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Abstract We consider the quickest change-point detection problem in pointwise and minimax settings
for general dependent data models. Two new classes of sequential detection procedures associated with
the maximal “local” probability of a false alarm within a period of some fixed length are introduced. For
these classes of detection procedures, we consider two popular risks: the expected positive part of the delay
to detection and the conditional delay to detection. Under very general conditions for the observations,
we show that the popular Shiryaev–Roberts procedure is asymptotically optimal, as the local probability
of false alarm goes to zero, with respect to both these risks pointwise (uniformly for every possible point
of change) and in the minimax sense (with respect to maximal over point of change expected detection
delays). The conditions are formulated in terms of the rate of convergence in the strong law of large
numbers for the log-likelihood ratios between the “change” and “no-change” hypotheses, specifically as a
uniform complete convergence of the normalized log-likelihood ratio to a positive and finite number. We
also develop tools and a set of sufficient conditions for verification of the uniform complete convergence
for a large class of Markov processes. These tools are based on concentration inequalities for functions
of Markov processes and the Meyn–Tweedie geometric ergodic theory. Finally, we check these sufficient
conditions for a number of challenging examples (time series) frequently arising in applications, such as
autoregression, autoregressive GARCH, etc.

Keywords Asymptotic optimality, Change-point detection, Shiryaev–Roberts procedure, Sequential
detection

1 Introduction

The problem of rapid detection of abrupt changes in a state of a process or a system arises in a variety of
applications from engineering problems (e.g., navigation integrity monitoring [Basseville and Nikiforov
(1993); Tartakovsky et al. (2014)]), military applications (e.g., target detection and tracking in heavy
clutter [Tartakovsky (1991); Tartakovsky et al. (2014)]) to cyber security (e.g., quick detection of attacks
in computer networks [Kent (2000); Tartakovsky (2014); Tartakovsky et al. (2014, 2006a,b)]). In the
present paper, we are interested in a sequential setting assuming that as long as the behavior of the
observation process is consistent with a “normal” (initial in-control) state, we allow the process to
continue. If the state changes, then we need to detect this event as rapidly as possible while controlling
for the risk of false alarms. In other words, we are interested in designing the quickest change-point
detection procedure that optimizes the tradeoff between a measure of detection delay and a measure of
the frequency of false alarms.

There are four conventional approaches to the optimum tradeoff problem: Bayesian, generalized
Bayesian, multicyclic detection of changes in a stationary regime, and minimax (see Tartakovsky et
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al. (2014, Ch 6)). In the Bayesian context, proposed by Girshick and Rubin (1952) and Shiryaev (1961,
1963), the change point is assumed to be random with a geometric prior distribution, and the optimality
criterion is to minimize the weighted Bayes-type expected detection delay subject to an upper bound on
the weighted probability of a false alarm. Until the 1990s, most of the work related to the optimality
issue in change detection had been done in the iid case, assuming that observations are independent
and identically distributed (iid) with one law before the change and with another distribution after the
change. In particular, in the 1960s, Shiryaev (1961, 1963) found an optimal Bayes solution showing that a
detection procedure based on thresholding the posterior probability of the change up to the current mo-
ment is strictly optimal for any value of the weighted false alarm probability. Much later, in 2004–2006,
a general Bayesian asymptotic theory of change-point detection (for very general non-iid models and
arbitrary prior distributions of the change point) was developed by Tartakovsky and Veeravalli (2005)
in discrete time and Baron and Tartakovsky (2006) in continuous time.

By contrast, in a minimax formulation, proposed by Lorden (1971) and Pollak (1985), the change
point is assumed to be an unknown non-random number and the goal is to minimize the worst-case
delay (with respect to the point of change) subject to a lower bound on the mean time until false alarm.
Specifically, in 1971, Lorden (1971) suggested the worst-worst-case average delay to detection measure
ESADD(τ) = supν>0 ess supEν(τ − ν|τ > ν,Fν) that should be minimized in the class of procedures
Hγ = {τ : E∞τ > γ} for which the average run length (mean time) to false alarm E∞τ is not smaller
than a given number γ > 1. Here τ is a generic change detection procedure (stopping time), Eν stands
for the operator of expectation when the change point is ν (ν =∞ corresponds to a no-change scenario)
and Fν = σ(X1, . . . , Xν) is the sigma-algebra generated by the first ν observations X1, . . . , Xν . Lorden
(1971) developed an asymptotic minimax theory of change detection (in the iid case) as γ →∞, proving
in particular that Page’s CUSUM procedure [Page (1954)] is asymptotically first-order minimax. Later
in 1986, Moustakides (1986) established strict optimality of CUSUM for any value of the average run
length to false alarm γ > 1. In the 1980s, Pollak (1985) introduced a less pessimistic worst-case detection
delay measure — maximal conditional average delay to detection,

SADD(τ) = sup
ν>0

Eν(τ − ν|τ > ν), (1.1)

and found an almost optimal procedure that minimizes SADD(τ) subject to the constraint on the average
run length to false alarm (i.e., in the class Hγ) as γ becomes large. Pollak’s idea was to modify the
Shiryaev–Roberts statistic by randomization of the initial condition in order to make it an equalizer.
Pollak proved that the randomized Shiryaev–Roberts procedure that starts from a random point sampled
from the quasi-stationary distribution of the Shiryaev–Roberts statistic is asymptotically nearly minimax
within an additive vanishing term. Since the Shiryaev–Roberts–Pollak procedure is an equalizer, it is
tempting to conjecture that it may be strictly optimal for any value of γ, which is not true, as the
articles of Moustakides et al. (2011) and Polunchenko and Tartakovsky (2010) indicate.

As we already mentioned above, in the early stages the theoretical development was focused primarily
on the iid case. However, in practice the observations may be non-identically distributed and dependent.
A general asymptotic minimax theory of change-point detection for non-iid models was developed by Lai
(1995, 1998) (see also Fuh (2003) for hidden Markov models with a finite state-space). In particular, for
a low false alarm rate (large γ) the asymptotic minimaxity of the CUSUM procedure was established in
Fuh (2003); Lai (1998).

In the iid case, the suitably standardized distributions of the stopping times of the CUSUM and
Shiryaev–Roberts detection procedures are asymptotically exponential for large thresholds and fit well
into the geometric distribution even for a moderate false alarm rate (see Pollak and Tartakovsky (2009b)).
In this case, the average run length to false alarm is an appropriate measure of false alarms. However,
for non-iid models the limiting distribution is not guaranteed to be exponential or even close to it. In
general, we cannot even guarantee that large values of the average run length to false alarm will produce
small values of the maximal local false alarm probability. Therefore, the average run length to false
alarm is not appropriate in general, and instead it is more adequate to use the local conditional false
alarm probability, as suggested in Tartakovsky (2005); Tartakovsky et al. (2014). This issue is extremely
important for non-iid models, as a discussion in Mei (2008); Tartakovsky (2008) shows. See also Lai
(1995, 1998).

Other approaches to sequential change detection as well as a comparison of several popular change
detection procedures, such as CUSUM, Shiryaev–Roberts, and EWMA procedures can be found in Bas-
seville (1988, 1998); Basseville and Nikiforov (1993); Benveniste et al. (1987); Brodsky and Darkhovsky
(1993); Hawkins and Olwell (1998); Mason and Young (2001); Monigomery (2008); Moustakides et al.
(2009, 2011); Polunchenko et al. (2014); Srivastava and Wu (1993); Stoumbos et al. (2000).
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In the present paper, we pursue two objectives. First, in Section 2, we introduce two novel classes
of change-point detection procedures, which, instead of imposing a lower bound on the average run
length to false alarm, require more adequate upper bounds on the uniform probability of false alarm or
uniform conditional probability of false alarm in the spirit of works by Lai (1998), Tartakovsky (2005)
and Tartakovsky et al. (2014). However, these classes slightly differ from those proposed in Lai (1998);
Tartakovsky (2005); Tartakovsky et al. (2014). This modification allows us to substantially relax Lai’s
essential supremum conditions [Lai (1998)], which do not hold for certain interesting practical models.
In fact, our conditions are equivalent to the uniform version of the complete convergence for the log-
likelihood ratio processes, i.e., they are related to the rate of convergence in the strong law of large
numbers for the log-likelihood ratio between the “change” and “no-change” hypotheses. We concentrate
on a minimax problem of minimizing Pollak’s maximal conditional average delay to detection defined
in (1.1) as well as on a pointwise problem of minimizing the conditional average delay to detection
Eν(τ − ν|τ > ν) for every change point ν > 0. For the sake of completeness, we also consider the other
popular risks supν>0 Eν(τ − ν)+ and Eν(τ − ν)+, ν > 0, while we strongly believe that the conditional
versions Eν(τ − ν|τ > ν) and (1.1) are more appropriate for most applications. We consider extremely
general non-iid stochastic models for the observations, and it is our goal to find reasonable sufficient
conditions for the observation models under which the Shiryaev–Roberts (or CUSUM) procedure is
asymptotically optimal. To achieve the first goal we exploit the asymptotic Bayesian theory of change-
point detection developed by Tartakovsky and Veeravalli (2005) that offers a constructive and flexible
approach for studying asymptotic efficiency of Bayesian type procedures. It turns out that a similar
method can be used for the analysis of minimax risks and that the complete convergence type conditions
for the log-likelihood ratio processes proposed in Tartakovsky et al. (2014); Tartakovsky and Veeravalli
(2005) are also sufficient in the minimax setting. These sufficient conditions as well as the main results
related to asymptotic optimality of the Shiryaev–Roberts procedure in the classes of procedures with
upper bounds on the weighted false alarm probability and local false alarm probabilities are given,
correspondingly, in Section 3 and Section 4.

The second objective is to find a method for verification of the required sufficient conditions in a
number of particular, still very general, challenging models. The natural question is how one may check
the proposed sufficient conditions and even whether there are more or less general models, except of course
the iid case, for which these conditions hold. To this end, we focus on the class of data models for which
one can exploit the method of geometric ergodicity for homogeneous Markov processes, first proposed by
Meyn and Tweedie (1993) and then further developed by Galthouk and Pergamenshchikov (2013, 2014)
for statistical applications. These results are presented in Section 5 and show that our sufficient conditions
for pointwise and minimax optimality hold for homogeneous Markov ergodic processes. In Section 6,
these conditions are further illustrated for several examples that include autoregressive, autoregressive
GARCH, and other models widely used in many applications, in particular for modeling of dynamics of
financial indices; see, e.g., Shiryaev (2006). All auxiliary results needed for the proofs as well as proofs
of theorems for the Bayes-type class in Section 3 are presented in Appendix A, and in Appendix B we
give certain useful results from the geometric ergodic theory of Markov processes.

It is worth mentioning that the recently submitted article by Tartakovsky (submitted 2016) uses a
similar (but average, not uniform) r-complete version of the strong law of large numbers for establishing
asymptotic optimality properties of the Shiryaev procedure in the Bayesian problem with general prior
distributions, i.e., confirming a long-standing conjecture of Tartakovsky and Veeravalli (2005) that the
r-quick convergence may be relaxed into the r-complete convergence. Also, a similar approach has been
undertaken by Fellouris and Tartakovsky (submitted 2015) in the problem of testing composite hypothe-
ses in a multi-stream setup when detecting an unknown number of signals. Note that the latter problem
is not a change-point detection problem but rather the hypothesis testing problem.

2 Notation, problem formulation and detection procedures

Assume that we are able to observe a series of consecutive random variables X1, X2, . . . , which may
change statistical properties at an unknown point in time ν ∈ {0, 1, 2, . . . }. We use the convention that
Xν is the last pre-change observation. Write Xn = (X1, . . . , Xn) for the concatenation of the first n
observations. Let pν(Xn) = p(Xn|ν) be the joint probability density of the vector Xn when the change
point ν is fixed and finite and let p∞(Xn) = p(Xn|ν = ∞) stand for the pre-change joint density
(when the change never occurs). Let {f0,n(Xn|Xn−1)}n>1 and {f1,n(Xn|Xn−1)}n>1 be two sequences of

conditional densities of Xn given Xn−1 with respect to some non-degenerate sigma-finite measure µ(x).
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We are interested in the general non-iid case that

pν(Xn) = p∞(Xn) =

n∏
i=1

f0,i(Xi|Xi−1
1 ) for ν > n,

pν(Xn) =

ν∏
i=1

f0,i(Xi|Xi−1)×
n∏

i=ν+1

f1,i(Xi|Xi−1) for ν < n.

(2.1)

In other words, {f0,n(Xn|Xn−1)}n>1 and {f1,n(Xn|Xn−1)}n>1 are the pre-change and post-change con-
ditional densities, respectively, so that if the change occurs at time ν = k, then the conditional density of
the (k+1)-th observation changes from f0,k+1(Xk+1|Xk) to f1,k+1(Xk+1|Xk). Note that the post-change

densities may depend on the change point ν, i.e., f1,n(Xn|Xn−1) = f
(ν)
1,n(Xn|Xn−1) for n > ν. We omit

the superscript ν for brevity.
Let Pk and Ek denote the probability and expectation when ν = k <∞, and let P∞ and E∞ denote

the same when there is no change, i.e., ν = ∞. Obviously, the general non-iid model given by (2.1)
implies that under the measure P∞ the conditional density of Xn given Xn−1 is f0,n(Xn|Xn−1) for all
n > 1 and under Pk, for any 0 6 k <∞, the conditional density of Xn is f0,n(Xn|Xn−1) if n 6 k and is
f1,n(Xn|Xn−1) if n > k.

In the particular iid case, the observed random variables X1, X2, . . . are iid until a change with a
common density f0(x) and after the change occurs, the observations are again iid, but with another
density f1(x). Therefore, in this case, the conditional densities f0,i(Xi|Xi−1) and f1,i(Xi|Xi−1) in (2.1)
are replaced by f0(Xi) and f1(Xi), respectively.

A sequential detection procedure is a stopping (Markov) time τ for an observed sequence {Xn}n>1,
i.e., τ is an extended integer-valued random variable, such that the event {τ 6 n} belongs to the sigma-
algebra Fn = σ(X1, . . . , Xn). We denote by M the set of all stopping times. A false alarm is raised
whenever the detection is declared before the change occurs, i.e., when τ 6 ν. (Recall that Xν+1 is the
first post-change observation.) The goal of the quickest change-point detection problem is to develop a
detection procedure that guarantees a stochastically small delay to detection τ − ν provided that there
is no false alarm (i.e., τ > ν) under a given (typically low) risk of false alarms.

