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Avenue de l’université, BP 12, 76801 Saint-Etienne du Rouvray Cedex France and

International Laboratory of Statistics of Stochastic Processes and Quantitative Finance of National
Research Tomsk State University, Russian Federation

Abstract: We construct a robust truncated sequential estimators for the pointwise estimation problem in nonpara-

metric autoregression models with smooth coefficients. For Gaussian models we propose an adaptive procedure

based on the constructed sequential estimators. The minimax nonadaptive and adaptive convergence rates are es-

tablished. It turns out that in this case these rates are the same as for regression models..
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1 INTRODUCTION

One of the standard linear models in the general theory of time series is the autoregressive model (see,
for example, [1] and the references therein). Natural extensions for such models are nonparametric au-
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toregressive models which are defined by

yk = S(xk)yk−1 + ξk , 1 ≤ k ≤ n , (1.1)

where S(·) is unknown function, the design xk = k/n, y0 is a constant and the noise (ξk)1≤k≤n are i.i.d.
unobservable centered random variable N (0, 1).

It should be noted that the varying coefficient principle is well known in the regression analysis.
It permits the use of a more complex forms for regression coefficients and, therefore, the models con-
structed via this method are more adequate for applications (see, for instance, [8], [22]). In this paper
we consider the varying coefficient autoregressive models (1.1). There is a number of papers which con-
sider these models such as [6], [7] and [4]. In all these papers, the authors propose some asymptotic (as
n → ∞) methods for different identification studies without considering optimal estimation issues. To
our knowledge, for the first time the minimax estimation problem for the model (1.1) has been treated
in [3] and [23] in the nonadaptive case, i.e. for the known regularity of the function S. Then, in [2] it
is proposed to use the sequential analysis method for the adaptive pointwise estimation problem in the
case when the unknown Hölder regularity is less than one, i.e when the function S is not differentiable.
In the case of the model (1.1), the adaptive pointwise estimation is possible only in the sequential frame-
work. That is why, in this paper, we study sequential estimation methods for the smooth function S. We
consider the pointwise estimation at a fixed point z0 ∈]0; 1[ in the two cases: when the Hölder regularity
is known and when the Hölder regularity is unknown, i.e. the adaptive estimation. In the first case we
consider this problem in the robust setting, i.e. we assume that the distribution of the random variables
(ξj)j≥1 in (1.1) belongs to some functional class and we consider the estimation problem with respect
to robust risks which have an additional supremum over all distributions from some fixed class. For non-
parametric regression models such risks was introduced in [13] for the pointwise estimation problem
and in [15] for the quadratic risks. Later, for the quadratic risks the same approach was used in [19] for
regression model in continuous time. Motivated by this facts, we consider the adaptive estimation prob-
lem for the Gaussian models (1.1). More precisely, we assume that the function S belongs to a Hölder
class with some unknown regularity 1 < β ≤ 2. Unfortunately, we can not use directly the sequential
procedure from [2] for the adaptive estimation of such functions. Since to obtain an optimal rate for the
function with β > 1 we have to take into account the Taylor expansion of the function S at z0 of the
order 1. To study the Taylor expansion for sequential procedures one needs to control the behavior of the
stopping time. Indeed, one needs to keep the stopping time near of the number of observations. This can
not be done by the procedure from [2] since one needs to use the unknown function S. In this paper we
construct a sequential adaptive estimate for smooth functions and we find an adaptive minimax conver-
gence rate for smooth functions. In Section 2, we present the standard notations used in the sequel of the
paper. We describe in details the statement of the problem and main results in Section 3. In Section 4, we
will study some properties of kernel estimators for the model (1.1) and in Section 5, we study properties
of stopping time for the constructed sequential procedure. Section 6 is devoted to the asymptotic upper
bound and lower bound for the risk of the sequential kernel estimators. In Section 7, we illustrate the
obtained results by numerical examples. Finally, we give an appendix which contains some technical
results.
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2 SEQUENTIAL PROCEDURES

2.1 Main Conditions

We assume that in the model (1.1) the i.i.d. random variables (ξk)1≤k≤n have a density p (with respect
to the Lebesgue measure) from the functional class Pς defined as

Pς :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
x p(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 and sup

k≥1

1

ςk(2k − 1)!!

∫ +∞

−∞
|x|2k p(x) dx ≤ 1

}
, (2.1)

where ς ≥ 1 is some fixed parameter. Note that the (0, 1)-Gaussian density belongs to P . In the sequel
we denote this density by p0. It is clear that for any q > 0

s∗q = sup
p∈Pς

Ep |ξ1|q <∞ , (2.2)

where Ep is the expectation with respect to the density p from Pς . To obtain the stable (uniformly with
respect to the function S ) model (1.1), we assume that for some fixed 0 < ε < 1 and L > 0 the unknown
function S belongs to the ε - stability set

Θε,L =
{
S ∈ C1([0, 1],R) : ‖S‖ ≤ 1− ε and ‖Ṡ‖ ≤ L

}
, (2.3)

where C1[0, 1] is the Banach space of continuously differentiable [0, 1] → R functions and ‖S‖ =

sup0≤x≤1 |S(x)|. Similarly to [13] and [3] we make use of the family of the weak stable local Hölder
classes at the point z0

U (β)
n (ε, L, ε∗n) =

{
S ∈ Θε,L : |Ωh(z0, S)| ≤ ε∗nh

β
}
, (2.4)

where

Ωh(z0, S) =

∫ 1

−1

(S(z0 + uh)− S(z0)) du ,

the positive parameter h is defined later and β = 1 + α is the regularity parameter with 0 < α < 1.
Moreover, we assume that the weak Hölder constant ε∗n goes to zero, i.e. ε∗n → 0 as n→∞. Moreover,
we define the corresponding strong stable local Hölder class at the point z0 as

H(β)(ε, L, L∗) =
{
S ∈ Θε,L : Ω∗(z0, S) ≤ L∗

}
, (2.5)

where

Ω∗(z0, S) = sup
x∈[0,1]

|Ṡ(x)− Ṡ(z0)|
|x− z0|α

.

