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Abstract

In this paper, we consider the robust adaptive non parametric
estimation problem for the periodic function observed with the Lévy
noises in continuous time. An adaptive model selection procedure,
based on the improved weighted least square estimates, is proposed.
Sharp oracle inequalities for the robust risks have been obtained.
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1 Introduction

In this paper, we consider a signal statistical treatment problem in the frame-
work of a nonparametric regression model in continuous time, i.e.

d yt = S(t)d t+ dξt , 0 ≤ t ≤ n , (1.1)

where S(·) is an unknown 1 - periodic signal, (ξt)0≤t≤n is an unobserved
noise and n is the duration of observation. The problem is to estimate the
function S on the observations (yt)0≤t≤n. Note that if (ξt)0≤t≤n is a brownian
motion, then we obtain the well known ”signal+white noise” model which
is very popular in statistical radio-physics (see, for example, [5, 8, 3] and
etc.). In this paper, we assume that in addition to the intrinsic noise in the
radio-electronic system, approximated usually by the gaussian white or color
noise, the useful signal S is distorted by the impulse flow described by the
Lévy process, i.e. we assume that the noise process (ξt)0≤t≤n is defined as

ξt = %1wt + %2zt and zt = x ∗ (µ− µ̃)t , (1.2)

where, %1 and %2 are some unknown constants, (wt)t≥ 0 is a standard brow-
nian motion, µ(ds dx) is a jump measure with deterministic compensator
µ̃(ds dx) = dsΠ(dx), Π(·) is a Lévy measure, i.e. some positive measure on
R∗ = R \ {0}, such that

Π(x2) = 1 and Π(x6) < ∞ . (1.3)

Here we use the notation Π(|x|m) =
∫
R∗
|z|m Π(dz). Note that the Lévy

measure Π(R∗) could be equal to +∞. In the sequel we will denote by
Q the distribution of the process (ξt)0≤t≤n and by Q∗

n
we denote all these

distributions for which the parameters %1 ≥ ς∗ and %2
1

+ %2
2
≤ ς∗, where ς∗

and ς∗ are some fixed positive bounds. The cause of the appearance of a pulse
stream in the radio-electronic systems can be, for example, either external
unintended (atmospheric) or intentional impulse noise and the errors in the
demodulation and the channel decoding for the binary information symbols.
Note that, for the first time the impulse noises for detection signal problems
have been introduced on the basis of compound Poisson processes was by
Kassam in [8]. However, the compound Poisson process can describe only the
large impulses influence of fixed single frequency. Taking into account that in
telecommunication systems, impulses are without limitations on frequencies.
So, one needs to extend the framework of the observation model by making
use of the Lévy processes (1.2). In this paper, we consider the estimation
problem in the adaptive setting, i.e. when the regularity of S is unknown.
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Since the distribution Q of the noise process (ξt)0≤t≤n is unknown we use the
robust estimation approach developed for nonparametric problems in [9]. To
this end we define the robust risk as

R∗(Ŝn, S) = sup
Q∈Q∗

n

RQ(Ŝn, S) (1.4)

where Ŝn is an estimation, i.e. any function of (yt)0≤t≤n, RQ(·, ·) is the usual
quadratic risk defined as

RQ(Ŝn, S) := EQ,S ‖Ŝn − S‖2 and ‖S‖2 =

∫ 1

0

S2(t)dt . (1.5)