Let P
(n)
k = Pk|Fn denote a restriction of the probability measure Pk to the sigma-algebra Fn. Then

the likelihood ratio between the hypotheses “Hk : ν = k” that the change happens at k < ∞ and

“H∞ : ν = ∞” that there is never a change (i.e., the Radon–Nikodým density dP
(n)
k /dP(n)

∞ ) can be
represented in the following exponential form

dP
(n)
k

dP(n)
∞

(Xn) = eZ
k
n , (2.2)

where for k 6 n− 1

Zk
n

=

n∑
j=k+1

log
f1,j(Xj |Xj−1)

f0,j(Xj |Xj−1)
.

The process (Zk
n

)n>k+1 is the log-likelihood ratio (LLR) process between the hypotheses Hk (k = 0, 1, . . . )
and H∞.

In this paper, we study the Shiryaev–Roberts (SR) procedure given by the following stopping time

T (h) = inf

{
n > 1 :

n∑
k=1

eZ
k−1
n > h

}
, (2.3)

where h > 0 is some fixed positive threshold which will be specified later. We set inf{∅} = +∞. In the
iid case, this procedure has certain interesting strict optimality properties (see Pollak and Tartakovsky
(2009a) and Tartakovsky et al. (2014)).

Another popular change detection procedure is the CUSUM procedure given by the stopping time

TCS(a) = inf

{
n > 1 : max

16k6n
Zk−1
n

> a

}
, a > 0.

It may be shown that this procedure has essentially the same asymptotic performance as the SR pro-
cedure. In fact, using essentially the same line of argument, it can be proved that both procedures are
first-order asymptotically optimal under the same general conditions. For this reason, we consider only
the SR procedure.
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Our main goal is to show that the SR detection procedure T (h) is nearly optimal in two pointwise and
minimax problems described below. We will also show that this procedure is asymptotically pointwise
and minimax optimal in a class of Bayes-type procedures (see Section 3).

To describe these problems we introduce for any 0 < β < 1, m∗ > 1 and k∗ > m∗ the following
classes of change detection procedures

H(β, k∗,m∗) =

{
τ ∈M : sup

16k6k∗−m∗
P∞(k 6 τ < k +m∗) 6 β

}
(2.4)

and

H∗(β, k∗,m∗) =

{
τ ∈M : sup

16k6k∗−m∗
P∞(τ < k +m∗|τ > k) 6 β

}
. (2.5)

Note that the probability P∞(k 6 τ < k + m) is the probability of false alarm in the time interval
[k, k +m− 1] of the length m, which we refer to as the local probability of false alarm (LPFA), and the
probability P∞(τ < k + m|τ > k) = P∞(k 6 τ < k + m|τ > k) is the corresponding local conditional
probability of false alarm (LCPFA).

We consider two risks: positive part detection delay risk

Rν(τ) = Eν (τ − ν)+ (2.6)

and conditional detection delay risk

R∗ν(τ) = Eν (τ − ν | τ > ν) (2.7)

(compare with (1.1)) and the following problems: the pointwise minimization, i.e., for any ν > 0

inf
τ∈H(β,k∗,m∗)

Rν(τ) and inf
τ∈H∗(β,k∗,m∗)

R∗ν(τ) ; (2.8)

and the minimax optimization

inf
τ∈H(β,k∗,m∗)

sup
06ν<∞

Rν(τ) and inf
τ∈H∗(β,k∗,m∗)

max
06ν6k∗

R∗ν(τ) . (2.9)

The parameters k∗ and m∗ will be specified later.
In addition, we consider a Bayesian-type problem of minimizing the risks (2.6) and (2.7) in a class of

procedures with the given weighted probability of false alarm. This problem is formulated and solved in
the next section.

It would be more natural to address the classes of detection procedures with the given LPFA and
LCPFA defined as

LPFA(τ) = sup
16k<∞

P∞(k 6 τ < k +m∗) and LCPFA(τ) = sup
16k<∞

P∞(k 6 τ < k +m∗|τ > k)

and the maximal risks

sup
06ν<∞

Rν(τ) and sup
06ν<∞

R∗ν(τ) ,

i.e., the optimality criteria

inf
{τ :LPFA(τ)6β}

sup
06ν<∞

Rν(τ) and inf
{τ :LCPFA(τ)6β}

sup
06ν<∞

R∗ν(τ) , (2.10)

as in Lai (1998), Tartakovsky (2005) and Tartakovsky et al. (2014). However, in this case, one requires
much stronger essential supremum conditions on the tail probabilities of the log-likelihood ratio, which
do not hold in certain interesting examples (see Remark 3 below for details). For this reason, we modified
these more natural optimality criteria. In the following, we suppose that k∗, m∗ and m∗−k∗ go to infinity
as β → 0, so that for practical purposes the optimality criteria (2.9), considered in the present paper, are
not too much different from the criteria (2.10). At the same time, this allows us to substantially relax
the sufficient conditions for asymptotic optimality of the detection procedures.

We need the following definition.
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Definition 1 For k = 0, 1, . . . and r > 0, we say that the normalized LLR process n−1Zkn+k converges
r−completely to a constant I under the probability measure Pk as n→∞ if

∞∑
n=1

nr−1Pk
{∣∣n−1Zkn+k − I∣∣ > ε

}
<∞ for all ε > 0. (2.11)

If
∞∑
n=1

nr−1 sup
k>0

Pk
{∣∣n−1Zkn+k − I∣∣ > ε

}
<∞ for all ε > 0 (2.12)

we say that n−1Zkn+k converges to a constant I uniformly r−completely as n→∞.

The r−complete convergence is an extension (for r 6= 1) of the complete convergence introduced
by Hsu and Robbins (1947). It was introduced and extensively used for various hypothesis testing and
change detection problems by Tartakovsky et al. (2014).

In the following, we mostly deal with the case that r = 1. In this case, we refer to (2.11) as Pk-complete
convergence and to (2.12) as uniform complete convergence.

Note that, for any r > 1, r−complete convergence implies almost sure convergence of n−1Zkn+k to I
under Pk. Hence it can be interpreted as a rate of convergence in the strong law of large numbers. See
Tartakovsky et al. (2014, Ch 2) for further details.

3 Asymptotic optimality in the Bayesian-type class

We begin with considering a Bayesian-type class of change detection procedures that upper-bounds a
weighted probability of false alarm PFA(τ) =

∑∞
k=0 Pk(τ 6 k)P(ν = k), assuming that the change point

ν is a random variable independent of the observations with prior distribution P(ν = k), k = 0, 1, 2, . . . .
However, instead of considering a Bayes risk (weighted average delay to detection)

E(τ − ν|τ > ν) =

∑∞
k=0 P(ν = k)Rk(τ)

1− PFA(τ)
, (3.1)

as it was done by Tartakovsky and Veeravalli (2005) and Tartakovsky (submitted 2016), we are interested
in risks (2.6) and (2.7), i.e., in the optimization problems

inf
{τ :PFA(τ)6α}

Rk(τ) and inf
{τ :PFA(τ)6α}

R∗k(τ) for all k > 0 , (3.2)

and
inf

{τ :PFA(τ)6α}
sup
k>0

Rk(τ) and inf
{τ :PFA(τ)6α}

max
06k6k∗

R∗k(τ), (3.3)

where 0 < α < 1 is a prespecified (usually relatively small) number.
In what follows, for simplicity of the presentation, assume that the prior probability distribution

P(ν = k) of the change point ν is geometric with the parameter 0 < % < 1, i.e.,

P(ν = k) = πk(%) = % (1− %)
k
, k = 0, 1, 2, . . . . (3.4)

Using this distribution we introduce the probability measure on the Borel σ-algebra in R∞ × N as

Q%(A× J) =
∑
k∈J

πk(%)Pk (A) , A ∈ B(R∞) , J ⊆ N .

Now, for some fixed 0 < %, α < 1, we define the following Bayesian class of change-point detection
procedures with the weighted PFA Q%(τ 6 ν) = PFA(τ) not greater that the given number α:

∆(α, %) = {τ ∈M : Q% (τ 6 ν) 6 α} =

τ ∈M :
∑
k>1

πk(%)P∞ (τ 6 k) 6 α

 , (3.5)

where we took into account that Pk(τ 6 k) = P∞(τ 6 k).
It follows from Tartakovsky and Veeravalli (2005) that in the Bayesian setting, when one wants to

minimize the weighted average delay to detection (3.1), the asymptotically (as α→ 0) optimal detection
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procedure in the class (3.5) is the Shiryaev detection procedure that raises an alarm at the first time
such that the posterior probability gn(%) = Q% (ν < n | Fn) exceeds threshold 1− α, i.e.,

τ̃b(α, %) = inf{n > 1 : gn(%) > 1− α} .

Note that it is easy to show [Tartakovsky and Veeravalli (2005)] that τ̃b ∈ ∆(α, %) for any 0 < α, % < 1.
Using the LLR process (Zk

n
)06k6n−1 defined in (2.2), the posterior probability gn(%) can be repre-

sented as gn(%) = Λn(%)/[1/%+ Λn(%)], where

Λn(%) =

n−1∑
k=0

(1− %)
−(n−k)

eZ
k
n . (3.6)

Therefore, the Shiryaev procedure can be also written as

τ̃(α, %) = inf {n > 1 : Λn(%) > (1− α)/(%α)} . (3.7)

Note first that, as ρ→ 0, the statistic Λn(%) converges to the SR statistic,

Λn(%) −−−→
ρ→0

n∑
k=1

eZ
k−1
n .

Thus, if we are interested in small values of %, as it is the case in the following, then the behavior of
the Shiryaev procedure (3.7) is similar to that of the SR procedure T (h) so long as we can define the
threshold h = hα is such a way that PFA(T (hα)) 6 α. Hence, instead of considering the procedure
τ̃(α, %), which is shown in Tartakovsky and Veeravalli (2005) and Tartakovsky (submitted 2016) to be
asymptotically optimal in the Bayesian context with respect to the weighted average delay to detection
(3.1), we will focus on the SR procedure.

3.1 Asymptotic lower bounds

In general, we do not assume any particular model or even class of models for the observations, and as a
result, there is no “structure” of the LLR process. We therefore have to impose some conditions on the
behavior of the LLR process at least for large n. It is natural to assume that there exists a positive finite
number I such that Zk

n
/(n− k) converges almost surely to I under Pk, i.e.,

(A1) Assume that there exists a number I > 0 such that for any k > 0

1

n
Zk
k+n

Pk−a.s.
−−−−−→
n→∞

I . (3.8)

This is always true for iid data models with

I = I(f1, f0) = E0Z
1
0

=

∫
log

[
f1(x)

f0(x)

]
f1(x)dµ(x)

being the Kullback–Leibler information number. It turns out that the a.s. convergence condition (3.8) is
sufficient for obtaining lower bounds for all positive moments of the detection delay.

The following theorem establishes asymptotic lower bounds for the optimization problems (3.2) and
(3.3). We write ∆(α) for the class ∆(α, %α) when the parameter % = %α depends on α.

Theorem 1 Assume that the almost sure convergence condition (A1) holds and in (3.4) the parameter
of the geometric prior distribution % = %α → 0 as α→ 0. Then, for any ν > 0,

lim inf
α→0

1

| logα|
inf

τ∈∆(α)
sup
ν>0
Rν(τ) > lim inf

α→0

1

| logα|
inf

τ∈∆(α)
Rν(τ) >

1

I
(3.9)

and

lim inf
α→0

1

| logα|
inf

τ∈∆(α)
sup
ν>0
R∗ν(τ) > lim inf

α→0

1

| logα|
inf

τ∈∆(α)
R∗ν(τ) >

1

I
. (3.10)
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Proof. See Appendix A, Section A.2. ut
Observe that the lower bounds (3.9) and (3.10) can be generalized for all positive moments of

the detection delay Eν [(τ − ν)r | τ > ν] and Eν [(τ − ν)+]
r
, r > 1. Indeed, using Jensen’s inequality

Eν [(τ − ν)+]
r > [Eν(τ − ν)+]

r
, we immediately obtain that under the conditions of Theorem 1, for any

ν > 0,

lim inf
α→0

1

| logα|r
inf

τ∈∆(α)
Eν
[
(τ − ν)+

]r
>

1

Ir
(3.11)

and analogously

lim inf
α→0

1

| logα|r
inf

τ∈∆(α)
Eν [(τ − ν)r | τ > ν] >

1

Ir
. (3.12)

Since higher moments of the detection delay may also be of interest, the asymptotic lower bounds (3.11)
and (3.12) can be useful for establishing asymptotic optimality properties of the SR procedure with
respect to the risks Eν [(τ − ν)r | τ > ν] and Eν [(τ − ν)+]

r
for r > 1 uniformly for all ν > 0, as well as

with respect to the maximal risks.

3.2 Asymptotic optimality of the Shiryaev–Roberts procedure

In order to study asymptotics for the average detection delay of the SR procedure and for establishing
its asymptotic optimality, we impose the following constraint on the rate of convergence for

Z̃k,n =
1

n
Zk
k+n
− I . (3.13)

(A2) Assume that Z̃k,n converges uniformly completely to 0 as n→∞, i.e., for any ε > 0

Υ ∗(ε) =

∞∑
n=1

sup
k>0

Pk

{∣∣∣Z̃k,n∣∣∣ > ε
}
<∞ . (3.14)

Write Rn =
∑n
k=1 e

Zk−1
n for the SR statistic and denote as T (h) = T (α, %) the SR procedure when

the threshold h = h(α, %) is selected as h(α, %) = (1− α)/%α, i.e.,

T (α, %) = inf

{
n > 1 : Rn >

1− α
%α

}
. (3.15)

Lemma 1 The SR procedure T (α, %) given by (3.15) belongs to the class ∆(α, %) for any 0 < α, % < 1.

Proof. Note that the stopping time (3.7) can be written as

τ̃b(α, %) = inf

{
n > 1 :

n∑
k=1

(1− %)
−[n−(k−1)]

eZ
k−1
n > h(α, %)

}

(see (3.6)). Obviously, τ̃b(α, %) 6 T (α, %) almost surely for any 0 < α, % < 1. Since by (2.11) in Tar-
takovsky and Veeravalli (2005) PFA(τ̃b(α, %)) 6 α, it follows that, for any 0 < α, % < 1, T (α, %) ∈ ∆(α, %)
and the proof is complete. ut

In what follows, we assume that the parameter % is a function of α, i.e. % = %α, such that

lim
α→0

%α = 0 and lim
α→0

| log %α|
| logα|

= 0 . (3.16)

Moreover, let k∗ be a function of α, i.e. k∗ = k∗α, such that

lim
α→0

k∗α =∞ and lim
α→0

(| logα|+ k∗α log(1− %α)) = +∞ . (3.17)

Denote as Tα = T (hα) the SR procedure defined in (3.15) when the threshold h(α, %α) = hα is
selected as hα = (1− α)/(%αα). Note that if conditions (3.16) hold, then hα →∞ as α→ 0. Clearly, we
need the threshold to become large for small α; otherwise the problem is degenerate. By Lemma 1, this
choice of the threshold guarantees that Tα ∈ ∆(α, %α) = ∆(α) for every 0 < α < 1.

