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Abstract: Optimality properties of decision procedures are studied for the quickest detection of a change-point of
parameters in autoregressive and other Markov type sequences. The limit of the normalized conditional log-likelihood
ratios is shown to exist for Markov chains satisfying the ergodic theorem of information theory. Then closed-form
expressions for this limit are derived by making use of the time average rate of Kullback-Leibler divergence. The good
properties of the detection procedures based on a sequential analysis approach are proven to hold thanks to geometric
ergodicity properties of the observation processes. In particular, the window-limited CUSUM rule is shown to be
optimal for detecting the disruption point in autoregressive models. Sparre Andersen models are specifically studied.
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1. INTRODUCTION

The problem of quick detection of an abrupt change in time series arises in many different areas, related
to automatic control, segmentation of signals, biomedical signal processing, quality control engineering,
finance, link failure detection in communication networks, intrusion detection in computer systems, and
target detection in surveillance systems; see Page (1954), Basseville and Nikiforov (1993), Kent (2000),
Tartakovsky et al. (2015) for details and further references. A challenging application area is intrusion
detection in distributed computer networks; see Kent (2000) and Tartakovsky et al. (2004). Large scale
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attacks, such as denial-of-service attacks, occur at unknown time points and need to be detected in the early
stages by observing abrupt changes in the network traffic.

In change point analysis, a large variety of observation models is used. They include independent identi-
cally distributed (i.i.d.) sequences of random variables whose distributions change at the disruption time and
also different kinds of processes with dependent variables; see Tartakovsky et al. (2015), Pergamenchtchikov
and Tartakovsky (2016) for autoregressive processes, and Yakir (1994) for Markov chains of order 1 with
finite state spaces, extended in Lai (1998) to general state spaces. Two aspects are essential: the decision
rule must both provide a low false-alarm rate and ensure quick detection of the disruption after it occurs.
However, in contrast to the analysis of detection procedures for i.i.d. models, most procedures for dependent
models reduce to only one characteristic, the false alarm rate, while the delay time characteristic is studied
only by means of numerical simulation for some specific models.

The asymptotic minimax theory for the i.i.d. case is developed in Lorden (1971), which both formulates
the optimization problem as the minimization of the worst-case delay time subject to a lower bound on
the mean time between false alarms, and proves the optimality of Page’s CUSUM algorithm. In recent
years, efforts have been made to extend the theory of optimal detection beyond the i.i.d. setting. A general
asymptotic minimax theory of change-point detection in stochastic systems is developed in Lai (1998), under
an alternative constraint on false-alarm rate – precisely that the probability of a false alarm within a given
period of length be uniformly small whensoever the period starts. In particular, the asymptotic optimality of
the procedures is proven under general conditions on the conditional log-likelihood ratio statistics (CLLRS).

Among possible conditions is the convergence of the normalized CLLRS to some finite positive quantity,
say I. In the i.i.d. case, this quantity is shown in Lorden (1971) – by standard arguments on error probabilities
of sequential log-likelihood ratio tests, to amount to the Kullback-Leibler divergence (KLD) between the
two involved pre and post-change distributions. A closed-form expression of I is provided in Lai (1998)
for Markov chains of order 1 in terms of the stationary distribution after the disruption and on the two
involved transition densities. An expression in terms of the Fisher matrix of the model is also provided in
Pergamenchtchikov and Tartakovsky (2016) for autoregressive models of order 1. None of them relate these
expressions to the concept of entropy rate, classical in information theory.

The analysis of the properties of the detection procedures will here be essentially based on the Kullback-
Leibler divergence (KLD) rates – see Girardin (2005) and Girardin and Limnios (2006), and the geometric
ergodicity properties of stable autoregressive processes – see Galtchouk and Pergamenchtchikov (2014).
Precisely, the present paper has two linked objectives. First, the problem of convergence of the normalized
CLLRS is addressed. The existence of the limit I is obtained through the ergodic theorem of information
theory, also called asymptotic equipartition property (AEP); see Girardin (2005). Thus, I is shown to be a
KLD rate, with a closed-form expression for Markov chains of any order. Specific expressions are also de-
rived for Gaussian autoregressive models. Second, in order to apply an optimal change-point detection rule
to a specific model, some general conditions providing optimality have to be satisfied – all of them involving
convergence of the normalized CLLRS to the KLD rate. For many models of interest in applications, the
verification of these conditions becomes a stumbling block. Here we prove the optimality of the CUSUM
and generalized CUSUM procedures for Markov chains and autoregressive models under simple conditions.
To this end, a method is developed for checking their sufficiency in a general optimal detection framework,
by using the closed-form expression obtained for the KLD rate.

This paper is organized as follows. In Section 2 we consider the problem of quick detection of a change-
point in general models with dependent data. As in both Lai (1998) and Pergamenchtchikov and Tartakovsky
(2016), we impose upper bounds on the uniform probability of the false alarms. We recall some general
conditions on the CLLRS, required for the optimality of the CUSUM rule for the models treated thereafter.
In Section 3, through an ergodic theory approach, we determine the limit I of the normalized CLLRS under
the form of a KLD rate, for Markov chains, and for autoregressive models; we also state conditions of
convergence in terms of AEP. In Section 4, we treat the problem of change-point detection for the Sparre

2



Andersen model – widely used in insurance. In Section 5, we study the problem of the quickest detection
in autoregressive models with Gaussian noise. Note that for sake of clarity and ease of reading, long proofs
are postponed to the appendix.

2. OPTIMALITY PROPERTIES IN DETECTION PROCEDURES

In this section, we present the quickest change-point detection problems in the pointwise and minimax
settings. The presentation follows the lines of the modified CUSUM procedures developed for general
stochastic models in Lai (1998).

Let the time series (Xk)k≥0 be specified by the conditional density function of Xk given Xk−1
0 =

(X0, . . . , Xk−1) for k ≥ 1. The model with a disruption at time ν is given by the parametric family of
conditional densities

f (ν)(xk|xk−10 ) = f0(xk|xk−10 )1{k≤ν} + f1(xk|xk−10 )1{k>ν}, (2.1)

where xk−10 = (x0, . . . , xk−1), together with the distribution of X0. The disruption time ν will be assumed
to be a nonrandom unknown integer. We will denote by P(ν) the distribution of (Xk)k≥0 defined by the two
families of conditional densities f0 and f1 and the disruption time ν, and E (ν) will denote mean under P(ν).

