In| ,

where In =

ιl∑
j=k1,l

yj−1ξj/

ιl∑
j=k1,l

y2
j−1

. Taking into account that |xj − zl| ≤ h for

k1,l ≤ j ≤ k2,l, we obtain that for any S ∈ Θε,L,

|Ŝιl − S(zl)| ≤ Lh+ |In| .

So, for sufficiently large n

Pp,S

(
|S̃ιl − S(zl)| > ε0

)
≤ Pp,S

(
In >

ε0
2

)
≤ Pp,S

(
In >

ε0
2
, Ξ
)

+ Pp,S (Ξc) , (7.1)

where Ξ =
{∣∣∣Υm0,m1

(zl)
∣∣∣ ≤ 1/2

}
, m0 = k1,l − 2, m1 = ιl − 1 and Υm0,m1

(zl) is

defined in (A.7). Hence we obtain the following inequality on the set Ξ:

ιl∑
j=k1,l

y2
j−1

= (ιl − k1,l + 1)

(
1

1− S2(zl)
+ Υm0,m1

(zl)

)
≥ q

2
.

Therefore, for any p̌ > 2,

Pp,S

(
In >

ε0
2
, Ξ
)
≤ Pp,S

∣∣∣∣∣∣
ιl∑

j=k1,l

yj−1ξj

∣∣∣∣∣∣ > q

2



≤ 2p̌

qp̌
Ep,S

∣∣∣∣∣∣
ιl∑

j=k1,l

yj−1ξj

∣∣∣∣∣∣
p̌

. (7.2)

Using here the correlation inequality (A.2) and the bound (A.6), we obtain that

max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Ep,S

∣∣∣∣∣∣
ιl∑

j=k1,l

yj−1ξj

∣∣∣∣∣∣
p̌

≤ cp̌ qp̌/2 .

3.1. Applying this bound in (7.1) and using Lemma A.6 we obtain Theorem 3.1.
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7.2 Proof of Theorem 3.2

First note, that

Pp,S(Γc) ≤
d∑
l=1

Pp,S

(
Aιl,k2,l−1 < Hl

)
.

Moreover, note that in view of definition (A.7) the term Aιl,k2,l−1 can be represented
as

Aιl,k2,l−1 = (m1,l −m0,l)

(
1

γl
+ Υm0,l,m1,l

(zl)

)
,

where m0,l = ιl− 1 and m1,l = k2,l− 2. Taking into account the definition of Hl in

(3.11) and the fact that 0 < γ̃l, γl ≤ 1 and that |γ̃l − γl| ≤ 2|S̃ιl − S(zl)|, we obtain

Pp,S

(
Aιl,k2,l−1 < Hl

)
= Pp,S

(
1

γl
+ Υm0,l,m1,l

(zl) <
1− ε̃
γ̃l

)

≤ Pp,S

(∣∣∣∣ 1

γl
− 1

γ̃l

∣∣∣∣ > ε̃

2

)
+ Pp,S

(∣∣∣Υm0,l,m1,l
(zl)
∣∣∣ > ε̃

2

)

≤ Pp,S

(∣∣∣S̃ιl − S(zl)
∣∣∣ > ε̃3

4

)
+ Pp,S

(∣∣∣Υm0,l,m1,l
(zl)
∣∣∣ > ε̃

2

)
.

Applying here Theorem 3.1 and Lemma A.6 we obtain Theorem 3.2.

7.3 Proof of Theorem 3.3

Note that, for any m ≥ 1

Ep,S max
1≤j≤n

y4
j
≤ nb/2 +

n∑
j=1

∫ +∞

nb/2

Pp,S

(
y4
j
≥ z
)

dz

≤ nb/2 + n max
1≤j≤n

Ep,S |yj |4m
∫ +∞

nb/2

z−mdz

= nb/2 + max
1≤j≤n

Ep,S |yj |4m
n1−b(m−1)/2

m− 1
.

Choosing here m > 1 + 2/b and using the bound (A.6) we obtain the property
(3.26). Hence Theorem 3.3.