The following theorem identifies the asymptotic upper bounds for the risks of the SR procedure. The
proof is given in the Appendix A (see Section A.3).
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Theorem 2 (i) Assume that the uniform complete convergence condition (A2) holds for some 0 < I <
∞, and the parameter 0 < % = %α < 1 in the SR procedure (3.15) satisfies conditions (3.16). Then

lim sup
α→0

1

| logα|
sup
ν>0

Rν(Tα) 6
1

I
. (3.18)

(ii) Assume that in addition to conditions (A2) and (3.16), conditions (3.17) hold for k∗ = k∗α. Then

lim sup
α→0

1

| logα|
max

06ν6k∗α
R∗ν(Tα) 6

1

I
. (3.19)

Finally, combining Theorem 1 and Theorem 2, we conclude that the SR procedure is first-order
asymptotically uniformly pointwise optimal and minimax in the class ∆(α), which is formalized in the
next theorem.

Theorem 3 (i) Assume that the uniform complete convergence condition (A2) holds for some 0 < I <
∞, and the parameter 0 < % = %α < 1 in the SR procedure (3.15) satisfies conditions (3.16). Then

lim
α→0

infτ∈∆(α)Rν(τ)

Rν(Tα)
= 1 for all ν > 0 (3.20)

and

lim
α→0

infτ∈∆(α) sup
ν>0
Rν(τ)

sup
ν>0
Rν(Tα)

= 1 . (3.21)

Moreover, as α→ 0,

inf
τ∈∆(α)

Rν(τ) ∼ Rν(Tα) ∼ | logα|
I

for all ν > 0

and

inf
τ∈∆(α)

sup
ν>0
Rν(τ) ∼ sup

ν>0
Rν(Tα) ∼ | logα|

I
.

(ii) Assume that in addition to conditions (A2) and (3.16) conditions (3.17) hold for k∗ = k∗α. Then

lim
α→0

infτ∈∆(α)R∗ν(τ)

R∗ν(Tα)
= 1 for all fixed ν > 0 (3.22)

and

lim
α→0

infτ∈∆(α) max06ν6k∗α R
∗
ν(τ)

max06ν6k∗α R∗ν(Tα)
= 1 . (3.23)

Moreover, as α→ 0,

inf
τ∈∆(α)

R∗ν(τ) ∼ R∗ν(Tα) ∼ | logα|
I

for all fixed ν > 0

and

inf
τ∈∆(α)

max
06ν6k∗α

R∗ν(τ) ∼ max
06ν6k∗α

R∗ν(Tα) ∼ | logα|
I

.

Proof. All assertions follow from Theorem 1 and Theorem 2 in an obvious manner. ut
The above asymptotic optimality results can be generalized for higher moments of the detection

delay if the uniform complete convergence condition (A2) is strengthened into the uniform r−complete
convergence condition for some r > 1. In particular, the following result holds true.

Theorem 4 Let conditions (3.16) and (3.17) hold and, for some r > 1 and all ε > 0,

∞∑
n=1

nr−1 sup
k>0

Pk

{∣∣∣Z̃k,n∣∣∣ > ε
}
<∞ . (3.24)

Then the SR procedure Tα is first-order asymptotically uniformly pointwise optimal and minimax in the
class ∆(α, %α) = ∆(α) with respect to the moments of the detection delay up to order r: for all 1 6 ` 6 r
as α→ 0

Eν
[
(Tα − ν)`|Tα > ν

]
∼ inf

τ∈∆(α)
Eν
[
(τ − ν)`|τ > ν

]
∼
(
| logα|
I

)`
for all fixed ν > 0

(3.25)
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and

sup
06ν6k∗α

Eν
[
(Tα − ν)`|Tα > ν

]
∼ inf

τ∈∆(α)
sup

06ν6k∗α

Eν
[
(τ − ν)`|τ > ν

]
∼
(
| logα|
I

)`
. (3.26)

Proof. See Section A.4 in Appendix A. ut

Remark 1 While for the sake of simplicity we consider the geometric prior distribution with the small
parameter %α → 0 as α → 0, all the asymptotic results hold true for an arbitrary prior distribution παk
such that the mean value of the change point E ν =

∑∞
k=1 kπ

α
k approaches infinity as α → 0, assuming

that conditions (3.16) and (3.17) hold with %α replaced by (
∑∞
k=1 kπ

α
k )−1.

Remark 2 Analogous asymptotic optimality results hold for the Shiryaev procedure τ̃(α) defined in (3.7).
The proofs are essentially similar.

4 Asymptotic optimality in classes with given local probabilities of false alarm

We now proceed with tackling the pointwise and minimax problems (2.8) and (2.9) in the classes of
procedures with given LPFA and LCPFA. The method of establishing asymptotic optimality of the SR
procedure is again based on the lower-upper bounding technique. Specifically, we first obtain asymptotic
lower bounds for the riskRν(τ) in the classH (β, k∗,m∗) and for the riskR∗ν(τ) in the classH∗ (β, k∗,m∗),
and then we show that these asymptotic lower bounds are attained for the SR procedure T (h) with a
certain threshold h = hβ . Note that the asymptotic optimality results of the previous section are essential,
since asymptotic optimality in classes H (β, k∗,m∗) and H∗ (β, k∗,m∗) is obtained by imbedding these
classes in the class ∆(α, ρ) with specially selected parameters ρ and α.

4.1 Asymptotic lower bounds

For any 0 < β < 1, m∗ > 1 and k∗ > m∗, define

α1 = α1(β,m∗) = β + (1− %1,β)m
∗+1 and α2 = α2(β, k∗) = β(1− %2,β)k

∗
, (4.1)

where %2,β = δ̌β %1,β , the functions 0 < %1,β < 1 and 0 < δ̌β < 1 are such that

lim
β→0

(
%1,β + δ̌β

)
= 0 and lim

β→0

| ln %1,β |+ | ln δ̌β |
| lnβ|

= 0 . (4.2)

For example, we can take

%1,β =
1

1 + | log β|
, δ̌β =

δ̌∗

| log β|
and 0 < δ̌∗ < 1 . (4.3)

To find asymptotic lower bounds for the problems (2.8) and (2.9) in addition to condition (A1) we
impose the following condition related to the growth of the window size m∗ in the LPFA:

(H1) The size of the window m∗ in (4.1) is a function of β, i.e. m∗ = m∗
β

, such that

lim
β→0

| logα1,β |
| log β|

= 1 , (4.4)

where α1,β = α1(β,m∗
β
).

The following theorem establishes asymptotic lower bounds.

Theorem 5 Assume that conditions (A1) and (H1) hold. Then, for any k∗ > m∗ and ν > 0,

lim inf
β→0

1

| log β|
inf

τ∈H(β,k∗,m∗)
sup
ν>0
Rν(τ) > lim inf

β→0

1

| log β|
inf

τ∈H(β,k∗,m∗)
Rν(τ) >

1

I
(4.5)

and

lim inf
β→0

1

| log β|
inf

τ∈H∗(β,k∗,m∗)
sup
ν>0
R∗ν(τ) > lim inf

β→0

1

| log β|
inf

τ∈H∗(β,k∗,m∗)
R∗ν(τ) >

1

I
. (4.6)
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Proof. By Proposition 4 (see Appendix A), for all ν > 0 and for a sufficiently small β > 0 (for which
the conditions of this proposition hold)

inf
τ∈H(β,k∗,m∗)

Rν(τ) > inf
τ∈∆(α1,β ,%1,β)

Rν(τ) .

Now inequality (3.9) and condition (H1) imply immediately (4.5).
Proposition 5 (see Appendix A) implies that for all ν > 0 and for a sufficiently small β > 0 (for which

the conditions of this proposition hold)

inf
τ∈H(β,k∗,m∗)

R∗ν(τ) > inf
τ∈∆(α∗

1,β
,%1,β)

R∗ν(τ) .

Inequality (3.10) and condition (H1) imply immediately (4.6). ut

4.2 Asymptotic optimality of the Shiryaev–Roberts procedure

To establish asymptotic optimality properties of the SR procedure with respect to the risks Rν(τ) (for all
ν > 0) and supν>0Rν(τ) in the class H (β, k∗,m∗) we need the uniform complete convergence condition
(A2) as well as the following condition.

(H2) Parameter k∗ in (4.1) is a function of β, i.e. k∗ = k∗
β

, such that

lim
β→0

| logα2,β |
| log β|

= 1 , (4.7)

where α2,β = α2(β, k∗
β
).

The conditions (4.4) and (4.7) hold, for example, if

m∗
β

= b| lnβ|/%1,βc and k∗
β

= κ̌m∗
β
, (4.8)

where κ̌ > 1 is some fixed parameter. Hereafter bxc denotes the integer number less than or equal to x.
Next, denote by Tβ the SR procedure T (hβ) defined in (2.3) with the threshold hβ given by

hβ =
1− α2,β

%2,βα2,β

. (4.9)

The following theorem establishes first-order asymptotic optimality of the SR procedure Tβ with
respect to the risks Rν(τ) and supν>0Rν(τ) in the class H (β, k∗,m∗) as β → 0, i.e., Tβ is an asymptotic
solution of the problems (2.8) and (2.9) as the LPFA vanishes.

Theorem 6 If conditions (H1) and (H2) hold, then, for any 0 < β < 1, the SR procedure Tβ with the
threshold hβ given by (4.9) belongs to the class H (β, k∗,m∗). If, in addition, condition (A2) is satisfied,
then the SR procedure Tβ is first-order asymptotically uniformly pointwise optimal and minimax in the
class H (β, k∗,m∗), i.e.,

lim
β→0

infτ∈H(β,k∗,m∗)Rν(τ)

Rν(Tβ)
= 1 for all ν > 0 (4.10)

and

lim
β→0

infτ∈H(β,k∗,m∗) sup
ν>0
Rν(τ)

sup
ν>0
Rν(Tβ)

= 1 . (4.11)

Also, as β → 0, the following first-order asymptotic approximations hold for the pointwise and maximal
risks:

Rν(Tβ) ∼ inf
τ∈H(β,k∗,m∗)

Rν(τ) ∼ | log β|
I

for any ν > 0 (4.12)

and

sup
ν>0
Rν(Tβ) ∼ inf

τ∈H(β,k∗,m∗)
sup
ν>0
Rν(τ) ∼ | log β|

I
. (4.13)
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Proof. By Lemma 1, the SR procedure T (α, %) ∈ ∆(α, %) for any 0 < α, % < 1. Moreover, note that the
definition (4.9) yields Tβ = T (α2,β , %2,β), i.e., Tβ ∈ ∆(α2,β , %2,β). Using Proposition 4, we obtain that
Tβ ∈ H (β, k∗,m∗) for any 0 < β < 1. Furthermore, condition (H2) and the definition of %2,β in (4.2)
imply directly that limβ→0 log hβ/| log β| = 1. Thus, the asymptotic upper bound (A.3) (with r = 1) in
Proposition 3 implies the following upper bound

lim sup
β→0

1

| log β|
sup
ν>0
Rν(Tβ) 6

1

I
.

The asymptotic equalities (4.10) and (4.11) follow immediately from this upper bound and the lower
bounds (4.5) in Theorem 5. The asymptotic expansions (4.12) and (4.13) are obvious. ut

Now we define

α3 = α3(β, k∗) =
β(1− %2,β)k

∗

1 + β
, (4.14)

where the function %2,β is defined in (4.2).
To prove asymptotic optimality in the class H∗ (β, k∗,m∗) with respect to the risk R∗ν(τ) we need

the following condition.

(H3) Parameters k∗ and m∗ are functions of β, i.e. k∗ = k∗
β

and m∗ = m∗
β

, such that

lim
β→0

| logα3,β |
| log β|

= 1 . (4.15)

where α3,β = α3(β, k∗
β
). We can take, for example, the parameters k∗ = k∗

β
and m∗ = m∗

β
as in (4.8).

It is easy to see that

lim
β→0

(
| logα3,β |+ k∗

β
log(1− %2,β)

)
= +∞ . (4.16)

I moved this one here. I think that this is the place for it, but check. (AT)
Denote by T ∗β the SR procedure T (h∗β) defined in (2.3) with the threshold h∗β given by

h∗
β

=
1− α3,β

%2,βα3,β

. (4.17)

Theorem 7 If conditions (H1) and (H3) hold, then, for any 0 < β < 1, the SR procedure T ∗β with
the threshold h∗β given by (4.17) belongs to the class H∗ (β, k∗,m∗). Assume that in addition condition
(A2) is satisfied. Then the SR procedure T ∗β is first-order asymptotically uniformly poitwise optimal and
minimax in the class H∗ (β, k∗,m∗), i.e.,

lim
β→0

infτ∈H∗(β,k∗,m∗)R∗ν(τ)

R∗ν(T ∗β )
= 1 for all fixed ν > 0 . (4.18)

and

lim
β→0

infτ∈H∗(β,k∗,m∗) max06ν6k∗β
R∗ν(τ)

max06ν6k∗β
R∗ν(T ∗β )

= 1 . (4.19)

Also, as β → 0, the following first-order asymptotic approximations hold for the pointwise and maximal
risks:

R∗ν(T ∗
β

) ∼ inf
τ∈H(β,k∗,m∗)

R∗ν(τ) ∼ | log β|
I

for any ν > 0 (4.20)

and

sup
06ν6k∗β

R∗ν(T ∗
β

) ∼ inf
τ∈H(β,k∗,m∗)

sup
06ν6k∗β

R∗ν(τ) ∼ | log β|
I

. (4.21)

Proof. By Lemma 1, the SR procedure T (α, %) ∈ ∆(α, %) for any 0 < α, % < 1. Now, note that the
definition (4.17) yields T ∗

β
= T (α3,β , %2,β), i.e., T ∗

β
∈ ∆(α3,β , %2,β). Using Proposition 5, we obtain that

the stopping time T ∗
β

belongs to H∗ (β, k∗,m∗) for any 0 < β < 1.

Next, in view of the definition of h∗
β

in (4.17) and of the form of the function %2,β in (4.2) we obtain,

using condition (H3), that limβ→0 log h∗
β
/| log β| = 1. Thus, by (A.4) (with r = 1) in Proposition 3,

lim sup
β→∞

1

| log β|
R∗ν(T ∗β ) 6

1

I
for all ν > 0.
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Comparing to the reverse inequality (4.5) implies (4.18). Asymptotic approximations (4.20) are obvious
from (4.5) and (4.18).