The issue of sequential detection is to detect the change-point as soon as possible after it occurs. The
considered procedures involve the system of CLLRS

Zj = log
f1(Xj |Xj−1

0 )

f0(Xj |Xj−1
0 )

, j ≥ 1. (2.2)

In Lai (1998), the classical CUSUM procedure is changed into the so-called window-limited CUSUM rule.
For each 0 < α < 1, letMα,m be the class of admissible stopping times τ such that supk≥1 P(0)(k ≤ τ <
k +m) ≤ α.

Note that P(0) stands for the distribution with density f0, that α is a preassigned upper bound for false
alarm probability, and m a suitably chosen window size function of α such that

lim
α→0

mα

| logα|
= +∞ and lim

α→0

logmα

| logα|
= 0.

The problem of optimal change-point detection thus becomes the determination of a procedure which
minimizes in the classMα,m the positive part detection delay riskRν(τ) = E (ν) (τ − ν)+, that is the mean
time between the detection time τ and the true disruption time ν; note that (x)+ = max(0, x).

The window-limited CUSUM procedure is defined by the stopping time

Tα = inf

n ≥ 1 : max
(n−mα)+≤k≤n

n∑
j=k

Zj ≥ cα

 , where cα = log
2mα

α
. (2.3)

The optimization problem is studied under the following conditions on the CLLRS defined in (2.2).

Condition 1. Some I ∈ R∗+ exists such that, for any ν ≥ 0, the following almost sure (a.s.) convergence
holds:

lim
n→∞

1

n

ν+n∑
j=ν+1

Zj = I, P(ν) − a.s. (2.4)
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As established in Pergamenchtchikov and Tartakovsky (2016, Theorem 5), Condition 1 implies for the
delay risk the sharp lower bound

lim inf
α→0

1

| lnα|
inf

τ∈Mα

Rν(τ) ≥ 1

I
. (2.5)

In order to derive the upper bound for the detection procedure (2.3), a stronger condition is required.

Condition 2. Some I ∈ R∗+ exists such that, for any δ > 0,

lim
n→∞

sup
k≥ν

essupP(ν)

 k+n∑
j=k+1

Zj < (I− δ)n

∣∣∣∣∣∣Fk

 = 0. (2.6)

where Fk = σ{X1, . . . Xk}.

As proven in Lai (1998, Theorem 4 (ii)), Condition 2 provides the following sharp upper bound for the
average time between the true disruption time ν and the detection time Tα,

lim sup
α→0

1

| lnα|
sup
ν≥0
Rν(Tα) ≤ 1

I
. (2.7)

3. KLD APPROACH TO THE LIMIT OF THE NORMALIZED CLRRS

Here naturally arise questions about the assumptions to be fulfilled by a time series to ensure the validity
of Conditions 1 and 2, and in which way the limit I can be evaluated from observations. This section aims
at providing conditions of existence and closed-form formulae for the case of Markov chains, and more
particularly for autoregressive models. We will mainly use the geometric ergodicity properties of Markov
chains together with concepts of entropy and information theory; see Gray (2011) and Girardin (2005). Even
though autoregressive models constitute a subclass of Markov chains, specific methods and tools have to be
developed in this case; see Meyn and Tweedie (1993) and Galtchouk and Pergamenchtchikov (2014).

Section 3.1 will develop an approach based on information theory for investigating the asymptotic con-
vergence of the normalized CLLRS. Condition 1 will be shown to amount to a particular case of the classi-
cal AEP – also called Shannon-McMillan-Breiman theorem, or ergodic theorem of information theory; see
Cover and Thomas (1991). Thus, for Markov chains of any fixed order, the limit I will appear as the KLD
rate between two random sequences with the conditional distributions before and after the disruption. In
Section 3.2, the limit will be shown to take the form of an explicit function of the model parameters. In Sec-
tion 3.3, for autoregressive models, assumptions on the existence of the limit I will be specifically checked,
yielding a closed-form formula for I too. The change-point detection procedure will then be studied in full
details, for Sparre Andersen models in Section 4 and autoregressive models in Section 5.

3.1. The Ergodic Theorem of Information Theory

Let us first recall some basics concerning entropy and divergence for random sequences. Entropy measures
randomness or uncertainty in a random phenomenon. Its introduction into probability theory in Shannon
(1948) gave rise to information theory, by measuring the information content of sources. The Shannon
(or differential) entropy of a random vector Xn−1

0 is S(Xn−1
0 ) = S(f) = −

∫
Rn f(x) log f(x)dx, if its

distribution is absolutely continuous with respect to the Lebesgue measure Λ, with density f . An extension
of the definition leads to consider the relative entropy

Sg(f) = −
∫
Rn

[
log

f(x)

g(x)

]
f(x)dx,
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if the support of f is included in the support of g, otherwise set as +∞. This is the entropy of a measure
with density f relative to a measure with density g – both absolutely continuous with respect to Λ. When
both f and g are densities of probability measures on Rn, the Kullback-Leibler divergence (KLD) of f with
respect to g, also called neg-entropy and introduced in Kullback and Leibler (1951), is the opposite number
of the entropy of f relative to g, precisely

K(f |g) =

∫
Rn

[
log

f(x)

g(x)

]
f(x)dx = −Sg(f).

Thus, the entropy of a random vector Xn−1
0 with density f relative to a measure with density g with respect

to Λ on Rn is defined as Sg(Xn−1
0 ) = Sg(f).

Similarly, the KLD of a random vector Xn−1
0 with density f with respect to a random vector Yn−1

0 with
density g on Rn is defined as K(Xn−1

0 |Yn−1
0 ) = K(f |g). The KLD measures dissimilarity between two

random phenomena. Although it is not a true distance because of lack of symmetry and triangular inequality
– see Cover and Thomas (1991), it constitutes a good tool for discriminating two distributions because

K(f |g) ≥ 0, with K(f |g) = 0 if and only if f = g. (3.1)

Let f(x,y) and g(x,y) denote densities (with respect to Λ) on Rm+n, with conditional densities denoted
by f(y|x) and g(y|x). The conditional KLD of f with respect to g is usually defined as the real number

K(f(y|x)|g(y|x)) =

∫
Rm+n

f(x,y) log
f(y|x)

g(y|x)
dxdy (3.2)

=

∫
Rm

f(x)

∫
Rn
f(y|x) log

f(y|x)

g(y|x)
dydx = E f [K(f, g;x)],

where the function of x

K(f, g;x) =

∫
Rn
f(y|x) log

f(y|x)

g(y|x)
dy (3.3)

is called local divergence (in x).
The marginal Shannon entropy of order n of a sequence X = (Xn)n≥0 taking values in (R,B(R)) is

defined as the entropy of its n-dimensional marginal distribution, namely

S(Xn−1
0 ) = −Ef [log f(Xn−1

0 )] = −
∫
Rn
f(xn−10 ) log f(xn−10 )dµ(xn−10 ),

where f is the density of the random vector Xn−1
0 with respect to the n-dimensional marginal of a reference

measure µ on the infinite product space (RN,B(RN)). Further, the Shannon entropy rate of a process X is
defined by H(X) = limn

1
nS(Xn−1

0 ) when the limit exists; see Cover and Thomas (1991, Chapter 9) and
Gray (2011, Chapter 8). The convergence in probability of − 1

n log f(Xn−1
0 ) to H(X) constitutes the weak

AEP while the almost sure convergence is called the strong AEP – or ergodic theorem of information theory,
or Shannon-MacMillan-Breiman theorem from the authors who originally proved it.