We assume that the regularity β ≤ β ≤ β, where β = 1 + α and β = 1 + α for some fixed parameters
0 < α < α < 1.
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Remark 2.1. Note that for the regression models the weak Hölder class was introduced in [13] for
the efficient pointwise estimation. It is clear that it is more large than usual one with the same Hölder
constant, i.e.

H(β)(ε, L, ε∗n) ⊆ U (β)
n (ε, L, ε∗n) .

It should be noted also that for diffusion processes the local weak Hölder class was used in [12] and [14]
for sequential and truncated sequential efficient pointwise estimation respectively. Moreover, in [16]
these sequential pointwise efficient estimators were used to construct adaptive efficient model selection
procedures in L2 for diffusion processes.

2.2 Nonadaptive Procedure

First, we study a nonadaptive estimation problem for the function S from the functional class (2.4) of
the known regularity β = 1 + α. As we will see later to construct an efficient sequential procedure we
need to use S as a procedure parameter. So we propose to use the first ν observations for the auxiliary
estimation of S(z0). In this step we use the usual kernel estimate, i.e.

Ŝν =
1

A
ν

ν∑
j=1

Q(uj) yj−1 yj , Aν =
ν∑
j=1

Q(uj) y
2
j−1 , (2.6)

where the kernel Q(·) is the indicator function of the interval [−1; 1]; uj = (xj − z0)/h and h is some
positive bandwidth. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =
m∑

j=k+1

Q(uj) y
2
j−1 , (2.7)

i.e. Aν = A0,ν . It is clear that to estimate S(z0) on the basis of the kernel estimate with the kernel Q we
can use the observations (yj)k∗≤j≤k∗ , where

k∗ = [nz0 − nh] + 1 and k∗ = [nz0 + nh] . (2.8)

Here [a] is the integral part of a number a. So for the first estimation we chose ν as

ν = ν(h, α) = k∗ + ι , (2.9)

where
ι = ι(h, α) = [ε̃nh] + 1 and ε̃ = ε̃(h, α) = hα/ lnn .

Next, similarly to [2], we use a some kernel sequential procedure based on the observations (yj)ν≤j≤n.
To transform the kernel estimator in the linear function of observations and we replace the number of
observations n by the following stopping time

τH = inf{k ≥ ν + 1 : Aν,k ≥ H}, (2.10)

where inf{∅} = n and the positive threshold H will be chosen as a positive random variable measurable
with respect to the σ - field {y1, . . . , yν}. Therefore, we get
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S∗h =
1

H

 τH−1∑
j=ν+1

Q(uj) yj−1 yj + κH Q(uτH ) yτH−1 yτH

1(Aν,n≥H) , (2.11)

where the correcting coefficient κH on the set {Aν,τH ≥ H} is defined as

Aν,τH−1 + κH Q(uτH ) y2
τH−1 = H

and κH = 1 on the set {Aν,τH < H}.
Now, to obtain an efficient estimate we need to use the all n observations, i.e. asymptotically for

sufficiently large n the stopping time τH ≈ n. Similarly to [18], one can show that τH ≈ γ(S)H as
H →∞, where

γ(S) = 1− S2(z0) . (2.12)

Therefore, to use the all asymptotically observations we have to chose H as the number of observations
divided by γ(S). But in our case we use k∗ − k∗ observations to estimate S(z0), Therefore, to obtain
optimal estimate we need to define H as (k∗ − k∗)/γ(S). Taking into account that k∗ − k∗ ≈ 2nh and
that γ(S) is unknown we define the threshold H as

H = H(h, α) = φnh , φ = φ(h, α) =
2(1− ε̃)
γ(S̃ν)

, (2.13)

where S̃ν is the projection of the estimator Ŝν in the interval ]− 1 + ε, 1− ε[, i.e.

S̃ν = min(max(Ŝν ,−1 + ε), 1− ε) .

In this paper we chose the bandwidth h in the following form

h = h(β) = (κn)
1

2β+1 , (2.14)

where the sequence κn is positive, such that

κ∗ = lim inf
n→∞

nκn > 0 and lim
n→∞

nδ κn = 0 (2.15)

for any 0 < δ < 1.

2.3 Adaptive Procedure

We will construct an adaptive minimax sequential estimation for the function S from the functional
class (2.5) of the unknown regularity β. To this end we will use the modification of the adaptive Lepskii
method proposed in [2] based on the sequential estimators (2.11). We set

dn =
n

lnn
and N(β) = (dn)

β
2β+1 . (2.16)

Moreover, we chose the bandwidth h in the form (2.14) with κn = 1/dn, i.e. we set

ȟ = ȟ(β) =

(
1

dn

) 1
2β+1

. (2.17)
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We define the grids on the intervals [β , β] and [α , α] as

βk = β +
k

m
(β − β) and αk = α+

k

m
(α− α) (2.18)

for 0 ≤ k ≤ m with m = [ln dn] + 1, and we set

Nk = N(βk) and ȟk = ȟ(βk) .