Using inequality (A.14) and (4.16) we obtain

P∞

(
T ∗
β
6 k∗

β

)
6 e

logα3,β−k
∗
β
log(1−%2,β) → 0 as β → 0 .

Therefore,

min
06k6k∗β

Pk

(
T ∗
β
> k

)
= min

06k6k∗β
P∞

(
T ∗
β
> k

)
= P∞

(
T ∗
β
> k∗

β

)
= 1− P∞

(
T ∗
β
6 k∗

β

)
→ 1 as β → 0 .

Note that the maximal risk max06ν6k∗β
R∗ν(T ∗

β
) can be estimated as

max
06ν6k∗β

R∗ν(T ∗β ) 6
max06ν6k∗β Rν(T ∗β )

min06ν6k∗β P∞
(
T ∗β > ν

) .
Asymptotic equality (A.5) with r = 1 in Proposition 3 implies that

max
06ν6k∗β

Rν(T ∗β ) 6 sup
06ν<∞

Rν(T ∗β ) =
log h∗β
I

(1 + o(1)) as β → 0.

Since, as we mentioned above, limβ→0 log h∗β/| log β| = 1, we obtain the upper bound

lim sup
β→∞

1

| log β|
max

06ν6k∗β
R∗ν(T ∗β ) 6

1

I
. (4.22)

Asymptotic equalities (4.19) now follow from the upper bound (4.22) and the lower bound (4.6). Asymp-
totic approximations (4.21) are obvious from (4.6) and (4.19). The proof is complete. ut

Remark 3 We recall that Lai’s condition (6) in Lai (1998) for the asymptotic lower bound

lim inf
γ→∞

1

log γ
inf
τ∈Hγ

ESADD(τ) >
1

I

in the class Hγ = {τ : Eτ > γ} is the following:

lim
n→∞

sup
ν>0

ess sup Pν

(
max
16i6n

Zν
ν+i

> I(1 + ε)n | Fν
)

= 0 for all ε > 0 , (4.23)

where the parameter I is given in condition (A1). Clearly, condition (4.23) is much stronger than the a.s.
convergence condition (A1) required in Theorem 5, and it does not hold in many important practical
cases. Also, Lai’s condition (24) in Lai (1998) for asymptotic optimality of the CUSUM procedure in the
classes Hγ and H(β) = {τ : supk>1 P∞(k 6 τ < k +m∗β) 6 β} is:

lim
n→∞

sup
`>ν

ess sup Pν

(
Z̃`,n 6 −ε | F`

)
= 0 for all ε > 0 . (4.24)

Typically this condition is more difficult to check than the uniform complete convergence condition (A2)
required in Theorem 7, which in fact can be relaxed to

∞∑
n=1

sup
ν>0

Pν

{
Z̃ν,n < −ε

}
<∞

(see Remark 4). In addition, for certain models condition (4.24) does not hold, while condition (A2)
holds (see, e.g., an example in Subsection 6.1 below). On the other hand, in the iid case condition (4.24)
is less stringent than (A2).

As in Theorem 4, the results of Theorem 6 and Theorem 7 can be extended to higher moments of the
detection delay by strengthening the complete convergence with the uniform r−complete convergence
(3.24). More specifically, the following asymptotic optimality result holds true.
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Theorem 8 Assume that conditions (H1) and (H3) hold, and in addition, for some r > 1 the uniform
r−complete convergence condition (3.24) is satisfied. Then, for any 0 < β < 1, the SR procedure T ∗β with
the threshold h∗β given by (4.17) belongs to the class H∗ (β, k∗,m∗) and as β → 0 for any 0 < ` 6 r

Eν
[
(T ∗β − ν)`|T ∗β > ν

]
∼ inf

τ∈H∗(β,k∗,m∗)
Eν
[
(τ − ν)`|τ > ν

]
∼
(
| log β|
I

)`
for all ν > 0

(4.25)

and
max

06ν6k∗β
Eν
[
(T ∗β − ν)`|T ∗β > ν

]
∼ inf

τ∈H∗(β,k∗,m∗)
max

06ν6k∗β
Eν
[
(τ − ν)`|τ > ν

]
∼
(
| log β|
I

)`
.

(4.26)

Therefore, the SR procedure T ∗β is first-order asymptotically uniformly pointwise optimal and also mini-
max in the class H∗ (β, k∗,m∗) with respect to the moments of the detection delay up to order r.

Proof. The facts that T ∗β ∈ H∗ (β, k∗,m∗) for any 0 < β < 1 and that log h∗β ∼ | log β| as β → 0 were
established in Theorem 7. Now, using (A.4) in Proposition 3 (along with the equality limβ→0 P∞(T ∗β >
ν) = 1, ν > 0), we obtain the upper bound

Eν

[
(T ∗
β
− ν)r|T ∗

β
> ν

]
6

(
| log β|
I

)r
(1 + o(1)) as β → 0.

Jensen’s inequality and the lower bound (4.6) yield, for any r > 1 and ν > 0,

inf
τ∈H∗(β,k∗,m∗)

sup
ν>0

Eν [(τ − ν)r|τ > ν] > inf
τ∈H∗(β,k∗,m∗)

Eν [(τ − ν)r|τ > ν] >

(
| log β|
I

)r
(1 + o(1)),

which along with the previous upper bound proves (4.25).
To prove (4.26) it suffices to show that

lim sup
β→0

max06ν6k∗β Eν
[
(T ∗β − ν)r|T ∗β > ν

]
| log β|r

6
1

Ir
. (4.27)

Note that

max
06ν6k∗β

Eν
[
(T ∗β − ν)r|T ∗β > ν

]
6

max06ν6k∗β Eν
[
(T ∗β − ν)+]r

]
min06ν6k∗β P∞

(
T ∗β > ν

) ,

where
min

06ν6k∗β
P∞

(
T ∗β > ν

)
= P∞

(
T ∗β > k∗β

)
→ 1 as β → 0 .

As a result, using (A.5) in Proposition 3, we obtain

max
06ν6k∗β

Eν
[
(T ∗β − ν)r|T ∗β > ν

]
6

sup06ν<∞ Eν
[
(T ∗β − ν)+]r

]
P∞

(
T ∗β > k∗β

)
=

(log h∗β/I)r(1 + o(1))

P∞
(
T ∗β > k∗β

) =

(
| log β|
I

)r
(1 + o(1)).

This obviously yields the upper bound (4.27) and the proof is complete. ut

Remark 4 The uniform r−complete convergence condition (3.24) can be relaxed to the following one-
sided version: for some r > 1 and any ε > 0

∞∑
n=1

nr−1 sup
ν>0

Pν

{
Z̃ν,n < −ε

}
<∞.

In this case, one needs to additionally require the almost sure convergence condition (A1), which guar-
antees condition (A.1) in Proposition 3.
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5 Concentration inequalities for functions of homogeneous Markov processes

In this section, we obtain certain sufficient conditions for homogeneous Markov processes in order to
verify condition (A2) for this class of processes.

Let (Xn)n>1 be a time homogeneous Markov process with values in a measurable space (X ,B) with
the transition probability P (x,A) defined in (B.2). In the sequel, we denote by Ex(·) the expectation
with respect to this probability. In addition, we assume that this process is geometrically ergodic, i.e.,

(B1) Assume that there exist positives constants 0 < R <∞, κ > 0, probability measure λ on (X ,B) and
the Lyapunov X → [1,∞) function V with λ(V) <∞, such that

sup
n>0

eκn sup
0<f6V

sup
x∈R

1

V(x)
|Ex f(Xn)− λ(f)| 6 R .

Now, for some r > 0, we set
υ∗
r
(x) = sup

n>0

Ex (V(Xn))
r
. (5.1)

Let g be a measurable X × X → R function such that the following integrals exist

g̃(u) =

∫
X
g(v, u)P (u,dv) and λ(g̃) =

∫
X×X

g(v, u)P (u,dv)λ(du) . (5.2)

(B2) Assume that the function g is such that |g̃(x)| 6 V(x) for all x ∈ X .
We study the concentration properties for the process Wn(g) =

∑n

j=1
g(Xj , Xj−1), or equivalently

the properties of the deviation W̃n(g) = n−1Wn(g)− λ(g̃).
Similarly to (5.1), we define for some r > 0

g∗
r
(x) = sup

j>1

Ex |g(Xj , Xj−1)|r . (5.3)

Now we set

W ∗
r

= 4r−1
(

1 + u∗
r

+ |λ(g̃)|r + (16r)r/2
)

and u∗
r

=

(
2rR2 eκ

eκ − 1

)r/2

. (5.4)

Proposition 1 Assume that conditions (B1) and (B2) hold. Then for any x ∈ X and r > 2, for which
υ∗
r
(x) <∞ and g∗

r
(x) <∞, one has

Ex|W̃n(g)|r 6 W ∗
r

(
1 + υ∗

r
(x) + g∗

r
(x)
)

nr/2
for any n > 2. (5.5)

Proof. Note that we can represent the term Wn(g) as

Wn(g) = (n− 1)λ(g̃) + g̃(x) + Un−1 + Mn , (5.6)

where

Un =

n∑
j=1

(
g̃(Xj)− λ(g̃)

)
:=

n∑
j=1

uj and Mn =

n∑
j=1

(
g(Xj , Xj−1)− g̃(Xj−1)

)
.

To estimate the powers of the Un we need to estimate the corresponding coefficient bj,n(r) from Propo-
sition 6 (see Appendix B). To this end, note that for j > l

Ex
(
uj |Fl

)
= Ex

(
uj |X1, . . . , Xl

)
= ω̃l−j(Xl) ,

where ω̃m(x) = Ex g̃(Xm) − λ(g̃). Now, by condition (B1), for any x ∈ X and any m > 0, |ω̃m(x)| 6
RV(x) e−κm, i.e., for any j > l > 1

|Ex
(
uj |Fl

)
| 6 R V(Xl) e

−κ(j−l) .

In particular, we have |ul| 6 R V(Xl). Therefore, the coefficients (B.1) can be estimated as

bj,n(r) 6
R2 eκ

eκ − 1

(
υ∗
r
(x)
)2/r
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and by Proposition 6 we get Ex |Un|r 6 u∗
r
υ∗
r
(x)nr/2, where u∗

r
is defined in (5.1). Similarly, to estimate

the martingale Mn we make use of Proposition 6. Note that in this case the coefficient (B.1) has the
form bj,n(r) = (Ex|g(Xj , Xj−1)− g̃(Xj−1)|r)2/r, and it can be estimated for j > 1 as

bj,n(r) 6
(
2r−1

(
Ex
∣∣g(Xj , Xj−1)

∣∣r + Ex
∣∣g̃(Xj−1)

∣∣r))2/r .
Taking into account Jensen’s inequality and the definition (5.3), we obtain that bj,n(r) 6 4(g∗

r
(x))2/r,

and therefore, from Proposition 6 it follows that for n > 1, Ex |Mn|r 6 (8r)r/2 g∗
r
(x)nr/2. Therefore,

taking into account that

|W̃n(g)| 6
|g̃(x)|+ |λ(g̃)|+ |Un−1|+ |Mn|

n
,

we obtain, for any n > 1,

Ex|W̃n(g)|r 6
4r−1

nr/2

(
|g̃(x)|r + |λ(g̃)|r + u∗

r
υ∗
r
(x) + (8r)r/2 g∗

r
(x)
)

6
4r−1

nr/2

(
(1 + u∗

r
) υ∗

r
(x) + |λ(g̃)|r + (8r)r/2 g∗

r
(x)
)

6 W ∗
r

(
1 + υ∗

r
(x) + g∗

r
(x)
)

nr/2
.

Hence Proposition 1. ut
As we will see later in Section 6, condition (B1) does not hold directly for some time series. For this

reason, we introduce the following modification of this condition.

(B′
1
) Assume that there is some integer p > 1 such that for any 0 6 ι 6 p − 1 there exist positive

constants 0 < Rι <∞, κι > 0, probability measure λι on X and the Lyapunov X → [1,∞) function Vι

with λι(Vι) <∞, such that

sup
l>0

eκιl sup
0<f6Vι

sup
x∈R

1

Vι(x)

∣∣Ex f(Xpl+ι)− λι(f)
∣∣ 6 Rι .

Similarly to (5.1) we introduce

υ∗
r,ι

(x) = sup
j>0

Ex
(
Vι(Xpj+ι)

)r
and υ∗

r,max
(x) = max

06ι6p−1
υ∗
r,ι

(x) (5.7)

and impose the following condition:

(B′
2
) Assume that the function g defined in (5.2) is such that |g̃(x)| 6 min06ι6p−1 Vι(x) for all x ∈ X .

Now we set Wn(g) = n−1Wn(g)− λ(g̃), where λ(g) = (1/p)
∑p

ι=0
λι(g).

Proposition 2 Assume that conditions (B′
1
) and (B′

2
) hold. Then for any x ∈ X and any r > 2, for

which υ∗
r,max

(x) <∞ and g∗
r
(x) <∞, there exists a constant W

∗
r
> 0 such that

Ex|Wn(g)|r 6 W
∗
r

(
1 + υ∗

r,max
(x) + g∗

r
(x)
)

nr/2
for any n > 2 . (5.8)

Proof. Note that the term Wn(g) can be represented as Wn(g) = Wn,1(g) + Mn, where Wn,1(g) =∑n

j=1
g̃(Xj−1) and Mn is defined in (5.6). Let now n− 1 = mp+ r for some 0 6 r 6 p− 1. Thus,

Wn,1(g) =

p−1∑
ι=0

m∑
l=0

g̃(Xpl+ι)−
p−1∑
ι=r+1

g̃(Xpm+ι) = nλ(g̃) +

p−1∑
ι=0

Um,ι − rλ(g̃)−
p−1∑
ι=r+1

g̃(Xpm+ι) ,

where Um,ι =
∑m

l=0

(
g̃(Xpl+ι)− λ(g̃)

)
. In just the same way as in the proof of Proposition 1, we obtain

that for some constant u∗
r,ι
> 0

Ex |Um,ι|r 6 u∗
r,ι
υ∗
r,ι

(x)mr/2 6 u∗
r,max

υ∗
r,max

(x)nr/2 , (5.9)
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where u∗
r,max

= max06ι u
∗
r,ι

. Furthermore,

|Wn(g)|| 6 r

n
|λ(g̃)|+ 1

n

p−1∑
ι=0

|Um,ι|+
1

n
|Mn|+

1

n

p−1∑
ι=r+1

|g̃(Xpm+ι)| .