For any ergodic random sequence X whose distribution PX is absolutely continuous with respect to
Λ on RN, with density f , the extension of AEP to relative entropy says that −1n log[fg (Xn−1

0 )] converges
to Hg(X), where convergence holds in probability, in mean, or a.s. with respect to PX, for any reference
measure absolutely continuous with respect to Λ on RN, with density g; see Barron (1985) and Girardin
(2005) and the references therein for details. Note that, for sake of simplification, f or g here denote as well
the density of measures on RN as the density of all their marginals on Rn for n ∈ N∗.
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Similarly, let X = (Xn)n≥0 and Y = (Yn)n≥0 be two ergodic random sequences whose distributions
are absolutely continuous with respect to Λ on RN, with respective densities f and g. Averaging per time
unit leads to the definition of the KLD rate

D(X | Y) = lim
n→∞

1

n
K(Xn−1

0 |Yn−1
0 ) = −Hg(X),

when the limit exists. Extended forms of AEP have been proven to hold for large classes of ergodic pro-
cesses; see Girardin (2005) for a detailed review. In particular, the strong AEP was extended to Borel state
spaces independently by Barron (1985) and Orey (1985). For full details on AEP and KLD rates in the
special case of of Markovian sequences, see Algoet and Cover (1988, Theorem 4) and Gray (2011, Corol-
lary 8.4.1; in short, if both X and Y are ergodic Markov chains of finite order, with respective transition
densities f and g, then their KLD rate is well-defined and the following a.s. convergence holds with respect
to the distribution of X:

1

n
log

[
f

g
(Xn−1

0 )

]
−→ D(X | Y). (3.4)

3.2. Application to the CLLRS for Markov Chains

In Section 2, the quantity I of interest in both Conditions 1 and 2 is the limit of the normalized CLLRS
1
n

∑ν+n
j=ν+1 Zj , with Zj defined in (2.2). As remarked in Lai (1998), for the trivial case of i.i.d. observations,

I is the KLD K(f1|f0) between the post-change and pre-change distributions f1(x) and f0(x) of Xn. For
Markovian dependent observations, the next result states that I is the KLD rate between two well-identified
sequences.

Lemma 3.1. Let the time series X = (Xn)n≥0 be a model with a disruption at time ν, given by the
parametric family of conditional densities (2.1). Let X̂ be a time series with distribution given by the
conditional densities f1(xk|xk−10 ). Let X̃ be another time series, with conditional densities f0(xk|xk−10 ).
Suppose that both X̂ and X̃ are ergodic homogeneous Markov chains of order d.

Then Condition 1 is fulfilled, with I = D(X̂|X̃).

Proof. We can write

ν+n∑
j=ν+1

Zj = log

 ν+n∏
j=ν+1

f1(Xj |Xj−1
0 )

f0(Xj |Xj−1
0 )

 = log

[∏n
j=1 f1(Xν+j |Xν+j−1

0 )∏n
j=1 f0(Xν+j |Xν+j−1

0 )

]
.

For any density f defining a Markov chain of order d, we compute

n∏
j=1

f(xν+j |xν+j−10 ) =
n∏
j=1

f(xν+j |xν+j−1ν+j−d) =
n∏

j=v+1

f(xν+j |xν+j−1ν+1 )
d∏
j=1

f(xν+j |xν+j−1ν+j−d).

For any density f and time ν, we can also write

f(xν+nν ) = f(xν+n|xν+n−1ν )f(xν+n−1ν ) = f(xν+n|xν+n−1ν )f(xν+n−1|xν+n−2ν )f(xν+n−2ν )

= · · · =
n∏
j=1

f(xν+j |xν+j−1ν ) · f(xν).

Therefore, for a Markov chain of order d, we get
∏n
j=d+1 f(xν+j |xν+j−1ν+1 ) = f(xν+nν+1 )/f(xν+dν+1). Specifi-

cally
ν+n∑
j=ν+1

Zj = log

[
f1(X

ν+n
ν+1 )

f0(X
ν+n
ν+1 )

]
+ h(ν, d),

6



where h(ν, d) is a quantity depending on ν and d but not on n, and hence h(ν, d)/n converges to 0. There-
fore, 1

n

∑ν+n
j=ν+1 Zj converges to the same limit as 1

n log
[
f1(X

ν+n
ν+1 )/f0(X

ν+n
ν+1 )

]
.

By the strong AEP – see Gray (2011, Corollary 8.4.1) and (3.4), the latter converges to I = D(X|X̃),
which proves the result. 2

The first explicit formula for entropy rates was already derived in Shannon (1948) for ergodic homo-
geneous Markov chains of order 1 with finite state spaces. Further, let X be a Markov chain taking values
in R, with transition density f(x|y) and stationary distribution with density π(x). Then − 1

n log f(Xn−1
0 )

converges almost surely to the entropy rate H(X) = −
∫
R π(y)

∫
R f(x|y) log f(x|y)dx dy; see for instance

Girardin and Limnios (2006), where the extension to KLD is also proven to hold for semi-Markov pro-
cesses. Considering straightforward extension of the above formula for Markov chains of order d together
with Lemma 3.1 yields the following result for a Markov chain with a disruption.

Theorem 3.1. Let X be an ergodic real Markov chain of order d with disruption time ν, with transition
density

f (ν)(xn|xn−10 ) = f0(xn|xn−1n−d)1{k≤ν} + f1(xn|xn−1n−d)1{k>ν}, n ≥ d.