Replacing in (2.9) and (2.13) the parameters h and α we define

ν̌k = ν(ȟk, αk) and Ȟk = H(ȟk, αk) .

Now using these parameters in the estimators (2.6) and (2.11) we set Šk = S∗
ȟk

(z0) and

ω̌k = max
0≤j≤k

(
|Šj − Šk| −

λ̌

Nj

)
, (2.19)

where

λ̌ > λ̌∗ = 4
√

2

(
β − β

(2β + 1)(2β + 1)

)1/2

.

In particular, if β = 1 and β = 2 we get λ̌∗ = 4(2/15)1/2. We also define the optimal index as

ǩ = max

{
0 ≤ k ≤ m : ω̌k ≤

λ̌

Nk

}
. (2.20)

The adaptive estimator is now defined as

Ŝa,n = S∗
ȟk

and ȟk = ȟǩ . (2.21)

Remark 2.2. It should be noted that in the difference from the usual adaptive pointwise estimation (see,
for example, [20], [11], [2]) the threshold λ̌ in (2.19) does not depend on the parameters L > 0 and
L∗ > 0 of the Hölder class (2.5).

3 MAIN RESULTS

3.1 Robust Efficient Estimation

The problem is to estimate the function S(·) at a fixed point z0 ∈]0, 1[, i.e. the value S(z0). For this prob-
lem we make use of the risk proposed in [3]. Namely, for any estimate S̃ = S̃n(z0) (i.e. any measurable
with respect to the observations (yk)1≤k≤n function) we define the following robust risk

Rn(S̃n, S) = sup
p∈Pς

ES,p|S̃n(z0)− S(z0)| , (3.1)

where ES,p is the expectation taken with respect to the distribution PS,p of the vector (y1, ..., yn) in (1.1)
corresponding to the function S and the density p from Pς .

With the help of the function γ(S) defined in (2.12), we describe the sharp lower bound for the
minimax risks with the normalizing coefficient

ϕn = n
β

2β+1 . (3.2)
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Theorem 3.1. For any 0 < ε < 1

limn→∞ inf
S̃

sup
S∈U(β)

n
(ε,L,ε∗

n
)

γ−1/2(S)ϕnRn(S̃n, S) ≥ E|η| , (3.3)

where η is a Gaussian random variable with the parameters (0, 1/2).

Now we give the upper bound for the minimax risk of the sequential kernel estimator defined in
(2.11).

Theorem 3.2. The estimator (2.11) with the parameters (2.13) – (2.14) and κn = n−1 satisfies the
following inequality

limn→∞ sup
S∈U(β)

n
(ε,L,ε∗

n
)

γ−1/2(S)ϕnRn(S∗h, S) ≤ E|η| ,

where η is a Gaussian random variable with the parameters (0, 1/2).

Remark 3.1. Theorems 3.1 and 3.2 imply that the estimator (2.11), with the parameters (2.14) is asymp-
totically robust efficient with respect to class Pς .

3.2 Adaptive Estimation

Now we consider the Gaussian model (1.1), i.e. assume that the random variables (ξj)j≥1 are N (0, 1).
The problem is to estimate the function S at a fixed point z0 ∈]0, 1[, i.e. the value S(z0). For any estimate
S̃n of S(z0) (i.e. any measurable with respect to the observations (yk)1≤k≤n function), we define the
adaptive risk for the functions S fromH(β)(ε, L, L∗) as

Ra,n(S̃n) = sup
β∈[β;β]

sup
S∈H(β)(ε,L,L∗)

N(β)ES |S̃n − S(z0)| , (3.4)

where N(β) is defined in (2.16), ES = ES,p0
is the expectation taken with respect to the distribution

PS = PS,p0
.

First we give the lower bound for the minimax risk. We show that with the convergence rate N(β)

the lower bound for the minimax risk is strictly positive.

Theorem 3.3. There exists L∗0 > 0 such that for all L∗ > L∗0, the risk (3.4) admits the following lower
bound:

lim inf
n→∞

inf
S̃n

Ra,n(S̃n) > 0 ,

where the infimum is taken over all estimators S̃n.

The proof of this theorem is given in [2].

Now we give the upper bound for the minimax risk of the sequential kernel estimator defined in
(2.11). To obtain an upper bound for the adaptive risk (3.4) of the procedure (2.21) we need to study the
family (S∗h)α≤α≤α.
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Theorem 3.4. The sequential procedure (2.11) with the bandwidth h defined in (2.14) for κn = lnn/n

satisfies the following property

lim sup
n→∞

sup
α≤α≤α

(Υn(h))−1 sup
S∈H(β)(ε,L,L∗)

sup
p∈Pς

ES,p|S∗h − S(z0))| <∞

where Υn(h) = hβ + (nh)−1/2.

Using this theorem we can establish the minimax property for the procedure (2.21).