Using the upper bound (5.9) in this inequality, we obtain the inequality (5.8). ut
We return to the detection problem for Markov processes, assuming that the sequence (Xn)n>1 is

a Markov process, such that (Xn)16n6ν is a homogeneous process with the transition (from x to y)
density f0(y|x) and (Xn)n>ν is homogeneous positive ergodic with the transition density f1(y|x) and
the ergodic (stationary) distribution λ. The densities f0(y|x) and f1(y|x) are calculated with respect to
a sigma-finite positive measure µ on B.

In this case, we can represent the process Zk
n

defined in (2.2) as

Zk
n

=

n∑
j=k+1

g(Xj , Xj−1) , g(y, x) = log
f1(y|x)

f0(y|x)
. (5.10)

Therefore, in this case,

g̃(x) =

∫
X
g(y, x) f1(y|x)µ(dy) . (5.11)

We now formulate the conditions that are sufficient for the main condition (A2) to hold in the case of
Markov processes. We write Ex,0 for the expectation with respect to the distribution Px,0(·) = P0(·|X0 =
x).

(C1) Assume that there exists a set C ∈ B with µ(C) <∞ such that

(C1.1) f∗ = infx,y∈C f1(y|x) > 0.
(C1.2) There exists X → [1,∞) Lyapunov’s function V such that V(x) > g̃(x) and V∗ = sup

x∈C V (x) <∞.
(C1.3) For some 0 < ρ < 1 and D > 0 and for all x ∈ X , Ex,0 V(X1) 6 (1− ρ)V(x) +D1l{C}(x).

(C2) Assume that there exists r > 2 such that

ǧr = sup
k>1

E∞ g∗
r
(Xk) <∞ and υ̌r = sup

k>1

E∞ υ∗
r
(Xk) <∞ ,

where g∗
r
(x) = sup

n>1
Ex,0[g(Xn, Xn−1]r and υ∗

r
(x) = sup

n>0
Ex,0[V(Xn)]r.

Theorem 9 Conditions (C1) and (C2) imply condition (A2) with I = λ(g̃).

Proof. Note first that in the Markov case

Z̃k
k+n

=
1

n

n∑
l=1

g(Xl+k, Xl+k−1)− λ(g̃) . (5.12)

Therefore, using the fact that the process (Xn)n>ν+1 is homogeneous, we obtain

Pν

{
|Z̃ν
ν+n
| > ε

}
= Eν Ψn(Xν) = E∞ Ψn(Xν) ,

where Ψn(x) = Px,0(|W̃n| > ε). Note now that in view of condition (C1), for any x ∈ C,

Px,0(A) =

∫
A

f1(y|x)µ(dy) >
∫
A∩C

f1(y|x)µ(dy) > f∗µ(A ∩ C) = δς(A) ,

where δ = f∗µ(C) and ς(A) = µ(A ∩ C)/µ(C). So Theorem 11 in Appendix B implies condition (B1),
and therefore, Proposition 1 yields

Ψn(x) 6 W ∗
r

(
1 + υ∗

r
(x) + g∗

r
(x)
)

nr/2εr
for any x ∈ X ,

where W ∗
r

is defined in (5.4). Thus, using condition (C2) we obtain that

sup
ν>0

Pν

{
|Z̃ν
ν+n
| > ε

}
6

W ∗
r

(1 + ǧr + υ̌r)

nr/2εr
.
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This implies immediately that for any positive ε the sum defined in (3.14) is bounded as

Υ ∗(ε) 6
W ∗

r
(1 + ǧr + υ̌r)

εr

∑
n>1

1

nr/2
.

Hence Theorem 9. ut
Now we obtain sufficient conditions for (B′

1
) and (B′

2
). To this end, we denote by fp(y|x) the condi-

tional density of Xk+p with respect to Xk.

(C′
1
) Assume that there exist an integer p > 1 and a set C ∈ B with µ(C) <∞ such that

(C
′
1.1) f∗ = infx,y∈C fp(y|x) > 0 .

(C
′
1.2) There exists X → [1,∞) Lyapunov’s function V such that V(x) > g̃(x) and V∗ = sup

x∈C V (x) <∞.

(C
′
1.3) For some 0 < ρ < 1 and D > 0 and for all x ∈ X , Ex,1 V(Xp) 6 (1− ρ)V(x) +D1l{C}(x).

Theorem 10 Conditions (C′
1
) and C2) imply condition (A2) with I = λ(g̃).

Proof. First, let X̃l = Xk+pl+ι for some fixed 0 6 ι 6 p − 1. Condition (C′
1
) implies that for any

0 6 ι 6 p− 1 the transition probability of the homogeneous Markov process (X̃l)l>1 for any x ∈ C

P̃x(A) =

∫
A

fp(y|x)µ(dy) >
∫
A∩C

f1(y|x)µ(dy) > f∗µ(A ∩ C) = δς(A) ,

where δ = f∗µ(C) and ς(A) = µ(A ∩ C)/µ(C). So Theorem 11 implies condition (B′
1
) with the same

Rι = R, λι = λ, Vι = V and κι for 0 6 ι 6 p− 1. Hence, in this case λ = λ and, therefore, for any x ∈ X
by Proposition 2 and condition (C2) for the process Zk

k+n
defined in (5.12) we obtain that

sup
ν>0

Pν

{
|Z̃ν
ν+n
| > ε

}
6

W ∗
r

(1 + ǧr + υ̌r)

nr/2εr
.

This implies immediately that for any ε > 0 the sum defined in (3.14) is bounded as

Υ ∗(ε) 6
W ∗

r
(1 + ǧr + υ̌r)

εr

∑
n>1

1

nr/2
.

Hence Theorem 10. ut

6 Examples

We now present several examples that illustrate the general theory developed in Sections 3 and 4. The
main goal is to verify condition (A2) in order to be able to apply the theorems proved in Sections 3 and
4 and establish asymptotic pointwise and minimax optimality of the SR detection procedure.

6.1 Example 1: Two dimensional AR process

This example motivates the necessity of relaxing conditions (4.23) and (4.24) proposed by Lai (1998)
in certain interesting problems. It shows that both conditions (4.23) and (4.24) do not hold, while our
uniform complete convergence condition (A2) holds.

Hereafter the prime in the vector Y ′ denotes the transposition. Consider the two dimensional autore-
gressive (AR) process Xk = (X1,k , X2,k)′ defined as

Xk =
(
Λ 1l{k6ν} +Ak

)
Xk−1 + ξk , (6.1)

where

Λ =

(
λ1, , 0

0 , λ2

)
, Ak =

(
σ1 η1,k , 0

0 , σ2 η2,k

)
and ξk =

(
ξ1,k

ξ2,k

)
.
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Here the sequences (η1,k)k>1 and (η2,k)k>1 are iid normal N (0, 1) random variables independent of the
sequence (ξk)k>1, which is the iid sequence of N (0, Q) random vectors with

Q =

(
1 + ρ2 , ρ

ρ , 1

)

and ρ > 0 is some fixed number which will be specified later. It is clear that the iid random matrices
(Ak)k>1 in (6.1) are such that

E[A1 ⊗ A1] =


σ2
1
, 0 , 0 , 0

0 , 0 , 0 , 0

0 , 0 , 0 , 0

0 , 0 , 0 , σ2
2

 .

As to the coefficients σi, we choose them so that this matrix has the modules of its eigenvalues less than
one, i.e.,

0 < σ2
1
< 1 and 0 < σ2

2
< 1 . (6.2)

Under these conditions the process (Xk)k>ν has the stationary distribution in R2 given by

ζ =

(
ζ1

ζ2

)
=

∞∑
k=1

Πk−1 ξk , (6.3)

where Π0 = I2 and Πm =
∏m

j=1
Aj for m > 1. One can deduce directly that this vector, conditioned on

G = σ{η1,k, η2,k , k > 1}, is Gaussian N (0,F) with

F =

∞∑
k=1

Πk−1 V Πk−1 =

(
(1 + ρ2)ς11 , ρς12

ρς12 , ς22

)
, (6.4)

where ςij =
∑∞
k=1

σk−1
i

σk−1
j

∏k−1
l=1

ηi,lηj,l .

Note now that, conditioned on Xk−1, . . . , X1, the random vector Xk for k > ν is Gaussian N (0,Dk−1)
with Dk−1 = G(Xk−1), where for x = (x1, x2)

G(x) =

(
1 + ρ2 + σ2

1
x2
1

, ρ

ρ , 1 + σ2
2
x2
2

)
. (6.5)

So we can represent the LLR as

Yj = log
f1,j(Xj |Xj−1)

f0,j(Xj |Xj−1)
= κ(Xj−1)−$j , (6.6)

where for any x = (x1, x2)′

κ(x) =
1

2
x′ ΛG−1(x)Λx′ and $j = X ′

j−1 ΛD
−1
j−1Xj . (6.7)

Therefore, by the ergodic theorem,

P0

 lim
n→∞

n−1
n∑
j=1

Yj = Eκ(ζ)

 = 1 ,

i.e., I = Eκ(ζ), where the vector ζ is defined in (6.3). Clearly, condition (4.24) in this case has the
following form: for any ε > 0

lim
n→∞

sup
x∈R2

P0

 n∑
j=1

Yj < (I − ε)n |X0 = x

 = 0 ,
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where I = Eκ(ζ). We now establish that it does not hold by showing that for some 0 < ε < 1

lim inf
n→∞

sup
x∈R2

P0

 n∑
j=1

Yj < (I − ε)n |X0 = x

 > 0 . (6.8)

Observe first that for any n > 1

sup
x∈R2

P0

 n∑
j=1

Yj < (I − ε)n |X0 = x

 > lim
x2→∞

P0

 n∑
j=1

Yj < (I − ε)n |X0 = (0, x2)′


and that for any x1

κ1(x1) = lim
|x2|→∞

κ(x1, x2) =
λ2
1
x2
1

2(1 + ρ2 + σ2
1
x2
1
)

+
λ2
2

2σ2
2

and P0(limn→∞ n−1
∑n
j=1 κ1(X1,j) = I1) = 1, where

I1 = Eκ1(ζ1) 6
λ2
1
E ζ2

1

2(1 + ρ2)
+

λ2
2

2σ2
2

=
λ2
1
E ς11
2

+
λ2
2

2σ2
2

=
λ2
1

2(1− σ2
1
)

+
λ2
2

2σ2
2

.

Let us show now that there exist σ1 > 0 and ρ > 0 for which I > I1. If so, then taking into account
Lemma 2 in Appendix A, we obtain that for some ε > 0

lim
n→∞

sup
x∈R2

P0

 n∑
j=1

Yj < (I − ε)n |X0 = x

 = 1 .

Hence, (6.8) follows. Indeed, choosing in (6.1) the parameter σ2
1

as a function of ρ such that σ2ρ4 → 0
as ρ→∞, we obtain in view of Lemma 3 in Appendix A that there exist σ1 and ρ > 0 for which I > I1.
This implies the inequality (6.8), and hence, condition (4.24) does not hold.

Note that condition (4.23) also does not hold. Indeed, in the case considered this condition has the
following form: for any ε > 0

lim
n→∞

sup
x∈R2

P0

 n∑
j=1

Yj > (I + ε)n |X0 = x

 = 0 .

If we put ρ = 0, then we obtain that lim|x1|,|x2|→∞ κ(x1, x2) = λ2
1
/(2σ2

1
) + λ2

2
/(2σ2

2
) := κ∗ and κ∗ >

κ(x1, x2) for any x1 and x2 from R. Therefore, κ∗ > I = Eκ(ζ). Similarly to the above reasoning we
obtain that for some ε > 0

lim
n→∞

sup
x∈R2

P0

 n∑
j=1

Yj > (I + ε)n |X0 = x

 > lim
n→∞

lim
|x1|∧|x2|→∞

P0

 n∑
j=1

Yj > (I + ε)n |X0 = x

 = 1 ,

where a ∧ b = min(a, b).
On the other hand, our uniform complete convergence condition (A2) holds. Indeed, as we will see

in Example 4 below, condition (A2) holds even for a more general vector AR model than (6.1). Thus,
the SR procedure is asymptotically minimax.

6.2 Example 2: Change in the correlation coefficient of the AR(1) model

Consider the change of the correlation coefficient in the first-order AR model

Xn = ϑnXn−1 + wn , (6.9)

where ϑn = a01l{n6ν} + a11l{n>ν} and (wn)n>1 are iid not necessarily Gaussian random variables with

Ew1 = 0, Ew2
1

= 1 and a known density ψ(x) such that for any n > 1

inf
−n6x6n

ψ(x) > 0 . (6.10)
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We assume that the parameters −1 < ai < 1 are known. In this case, the ergodic distributions for
(Xn)n6ν and (Xn)n>ν+1 are given by the random variables w̃0 and w̃1, respectively, which are defined
as

w̃i =

∞∑
j=1

(ai)
j−1 wj , i = 0, 1 . (6.11)

The pre-change and post-change conditional densities are f0(Xn|Xn−1) = ψ(Xn − a0Xn−1) for all 1 6
n 6 ν and f1(Xn|Xn−1) = ψ(Xn − a1Xn−1) for n > ν, where X0 is an initial value independent of the
sequence (wn)n>1. Note that condition (6.10) implies the lower bound (C1.1) in condition (C1) for any
“minorization” set of the form C = [−n, n]. It is easily seen that

g(y, x) = log
f1(y|x)

f0(y|x)
= log

ψ(y − a1x)

ψ(y − a0x)
(6.12)

and

g̃(x) =

∫
R

log
ψ(y − a1x)

ψ(y − a0x)
ψ(y − a1x) dy . (6.13)

Assume that there exist q∗ > 1 and ι > 0 such that

E |w1|ι <∞ , sup
y,x∈R

|g(y, x)|
(1 + |y|ι + |x|ι)

6 q∗ and sup
x∈R

g̃(x)

(1 + |x|ι)
6 q∗ . (6.14)

For example, in the Gaussian case (i.e., ψ is (0, 1) Gaussian density),

g(y, x) =
(y − a0x)2 − (y − a1x)2

2
and g̃(x) =

(a1 − a0)2 x2

2
,

i.e., conditions (6.14) are satisfied with ι = 2 and

q∗ = max

{
1,
|a2

1
− a2

0
|+ (a1 − a0)2 + 1

2

}
.

Define the Lyapunov function as
V(x) = q∗ (1 + |x|ι) . (6.15)

Obviously,

lim
|x|→∞

Ex,0 V(X1)

V(x)
= lim
|x|→∞

1 + E |a1X + w1|ι

1 + |x|ι
= |a1|ι < 1 .

Therefore, for any |a1|ι < ρ < 1 there exist n > 1 and D > 0 such that condition (C1) holds with
C = [−n, n].