Let π1(x) denote the density of the stationary distribution for the Markov chain X̂ of order d, with transition
density f1(x|yd−10 ). Let similarly X̃ be an ergodic homogeneous Markov chain of order d, with transition
density f0(x|yd−10 ). Then Condition 1 holds true, with

I = D(X̂ | X̃) =

∫
Rd
π1(y

d−1
0 )

[∫
R
f1(x|yd−10 ) log

f1(x|yd−10 )

f0(x|yd−10 )
dx

]
dy0 . . . dyd−1. (3.5)

Note that in Fuh (2003) a KLD number between Markov transition kernels is defined for proving op-
timality properties of CUSUM procedures in hidden Markov models of order 1. In particular, a formula
similar to (3.5) is given for a Markov chain of order 1, but no link to the AEP and KLD rates is highlighted.

3.3. Autoregressive Models

For a scalar autoregressive sequence of order p with a disruption, we will provide an explicit expression
for I in terms of the Fisher matrix of the model. In this aim, we will consider the associated vector valued
autoregressive sequence of dimension p, that is a Markov chain of order 1.

Precisely, let X = (Xk)k≥1 be a random sequence governed by the autoregressive recursive equations
of order p

Xk = α1,kXk−1 + . . .+ αp,kXk−p + εk k ≥ 1, (3.6)

where αi,k = ai before the change-point time ν (for k ≤ ν), and αi,k = θi after ν, that is to say for
k > ν. Here (εk)k≥1 is Gaussian white noise – an i.i.d. standard Gaussian sequence, and the initial vector
(X1−p, . . . , X0) is independent of (εk)k≥1.

Setting Φk = (Xk, . . . , Xk−p+1)
′, a = (a1, . . . , ap)

′ and θ = (θ1, . . . , θp)
′, the model (3.6) becomes

Xk = Φ′k−1
(
a1{k≤ν} + θ 1{k>ν}

)
+ εk, k ≥ 1. (3.7)

In this case the conditional densities (2.1) take the form

f0(xk|xk−11 ) =
1√
2π

e−
(xk−Φ′k−1a)2

2 and f1(xk|xk−11 ) =
1√
2π

e−
(xk−Φ′k−1θ)

2

2 .

Since the CLLRS (2.2) can be written

Zk = Xk Φ′k−1 (θ − a)− 1

2

[
(Φ′k−1θ)

2 − (Φ′k−1 a)2
]
, (3.8)
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the ergodic properties of Φ = (Φk)k>ν will induce a closed-form formula for I, involving the Fisher matrix
of the model. Indeed, the vector valued process Φ is a Markov chain of order 1, and is governed after the
change-point by the multivariate autoregressive equation of order 1,

Φk = AΦk−1 + ξk k ≥ ν + 1 , (3.9)

where ξk = (εk, 0, . . . , 0)′ ∈ Rp and

A = A(θ) =


θ1 . . . . θp

1 0 . . . . 0

. . . . . .

0 . . . 0 1 0

 .

Applying (3.9) repeatedly yields Φk = Ak−ν Φν +
∑k

j=ν+1A
k−j ξj for k ≥ ν + 1, and hence, for any

v ∈ Rp,

E
(
Φk Φ′k|Φν = v

)
= Ak−ν v v′(A′)k−ν +

k−ν−1∑
l=0

AlB (A′)l , (3.10)

where the prime denotes transpose, and B = (bij)1≤i,j≤p is the matrix with bij = 1 if (i, j) = (1, 1) and 0
otherwise.

In the sequel we will denote by Θstb the set of all θ ∈ Rp for which all eigenvalues of A are less than
one in modulus, and say accordingly that Φ – or X – is a stable sequence. If θ ∈ Θstb, then Φ is ergodic,
the Fisher matrix F (θ) = F of the model (3.9) is well-defined, and, for any v ∈ Rp,

lim
k→∞

E
(
Φk Φ′k|Φν = v

)
= E Φ∞Φ

′
∞ =

∑
l≥0

AlB (A′)l = F, (3.11)

where Φ∞ =
∑

l≥1 A
l−1 ξl ∼ Np(0, F (θ)) is the ergodic distribution of Φk; see for example Basseville

and Nikiforovbook (1993). Moreover the following strong law of large numbers, proven in the appendix,
holds true.

Theorem 3.2. If θ ∈ Θstb for the model (3.6), then

lim
n→∞

1

n

ν+n∑
j=ν+1

Φj Φ′j = F, Pν − a.s..

Condition 1 follows, with explicit limit.

Theorem 3.3. Let X be governed by the model (3.6). Then Condition 1 holds true for all θ ∈ Θstb and any
ν ≥ 0. Moreover, the limit in (2.4) is

I = K(fθ(x|v)|fa(x|v)) =
1

2
(θ − a)′F (θ) (θ − a). (3.12)

with the KLD defined in (3.2) for the conditional densities defined in (3.8).

Proof. Equation (3.9) implies that

ν+n∑
j=ν+1

Zj(θ) = (θ − α)′Mn +
1

2
(θ − a)′

ν+n−1∑
j=ν

Φj Φ′j(θ − a) , (3.13)
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where Mn =
∑ν+n

j=ν+1 Φj−1 εj . The Chebyshev inequality easily induces that for any δ > 0∑
n≥1

P (|Mn| > δn) ≤ δ−4 sup
k≥1

E M4
k

k2

∑
n≥1

1

n2
.

Since the process (Mn)n≥1 is a martingale, using successively the Burkholder-Gundy inequality and the
Cauchy-Schwarz inequality proves that some constant C∗ > 0 exists such that

E
(
M4
n

)
≤ C∗E

 ν+n∑
j=ν+1

|Φj−1|2ε2j

2

≤ C∗n

ν+n∑
j=ν+1

E
(
|Φj−1|4ε4j

)
= C∗E

ε41 n ν+n∑
j=ν+1

E |Φj−1|4
 .

From (3.11), it is easy to deduce that supk≥ν+1 E |Φk|4 is finite, where |x| denotes the Euclidean norm of
the vector x ∈ Rp. Therefore,

lim
n→∞

|Φn|2

n
= 0 and lim

n→∞

1

n
Mn = 0, Pν − a.s., (3.14)

where the second limit follows from supn≥1 (E M4
n)/n2 <∞, thanks to the Borel-Cantelli lemma.

Equation (2.4) follows directly from Theorem 3.2, and the convergence is proven. Finally, (3.12) is
given in Example 6.5 of Pergamenchtchikov and Tartakovsky (2016), with the link to KLD detailed for an
autoregressive model of order 1 in Example 6.2. 2

4. SPARRE ANDERSEN MODELS

In this section we study the quickest detection problem for a specific case of the discrete time Sparre Ander-
son models that is widely used in insurance; see for example Asmussen and Albrecher (2010, p. 427) and
Back et al. (2003). We will show that, after the disruption, this observation process is a geometric ergodic
homogeneous Markov chain under some technical assumptions. We will explicitly compute its stationary
distribution, and finally obtain a closed form expression for the limit of the normalized CLLRS through
specific means.