In this paper, we consider a minimax optimisation criteria which aims to
minimize the robust risk (1.4) (see, for example in [6]). To do this we use
the model selection methods. The interest to such statistical procedures is
explained by the fact that they provide adaptive solutions for a nonparamet-
ric estimation through oracle inequalities which give a non-asymptotic upper
bound for a quadratic risk including a minimal risk over chosen family of esti-
mators. It should be noted that the model selection methods for parametric
models were proposed, for the first time, by Akaike [1]. Then, these methods
had been developed by Barron, Birgé and Massart [2] and Fourdrinier and
Pergamenshchikov [4] for the nonparametric estimation and oracle inequali-
ties for the quadratic risks. Unfortunately, the oracle inequalities obtained in
these papers can not provide the efficient estimation in the adaptive setting,
since the upper bounds in these inequalities have some fixed coefficients in
the main terms which are more than one. In order to obtain the efficiency
property for estimation procedures, one has to obtain the sharp oracle in-
equalities, i.e. in which the factor at the principal term on the right-hand
side of the inequality is close to unity. For this reason, one needs to use
the general semi - martingale approach for the robust adaptive efficient esti-
mation of the nonparametric signals in continuous time proposed by Konev
and Pergamenshchikov in [9]. The goal of this paper is to develop a new
sharp model selection method for estimating the unknown signal S using the
improved estimation approach. Usually, the model selection procedures are
based on the least square estimators. However, in this paper, we propose to
use the improved least square estimators which enable us to considerably im-
prove the non asymptotic estimation accuracy. Such idea was proposed, for
the first time, in [4]. Our goal is to develop these methods for non gaussian
regression models in continuous time and to obtain the sharp oracle inequal-
ities. It should be noted that to apply the improved estimation methods to
the non gaussian regression models in continuous time one needs to modify
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the well known James - Stein procedure introduced in [7] in the way proposed
in [11, 10]. So, by using these estimators we construct the improved model
selection procedure and we show that the constructed estimation procedure
is optimal in the sense of the sharp non asymptotic oracle inequalities for the
robust risks (1.4).

2 Improved estimation

Let (φj)j≥ 1 be an orthonormal basis in L2[0, 1]. We extend these functions
by the periodic way on R, i.e. φj(t)=φj(t+ 1) for any t ∈ R. For estimating
the unknown function S in (1.1) we consider it’s Fourier expansion

S(t) =
∞∑
j=1

θjφj(t) and θj = (S, φj) =

∫ 1

0

S(t)φj(t) dt . (2.1)

The corresponding Fourier coefficients can be estimated as

θ̂j,n =
1

n

∫ n

0

φj(t) dyt . (2.2)

We define a class of weighted least squares estimates for S(t) as

Ŝλ =
n∑
j=1

λ(j)θ̂j,nφj , (2.3)

where the weights λ ∈ Rn belong to some finite set Λ from [0, 1]n.
Now, for the first d Fourier coefficients in (2.1) we use the improved

estimation method proposed for parametric models in [11]. To this end we

set θ̃n = (θ̂j,n)1≤j≤d. In the sequel we will use the norm |x|2
d

=
∑d

j=1
x2
j

for

any vector x = (xj)1≤j≤d from Rd. Now we define the shrinkage estimators
as

θ∗
j,n

= (1− g(j)) θ̂j,n , (2.4)

where g(j) = (cn/|θ̃n|d)1{1≤j≤d}, and cn is some known parameter such that
cn ≈ d/n as n → ∞. Now we introduce a class of shrinkage weighted least
squares estimates for S as

S∗
λ

=
n∑
j=1

λ(j)θ∗
j,n
φj . (2.5)

We denote the difference of quadratic risks of the estimates (2.3) and (2.5)

as ∆Q(S) := RQ(S∗
λ
, S) −RQ(Ŝλ, S). Now for this deviation we obtain the

following result.
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Theorem 2.1. Assume that for any vector λ ∈ Λ there exists some fixed
integer d = d(λ) such that their first d components equal to one, i.e. λ(j) = 1
for 1 ≤ j ≤ d for any λ ∈ Λ. Then for any n ≥ 1

sup
Q∈Qn

sup
‖S‖≤r

∆Q(S) < −c2
n
. (2.6)

The inequality (2.6) means that non asymptotically, i.e. for any n ≥ 1
the estimate (2.5) outperforms in mean square accuracy the estimate (2.3).
Moreover, as we will see below, ncn → ∞ as d → ∞. This means that
improvement is considerable may better than for the parametric regression
(see, [11]).