7.4 Proof of Theorem 5.1

First of all, note that on the set Γ we can represent the empirical squared error
Errd(λ) in the form

Errd(λ) = Jd(λ) + 2

d∑
j=1

λ(j)θ′
j,d

+ ‖S‖2
d
− δ Pd(λ) (7.3)
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with θ′
j,d

= θ̃j,d − θj,dθ̂j,d. From (4.6) we find that

θ′
j,d

= θj,dζj,d +
b− a
d

η̃j,d + 2

√
b− a
d

ηj,d$j,d +$2
j,d
,

where η̃j,d = η2
j,d
− sj,d. Now putting

M(λ) =

d∑
j=1

λ(j) θj,d ζj,d , (7.4)

we rewrite (7.3) as follows

Errd(λ) = Jd(λ) + 2M(λ) + 2
1√
d

B(λ)

+ 2∆(λ) + ‖S‖2
d
− δ Pd(λ) , (7.5)

where B(λ) is given in (6.1), ∆(λ) = ∆1(λ) + ∆2(λ),

∆1(λ) =

d∑
j=1

λ(j)$2
j,d

and ∆2(λ) = 2

√
b− a
d

d∑
j=1

λ(j) ηj,d$j,d .

In view of Property 6.1, for any λ ∈ Rd,

Ep,S 1ΓB2(λ) ≤ 10σ1,∗ (b− a)m̌ Ep,S Pd(λ) . (7.6)

Note that the inequalities (3.24) imply that

P0,d(λ) ≤ Pd(λ) ≤ P1,d(λ) , (7.7)

where

P0,d(λ) =
σ0,∗(b− a)|λ|2

d
and P1,d(λ) =

σ1,∗(b− a)|λ|2

d
.

For ∆1(λ), taking into account the properties of Fourier coefficients we obtain
that

sup
λ∈[0,1]d

|∆1(λ)| ≤
d∑
j=1

$2
j,d

= ‖$‖2
d
. (7.8)

To estimate the term ∆2(λ) we recall that, for any ε > 0 and any x, y ∈ R

2xy ≤ εx2 + ε−1y2 . (7.9)

Therefore, for some 0 < ε < 1,

|∆2(λ)| ≤ ε b− a
d

d∑
j=1

λ2(j) η2
j,d

+
‖$‖2

d

ε
= εPd(λ) + ε

|B(λ2)|√
d

+
‖$‖2

d

ε
,
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where the vector λ2 ∈ Λ1 as in (4.10). Thus, for any λ ∈ [0, 1]d,

|∆(λ)| ≤ εPd(λ) + ε
B(λ2)|√

d
+ 2ε−1‖$‖2

d
. (7.10)

Putting

M1(λ) = 2
B(λ)√
d

+ 2∆(λ) ,

we can rewrite the empirical risk (7.5) as

Errd(λ) = Jd(λ) + 2M(λ) +M1(λ) + ‖S‖2
d
− δ Pd(λ) . (7.11)

From (7.10) we obtain

|M1(λ)| ≤ 2
|B(λ)|√

d
+ 2
|B(λ2)|√

d
+ 2εPd(λ) + 4ε−1‖$‖2

d
.

Moreover, setting

B∗ = sup
λ∈Λ

(
B2(λ)

Pd(λ)
+

B2(λ2)

Pd(λ
2)

)
and taking into account that Pd(λ

2) ≤ Pd(λ) for any λ ∈ Λ, we get

2
|B(λ)|√

d
+ 2
|B(λ2)|√

d
≤ 2εPd(λ) + ε−1 B∗

d
.

By choosing ε = δ/4 we find

|M1(λ)| ≤ δPd(λ) +
16

δ
Υd , Υd =

B∗

4d
+ ‖$‖2

d
. (7.12)

Now from (7.11) we obtain that, for some fixed λ0 from Λ,

Errd(λ̂)− Errd(λ0) = Jd(λ̂) − Jd(λ0) + 2M(µ̂)

+M1(λ̂)− δPd(λ̂)−M1(λ0) + δPd(λ0) ,

where µ̂ = λ̂− λ0. By the definition of λ̂ in (4.16) we obtain on the set Γ

Errd(λ̂) ≤ Errd(λ0) + 2M(µ̂) + 32
Υd

δ
+ 2δPd(λ0) . (7.13)

From (7.6) and (7.7) it follows that

Ep,S 1ΓB∗ ≤
∑
λ∈Λ

Ep,S 1Γ

(
B2(λ)

Pd(λ)
+

B2(λ2)

Pd(λ
2)

)

≤ 10σ1,∗(b− a)m̌
∑
λ∈Λ

(
P1,d(λ)

P0,d(λ)
+
P1,d(λ

2)

P0,d(λ
2)

)

= 20m̌(b− a)ν σ∗ .
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and σ∗ =
σ2

1,∗

σ0,∗
. Therefore, for 0 < δ < 1 this inequality allows to bound Υd as

Ep,S1ΓΥd ≤
5m̌(b− a)σ∗ν

d
+ u∗

d
, (7.14)

where u∗
d

is given by (4.1).
Now we study the second term on the right-hand side of inequality (7.13). For any
weight vector λ ∈ Λ we set µ = λ− λ0. Then we decompose this term as

M(µ) = Z(µ) + V (µ) (7.15)

with

Z(µ) =

√
b− a
d

d∑
j=1

µ(j) θj,dηj,d and V (µ) =

d∑
j=1

µ(j) θj,d$j,d .