Let (Jk)k≥0 be an autoregressive process of order 1 with disruption time ν, governed by the recursive
equation

Jk = (a01{k≤ν} + a11{k>ν})Jk−1 + εk , k ≥ 1, (4.1)

where the real parameters a0 6= a1 are known and the initial variable J0 is independent of the Gaussian
white noise (εk)k≥1. Let Nk =

∑
m≥1 1(Sm≤k), where N0 = 0 and the Sm are sums of m i.i.d. exponential

random variables with parameter λ > 0. The renewal process (Nk)k≥0 and the sequence (Jk)k≥0 are
independent. The process is assumed to be observed only through J̃k = JNk for k ≥ 0.

The problem is to construct a detection rule for ν on the basis of the observations

Xk = J̃σk , k ≥ 0, (4.2)

where σ0 = 0 and σk = inf{l ≥ σk−1 +1 : Nl−Nσk−1
> 0} for k ≥ 1. Note that (σk)k≥0 is an increasing

sequence of stopping times with respect to the filtration (σ(Nk, k ≤ n))n≥0. The shift from the sequence
(J̃k) to the subsequence (J̃σk) is necessary because, in the case of equal values of Nk, the corresponding
values of J̃k coincide, and hence carry no information on the disruption; therefore such J̃k must be excluded
from the detection rule.

For this construction, we need to study the observation process (4.2) after ν, that is (Xk)k>ν . Applying
(4.1) repeatedly for k > ν, we get Jm+k = ak1Jm +

∑k
j=1 a

k−j
1 εj+m, and hence (Xk)k>ν is governed by

the recursive equation
Xk = θkXk−1 + ηk, k ≥ ν + 1, (4.3)

9



where ηk =
∑sk

j=1 a
sk−j
1 εj+σk−1

, sk = σk − σk−1 and θk = ask1 . The associated conditional densities are

f(x, y; ai) = fi(y|x) =
∑
k≥1

γkφi,k(y, x) , i = 0, 1 , (4.4)

where γk = (1− e−λ)e−λ(k−1) and

φi,k(y, x) =
1

ςi,k
√

2π
e
− (y−aki x)2

2ς2
i,k with ς2i,k =

1− a2ki
1− a2i

. (4.5)

Now let us compute the transition probability function for the random sequence governed by (4.3).

Theorem 4.1. The sequence (Xk)k>ν is a homogeneous Markov chain of order 1, with transition function
given for any Borel set B ⊂ R by

P (x,B) =

∫
B
f1(y|x)dy, (4.6)

where f1 is given by (4.4) for i = 1.

Proof. First, let us check that (sk) is an i.i.d. sequence. We compute

P(s1 = m1, . . . , sj = mj) = E
[
P(s1 = m1, . . . , sj = mj |Fσj−1)

]
= E [1(s1=m1) . . .1(sj−1=mj−1)]P(sj = mj |Fσj−1),

where F0 = {∅,Ω}, and Fk = σ{X1, . . . , Xk} for k ≥ 1. It follows from the definition of σj that

P(sj = mj |Fσj−1) = P(Nσj−1 = · · · = Nσj−1+mj−1, Nσj−1+mj > Nσj−1 |Fσj−1)

= (1− e−λ)e−λ(mj−1).

Thus, X is a homogeneous Markov chain with transition probability function given by

P(x,B) = P(as11 x+

t1∑
j=1

as1−j1 εj+1)

=
∑
k≥1

P(ak1x+
k∑
j=1

ak−j1 εj+1 ∈ B)P(s1 = k) =
∑
k≥1

γk

∫
B
φ1,k(y, x)dy ,

and the desired result follows. 2

Lemma 4.1. The Markov chain X is geometrically ergodic if and only if |a1| < 1.

Proof. Let us check the assumptions of Theorem A.1 from the appendix. Let V be defined by

V (x) = c∗(1 + x2) , (4.7)

for some parameter c∗ ≥ 1. Then

E x[V (X1)] = c∗
[
1 + E x

(
X2

1

)]
= c∗

(
1 + E x

[
(θ1 x+ η1)

2
])

= c∗
[
1 + x2E (θ21) + E (η21)

]
.

It is easy to check that E (η21) = (1− a2e−λ)−1 and

E (θ21) =
∑
m≥1

a2m1 P(s1 = m) =
(1− e−λ) a21
1− a21e−λ

:= ã1 < 1 .

10



Therefore, for any ã1 < ρ < 1,

E x[V (X1)] = c∗

(
a21

eλ − a21
+ ã1x

2

)
≤ c̃∗ + ã1V (x) ≤ ρV (x), x ∈ C,

where c̃∗ = c∗(e
λ − a21)−1a21 and

C =

{
x ∈ R : |x| >

√
c̃∗

c∗(ρ− ã1)
− 1

}
.

Consequently, both Conditions D1 and D2 of Theorem A.1 hold for the set C. Applying this theorem yields
that X is geometrically ergodic. 2

Lemma 4.2. If |a1| < 1, then the stationary distribution of the Markov chain (Xk)k>ν is centered Gaussian
with variance (1− a21)−1.

Proof. Let S = σ{Nt , t ≥ 0} be the σ-algebra generated by the renewal counting process (Nt)t≥0. We get
by induction from (4.3) that

Xn =

 n∏
j=ν+1

θj

Xν +

n∑
k=ν+1

ηk

n∏
j=k+1

θj , n > ν, (4.8)

where an empty product is set to 1 by convention, and ηk is S-conditionally centered Gaussian distributed
with variance

∆k =

sk∑
j=1

a
2(sk−j)
1 =

1− a2sk1

1− a21
.

Since (ηn)n>ν is a sequence of S-conditionally independent random variables, the distribution of Xn for
n > ν is S-conditionally Gaussian distributed, with mean

mn = E (Xn|S) =

n∏
j=ν+1

θj E (Xν |S) = a
2(σn−σν)
1 E (Xν |S),

and variance

dn = E
[
Xn − E (Xn|S)2

∣∣S] =
n∑

k=ν+1

∆k

n∏
j=k+1

θj =
1− a2σn−σν1

1− a21
. (4.9)

Moreover mn converges a.s. to 0 and dn to (1− a21)−1 when n tends to infinity. Thus, both the conditional
distribution of Xn and its ordinary one are asymptotically centred Gaussian distributed with variance (1 −
a21)
−1. Therefore the candidate for the stationary distribution of the process is the probability measure

defined by

π(B) =

√
1− a21

2π

∫
A
e−(1−a

2
1)u

2/2du, B ∈ B(R). (4.10)

Finally, it is straightforward to show that π(B) =
∫
R P (x,B)π(dx) for any Borel set B ∈ B(R), where

P (x,B) is given in (4.6). 2

Thanks to (4.6), the conditional densities in (2.1) take the form (4.4), or fi(xj |xj−10 ) = f(xj−1, xj ; ai),
for i = 0, 1, and the CLLRS in (2.2) takes the form

Zj = g(Xj−1, Xj), where g(x, y) = log
f(x, y; a1)

f(x, y; a0)
. (4.11)

The following properties of the conditional KLD are necessary for obtaining a closed-form formula for I.
The proof is postponed to the appendix.