Let us check now condition (C2). Assume that there exists r > 2 for which∫
R
|v|r1 ψ(v) dv < ∞, r1 = ιr . (6.16)

This condition implies that E |w̃0|r1 <∞ and E |w̃1|r1 <∞. Moreover, taking into account the ergodicity
properties, we obtain that for any x ∈ R

lim
k→∞

Ex,∞ |Xk|r1 = E |w̃0|r1 <∞ and lim
k→∞

Ex,0 |Xk|r1 = E |w̃0|r1 <∞ . (6.17)

Note also that under the probability Px,0 for any j > 1, Xj = aj1 x+
∑j

l=1
aj−l1 wl. Therefore, Ex,0|Xj |r1 6

2r1(|x|r1 + E0,0|Xj |r1), i.e., using the last convergence in (6.17), we obtain that for some C∗ > 0

M∗(x) = sup
j>1

Ex,0 |Xj |r1 6 C∗(1 + |x|r1) .

Using now the first convergence in (6.17), we obtain that sup
k>1

EM∗(Xk) <∞. So the upper bounds in

(6.14) imply condition (C2). By Theorem 9, condition (A2) holds for the model (6.9) if density ψ of the
iid random variables (wn)n>1 satisfies conditions (6.10) and (6.14). The Kullback–Leibler information
number is

I = λ(g̃) =

∫
R

(∫
R

log
ψ(y − a1x)

ψ(y − a0x)
ψ(y − a1x)dy

)
λ(dx) ,

where λ is the distribution of w̃1 given in (6.11).
Hence, by Theorem 3 and Theorem 7, the SR procedure is asymptotically minimax with respect to

the expected detection delays.
In the particular Gaussian case where ψ is N (0, 1), the random variable w̃1 is N

(
0, (1− a2

1
)−1
)
, and

the Kullback–Leibler information number can be calculated explicitly, I = (a1 − a0)2/2(1− a2
1
).
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6.3 Example 3: AR process with ARCH(1) errors

Consider now the change of the correlation coefficient in the first-order AR model with ARCH(1) errors
[Borkovec and Klüppelberg (2001)], assuming that for n > 1

Xn = ϑnXn−1 +
(
1 + σ2X2

n−1
)1/2

wn , (6.18)

where an initial value X0 is independent of the sequence (wn)n>1. The sequence ϑn is defined in (6.9)

with the known parameters ai such that a2
i

+ σ2 < 1. As in the model (6.9), we assume that (wn)n>1

are iid not necessarily Gaussian random variables with Ew1 = 0, Ew2
1

= 1 and a known density ψ(x)
satisfying condition (6.10). The variance σ2 > 0 is known. In just the same way as in the model (6.9),
we find that the pre-change and post-change conditional densities f0(Xn|Xn−1) and f1(Xn|Xn−1) are of
the form

f0(y | x) =
ψ (l0(y, x))√

1 + σ2x2
and f1(y | x) =

ψ (l1(y, x))√
1 + σ2x2

,

where l0(y, x) = (y − a0x)/
√

1 + σ2x2 and l1(y, x) = (y − a1x)/
√

1 + σ2x2.
Obviously, the property (6.10) implies the lower bound (C1.1) in condition (C1).
The function (6.12) is given by g(y, x) = log[ψ(l1(x, y))/ψ(l0(x, y))] and

g̃(x) =
1√

1 + σ2x2

∫
R

(
log

ψ (l1(y, x))

ψ (l0(y, x))

)
ψ (l1(y, x)) dy .

Assume that there exist q∗ > 1 and ι > 0 such that

sup
y,x∈R

|g(y, x)|
(1 + |l0(y, x)|ι + |l1(y, x)|ι)

6 q∗ and sup
x∈R

g̃(x) 6 q∗ . (6.19)

For example, in the Gaussian case (i.e., ψ is standard Gaussian density),

g(y, x) =
l2
0
(y, x)− l2

1
(y, x)

2
and g̃(x) =

(a1 − a0)2 x2

2(1 + σ2x2)
,

i.e., conditions (6.19) are satisfied with ι = 2.
The Lyapunov function is any R → (1,+∞) function which satisfies the drift condition (C1.3). We

set V(x) = q∗(1 + |x|δ) for 0 < δ < x∗, where x∗ = min(x∗,0 , x∗,1) and x∗,i is a unique positive root of
the equation κ̌(x) = 1, where κ̌(x) = E |ai + σ w1|x.

It is well known [Klüppelberg and Pergamenshchikov (2004)] that if Ew2
1

= 1, then x∗ > 2. Direct
calculations yield

lim
|x|→∞

Ex,0V(X1)

V(x)
= κ̌(δ) < 1 . (6.20)

Therefore, for any κ̌(δ) < ρ < 1 there exist n > 1 and D > 0 for which condition (C1) holds with
C = [−n, n].

Next, we verify condition (C2). To this end, note that under the probability P0 we have

l1(Xj , Xj−1) = wj and |l0(Xj , Xj−1)| 6 |wj |+
|a1 − a0|

σ
.

So, for any r > 2 satisfying (6.16) with ι > 0 from condition (6.19), we obtain that, for some constant
C∗ > 0, g∗

r
(x) 6 C∗(1 + E|w1|ιr), i.e., ǧr <∞. Now we check the last inequality in (C2). Fix r > 2 such

that r1 = δr < x∗. Evidently, this is possible for a sufficiently small δ > 0. In analogy with (6.20) we can
obtain that

lim
|x|→∞

Ex,0V1(X1)

V1(x)
= κ̌(r1) < 1 ,

where V1(x) = 1+|x|r1 . Therefore, conditions (H1) and (H2) hold, and using Theorem 11 in Appendix B,
we obtain that for some constant C∗ > 0, sup

j>1
Ex,0|Xj |r1 6 C∗(1 + |x|r1). Similarly we obtain that

sup
j>1

E∞|Xj |r1 <∞, i.e., (C2) is satisfied.

Thus, by Theorem 9, condition (A2) holds for the model (6.18) where the iid random variables
(wn)n>1 have density ψ(x) that satisfies conditions (6.10) and (6.16) with ι > 0 from condition (6.19).
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Note that in this case there exists the stationary distribution λ for (Xn)n>ν which in the Gaussian case,
wn ∼ N (0, 1), is given by the following random variable

∞∑
j=1

j−1∏
l=1

υl wj , (6.21)

where (υl)l>1 is an iid N (a1, σ
2) sequence independent of (wj)j>1. The Kullback–Leibler information is

I =

∫
R

(
1√

1 + σ2x2

∫
R

(
log

ψ (l1(y, x))

ψ (l0(y, x))

)
ψ (l1(y, x)) dy

)
λ(dx) =

(a1 − a0)2√
2π

EG(υ̃) , (6.22)

where

G(z) =
1

z

∫ ∞
0

y2 e−
y2

2z2

1 + σ2 y2
dy and υ̃ =

1 +

∞∑
j=2

j−1∏
l=1

υ2
l

1/2

.

By Theorem 3 and Theorem 7, the SR procedure is asymptotically minimax.

6.4 Example 4: Change in the parameters of the multivariate linear difference equation

Consider the multivariate model in Rp given by

Xn =
(
A0,n1l{n6ν} +A1,n1l{n>ν}

)
Xn−1 + wn , (6.23)

where A0,n and A1,n are p × p random matrixes and (wn)n>1 is an iid sequence of Gaussian random
vectors N (0, Q0) in Rp with the positive definite p × p matrix Q0. Assume also that Ai,n = Ai + Bn
and (Bn)n>1 are iid Gaussian random matrixes N (0 , Q1), where the p2 × p2 matrix Q1 is not necessary
positive definite. Assume, in addition, that E[Ai,1 ⊗ Ai,1], i = 0, 1 have the modules less than one.

In this case, the processes (Xn)16n6ν and (Xn)n>ν are ergodic with the ergodic distributions given

by the vectors [Klüppelberg and Pergamenshchikov (2004)] ςi =
∑
l>1

∏l−1
j=1

Ai,j wl, i.e., the invariant

measures λi on Rp are defined as λi(A) = P(ςi ∈ Γ ) for any Γ ∈ B(Rp). As shown in Feigin and Tweedie
(1985), there exists a positive definite p × p matrix T and the constant K∗ > 0 such that the function
V (x) = c(1 + x′Tx) and the set C = {x ∈ Rp : x′Tx 6 K∗} satisfy condition (C1.3) for any c > 1. The
function g(y, x) can be calculated for any x, y from Rp as

g(y, x) =
|l0(y, x)|2 − |l1(y, x)|2

2
= y′G−1(x)(A1 −A0)x+

x′A′
0
G−1(x)A0x− x′A′1G

−1(x)A1 x

2
,

where li(y, x) = G−1/2(x)(y −Aix) and G(x) = E[B1xx
′B′

1
] +Q0. From this we obtain that

g̃(x) =
1

2
|G−1/2(x)(A1 −A0)x| = 1

2
x′(A1 −A0)′G−1(x)(A1 −A0)x .

Assume that
sup
x∈Rp

|G−1/2(x)(A1 −A0)x| <∞ . (6.24)

Note that for the model (6.1) this condition holds. So under this condition g∗ = sup
x∈Rp g̃(x) < ∞.

Thus, choosing V (x) = c∗ (1 + (x′Tx)δ) with c∗ = 1 + g∗ and any fixed 0 < δ < 1 and using the Jensen
inequality yields condition (C1).

Let us check now condition (C2). Note that under the probability P0 we obtain that for any j > 1
the vector ξj = l1(Xj , Xj−1) is (0, Ip) Gaussian in Rp. Moreover, by condition (6.24),

|l0(Xj , Xj−1)| = |ξj +G−1/2(Xj−1)(A1 −A0)Xj−1| 6 |ξj |+ C∗

for some positive C∗. Clearly, ǧr < ∞ for any r > 0. We now check the last inequality in (C2). First
note that, as it is shown in Feigin and Tweedie (1985), under our conditions E|ςi|2 < ∞. Next, observe
that under the probability Px,0

Xj =

l−1∏
j=1

A1,j x+

j∑
l=1

l∏
i=l+1

A1,i wl .
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So, for any 0 < q 6 2, Ex,0|Xj |q 6 C∗(|x|q +E0,0|Xj |q). In view of the ergodicity property we obtain that

lim
j→∞

E∞|Xj |q = E∞|ς0|q <∞ and lim
j→∞

E0,0|Xj |q = E0,0|ς1|q <∞ ,

i.e., sup
j>1

Ex,0|Xj |q 6 C∗(1 + |x|q) for some positive C∗. So υ̌r <∞ for any r > 2 for which δr 6 2.

Hence, by Theorem 9, condition (A2) is satisfied with I = E g̃(ς1), and by Theorem 3 and Theorem 7
the SR detection procedure is asymptotically minimax.

6.5 Example 5: Change in the correlation coefficients of the AR(p) model

Let us now generalize the results of Subsection 6.2 for the problem of detecting the change of the
correlation coefficient in the p-th order AR process, assuming that for n > 1

Xn = ϑ1,nXn−1 + . . .+ ϑp,nXn−p + wn , (6.25)

where ϑi,n = a0,i1l{n6ν} + a1,i1l{n>ν} and (wn)n>1 are iid, not necessarily Gaussian random variables

with Ew1 = 0, Ew2
1

= 1. In the sequel, we use the notation ai = (ai,1, . . . ,ai,p)
′. The process(6.25) is

not Markov, but the p-dimensional process

X̌n = (Xn, . . . , Xn−p+1)′ ∈ Rp (6.26)

is Markov. Note that for n > ν

X̌n = AX̌n−1 + w̌n , (6.27)

where

A =


a1,1 , . . . ,a1,p

1 , . . . , 0

.. . . .

0 , . . . , 1, 0

 and w̌n = (wn, 0, . . . , 0)′ ∈ Rp .

It is clear that

E[w̌n w̌
′
n
] = B =


1 , . . . , 0

.. . . .

0 , . . . , 0

 .

Assume that all eigenvalues of the matrix A have the modules less than one. The ergodic distribution is
given by the vector ς =

∑
l>1

Al−1 w̌l ∼ N (0,F), where

F =
∑
l>0

AlB (A′)l . (6.28)

Obviously, condition (C1.1) does not hold for the process (6.26).
To fulfill this condition we replace this process by the embedded homogeneous Markov process Yn =

X̌np+ι for some 0 6 ι 6 p− 1. This process can be represented as

Zn = ApZn−1 + ζn , ζn =

p−1∑
j=0

Aj w̌np+ι−j . (6.29)

Clearly, ζn is Gaussian with the parameters (0, Q), where Q =
∑p−1
j=0

Aj B (A′)j . One can check directly

that this matrix is positive definite. Define the function V (x) : Rp → R as

V (x) = c(1 + x′Tx) , T =

∞∑
l=0

(A′)plApl , (6.30)

where c > 1 will be specified later. Let tmax = max‖x‖=1 x
′Tx and t∗ = 1− 1/tmax. Obviously, tmax > 1,

i.e., 0 < t∗ < 1. Now we set K = [(1 + E ‖ζ1‖2)/ρ]1/2 with ρ = (1− t∗)/2 and D = 1 + ‖T 1/2Ap‖2K2 +
E‖ζ1‖2. Next we need the minorizing measure in condition (H1) on the Borel σ-field in Rp. To this end,
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we define ν̌(Γ ) = mes(Γ ∩C)/mes(C) for any Borel set Γ in Rp, where mes(·) is the Lebesgue measure
in Rp.

Finally, we show that, for any 0 6 ι < p, the Markov process (6.29) satisfies condition (C
′
1.3). Indeed,

note that

E(V (Z1)|Z0 = x) = c+ cE
∥∥∥T 1/2(Apx+ ζ1)

∥∥∥2
= c+ c (x′(Ap)′T Apx) + rE ‖ζ1‖

2
.

Taking into account that
x′(Ap)′TApx

x′Tx
= 1− ‖x‖

2

x′Tx
6 1− 1

tmax
= t∗ ,

we obtain that, for ‖x‖ > K, E(V (Z1) |Z0 = x) 6 (1− ρ)V (x). Moreover,

g̃(x) =
1

2

 p∑
j=1

(a1,j − a0,j)xj

2

6

∑p

j=1
(a1,j − a0,j)

2

2
|x|2 .

Therefore, choosing in (6.30) c = 1 +
∑p

j=1
(a1,j − a0,j)

2/2, we obtain condition (C′
1
).

Condition (C2) can be checked in the same way as in Example 2.
By Theorem 10, condition (A2) holds with I = Eg̃(ς) = a′F a/2, where a = a1 − a0 and the matrix

F is defined in (6.28), and the SR procedure is asymptotically minimax.