Theorem 3.5. The estimation procedure (2.21) satisfies the following asymptotic property

lim sup
n→∞

Ra,n(Ŝa,n) <∞ . (3.5)

Remark 3.2. Theorem 3.3 gives the lower bound for the adaptive risk, i.e. the convergence rate N(β) is
best for the adapted risk. Moreover, by Theorem 3.5 the adaptive estimates (2.21) possesses this conver-
gence rate. In this case, this estimates is called optimal in the sense of the adaptive risk (3.4)

4 PROPERTIES OF Ŝν

We start with studying the properties of the estimate (2.6). To this end for any q > 1 we set

%∗q =
(12(1 + κ∗))

q

(εκ∗)
2q

(
b∗q

(
r∗qs
∗
q + s∗2q + 1

)
+ 2(1 + L)q r∗2q

)
, (4.1)

where

r∗q = 2q−1

(
|y0|q + s∗q

(
1

ε

)q)
and b∗q =

18qq3q/2

(q − 1)q/2
.

Now we obtain a non asymptotic upper bound for the tail probability for the deviation

∆̂ν = Ŝν − S(z0) . (4.2)

Lemma 4.1. For any q > 1, h > 0 and a > Lh

sup
S∈Θε,L

sup
p∈Pς

PS,p

(
|∆̂ν | > a

)
≤M1,q (lnn)q h(1−α)q +

M2,q

[ι(a− Lh)2]q/2
,

where M1,q = 2q %∗q and M2,q = 2q b∗q s
∗
q r
∗
q .

Proof. First, we write the estimation error as follows

∆̂ν = Bν +
1

Aν
ζν ,

where ζν =
∑ν

j=1
Q(uj) yj−1 ξj and

Bν =
1

Aν

ν∑
j=1

Q(uj) (S(xj)− S(z0)) y2
j−1 .
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Note that |Bν | ≤ Lh for any S ∈ Θε,L. Putting v = ι/2 we can write

PS,p

(
|∆̂ν | > a

)
= PS,p

(
|∆̂ν | > a , Aν < v

)
+ PS,p

(
|∆̂ν | > a , Aν ≥ v

)
≤ PS,p (Aν < v) + PS,p

(
Lh+

|ζν |
Aν

> a,Aν ≥ v
)

≤ PS,p (Aν < v) + PS,p

(
|ζν |
Aν

> a− Lh,Aν ≥ v
)
. (4.3)

Now, for any R→ R function f and numbers 0 ≤ k ≤ m− 1 we set

%k,m(f) =
1

nh

m∑
j=k+1

f(uj) y
2
j−1 −

1

γ(S)

1

nh

m∑
j=k+1

f(uj) . (4.4)

Using this function we can estimate the first term on the left-hand side of (4.3) as

PS,p(Aν < v) = PS,p

%k∗,ν(Q) +
1

nh γ(S)

ν∑
j=k∗+1

Q(uj) <
v

nh


= PS,p

(
%k∗,ν(Q) < − ι

2nh

)
≤ PS,p

(
|%k∗,ν(Q)| > ε̃/2

)
≤
(

2

ε̃

)q
ES,p|%k∗,ν(Q)|q .

Therefore, using here Lemma 8.3 we get

PS,p(Aν < v) ≤ 2q Rq %∗q (lnn)q h(1−α)q ,

where the coefficient %∗q is defined in (4.1). The last term on the right-hand side of (4.3) can be estimated
as

PS,p

(
1

Aν
|ζν | > a− Lh , Aν ≥ v

)
≤ PS,p (|ζν | > v(a− Lh))

≤ 1

vq(a− Lh)q
ES,p|ζν |q .

Now in view of the Burkhölder inequality, it comes

ES,p|ζν |q = ES,p

 ν∑
j=1

Q(uj) yj−1 ξj

q

≤ b∗q ES,p

 ν∑
j=1

Q2(uj) y
2
j−1 ξ

2
j

q/2

= b∗q ES,p

 k∗+ι∑
j=k∗+1

y2
j−1 ξ

2
j

q/2

,

and after applying the Hölder inequality, we obtain

ES,p|ζν |q ≤ b∗q ι
q/2−1

k∗+ι∑
j=k∗+1

ES,p y
q
j−1 ξ

q
j ≤ b∗q s

∗
q r
∗
q ι
q/2 .
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Therefore,

PS,p

(
1

Aν
|ζν | > a− Lh,Aν ≥ v

)
≤

2q b∗q s
∗
q r
∗
q

ιq/2(a− Lh)q
.

Hence Lemma 4.1

Lemma 4.2. Let the bandwidth h be defined by the conditions (2.14)–(2.15). Then, for all m ≥ 1 and
0 < δ < 1

lim
n→+∞

sup
α≤α≤α

h−m sup
S∈Θε,L

sup
p∈Pς

PS,p

(
|∆̂ν | > δε̃

)
= 0 .

Proof. By applying Lemma 4.1 for a = δε̃, we obtain that for sufficiently large n ≥ 1, for which
δε̃ > 2Lh, and for any m ≥ 1 and q > m/(1− α)

h−mPS,p(|∆̂ν | > δε̃) ≤ h−mM1,q (lnn)qh(1−α)q +
M2,qh

−m

(ι(δε̃− Lh)2)q/2

≤M1,q (lnn)q κ
(1−α)q−m

2β+1
n +

2qM2,q

δq
h−(m+q/2)

nq/2ε̃
3q/2
n

≤M1,q (lnn)qκ
(1−α)q−m

2β+1
n +

2qM2,q(lnn)3q/2

δq(κnn)q/2
κ
q(1−α/2)−m

2β+1
n .

Taking into account here the conditions (2.15) we come to Lemma 4.2.