11



Lemma 4.3. Let f1(y|x) and f0(y|x) be given by (4.4).
1. If a1 6= a0, then the local divergence K(f1, f0;x) defined by (3.3) is positive for all x ∈ R.
2. Let V be defined by (4.7). If c∗ ≥ 6(1−a21)−1+2 log

√
2π−2 log(1−e−λ), then K(f1, f0;x) ≤ V (x)

for all x ∈ R.

It follows from Lemma 4.3 that the local divergence satisfies

K(f1, f0;x) ≤ 6(1− a21)−1 + 2 log
√

2π − 2 log(1− e−λ) .

Condition 1 can then be deduced from Theorem 3.1 and a closed-form expression for the limit derives
from (3.5). Still, the following given proof is specific to the case under study.

Theorem 4.2. Let X be a Sparre-Anderson model governed by (4.3). Then for any ν ≥ 0, Condition 1 is
satisfied, with

I =

∫
R
π(x)K(f1(y|x) | f0(y|x))dx =

√
1− a21

2π

∫
R
K(f1, f0;x)e−(1−a

2
1)x

2/2dx, P(ν) − a.s..

where the conditional densities are given in (4.4).

Proof. We can write
ν+n∑
j=ν+1

Zj =

ν+n∑
j=ν+1

Uj +

ν+n∑
j=ν+1

g̃(Xj−1) = An +Bn,

where Uj = g(Xj−1, Xj) − g̃(Xj−1) and g̃(x) = Ex[g(x,X1)] =
∫
R g(x, y)f1(y|x)dy. Let us show that,

P(ν)-a.s., Bn/n converges to K(f1|f0) and An/n converges to 0 as n tends to infinity.
First, applying the strong law of large numbers – see Meyn and Tweedie (1993, Theorem 17.1.7) – to

the series Bn =
∑ν+n

j=ν+1 g̃(Xj−1), for n ≥ 1, yields

lim
n→∞

1

n
Bn =

∫
R
g̃(y)dπ(y) = K(f1|f0) P(ν) − a.s..

Second, (Uj)j>ν is a martingale-difference with respect to the natural filtration Fj = σ(Xj
0) for j > ν.

Therefore An/n will converge to 0 if∑
j>ν

1

j2
E (U2

j |Fj−1) <∞ P(ν) − a.s.. (4.12)

Thanks to the bound (A.5), we get

E (U2
j |Fj−1) ≤ E [g2(Xj−1, Xj)|Fj−1] ≤ E [(u∗ +X2

j−1 +X2
j )2|Fj−1]

≤ 3
[
(u∗)2 +X4

j−1 + E
(
X4
j |Fj−1

)]
.

Thanks to the latter inequality, it is sufficient for proving (4.12) to show that

sup
n>ν

E (X4
n|Fν) <∞ . (4.13)

First (4.8) gives X4
n ≤ 8X4

ν

∏n
j=ν+1 θ

4
j + 8X̃4

n ≤ 8X4
ν + 8Y 4

n , where Yn =
∑n

k=ν+1 ηk
∏n
j=k+1 θj . So,

proving (4.13) amounts to proving that sup
n>ν

E (Y 4
n |Fν) <∞ .
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For n > ν, applying the Hölder inequality yields

Y 4
n ≤

 n∑
k=ν+1

|ηk| n∏
j=k+1

|θj |1/2
 n∏

j=k+1

|θj |1/2
4

≤ cn
n∑

k=ν+1

η4k

n∏
j=k+1

θ2j ,

where cn =
(∑n

k=ν+1

∏n
j=k+1 |θj |2/3

)3
. Therefore, thanks to (4.9),

E
(
Y 4
n |S

)
≤ 3cn

n∑
k=ν+1

∆2
kΠ

n
j=k+1θ

2
j ≤

3cn
1− a21

n∑
k=1

∆kΠ
n
j=k+1θ

2
j ≤

3cn
(1− a21)2

·

Since σj − σj−1 ≥ 1 in (4.2), we get cn ≤ (
∑

k≥1 |a1|2k/3)3 <∞, and (4.13) is proven. Finally, the series
(4.12) is convergent, and hence An/n converges Pν-a.s. to 0. 2

5. OPTIMALITY PROPERTIES FOR AUTOREGRESSIVE MODELS

We will here prove the optimality of the window-limited CUSUM procedure (2.3) for the autoregressive
model (3.6) for which both pre-change and post-change parameters are known. We will apply the detecting
procedures proposed in Lai (1998) and shortly described in Section 2. In this aim, we will develop analytical
tools leading to the conditions that provide the lower and upper bounds for the detection delay.

First the detection delay has an asymptotic upper bound, because Condition 2 is satisfied, as stated in
the following proposition, whose proof is given in the appendix.

Theorem 5.1. If the autoregressive model (3.6) is stable – that is for θ ∈ Θstb, then Condition 2 is satisfied.

In Lai (1998, Theorem 4 (ii)), the upper bound (2.7) is proven to hold true provided that the system of
statistics (3.8) satisfies (2.6). Therefore, the lower bound (2.5) together with the upper bound (2.7) imply
the minimax property of the CUSUM procedure, as stated below.

Theorem 5.2. If the autoregressive model (3.6) is stable, then the detection delay risk of the window-
limited procedure (2.3) based on the statistics (3.8) is upper bounded as in (2.7), with I given by (3.12), and
the procedure is asymptotically minimax with

lim
α→0

infτ∈Mα supν≥0Rν(τ)

supν≥0Rν(Tα)
= 1 .

Moreover, this procedure is pointwise optimal. In mathematical words, for any ν ≥ 0,

lim
α→0

infτ∈Mα Rν(τ)

Rν(Tα)
= 1.
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APPENDIX

A.1. Geometric Ergodicity for Homogeneous Markov Processes

We will follow the so-called Meyn–Tweedie approach; some definitions from Meyn and Tweedie (1993)
and Galtchouk and Pergamenchtchikov (2014) are necessary.