7 Monte Carlo simulations

For the purpose of evaluation of the non-asymptotic performance of the SR detection procedure and
establishing accuracy of the first-order asymptotic approximations for the average delay to detection, we
performed MC simulations for AR(1) model (6.9) in Example 2, Section 6.2. We assume that the noise
model is Gaussian, i.e., wn ∼ N (0, 1) and independent. The pre- and post-change correlation coefficients
a0 and a1 are selected as a0 = 0.1 and a1 = 0.5. Is this correct?? (AT) The change point is ν = 10.

We denote by R̂ν(Tβ) and R̂∗
ν
(T ∗β ) the empirical pointwise risks (average delays to detection) for the SR

detection procedures Tβ and T ∗β , correspondingly. These MC estimates of the risks were calculated on

the basis of N = 106 replications. We use the functions and parameters defined in (4.3) and (4.8) with
δ̌∗ = 1/ι and κ = 1.2. What is ι in δ̌∗ = 1/ι? (AT) The results of simulations are presented in Table 1.
Recall that the first-order approximations (for large thresholds h or small LPFA β) to the average delays
to detection (ADD) Rν(Tβ) = Eν(Tβ − ν)+ and R∗ν(T ∗β ) = Eν(T ∗β − ν|T ∗β > ν),

Rν(Tβ) ≈ log hβ
I

, R∗ν(T ∗β ) ≈
log h∗β
I

(7.1)

follow from the results of Section 4 and Proposition 3. These first-order approximations (FOA ADD) are
also included in the table for the LPFA ranging from 10−1 to 10−10.

Table 1 The results of MC simulations for detecting a change in the correlation coefficient in the AR(1) model (6.9)

LPFA β MC ADD R̂ν(Tβ) FOA ADD Rν(Tβ) MC ADD R̂∗ν(T ∗β ) FOA ADD R∗ν(T ∗β )

10−1 30.71 41.10 32.00 42.00
10−2 58.44 70.55 58,47 70.60
10−3 92.37 103.30 92.37 103.32
10−4 111.19 120.10 111.19 120.10
10−5 144.22 155.60 144,22 155.60
10−6 161.30 170.50 161.30 170.50
10−10 258.70 268.20 258.70 268.20

It is seen that the first-order asymptotic approximations (7.1) are not especially accurate and con-
stantly overestimate the real value of the ADD. This is expected since they do not account for an
overshoot over the threshold at stopping and a negative constant C, which is approximately equal to

C ≈ −E0

[
log

(
1 +

∞∑
n=1

exp

{
− (Xn − a0Xn−1)2 − (Xn − a1Xn−1)2

2

})]
.
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Thus, for practical purposes it would be useful to obtain a higher order approximation (up to an additive
vanishing term o(1)). However, this task is out of the scope of the present paper and will be considered
elsewhere.
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A Auxiliary results and proofs

A.1 Asymptotic properties of the SR procedure for large threshold values

The following proposition establishes asymptotic properties of the SR procedure for large h regardless of the optimality
criteria. While it is being used in the proofs of asymptotic optimality of the SR procedure under considered criteria, it also
interesting independently.

Proposition 3 Let T (h) be the SR procedure defined in (2.3).
(i) Assume that there exists a positive and finite number I such that, for all ε > 0, the following conditions hold:

lim
M→∞

P0

(
1

M
max

16n6M
Z0
n > I(1 + ε)

)
= 0 (A.1)

and, for some r > 1,
∞∑
n=1

nr−1 sup
ν>0

Pν

(
1

n
Zνν+n < I − ε

)
<∞ . (A.2)

Then

lim sup
h→∞

1

(log h)r
Eν [(T (h)− ν)+]r 6

1

Ir
for all ν > 0, (A.3)

lim sup
h→∞

1

(log h)r
Eν [(T (h)− ν)r|T (h) > ν] 6

1

Ir
for all ν > 0, (A.4)

and

lim
h→∞

1

(log h)r
sup
ν>0

Eν [(T (h)− ν)+]r =
1

Ir
. (A.5)

(ii) Asymptotic relations (A.3), (A.4), and (A.5) hold if

∞∑
n=1

nr−1 sup
ν>0

Pν

(∣∣∣∣ 1nZνν+n − I
∣∣∣∣ > ε

)
<∞ for all ε > 0. (A.6)

(iii) If, in particular, r = 1, then the uniform complete convergence condition (A2) implies (A.3), (A.4), and (A.5) with
r = 1.

Proof. (i) Let n0 = 1 + blog h/(I − ε)c. We have

Eν
[
(T (h)− ν)+

]r
=

∫ ∞
0

rtr−1Pν (T (h)− ν > t) dt

= nr0 +

∞∑
n=0

∫ n0+n+1

n0+n
rtr−1Pν(T (h)− ν > t) dt

= nr0 +

∞∑
n=0

∫ n0+n+1

n0+n
rtr−1Pν(T (h)− ν > n0 + n) dt

= nr0 +

∞∑
n=0

[(n0 + n+ 1)r − (n0 + n)r]Pν(T (h)− ν > n0 + n)

= nr0 +

∞∑
n=n0

[(n+ 1)r − nr]Pν(T (h)− ν > n)
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6 nr0 +

∞∑
n=n0

r(n+ 1)r−1Pν(T (h) > ν + n)

6 nr0 +

∞∑
n=n0

r2r−1nr−1Pν(T (h) > ν + n) . (A.7)

Taking into account that Rν+n =
∑ν+n
i=1 e

Zi−1
ν+n > eZ

ν
ν+n , we obtain

Pν (T (h) > ν + n) = Pν (R` < h, ` = 1, . . . , ν + n) 6 Pν (Rν+n < h)

6 Pν
(
Zνν+n < log h

)
= Pν

(
Z̃ν,n < −I + log h/n

)
.

Evidently, for any 0 < ε < I and any n > n0, the last probability can be bounded as

Pν
(
Z̃ν,n < −I + log h/n

)
6 Pν

(
Z̃ν,n < −ε

)
,

and hence, for any 0 < ε < I and ν > 0,

Pν (T (h) > ν + n) 6 Pν
(
Zνν+n/n < I − ε

)
. (A.8)

This implies that

sup
ν>0

Eν
[
(T (h)− ν)+

]r
6

(
1 +

log h

I − ε

)r
+ r2r−1

∞∑
n=1

nr−1 sup
ν>0

Pν

(
1

n
Zνν+n < I − ε

)
,

where, by condition (A.2), the last term on the right-hand side is finite. This immediately implies the following upper
bounds for the moments of the detection delay (for any ν > 0)

lim sup
h→∞

1

(log h)r
Eν
[
(T (h)− ν)+

]r
6 lim sup

h→∞

1

(log h)r
sup
ν>0

Eν
[
(T (h)− ν)+

]r
6

1

Ir
. (A.9)

The upper bound (A.3) follows. To obtain the upper bound (A.4) for the conditional risk, it suffices to observe that
Eν [(T (h)− ν)r|T (h) > ν] = Eν [(T (h)− ν)r]+/P∞(T (h) > ν) and that P∞(T (h) > ν) > 1− ν/h→ 1 as h→∞ for every
ν > 0. The latter follows easily from the fact that Rn − n is a zero-mean P∞-martingale.

Define Mε,h = (1 − ε) log h/(I + d), where as before d = − log(1 − %). Replacing α in the proof of Theorem 1 in
Section A.2 below by 1/h, in particular in (A.13), we obtain that, for any 0 < ε < 1,

P0(T (h) 6Mε,h) 6 e(1+ε)IMε,h P∞
(
T (h) 6Mε,h

)
+ P0

(
1

Mε,h
max

16n6Mε,h
Z0
n > (1 + ε)I

)
. (A.10)

By Lemma 1, PFA(T (h)) 6 1/(h%+ 1) := α∗, and as in (A.14), we have P∞ (T (h) 6 `) 6 α∗ (1− %)−`. Hence,

e(1+ε)IMε,h P∞
(
T (h) 6Mε,h

)
6 e(1+ε)IMε,h+dMε,h+logα∗ 6 hα∗ h

−ε2 6 %−1h−ε
2
,

so that the first term in (A.10) goes to zero as h→∞ for any ε > 0 and for any 0 < % < 1. By condition (A.1), the second
term also goes to zero as h → ∞, and therefore, limh→∞ P0(T (h) > Mε,h) = 1 for any 0 < ε < 1 and any 0 < % < 1.
Finally, Chebyshev’s inequality yields

sup
ν>0

Eν [(T (h)− ν)+]r > E0[T (h)]r >Mr
ε,h P0

(
T (h) > Mε,h

)
,

so

lim inf
h→∞

1

(log h)r
sup
ν>0

Eν [(T (h)− ν)+]r >

(
1− ε
I + d

)r
for arbitrary 0 < ε < 1 and 0 < % < 1, and we obtain the asymptotic lower bound

lim
h→∞

1

(log h)r
sup
ν>0

Eν [(T (h)− ν)+]r >
1

Ir
,

which along with the upper bound (A.9) completes the proof of (A.5) in (i).

(ii) The uniform r−complete convergence condition (A.6) implies both conditions (A.1) and (A.2), and hence, (A.3),
(A.4), and (A.5) hold true under (A.6).

(iii) Finally, when r = 1, condition (A.6) is nothing but the uniform complete convergence condition (A2), and hence,
(A.3), (A.4), and (A.5) hold true with r = 1 under (A2). This completes the proof of all three assertions. ut
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A.2 Proof of Theorem 1

First, note that it is not difficult to prove that condition (A1) implies that for any ε > 0 and k > 0

Uk,M = Pk

{
1

M
max

16n6M
Zkk+n > (1 + ε)I

}
−−−−−→
M→∞

0 . (A.11)

Next, it is clear that, for any k > 0, Ek (τ − k | τ > k) > Ek (τ − k)+, i.e., the assertion (3.10) follows from the assertion
(3.9), and hence it suffices to prove only inequality (3.9).

Define γ(k)ε,α(τ) = Pk(k 6 τ 6 k +Mε,α) and Mε,α = (1− ε)| logα|/(I + d), where d = − log(1− %). Let us show that

for any k > 0 and 0 < ε < 1
lim
α→0

sup
τ∈∆(α,%)

γ(k)ε,α(τ) = 0 . (A.12)

Indeed, using the change of measure trick, similarly to Tartakovsky and Veeravalli (2005) we obtain

γ(k)ε,α(τ) 6 e(1+ε)IMε,α P∞
(
k 6 τ 6 k +Mε,α

)
+ Pk

(
max

16n6Mε,α
Zkk+n > (1 + ε)IMε,α

)
. (A.13)

The definition of the class ∆(α, %) in (3.5) implies that for any 0 < α, % < 1 and for any l > 1

α > %
∑
k>l

(1− %)k P∞ (τ 6 k) > %P∞ (τ 6 l)
∑
k>l

(1− %)k = P∞ (τ 6 l) (1− %)l ,

i.e.
sup

τ∈∆(α,%)
P∞ (τ 6 l) 6 α (1− %)−l . (A.14)

Therefore, the first term in the right side of the inequality (A.13) may be estimated as

e(1+ε)IMε,α−| logα|+dk+dMε,α 6 e−ε
2| logα|+dk

and it goes to zero for any fixed 0 6 k <∞. By (A.11), the second term in (A.13),

Pk

(
max

16n6Mε,α
Zkk+n > (1 + ε)IMε,α

)
= Uk,Mα ,

approaches zero as α→ 0 for all k > 0, and we obtain (A.12). By the Chebyshev inequality,

Ek (τ − k)+ >Mε,α Pk
(
τ > k +Mε,α

)
= Mε,α

(
Pk (τ > k)− γ(k)ε,α(τ)

)
.

From (A.14) we obtain immediately that for any fixed k > 0

Pk (τ > k) = P∞ (τ > k) > 1− α (1− %)−k+1 → 1 as α→ 0 .

Therefore, for any ν > 0 and for any small ε

lim
α→0

infτ∈∆(α) Rν(τ)

| logα|/(I + dα)
> 1− ε.

Taking into account that dα = − log(1 − %α) → 0 as α → 0 and letting ε → 0, we obtain the lower bounds (3.9). Hence
Theorem 1.

A.3 Proof of Theorem 2

Proof of (i). In just the same way as in (A.8), we obtain that for all ν > 0 and n > n0 = blog hα/(I − ε)c+ 1,

Pν (Tα > ν + n) 6 Pν
(
Z̃ν,n < −I + log hα/n

)
6 Pν

(
Z̃ν,n < −ε

)
6 Pν

(
|Z̃ν,n| > ε

)
, (A.15)

and hence, for any 0 < ε < I,

Eν (Tα − ν)+ =
∑
n>0

Pν (Tα > ν + n)

6
∑

06n<n0

Pν (Tα > ν + n) +
∑
n>n0

Pν
(
|Z̃ν,n| > ε

)

6 n0 +
∑
n>n0

Pν
(
|Z̃ν,n| > ε

)
6
| log hα|
I − ε

+ 1 + Υ ∗(ε)

=
| logα|+ | log %α|+ log(1− α)

I − ε
+ 1 + Υ ∗(ε) .

(A.16)
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Since the right-hand side does not depend on ν, we have (for any ν > 0 and 0 < ε < I)

Rν(Tα) 6 sup
ν>0
Rν(Tα) 6

| logα|
I − ε

(
1 +
| log %α|+ log(1− α)

| logα|

)
+ 1 + Υ ∗(ε) .

By condition (A2), Υ ∗(ε) < ∞, so using condition (3.16) and the fact that ε is arbitrary yields the upper bound (3.18)
and the assertion (i) follows.

Proof of (ii). In view of inequality (A.14), for any 0 6 ν 6 k∗α,

Pν (Tα > ν) = P∞ (Tα > ν) > P∞ (Tα > k∗α) > 1− α(1− %α)−k
∗
α .

Evidently, under conditions (3.16) and (3.17) the right-hand side approaches 1 as α→ 0, which implies that Pν (Tα > ν)→ 1
as α → 0 for all 0 6 ν 6 k∗α. Since Eν(Tα − ν|Tα > ν) = Eν(Tα − ν)+/Pν (Tα > ν), inequality (3.18) implies (3.19) for
k∗ = k∗α satisfying conditions (3.17) and the proof is complete.

A.4 Proof of Theorem 4

We give only a sketch of the proof and omit certain details. By (3.12), for all r > 1 and for all ν > 0,

lim inf
α→0

1

| logα|r
inf

τ∈∆(α)
Eν [(τ − ν)r | τ > ν] >

1

Ir
. (A.17)

(This bound holds since condition (3.24) obviously implies the a.s. convergence (A1), which in turn implies (A.11) for all
k > 0.)