We define now the weighted discrete Fourier transformation of S, i.e. we set

Šµ =

d∑
j=1

µ(j) θj,dφj . (7.16)

Now by using Property 6.2 we can estimate the term Z(µ) as

Ep,S1Γ Z
2(µ) ≤

σ1,∗(b− a)

d
‖Šµ‖2d := σ1,∗(b− a)D(µ) . (7.17)

Moreover, by the inequalities (7.9) with ε = δ and (7.8) we can estimate V (µ) as
follows

2V (µ) = 2

d∑
j=1

µ(j) θj,d$j,d ≤ δ ‖Šµ‖2d +
‖$‖2

d

δ
. (7.18)

Setting

Z∗ = sup
µ∈Λ−λ0

Z2(µ)

D(µ)
,

we obtain on the set Γ

2M(µ) ≤ 2δ‖Šµ‖2d +
Z∗

dδ
+
‖$‖2

d

δ
. (7.19)

Note now that from (7.17) it follows that

Ep,S 1Γ Z
∗ ≤

∑
µ∈Λ−λ0

Ep,S 1Γ Z
2(µ)

D(µ)
≤ νσ1,∗(b− a) . (7.20)
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Now we estimate the first term on the right-hand side of the inequality (7.19). On
the set Γ we have

‖Šµ‖2d − ‖Ŝµ‖
2
d

=

d∑
j=1

µ2(j)(θ2
j,d
− θ̂2

j,d
) ≤ − 2

d∑
j=1

µ2(j) θj,d ζj,d

= −2Z1(µ)− 2V1(µ) , (7.21)

where

Z1(µ) =

√
b− a
d

d∑
j=1

µ2(j)θj,dηj,d and V1(µ) =

d∑
j=1

µ2(j) θj,d$j,d .

Taking into account that |µ(j)| ≤ 1, similarly to inequality (7.17), we find

Ep,S 1Γ Z
2
1
(µ) ≤ σ1,∗D(µ) .

Moreover, for the random variable

Z∗
1

= sup
µ∈Λ−λ0

Z2
1
(µ)

D(µ)
,

we obtain the same upper bound as in (7.20), i.e.

Ep,S Z
∗
1

1Γ ≤ νσ1,∗(b− a) . (7.22)

Furthermore, similarly to (7.18) we estimate the second term in (7.21) as

2|V1(µ)| ≤ δ‖Šµ‖2d +
‖$‖2

d

δ
.

Therefore, on the set Γ

‖Šµ‖2d ≤ ‖Ŝµ‖
2
d

+ 2δ‖Šµ‖2d +
Z∗

1

dδ
+
‖$‖2

d

δ
,

i.e.

‖Šµ‖2d ≤
1

1− 2δ
‖Ŝµ‖2d +

1

(1− 2δ)δ

(
Z∗

1

d
+ ‖$‖2

d

)
. (7.23)

Using this inequality in (7.19) and putting Z∗
2

= Z∗ + Z∗
1

yield on the set Γ

2M(µ̂) ≤ 2δ

1− 2δ
‖Ŝµ̂‖2d +

1

δ(1− 2δ)

(
Z∗

2

d
+ ‖$‖2

d

)

≤ 4δ(Errd(λ̂) + Errd(λ0))

1− 2δ
+

1

δ(1− 2δ)

(
Z∗

2

d
+ ‖$‖2

d

)
.
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Therefore from the preceding inequality and (7.13) we obtain

Errd(λ̂)1Γ ≤
1 + 2δ

1− 6δ
Errd(λ0)1Γ +

32(1− 2δ)

δ(1− 6δ)
Υd1Γ

+
1

δ(1− 6δ)

(
Z∗

2

d
+ ‖$‖2

d

)
1Γ +

2δ(1− 2δ)

1− 6δ
Pd(λ0)1Γ

and through the inequalities (7.14), (7.20) and (7.22) we estimate the empirical risk
as

Ep,SErrd(λ̂)1Γ ≤
1 + 2δ

1− 6δ
Ep,SErrd(λ0)1Γ +

32(1− 2δ)

δ(1− 6δ)

(
5m̌σ∗ν(b− a)

d
+ u∗

d

)

+
1

δ(1− 6δ)

(
2νσ1,∗(b− a)

d
+ u∗

d

)
+

2δ(1− 2δ)

1− 6δ
Ep,S1ΓPd(λ0) .