For a homogeneous Markov chain (Xn)n≥0 with measurable state space (X ,B(X )), the transition prob-
ability of the chain is defined by P (x,A) = P(X1 ∈ A|X0 = x) for all x ∈ X and A ∈ B(X ). The n−step
transition probability is Pn(x,A) = P(Xn ∈ A|X0 = x). A measure π on B(X )) is said to be invariant
– or stationary, or ergodic – for the chain if π(A) =

∫
X P (x,A)π(dx) for all A ∈ B(X ). If an invariant

positive measure π with µ(X ) = 1 exists, then the chain is said to be positive.
The following conditions are minorization and drift conditions:

D1. There exist δ > 0, a set C ∈ B(X ), and a probability measure Q on B(X ) with Q(C) = 1, such that,
for any A ∈ B(X ) for which Q(A) > 0, infx∈C P (x,A) > δQ(A).
D2. There exist a function V : X → [1,∞), constants 0 < ρ < 1 and d ≥ 1, and a set C ∈ B(X ) such that
W = supx∈C |V(x)| <∞ and, for all x ∈ X , E x[V(X1)] ≤ (1− ρ)V(x) + d1C(x) .

If D2 is satisfied, V is called the Lyapunov function of the chain. Note that, obviously, Condition D1

implies that η = infx∈C P (x,C)− δ > 0.
The following theorem is used in the proof of Lemma 4.1 in Section 4; see Feigin and Tweedie (1985),

and also Galtchouk and Pergamenchtchikov (2014).

Theorem A.1. Let (Xn)n≥0 be a homogeneous Markov chain satisfying conditions D1 and D2 with the
same set C ∈ B(X ). Then (Xn)n≥0 is a positive geometric ergodic process, i.e.,

sup
n≥0

eκ
∗n sup

x∈X
sup

0≤g≤V

1

V(x)
|E x g(Xn)− π(g̃)| ≤ R∗.

Note that the positive constants κ∗ and R∗ are determined in Galtchouk and Pergamenchtchikov (2014).

A.2. Proof of Theorem 3.2

Setting Ψn =
∑ν+n

j=ν+1 Φj Φ′j , we obtain from (3.9) that

Ψn = AΨnA
′
+A

(
Φν Φ

′
ν − Φν+n Φ

′
ν+n

)
A
′
+AM̃n + M̃ ′nA

′
+

ν+n∑
j=ν+1

ξj ξ
′
j ,

where M̃n =
∑ν+n

j=ν+1 Φj−1 ξ
′
j is the p × p matrix whose first column is the vector Mn defined in (3.13)

and all other columns are null. So, if we set

Dn = A
(

Φν Φ
′
ν − Φν+n Φ

′
ν+n

)
A
′
+AM̃n + M̃ ′nA

′
+

ν+n∑
j=ν+1

ξj ξ
′
j ,

15



we obtain for the matrix Ψn the linear equation

Ψn −AΨnA
′

= Dn . (A.1)

Thanks to both (3.14) and the strong law of large numbers, we get that 1
n Dn converges Pν-a.s. to the matrix

B in (3.10).
A vector operation vec(·) is defined by setting vec(V ) = (v1,1, . . . , vp,1, . . . , v1,p, . . . , vp,p)

′ ∈ Rp2
, for

any p× p matrix V . Thus we can write (A.1) as

(I −A⊗A)vec(Ψn) = vec(Dn), (A.2)

where U ⊗ V = (ui,jvk,l)1≤i,jk,l≤p is the p2 × p2 matrix called the Kronecker product of the two p × p
matrices U = (ui,j)1≤i,j≤p and V = (vi,j)1≤i,j≤p; see, for example, Feigin and Tweedie (1985, Section 3.3)

One can check directly that the eigenvalues of the matrix A⊗A are (λiλj)1≤i,j≤p, where (λi)1≤i≤p are
the eigenvalues of A. If |λi| < 1 for all i, then |λiλj | < 1 for all (i, j) too. Therefore, (A.2) has a unique
solution which can be written

vec
(

1

n
Ψn

)
= (I −A⊗A)−1 vec

(
1

n
Dn

)
. (A.3)

Obviously, the Fisher matrix F defined in (3.11) satisfies the linear equation F − AFA′ = B, that can
be rewritten as vec(F ) = (I − A ⊗ A)−1 vec(B) . Letting n tend to infinity in (A.3) yields the desired
convergence. 2

A.3. Proof of Lemma 4.3

1. Thanks to (3.1), it is sufficient to show that, for all x ∈ R, some set Γ(x) with positive Lebesgue measure
exists such that f1(y|x) 6= f0(y|x) in (4.4) for all y ∈ Γ(x). Let us suppose, without loss of generality, that
a1 > a0 and show that

φ1,k(y, x) > φ0,k(y, x), k ≥ 1. (A.4)

According to (4.5), the above inequality amounts to y2A1,k + yA2,k +A3,k > 0, where

A1,k =
1

2

(
1

ς20,k
− 1

ς21,k

)
, A2,k = x

(
ak0
ς20,k
− ak1
σ21,k

)
, and A3,k =

x2

2

(
ak0
ς20,k
− ak1
ς21,k

)
− log

ς21,k
ς20,k

.

Since A1,k > 0 for all k, (A.4) will follow for example if y > y′′k(x), where

y′′k(x) =

√
|A2

2,k − 4A1,kA3,k| −A2,k

2A1,k
.

Note that, if the discriminant A2
2,k − 4A1,kA3,k is negative, then the inequality (A.4) holds for any y ∈ R.

Taking into account that limk→+∞ A1,k = (a21 − a20)/2, limk→∞A2,k = 0 and limk→∞ A3,k = − log(1−
a20)/(1− a21), we get

lim
k→∞

y′′k(x) = 2

√
2(a21 − a20) log(1− a20)/(1− a21)

a21 − a20
.