5 PROPERTIES OF STOPPING TIME τH

First we need to study some asymptotic properties of the term (2.10).

Lemma 5.1. Assume that the threshold H is chosen in the form (2.13) and the bandwidth h satisfies the
conditions (2.14) - (2.15). Then for any m ≥ 1

lim sup
n→∞

sup
α≤α≤α

h−m sup
S∈Θε,L

sup
p∈Pς

PS,p(Aν,n < H) <∞ .

Proof. Using the definition of H in (2.13) we obtain

PS,p(Aν,n < H) = PS,p

 1

nh

n∑
j=ν+1

Q(uj) y
2
j−1 <

H

nh



= PS,p

%ν,k∗(Q) +
1

γ(S)

k∗∑
j=ν+1

Q(uj) ∆uj < φ

 .

Note that
k∗∑

j=ν+1

Q(uj) ∆uj =
k∗ − k∗ − ι

nh
≥ 2− ι+ 2

nh
.
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Taking into account that ε2 ≤ γ(S) ≤ 1, we obtain∣∣∣∣∣ 1

γ(Ŝν)
− 1

γ(S)

∣∣∣∣∣ ≤ 2

ε4
|∆̂ν | . (5.1)

This yields

PS,p

(
Aν,n < H

)
≤ PS,p

 k∗∑
j=ν+1

Q(uj)y
2
j−1 < H , |∆̂ν | ≤ δε̃

+ PS,p

(
|∆̂ν | > δε̃

)

≤ PS,p

(
%ν,k∗(Q) < −2ε̃n +

ε̃n
ε2

+
4

ε4
δε̃+

3

ε2nh

)
+ PS,p

(
|∆̂ν | > δε̃

)
.

Therefore for δ < ε4/8 and sufficiently large n ≥ 1 we obtain that

PS,p

(
Aν,n < H

)
≤ PS,p

(
|%ν,k∗(Q)| > ε̃n/2

)
+ PS,p

(
|∆̂ν | > δε̃

)
.

Lemma 8.3 and Lemma 4.2 imply Lemma 5.1.
Now for any weighted sequence (wj)j≥1 we set

Zn =

n∑
j=τH−1

Q(uj)wj y
2
j−1 + (1− κH)wτH Q(uτH ) y2

τH−1 . (5.2)

Lemma 5.2. Assume that the threshold H is chosen in the form (2.13) and the bandwidth h satis-
fies the conditions (2.14) - (2.15). Moreover, let (wj)j≥1 be a sequence bounded by a constant w∗, i.e.
supj≥1 |wj | ≤ w

∗. Then

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|Zn|
nh

= 0 . (5.3)

Proof. It is clear that Zn = 0 if Aν,n < H , and on the set {Aν,n ≥ H} this term can be estimated as

|Zn| ≤ w∗
 n∑
j=ν+1

Q(uj) y
2
j−1 −H

 = w∗(Aν,n −H) ,

i.e. |Zn| ≤ w∗(Aν,n −H)+, where (x)+ = max(0, x). Therefore,

|Zn|
nh
≤ w∗

∣∣∣∣∣
∑n

j=ν+1
Q(uj) y

2
j−1

nh
− φ

∣∣∣∣∣
≤ |%ν,n(Q)|+

∣∣∣∣∣
∑n

j=ν+1
Q(uj)

γ(S)nh
− φ

∣∣∣∣∣ .
Taking into account that

∑n
j=ν+1

Q(uj) = k∗ − k∗ − ι ≤ 2nh we obtain

11



ES,p|Zn|
nh

≤ ES,p |%ν,k∗(Q)|+ 2

∣∣∣∣∣ 1

γ(S)
− 1

γ(Ŝν)

∣∣∣∣∣+
2

ε2
ε̃

≤ ES,p |%ν,k∗(Q)|+ 4

ε4
ES,p

∣∣∣∆̂ν(z0)
∣∣∣+

2

ε2
ε̃ .

Moreover, note that

ES,p

∣∣∣∆̂ν(z0)
∣∣∣ = ES,p

∣∣∣∆̂ν(z0)
∣∣∣ 1{|∆̂ν(z0)|≤ε̃}

+ ES,p

∣∣∣∆̂ν(z0)
∣∣∣ 1{|∆̂ν(z0)|>ε̃}

≤ ε̃+ 2PS,p

(∣∣∣∆̂n0
(z0)

∣∣∣ > ε̃
)
.

Therefore, Lemma 8.3 and Lemma 4.1 imply immediately (5.3).

6 PROOFS

6.1 Proof of Theorem 3.1

First, similarly to the proof of Theorem 3.1 from [13] we choose the corresponding parametric functional
family Su,δ(·) in the following form

Su,δ(x) =
u

ϕn
Vδ

(
x− z0

h

)
, (6.1)

with the function Vδ defined as

Vδ(x) = δ−1

∫ ∞
−∞

Q̃δ(u)g

(
u− x
δ

)
du ,

where Q̃δ(u) = 1{|u|≤1−2δ} + 21{1−2δ≤|u|≤1−δ} with 0 < δ < 1/4 and g is some even nonnegative
infinitely differentiable function such that g(z) = 0 for |z| ≥ 1 and

∫ 1

−1
g(z) dz = 1. One can show (see

[13]) that for any b > 0 and 0 < δ < 1/4 there exists n∗ = n∗(b, L, δ) > 0 such that for all |u| ≤ b and
n ≥ n∗

Su,δ ∈ U (β)
n (ε, L, ε∗n) .