3 Model selection

This Section gives the construction of a model selection procedure for esti-
mating a function S in (1.1) on the basis of improved weighted least square
estimates and states the sharp oracle inequality for the robust risk of pro-
posed procedure.

The model selection procedure for the unknown function S in (1.1) will
be constructed on the basis of a family of estimates (S∗

λ
)λ∈Λ.

The performance of any estimate S∗
λ

will be measured by the empirical
squared error

Errn(λ) = ‖S∗
λ
− S‖2.

In order to obtain a good estimate, we have to write a rule to choose a weight
vector λ ∈ Λ in (2.5). It is obvious, that the best way is to minimise the
empirical squared error with respect to λ. Making use the estimate definition
(2.5) and the Fourier transformation of S implies

Errn(λ) =
n∑
j=1

λ2(j)(θ∗
j,n

)2 − 2
n∑
j=1

λ(j)θ∗
j,n
θj +

n∑
j=1

θ2
j
. (3.1)

Since the Fourier coefficients (θj)j≥1 are unknown, the weight coefficients
(λj)j≥1 can not be found by minimizing this quantity. To circumvent this

difficulty one needs to replace the terms θ∗
j,n
θj by their estimators θ̃j,n. We

set

θ̃j,n = θ∗
j,n
θ̂j,n −

σ̂n
n
, (3.2)
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where σ̂n is the estimate for the noise variance of σQ = EQ ξ
2
j,n

= %2
1

+ %2
2

which we choose in the following form

σ̂n =
n∑

j=[
√
n]+1

t̂2
j,n

and t̂j,n =
1

n

∫ n

0

Trj(t)dyt .

Here we denoted by (Trj)j≥1 the trigonometric basis in L2[0, 1]. For this
change in the empirical squared error, one has to pay some penalty. Thus,
one comes to the cost function of the form

Jn(λ) =
n∑
j=1

λ2(j)(θ∗
j,n

)2 − 2
n∑
j=1

λ(j) θ̃j,n + δ P̂n(λ) , (3.3)

where δ is some positive constant, P̂n(λ) is the penalty term defined as

P̂n(λ) =
σ̂n |λ|2n
n

. (3.4)

Substituting the weight coefficients, minimizing the cost function

λ∗ = argmin
λ∈Λ

Jn(λ) , (3.5)

in (2.3) leads to the improved model selection procedure

S∗ = S∗
λ∗
. (3.6)

It will be noted that λ∗ exists because Λ is a finite set. If the minimizing
sequence in (3.5) λ∗ is not unique, one can take any minimizer. In the case,
when the value of σQ is known, one can take σ̂n = σQ and Pn(λ) = σQ |λ|2n/n.

Theorem 3.1. For any n ≥ 2 and 0 < δ < 1/2, the robust risks (1.4) of
estimate (3.6) for continuously differentiable function S satisfies the oracle
inequality

R∗(S∗
λ∗
, S) ≤ 1 + 2δ

1− 2δ
min
λ∈Λ
R∗(S∗

λ
, S) +

B∗
n

nδ
, (3.7)

where the rest term is such that B∗
n
/nε → 0 as n→∞ for any ε > 0.

The inequality (3.7) means that the procedure (3.6) is optimal in the ora-
cle inequalities sense. This property enables to provide asymptotic efficiency
in the adaptive setting, i.e. when information about the signal regularity is
unknown.
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4 Conclusion

In conclusion, we would like to emphasize that in this paper we developed new
model selection procedures based on the improved versions of the least square
estimators. It turns out that the improvement effect in the nonparametric
estimation is more important than for the parameter estimation problems
since the accuracy improvement is proportional to the parameter dimension.
We remember that for the nonparametric estimation this dimension tends to
infinity, but in the parametric case it is always fixed. Therefore, the gain in
the non asymptotic quadratic accuracy from the application of the improved
estimation methods is much more significant in statistical treatment problems
of nonparametric signals.
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