Therefore, for any x ∈ R, z∗(x) = supk≥1 y
′′
k(x) < ∞, and the interval Γ(x) = (z∗(x),+∞) is a suitable

choice. On this set, (A.4) holds, and hence, f1(y|x) > f0(y|x), as required. Point 1. follows.
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2. Since ςi,1 = 1 and ς2i,k ≥ 1 for all k ≥ 2, we get for all x and y,

γ1√
2π
e−(x

2+y2) ≤ fi(y|x) ≤ 1√
2π

,

or | log fi(y|x) | ≤ log
√

2π − log(1− e−λ) + x2 + y2. Therefore,

|g(x, y)| ≤ | log f0(y|x)|+ | log f1(y|x)| ≤ u∗ + 2(x2 + y2) , (A.5)

where u∗ = 2 log
√

2π − 2 log(1− e−λ) and g is defined in (4.11). Further,

K(f1|f0;x) =

∫
R
f1(y|x)g(x, y)dy ≤ u∗ + 2x2 + 2

∫
R
y2f1(y|x) dy . (A.6)

Elementary algebra gives

∫
R
y2 f1(y|x) dy =

∑
k≥1

γk

ς1,k
√

2π

∫
R
y2 e

− (y−ak1x)2

2ς2
1,k dy =

∑
k≥1

(ς21,k + a2k1 x
2)γk ≤ (1− a21)−1 + x2 .

The above equality jointly with (A.6) yield the desired result, precisely

K(f1|f0;x) ≤ u∗ +
2

1− a21
+ 4x2 ≤ V (x) ,

provided that c∗ ≥ u∗ + 6(1− a21)−1. 2

A.4. Proof of Theorem 5.1

First note that, thanks to the time homogeneity of the process (Xj)j>ν , for any k ≥ ν,

essupP(ν)

 k+n∑
j=k+1

Zj < (I− δ)n

∣∣∣∣∣∣ Fk
 = sup

v∈Rp
P(0)

 n∑
j=1

Zj < (I− δ)n

∣∣∣∣∣∣ Φ0 = v

 . (A.7)

where P(0) denotes the probability measure when the disruption occurs at time 0.
In order to simplify the analysis of the right hand side conditional probability in (A.7), let us introduce,

for any initial value v ∈ Rp, the autoregressive process

Φ̃k = Φk −Ak v =

k∑
l=1

Ak−lB ξl.

Note that (Φ̃k)k≥1 satisfies (3.9) with initial value zero. Substituting Xk from (3.7) into (3.8), we get

Zk = Φ′k−1θεk +
1

2
Φ′k−1θ θ

′
Φk−1 , (A.8)

where θ = θ − a. For the process (Z̃k)k≥1 with initial value zero associated to (Zk)k≥1, we have Z̃k =

Φ̃′k−1θ εk + 1
2 Φ̃′k−1θ θ

′
Φ̃k−1 . Substituting Φ̃k−1 from (??) into (A.8) yields

Zk = Z̃k +
v′(A′)k−1 θ θ

′
Ak−1v

2
+ ukθ

′
Ak−1 v ,

17



where uk = θ
′
Φ̃k−1 + εk. It follows that the sums Sn =

∑n
j=1 Zj and S̃n =

∑n
j=1 Z̃j are related by

Sn = S̃n + g(v) where

g(v) =
1

2
v′Vnv + U ′n v , (A.9)

with Vn =
∑n

k=1(A
′)k−1 θ θ

′
Ak−1 and Un =

∑n
k=1 uk(A

′)k−1θ . Moreover, the function g is bounded as
stated in Lemma A.1 below.

Using Theorem 3.3 and this bound will allow us to prove that for any δ > 0

lim
n→∞

sup
v∈Rp

P(0)

 n∑
j=1

Zj < (I− δ)n

∣∣∣∣∣∣ Φ0 = v

 = 0 .

Indeed, thanks to Lemma A.1 below,

P(0) (Sn < (I− δ)n |Φ0 = v) = P(0)

(
S̃n
n

+
g(v)

n
< I− δ

)

≤ P(0)

(
S̃n
n
− I < −δ +

|ζ∗|
n

)
≤ P(0)

(∣∣∣∣∣ S̃nn − I

∣∣∣∣∣ > δ/4

)
+ P(0)

(
|ζ∗|
n
≥ δ/4

)
.

Thus

P(0)

 n∑
j=1

Zj < (I− δ)n |P(0) = v

 ≤ P(0)

(∣∣∣∣∣ S̃nn − I

∣∣∣∣∣ > δ/4

)
+ P(0)

(
|ζ∗|
n
≥ δ/4

)
.

Letting n tend to infinity and applying Theorem 3.3 yield (2.6). Thus Theorem 5.1 is proven. 2

Lemma A.1. The function g in (A.9) is lower bounded by some integrable random variable ζ∗, that is
infv∈Rp g(v) ≥ ζ∗.

Proof. Since the matrix Vn is symmetric and nonnegative definite, an orthogonal matrix Qn exists such that
QnVnQ

′
n = diag(v1,n, . . . ,vp,n), where v1,n ≥ . . . ≥ vp,n ≥ 0 are the eigenvalues of Vn.

A non-degenerate transformation is defined onto Rp by setting t = (t1, . . . , tp)
′ = Q′nv . Therefore, the

function g(·) can be viewed as a function of t, precisely

g(v) = g̃(t) =

p∑
j=1

(
vj,n t

2
j

2
+ βj,n tj

)
(A.10)

with βj,n =< Q′nUn >j , where < x >j denotes the j-th component of the vector x. For any j, we can
write vj,n = ẽ′jVnẽj with ẽj = Qn ej , where ej = (0, . . . , 1, . . . , 0)′ ∈ Rp. Note that βj,n = U ′nẽj .

If v′ Vnv =
∑n

k=1(θ
′
Ak−1v)2 = 0, (where θ = θ − a as in (A.8)), then θ

′
Ak−1 v = 0 for all

1 ≤ k ≤ n, and hence U ′n v =
∑n

k=1 ukθ
′
Ak−1 v = 0, and finally g(v) is null. Therefore, if vj,n = 0 for

some 1 ≤ j ≤ p, then βj,n = 0 .
Thus the function g̃(·) in (A.10) can be rewritten as

g̃(t) =

p∑
j=1

(
vj,n t

2
j

2
+ βj,n tj

)
1{vj,n>0} .
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It is easy to check that g̃(·) is lower bounded, that is

g̃(t) ≥ −
p∑
j=1

β2j,n
vj,n

1{vj,n>0} . (A.11)

Further, since θ ∈ Θstb, the limit of Vn exists when n tends to infinity. Precisely, Vn converges to∑
l≥0 (A′)l θ θ

′
Al, and, for each 1 ≤ j ≤ p, the sequence (vj,n)n≥1 is increasing with a finite limit.

Finally,

E
(

sup
n≥1
|Un|

)
≤ |θ|

∑
k≥1

E
(
|uk| |(A′)k−1|

)
≤ |θ| sup

k≥1
E (|uk|)

∑
k≥1
|(A′)k−1| <∞ .

Together with (A.11), this yields the desired result with

ζ∗ = − inf
n≥1

p∑
j=1

β2j,n
vj,n

1{vj,n>0} .

2
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