Next, using the reasoning similar to that used in the proof of Proposition 3 in Section A.1, which has lead to inequality
(A.7), we obtain

Eν
[
(Tα − ν)+

]r
6 nr0 + r2r−1

∞∑
n=n0

nr−1Pν(Tα > ν + n) , (A.18)

where n0 = 1 + blog hα/(I − ε)c and hα = (1 − α)/α%α. By (A.15), for any 0 < ε < I and n > n0, Pν(Tα > ν + n) 6
Pν(|Z̃ν,n| > ε), and we obtain

Eν
[
(Tα − ν)+

]r
6 nr0 + r2r−1

∞∑
n=n0

nr−1Pν
(
|Z̃ν,n| > ε

)

6

(
1 +

log hα

I − ε

)r
+ r2r−1

∞∑
n=1

nr−1 sup
ν>0

Pν
(
|Z̃ν,n| > ε

)
,

where the last term is finite due to condition (3.24) and log hα ∼ | logα| as α → 0 due to condition (3.16). Thus, for an
arbitrary 0 < ε < I,

Eν
[
(Tα − ν)+

]r
6

(
| logα|
I − ε

)r
(1 + o(1)) as α→ 0, (A.19)

and we established the asymptotic upper bound

lim sup
α→0

1

| logα|r
Eν [(Tα − ν)r | τ > ν] 6

1

Ir
for all ν > 0.

Applying this upper bound together with the lower bound (A.17) proves asymptotic relations (3.25).

The upper bound

lim sup
α→0

1

| logα|r
sup

06ν6k∗α

Eν [(Tα − ν)r | τ > ν] 6
1

Ir

can be established similarly to (3.19), using (A.19) and the fact that max06ν6k∗α Pν(Tα > ν)→ 1 as α→ 0 (see the proof
of Theorem 2(ii)) and that

Eν [(Tα − ν)r|Tα > ν) = Eν [(Tα − ν)+]r/Pν(Tα > ν) .

This upper bound and the lower bound (A.17) imply (3.26).

A.5 Auxiliary results for proving asymptotic optimality of the SR procedure in classes with given local
probabilities of false alarm

The following proposition allows us to compare the classes (2.4) and (3.5).

Proposition 4 For any 0 < β < 1, m∗ > | log(1− β)|/[| log(1− %1,β)|]− 1 and k∗ > m∗, the following inclusions hold:

∆(α2, %2,β) ⊆ H (β, k∗,m∗) ⊆ ∆(α1, %1,β) . (A.20)
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Proof. Let τ ∈ ∆(α2, %2,β). Taking in (A.14) l = k∗, we obtain

sup
16k6k∗−m∗

P∞ (k 6 τ < k +m∗) 6 P∞ (τ < k∗) 6 α2 (1− %2,β)−k
∗

= β .

Hence, τ ∈ H(β, k∗,m∗), i.e., the first inclusion in (A.20) follows.
Now, if τ ∈ H (β, k∗,m∗), then P∞ (τ < 1 +m∗) 6 β. Therefore, taking in (3.4) % = %1,β , we obtain

∞∑
k=1

πk(%1,β)P∞ (τ < k) =

m∗+1∑
k=1

πk(%1,β)P∞ (τ < k) +

∞∑
k=m∗+2

πk(%1,β)P∞ (τ < k)

6 β +

∞∑
k=m∗+2

πk(%1,β) = β +
(
1− %1,β

)m∗+1
= α1 ,

i.e., τ ∈ ∆(α1, %1,β). Hence both inclusions in (A.20) are proven. ut
The following proposition allows us to compare the classes (2.5) and (3.5).

Proposition 5 For any 0 < β < 1, m∗ > | log(1− β)|/[| log(1− %1,β)|]− 1 and k∗ > m∗, the following inclusions hold:

∆(α3, %2,β) ⊆ H∗ (β, k∗,m∗) ⊆ ∆(α1, %1,β) . (A.21)

Proof. First we show the left inclusion. Let τ ∈ ∆(α3, %2,β). Then, taking into account the inequality (A.14) for any l = k∗

and using the definition of α3, we obtain that

sup
16k6k∗−m∗

P∞(τ < k +m∗|τ > k) 6 sup
16k6k∗−m∗

P∞ (τ < k +m∗)

P∞ (τ > k)

6
P∞ (τ < k∗)

1− P∞ (τ < k∗)

6
α3 (1− %2,β)−k

∗

1− α3 (1− %2,β)−k∗
= β ,

i.e., τ belongs to H(β, k∗,m∗).
Now we show the right inclusion in (4.7). Let τ be fromH(β, k∗,m∗). Then, using the definition of the classH(β, k∗,m∗)

in (A.20), we obtain that P∞(τ < m∗ + 1) 6 β. Therefore, similarly to the proof of the right inclusion in (A.20) we obtain
that τ ∈ ∆(α1, %1,β), and the proof is complete. ut

A.6 Auxiliary results for Example 1, Subsection 6.1

Recall that κ(x) and $j are defined in (6.7).

Lemma 2 For any ε > 0,

lim
n→∞

sup
x∈R2

P0

∣∣∣∣∣∣
n∑
j=1

$j

∣∣∣∣∣∣ > εn |X0 = x

 = 0 . (A.22)

Proof. Indeed, we have

E0

 n∑
j=1

$j

2

|X0 = x

 =
n∑
j=1

E0

(
$2
j |X0 = x

)
= E0

 n∑
j=1

E0

(
$2
j |Fj−1

)
|X0 = x

 ,

where Fj = σ{X1, . . . , Xj}. Using the definition of the sequence $j in (6.7), we obtain that

E0

(
$2
j |Fj−1

)
= X′j−1ΛG

−1(Xj−1)ΛXj−1 6
σ2
1

λ21
+
σ2
2

λ22
.

Thus, E1[(
∑n
j=1$j)

2|X0 = X] 6 σ2
1/λ

2
1 + σ2

2/λ
2
2, which implies (A.22). ut

Lemma 3 Assume that in (6.1) the parameter σ2
1 is such that limρ→∞ σ2

1 ρ
4 = 0 . Then

lim
ρ→∞

Eκ(ζ) = +∞ . (A.23)

Proof. First note that for any x ∈ R2 the inverse matrix for (6.5) can be written as

G−1(x) =
1

detG(x)

(
1 + σ2

2 x
2
2 , −ρ

−ρ , 1 + ρ2 + σ2
1 x

2
1

)

and
detG(x) = (1 + ρ2 + σ2

1 x
2
1)(1 + σ2

2 x
2
2)− ρ2 = t0(x22) + σ2

1 x
2
1 t1(x22) ,
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where t0(x) = 1 + σ2
2 (1 + ρ2)x and t1(x) = 1 + σ2

2 x. This function can be written as

κ(x1, x2) =
1

2
λ21 a(x)− ρ λ1λ2 b(x) +

1

2
λ22 c(x) , (A.24)

where a(x) = x21 t1(x22)/detG(x), b(x) = x1 x2/detG(x), and c(x) = x22(1 + ρ2 + σ2
1 x

2
1)/ detG(x). Now to study

the function (A.24) we represent the coefficient a(x) as a(x) = a0(x) − σ2
1 a1(x), where a0(x) = x21 t3(x22), a1(x) =

x41 t1(x22)t3(x22)/[t0(x22) + σ2
1 x

2
1 t1(x22)] and t3(x) = t1(x)/t0(x). Taking into account that t1(x) 6 t0(x) and that the

random variable ζ1 is G-conditionally Gaussian with the parameters 0 and (1 + ρ2)ς11, we obtain

Ea1(ζ) 6 E ζ41 = 3 (1 + ρ2)2E ς211 ,

where ς11 =
∑∞
k=1

σ
2(k−1)
1

∏k−1
l=1

η21,l. We recall that G = σ{η1,k, η2,k , k > 1}. Now, by the Bunyakovsky–Cauchy–

Schwarz inequality,

E ς211 6
1

1− σ2
1

∑
k>1

σ
2(k−1)
1 E

k−1∏
l=1

η41,l =
1

1− σ2
1

∑
k>1

(
σ2
1 E η41,1

)k−1
=

1

(1− σ2
1)(1− 3σ2

1)
.

Therefore, for any 0 < σ0 < 1/3,

lim sup
ρ→∞

1

(1 + ρ2)2
sup

0<σ2
1
6σ0

E |a1(ζ)| <∞ .

Now we calculate the expectation Ea0(ζ). To this end, we set ζ̌ = ζ1 − κ̌ ζ2 and κ̌ = E(ζ1ζ2|G)/E(ζ22 |G) = ρ(ς12/ς22).

Conditioned on G, the random variable ζ̌ is independent of ζ2, and ζ̌ is Gaussian with the parameters
(
0,E (ζ̌2|G)

)
, where

E (ζ̌2|G) = E (ζ21 |G)−
(E (ζ1ζ2|G))2

E (ζ22 |G)
= (1 + ρ2)ς11 − ρ2

ς212
ς22

:= 1 + ρ2ς∗ .

By the Bunyakovsky–Cauchy–Schwarz inequality, the random variable ς∗ > 0 a.s. Next, using the definitions of the random
variables ςij in (6.4), we obtain that ς∗ = 0 if and only if for any k > 1

σk−1
1

k−1∏
l=1

η1,l = σk−1
2

k−1∏
l=1

η2,l .

So, ς∗ > 0 a.s. Thus,

E(a0(ζ)|G) = E(ζ̌2|G)E
(
t3(ζ22 )|G

)
+ κ̌2E

(
ζ22 t3(ζ22 )|G

)
> (1 + ρ2 ς∗)E

(
1

1 + σ2
2(1 + ρ2)ζ22

|G
)
,

and we obtain that

lim inf
ρ→∞

E (a0(ζ)|G) >
1

σ2
2

ς∗ E

(
1

ζ22
|G
)

= +∞ a.s.,

i.e., limρ→∞ Ea0(ζ) = +∞. Setting now G1 = σ{ξ2,l , η2,l , l > 1}, we obtain

E (κ̌|G1) = ρ
E (ς12|G1)

ς22
= ρ

∞∑
k=1

σk−1
1 σk−1

2

1

ς22
E

(
k−1∏
l=1

η1,lη2,l|G1

)
=

ρ

ς22
.

Moreover, b(x) = b0(x)−σ2
1 b1(x), where b0(x) = x1 x2/t0(x22) and b1(x) = x31 x2t3(x22)/[t0(x22)+σ2

1 x
2
1t1(x22)]. Therefore,

taking into account that E
(
ζ̌|G
)

= 0, we obtain

E (b0(ζ)|G) = E

(
ζ1 ζ2
t0(ζ22 )

|G
)

= E

(
κ̌

ζ22
t0(ζ22 )

|G
)
.

This implies immediately that

Eb0(ζ) = E

[
κ̌

ζ22
t0(ζ22 )

]
= E

(
ζ22

t0(ζ22 )
E (κ̌|G1)

)
= ρE

[
ζ22

t0(ζ22 )ς22

]
.

It is easy to check that

lim
ρ→∞

ρEb0(ζ) =
1

σ2
2

E
1

ς22
6

1

σ2
2

.

Taking into account here that t3(x) 6 1 we obtain that |b1(x) | 6 |x1|3/σ2, i.e.,

E |b1(ζ)| 6
1

σ2
E|ζ1|3 =

2
√

2

σ2
√
π

(1 + ρ2)3/2 E ς
3/2
11 6

2
√

2

σ2
√
π

(1 + ρ2)3/2 E ς211 .

Therefore, for any 0 < σ0 < 1/3

lim sup
ρ→∞

1

(1 + ρ2)3/2
sup

0<σ2
1
6σ0

E |b1(ζ)| <∞ .

Clearly, c(x) 6 σ−2
2 . Thus, using the condition of this lemma we obtain (A.23). ut
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B Auxiliary non-asymptotic bounds for the concentration inequalities

B.1 Correlation inequality

We now give the important correlation inequality proved in Galthouk and Pergamenshchikov (2013).

Proposition 6 Let (Ω,F , (Fj)16j6n,P) be a filtered probability space and (uj ,Fj)16j6n be a sequence of random vari-
ables such that, for some r > 2, max16j6n E |uj |r <∞. Define

bj,n(r) =

E

|uj | n∑
k=j

|E (uk|Fj)|

r/2


2/r

. (B.1)

Then

E
∣∣∣ n∑
j=1

uj

∣∣∣r 6 (2r)r/2

 n∑
j=1

bj,n(r)

r/2

.

B.2 Geometric ergodicity for homogeneous Markov processes

We follow the Meyn–Tweedie approach (cf. Meyn and Tweedie (1993)). We recall some definitions from Meyn and Tweedie
(1993) and Galthouk and Pergamenshchikov (2014) for a homogeneous Markov process (Xn)n>0 defined on a measurable
state space (X ,B(X )). Denote by P (x, ·) , x ∈ X , the transition probability of this process, i.e., for any A ∈ B(X ), x ∈ X ,

P (x,A) = Px(X1 ∈ A) = P(X1 ∈ A|X0 = x) . (B.2)

The n−step transition probability is Pn(x,A) = Px(Xn ∈ A).
We recall that a measure λ on B(X )) is called invariant (or stationary or ergodic) for this process if, for any A ∈ B(X ),

λ(A) =

∫
X
P (x,A)λ(dx) . (B.3)

If there exists an invariant positive measure λ with λ(X ) = 1 then the process is called positive.
Assume that the process (Xn)n>0 satisfies the following minorization condition:

(D1) There exist δ > 0, a set C ∈ B(X ) and a probability measure ς on B(X ) with ς(C) = 1, such that for any A ∈ B(X ),
for which ς(A) > 0, infx∈C P (x,A) > δ ς(A).
Obviously, this condition implies that η = infx∈C P (x,C)− δ > 0.

Now we impose the drift condition.

(D2) There exist a X → [1,∞) function V, constants 0 < ρ < 1, D > 1 and a set C from B(X ) such that V∗ =
supx∈C |V(x)| <∞ and, for all x ∈ X ,

Ex (V(X1)) 6 (1− ρ)V(x) + D1l{C}(x) . (B.4)

In this case, we call V the Lyapunov function.
In this paper, we use the following theorem from Galthouk and Pergamenshchikov (2014).

Theorem 11 Let (Xn)n>0 be a homogeneous Markov process satisfying conditions (D1) and (D2) with the same set
C ∈ B(X ). Then (Xn)n>0 is a positive geometric ergodic process, i.e.,

sup
n>0

eκ
∗n sup

x∈X
sup

06g6V

1

V(x)
|Ex g(Xn)− λ(g̃)| 6 R∗ (B.5)

for some positive constants κ∗ and R∗ which are given in Galthouk and Pergamenshchikov (2014).
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