Therefore, in this case for any n ≥ n∗

ϕn sup
S∈U(β)

n
(ε,L,ε∗

n
)

γ−1/2(S)Rn(S̃n, S) ≥ sup
S∈U(β)

n
(ε,L,ε∗

n
)

γ−1/2(S)ES,p0
ψn(S̃n, S)

≥ γ∗(n, b)
1

2b

∫ b

−b
ESu,δ,p0

ψn(S̃n, Su,δ)du ,

where γ∗(n, b) = inf |u|≤b γ
−1/2(Su,δ). The definitions (2.12) and (6.1) imply that for any b > 0

lim
n→∞

sup
|u|≤b

|γ(Su,δ)− 1| = 0 .

12



Therefore, by the same way as in the proof of Theorem 3.1 from [13] we obtain that for any b > 0 and
0 < δ < 1/4

limn→∞ inf
S̃

sup
S∈U(β)

n
(ε,L,ε∗

n
)

γ−1/2(S)ϕnRn(S̃n, S) ≥ I(b, σδ) , (6.2)

where

I(b, σδ) =
max(1, b−

√
b)

b

σδ√
2π

∫ √b
−
√
b

e−σ
2
δ
u2

2 du ,

with σ2
δ

=
∫ 1

−1
V 2
δ (u) du. It is easy to check that σ2

δ
→ 2 as δ → 0. Limiting b→∞ and δ → 0 in (6.2)

yield the inequality (3.3). Hence Theorem 3.1.

6.2 Proof of Theorem 3.2

First we set
κ̌j = 1{τH 6=j} + κH 1{τH=j} . (6.3)

Then taking this into account we can represent the estimate error as

S∗h − S(z0) = −S(z0)1(Aν,n<H) + hβ Bn(h)1(Aν,n≥H) +
1√
H
ζn(h)1(Aν,n≥H) , (6.4)

where

Bn(h) =

∑τH
j=ν+1

κ̌j Q(uj) (S(xj)− S(z0)) y2
j−1

hβ H

and

ζn(h) =

∑τH
j=ν+1

κ̌j Q(uj) yj−1 ξj√
H

.

First we study the term Bn(h). To this end we introduce

B∗n =
n∑

j=ν+1

Q(uj) b
∗
j y

2
j−1 , b∗j =

S(xj)− S(z0)

h
1{k∗≤j≤k∗} .

It is clear that for any S from U (β)
n (ε, L, ε∗n)

sup
j≥1
|b∗j | ≤ L .

Therefore, using Lemma 5.2 for the sequence (5.2) with wj = b∗j we obtain

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈U(β)

n
(ε,L,ε∗

n
)

sup
p∈Pς

ES,p|
∑τH

j=ν+1
κ̌j Q(uj) b

∗
j y

2
j−1 −B

∗
n|

nh
= 0 . (6.5)

Moreover, putting

f1(u) = Q(u)
S(z0 + hu)− S(z0)

h
,

we obtain
B∗n
nh

=
1

γ(S)

n∑
j=1

f1(uj)∆uj −
1

γ(S)

ν∑
j=1

f1(uj)∆uj + %ν,n(f1) . (6.6)

13



Using the definition of Ωh(z0, S) in (2.4) we can represent the first term as

n∑
j=1

f1(uj)∆uj =
1

h
Ωh(z0, S)−

∫ 1

uk∗

f1(u)du+

k∗∑
j=k∗

∫ uj

uj−1

(
f1(uj)− f1(u)

)
du .

Note now that for any S from U (β)
n (ε, L, ε∗n)

sup
−1≤u≤1

|f1(u)| ≤ L and sup
−1≤u≤1

|ḟ1(u)| ≤ L ,

and, therefore, ∣∣∣∣∣
∫ 1

uk∗

f1(u)du

∣∣∣∣∣ ≤ L

nh
and

∣∣∣∣∣∣
k∗∑
j=k∗

∫ uj

uj−1

(
f1(uj)− f1(u)

)
du

∣∣∣∣∣∣ ≤ 2L

nh
.

The last bounds imply immediately

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈U(β)

n
(ε,L,ε∗

n
)

∣∣∣∣∣∣
n∑
j=1

f1(uj)∆uj

∣∣∣∣∣∣ = 0 .

Taking into account Lemma 8.3 in (6.6) we get

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈U(β)

n
(ε,L,ε∗

n
)

sup
p∈Pς

ES,p|B∗n|
nh

= 0 .

Therefore, in view of (6.5)

lim sup
n→∞

sup
α≤α≤α

sup
S∈U(β)

n
(ε,L,ε∗

n
)

sup
p∈Pς

ES,p |Bn(h) = 0 .

To study the last term in (6.3) note that the definition of the stopping time in (2.10) implies

sup
n≥ν+1

sup
h∗≤h≤h∗

sup
S∈Θε,L

sup
p∈Pς

ES,p |ζn(h)|2 ≤ 1 . (6.7)

Therefore, in view of Lemma 8.5 we obtain

lim
n→∞

sup
S∈Θε,L

sup
p∈Pς

∣∣∣ES,p |ζn(h)|1(Aν,n≥H) −E|ζ∞|
∣∣∣ = 0 ,

where ζ∞ ∼ N (0, 1), i.e. E|ζ∞| =
√

2/π. Moreover, in view of Lemma 4.2 and the bound (5.1) we get

lim
n→∞

sup
S∈Θε,L

sup
p∈Pς

ES,p

∣∣∣∣∣ ϕ2
n

γ(S)H
− 1

2

∣∣∣∣∣ = 0 .