Taking into account that σ∗,1 ≤ σ∗ and that 1− 6δ > 1/2 for 0 < δ < 1/12, we get

Ep,SErrd(λ̂)1Γ ≤
1 + 2δ

1− 6δ
Ep,SErrd(λ0)1Γ +

320

δ

(
(m̌ + 1)σ∗ν(b− a)

d
+ u∗

d

)

+
2δ(1− 2δ)

1− 6δ
Ep,S1ΓPd(λ0) .

By applying Lemma A.4 with ε = 2δ we get that

Ep,SErrd(λ̂)1Γ ≤
1 + 4δ

1− 6δ
Ep,SErrd(λ0)1Γ +

320

δ

(
(m̌ + 1)σ∗ν(b− a)

d
+ 3u∗

d

)
+ 10δ

√
σ1,∗m̌Pp,S(Γc) .

Taking into account the definition of m̌ in (3.23) and that m∗
4
≤ 3ς2, then by

replacing
Ep,SErrd(λ̂)1Γ and Ep,SErrd(λ0)1Γ

by

Ep,S‖Ŝ∗ − S‖2d − ‖S‖
2
d
Pp,S(Γc) and Ep,S‖Ŝλ0

− S‖2
d
− ‖S‖2

d
Pp,S(Γc)

respectively, we come to the inequality (5.1). Hence Theorem 5.1.
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A Appendix

A.1 Burkhölder inequality

We need the following from Shiryaev (2004).

Lemma A.1. Let (Mk)1≤k≤n be a martingale. Then for any q > 1

E |Mn|q ≤ b∗
q
E

 n∑
j=1

(Mj −Mj−1)2

q/2

, (A.1)

where the coefficient b∗
q

= 18(q)3/2/(q − 1)1/2.

A.2 Properties of the sequential procedures

Lemma A.2. The properties (3.23) hold for the random variables (ηl)1≤l≤d defined
in (3.22).

Proof. First, we set Fj = σ{ξ1, . . . , ξj} for 1 ≤ j ≤ n and as usual
F0 = {Ω, ∅}. Moreover, note that

ηl =

n∑
j=1

ťl,j ξj and ťl,j = σ2
l

(
1{ιl≤j<τ̌l}Q̌l,j + 1{j=τ̌l} κ̌l Q̌l,τ̌l

)
.

Taking into account that ťl,j is Fj−1 - measurable for any 1 ≤ j ≤ n and

n∑
j=1

ť2
l,j

= σ2
l
.

Note also that Gl = σ{η1, . . . , ηl−1, σl, } ⊂ Fιl . Noting that

E
(
ηl|Fιl

)
= 0 and E

(
η2
l
|Fιl

)
= 1 ,

we obtain the first two equalities in (3.23). As to the last inequality, note that
through (A.1) we can write

Ep,S


 n∑
j=1

ťl,j ξj

4

|Fιl

 ≤ b∗
4
Ep,S


 n∑
j=1

ť2
l,j
ξ2
j

2

|Fιl

 .

Now, note that  n∑
j=1

ť2
l,j
ξ2
j

2

≤ 2σ4
l

+ 2

 n∑
j=1

ť2
l,j
ξ̃j

2

23



where ξ̃j = ξ2
j
− 1. Taking into account that

Ep,S


 n∑
j=1

ť2
l,j
ξ̃j

2

|Fιl

 = Ep ξ̃
2
1

n∑
j=1

ť4
l,j
≤ σ4

l
Ep ξ̃

2
1
,

we obtain the last bound in (3.23). Hence Lemma A.2.
2

A.3 Correlation inequality

Now we give the correlation inequality from Galtchouk and Pergamenshchikov
(2013).

Lemma A.3. Let (Ω,F , (Fj)1≤j≤n,P) be a filtered probability space and (Xj ,Fj)1≤j≤n
be a sequence of random variables such that for some p ≥ 2

max
1≤j≤n

E |Xj |p < ∞ .

Define

bj,n(p) =

E (|Xj |
n∑
k=j

|E (Xk|Fj)|)p/2
2/p

.

Then

E |
n∑
j=1

Xj |p ≤ (2p)p/2

 n∑
j=1

bj,n(p)

p/2

. (A.2)

A.4 Upper bound for the penalty term

Lemma A.4. For sufficiently large n and 0 < ε < 1,

Ep,SPd(λ) ≤ 1

1− ε
Ep,S Errd(λ)1Γ +

u∗
d

(1− ε)ε

+
10

1− ε

√
σ1,∗m̌Pp,S(Γc) .