From this and Lemma 5.1 it follows Theorem 3.2.
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6.3 Proof of Theorem 3.4

First, note that the representation (6.4) implies

ES,p|S∗h − S(z0)| ≤ PS,p(Aν,n < H) + hβ ES,p|Bn(h)|1(Aν,n≥H)

+ ES,p

(
|ζn(h)|√

H
1(Aν,n≥H)

)
. (6.8)

Let us show, that
lim sup
n→∞

sup
α≤α≤α

sup
S∈H(β)(ε,L,L∗)

sup
p∈P

ES,p |Bn(h)| <∞ . (6.9)

Indeed, setting

ϑj =
S(xj)− S(z0)

h
− Ṡ(z0)uj , (6.10)

we can represent Bn(h) as

Bn(h) =
h−α

H
Ṡ(z0)B̃n +

h−α

H
B̂n , (6.11)

where

B̃n =

τH∑
j=ν+1

κ̌j Q(uj)uj y
2
j−1 and B̂n =

τH∑
j=ν+1

κ̌j Q(uj)ϑj y
2
j−1 .

Using now Lemma 5.2 for the sequence (5.2) with wj = uj we obtain that

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|Ṽn − B̃n|
nh

= 0 ,

where

Ṽn =

n∑
j=ν+1

Q(uj)uj y
2
j−1 .

We can represent this term as

Ṽn = %ν,n(Q1) +
1

γ(S)

n∑
j=ν+1

Q1(uj) ∆uj

= %ν,n(Q1) +
1

γ(S)

 k∗∑
j=k∗+1

uj ∆uj −
k∗+ι∑

j=k∗+1

uj ∆uj

 ,

where Q1(u) = Q(u)u. Moreover, taking into account here, that∣∣∣∣∣∣
k∗∑

j=k∗+1

uj ∆uj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ uk∗

uk∗

u du+
k∗∑

j=k∗+1

∫ uj

uj−1

(
uj − u

)
du

∣∣∣∣∣∣ ≤ 4

nh

and ∣∣∣∣∣∣
k∗+ι∑

j=k∗+1

uj ∆uj

∣∣∣∣∣∣ ≤ ε̃+
1

nh
,
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we obtain
1

nh
ES,p |Ṽn| ≤ ES,p |%ν,n(Q1)|+ 1

ε2

(
5

nh
+ ε̃

)
.

Now Lemma 8.3 yields

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|Ṽn|
nh

= 0

and, therefore,

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|B̃n|
nh

= 0 . (6.12)

To estimate the last term in (6.11) note, that for any function S fromH(β)(ε, L, L∗) and for k∗ ≤ j ≤ k∗

the coefficients (6.10) can be estimated as

|ϑj | =
∣∣∣∣∫ uj

0

(
Ṡ(z0 + hu)− Ṡ(z0)

)
du
∣∣∣∣ ≤ L|uj |hα ≤ L∗ hα .

Therefore,
lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈H(β)(ε,L,L∗)

sup
p∈P

1

nh
ES,p |B̂n| <∞ .

Now the property (6.12) implies the inequality (6.9). Therefore, using Lemma 5.1 and the inequality
(6.7) in (6.8), we come to Theorem 3.2.

6.4 Proof of Theorem 3.5

First of all, note that the coefficient φ defined in (2.13) will be more than one for sufficient large n for
which ε̃ ≤ 1/2. So, using the representation (6.4), we get for any 1 ≤ j ≤ m

|Šj − S(z0)| ≤ 1Γj
+ (ȟj)

β |Bn(ȟj)|+
1√
nȟj

|ζ̃n(ȟj)| , (6.13)

where Γj = {Aν,n(ȟj) < Ȟj}, ζ̃n(ȟj) = ζ̃n(ȟj)1(Aν,n(ȟj)≥Ȟj)
, the random functions Bn(h) and ζn(h)

are defined in (6.4). We set

i0 =

[
m(β − β)

β − β

]
.

This means that

0 ≤ β − βi0 <
β − β
m

.

Therefore, taking into account the definition of m in (2.18), we obtain that for any fixed integer − <

∞ < l <∞ 
0 < lim infn→∞

N(β)

Ni0+l

≤ lim supn→∞
N(β)

Ni0+l

<∞ ;

0 < lim infn→∞
h(β)

ȟi0+l

≤ lim supn→∞
h(β)

ȟi0+l

<∞ .

(6.14)
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These inequalities and Theorem 3.4 imply

lim sup
n→∞

sup
β≤β≤β

N(β) sup
S∈H(β)(ε,L,L∗)

ES $(i0, z0) <∞ , (6.15)

where $(i0, z0) = |Ši0−1 − S(z0)| + |Ši0 − S(z0)| + |Ši0+1 − S(z0)|. Now considering the estimator
Ŝa,n, one has

|Ŝa,n − S(z0)| ≤ I1 + I2 +$(i0, z0) , (6.16)

where I1 = |Ŝa,n − S(z0)|1{ǩ≥i0+2} and I2 = |Ŝa,n − S(z0)|1{ǩ≤i0−2}. We start with the term I1.
We have

|Ŝa,n − S(z0)|1{ǩ≥i0+2} ≤ |Ŝa,n − Ši0 |1{ǩ≥i0+2} + |Ši0 − S(z0)|1{ǩ≥i0+2} .