Proof. Indeed, by the definition of Errd(λ) on the set Γ we have

Errd(λ) =

d∑
j=1

(
(λ(j)− 1)θj,d + λ(j)ζj,d

)2

=

d∑
j=1

(
(λ(j)− 1)θj,d + λ(j)$j,d + λ(j)

√
b− a
d

ηj,d

)2

.
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Therefore, putting

I1 =

d∑
j=1

λ(j)(λ(j)− 1)θj,dηj,d and I2 =

d∑
j=1

λ2(j)$j,dηj,d ,

we get on the set Γ the following lower bound for the empirical risk

Errd(λ) ≥ b− a
d

d∑
j=1

λ2(j) η2
j,d

+ 2

√
b− a
d

I1 + 2

√
b− a
d

I2 .

Taking into account that for 0 < ε < 1,

2

√
b− a
d
|I2| ≤ ε

b− a
d

d∑
j=1

λ2(j)η2
j,d

+
‖$‖2

d

ε
,

we get

Errd(λ) ≥ (1− ε) b− a
d

d∑
j=1

λ2(j) η2
j,d

+ 2

√
b− a
d

I1 −
‖$‖2

d

ε
. (A.3)

Let us consider the first term in (A.3), then we have

Ep,S1Γ

d∑
j=1

λ2(j) η2
j,d

= Ep,S

d∑
j=1

λ2(j) sj,d −Ep,S1Γc

d∑
j=1

λ2(j) η2
j,d
.

Using the correlation inequality (A.2) and the upper bound for the fourth mo-
ment in (3.23) we obtain

Ep,Sη
4
j,d
≤ 64m̌σ2

1,∗ . (A.4)

This implies

Ep,S1Γ

d∑
j=1

λ2(j) η2
j,d
≥ Ep,S

d∑
j=1

λ2(j) sj,d − 8σ1,∗ d
√

m̌ Pp,S(Γc) . (A.5)

Therefore, we obtain

b− a
d

Ep,S1Γ

d∑
j=1

λ2(j) η2
j,d
≥ Ep,S Pd(λ)− 8(b− a)σ1,∗

√
m̌Pp,S(Γc) .

Moreover, taking into account that Ep,SI1 = 0 and in view of Theorem (6.2)

Ep,SI
2
1
≤ σ1,∗ ‖S‖2d .

So, recalling that that ‖S‖d ≤ b− a, we estimate Ep,SI11Γ as∣∣Ep,S I11Γ

∣∣ =
∣∣Ep,S I11Γc

∣∣ ≤ √σ1,∗

√
Pp,S(Γc) .

Hence Lemma A.4.
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A.5 Properties of the model (1.1)

Lemma A.5. For all t ∈ N∗ and 0 < ε < 1, the random variables yk in (1.1)
satisfy the following :

sup
n≥1

sup
0≤k≤n

sup
S∈Θε,L

Ep,S y
2t
k
<∞. (A.6)

Proof. This lemma is shown in Arkoun (2011) (Lemma A.1).
We set

Υm0,m1
(zl) =

1

m1 −m0

m1∑
j=m0+1

y2
j
− 1

γl
, (A.7)

where (k1,l − 2)+ ≤ m0 < m1 ≤ k2,l, (a)+ is positive part of a and γl is defined in
(3.10).

Lemma A.6. Assume that the bounds m0 and m1 in (A.7) are such that for some
0 < ε1 < 1/2

lim inf
n→∞

nε1(m1 −m0) > 0 .

Then, for any b > 0

lim
n→∞

nb max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Pp,S

(∣∣∣Υm0,m1
(zl)
∣∣∣ > ε0

)
= 0 , (A.8)

where ε0 = ε0(n)→ 0 as n→∞ is such that limn→∞ nδ̌ε0 =∞ for any δ̌ > 0.

Proof. This lemma is shown in Arkoun (2011) (Lemma A.2).

A.6 Properties of the norms

Lemma A.7. Let f be an absolutely continuous [a, b]→ R function with ‖ḟ‖ <∞
and g be a simple [a, b]→ R function of the form

g(t) =

p∑
j=1

cj χ(tj−1,tj ](t),

where cj are some constants. Then for all ε̃ > 0, the function ∆ = f − g satisfies
the following inequalities

‖∆‖2 ≤ (1 + ε̃)‖∆‖2
d

+

(
1 +

1

ε̃

)
‖ḟ‖2

d2
(b− a)2 ,

and

‖∆‖2
d
≤ (1 + ε̃)‖∆‖2 +

(
1 +

1

ε̃

)
‖ḟ‖2

d2
(b− a)2 .

Proof. Lemma A.7 is proven in Konev and Pergamenshchikov (2015). (Lemma
A.2.)
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