Moreover,

|Ŝa,n − Ši0 |1{ǩ≥i0+2} ≤ ω̌ǩ 1{ǩ≥i0+2} +
λ̌

Ni0

≤ λ̌

Nǩ

1{ǩ≥i0+2} +
λ̌

Ni0

≤ λ̌

N(β)
+

λ̌

Ni0

.

The inequalities (6.14)–(6.15) imply immediately

lim sup
n→∞

sup
β≤β≤β

N(β) sup
S∈H(β)(ε,L,L∗)

ES I1 <∞ .

Now we study the term I2. From (6.13) it follows that

I2 ≤

1Γǩ
+ (ȟǩ)

β |Bn(ȟǩ)|+
1√
nȟǩ

|ζ̃n(ȟǩ)|

 1{ǩ≤i0−2} .

Therefore,

ES I2 ≤ mI∗1 (S) + I∗2 (S)

i0−2∑
j=0

ȟβj + Ψn(S) , (6.17)

where I∗1 (S) = max0≤l≤m PS (Γl), I∗2 (S) = max0≤l≤m ES |Bn(ȟl)| and

Ψn(S) =
1√
n

i0−2∑
j=0

1√
ȟj

ES |ζ̃n(ȟj)|1{ǩ=j} .

Note now, that for any 0 ≤ j ≤ i0 and for sufficiently large n (for which ln dn ≥ m/2) we get

N(β)ȟβj ≤ e
−β∗(i0−j) , β∗ =

β(β − β)

(2β + 1)(2β + 1)
,

i.e.

N(β)

i0−2∑
j=0

ȟβj ≤
eβ

∗

eβ∗ − 1
.
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So, Lemma 5.1 and the inequality (6.9) yield

lim sup
n→∞

N(β) sup
S∈H(β)(ε,L,L∗)

mI∗1 (S) + I∗2 (S)

i0−2∑
j=0

ȟβj

 < ∞ .

Let us consider now the last term (6.17). To this end note that for 0 ≤ j ≤ i0 − 2

{ǩ = j} ⊆ {ω̌j+1 ≥ λ̌/Nj+1} ⊆ ∪
j+1
l=0 {|Šl − S(z0)| ≥ λ̌/Nl} .

Therefore,

Ψn(S) ≤ 1√
n

i0−2∑
j=0

1√
ȟj

j+1∑
l=0

ES |ζ̃n(ȟj)|1{|Šl−S(z0)|≥λ̌/Nl}
.

Taking into account that ȟj+1/ȟj ≤ e, we can rewrite the last inequality as

Ψn(S) ≤ e√
n

i0−1∑
j=1

1√
ȟj

j∑
l=0

ES |ζ̃n(ȟj)|1{|Šl−S(z0)|≥λ̌/Nl}
. (6.18)

Now, taking into account the inequality (6.7), we get

ES |ζ̃n(ȟj)|1{|Šl−S(z0)|≥λ̌/Nl}
≤
√

PS(Γl) + ES |ζ̃n(ȟj)|1{ȟβl |Bn(ȟl)|≥λ̌1/Nl}

+ ES |ζ∗|1{|ζ∗|≥√lnnλ̌1}

where λ̌1 = λ̌/2 and ζ∗ = max1≤j≤m |ζ̃n(ȟj)|. In view of the Hölder and Chebyshev inequalities and
making use of the upper bound (8.11) we obtain

ES |ζ̃n(ȟj)|1{ȟβl |Bn(ȟl)|≥λ̌1/Nl}
≤

(µ∗4)1/4(I∗2 (S))3/4

λ̌
3/4
1

(
Nlȟ

β
l

)3/4
.

where the term I∗2 (S) is defined in (6.17). Using these bounds in (6.18) we get

Ψn(S) ≤ em2√
n ȟ0

√
I∗1 (S) +

e(µ∗4)1/4(I∗2 (S))3/4

λ̌
3/4
1

Υ∗n

+
em2√
n ȟ0

ES |ζ∗|1{|ζ∗|≥λ̌1

√
lnn} , (6.19)

where

Υ∗n =
1√
n

i0−1∑
j=1

(
Nj ȟ

β
j

)1/4 (
Nj ȟ

α
j

)1/2
υ∗j and υ∗j =

j∑
l=0

(
Nlȟ

β
l

Nj ȟ
β
j

)3/4

.

Let us estimate the term Υ∗n. To this end note, that for any 0 ≤ j < i0 and for sufficiently large n (for
which ln dn ≥ m/2)

(
Nj ȟ

β
j

)1/4
= exp

{
βj − β

4(2βj + 1)
ln dn

}
≤ e−β∗

1
(i0−j) with β∗1 =

β − β
8(2β + 1)

,
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and (
Nj ȟ

α
j

)1/2
= exp

{
βj − α

2(2βj + 1)
ln dn

}
≤ 1√

ȟ(β)
=

√
dn

N(β)
,

where ȟ(β) is defined in (2.17). Similarly for any 0 ≤ l ≤ j ≤ i0 we get(
Nlȟ

β
l

Nj ȟ
β
j

)3/4

= exp

{
3(βl − βj)(2β + 1)

4(2βl + 1)(2βj + 1)
ln dn

}
≤ e−β∗

2
(j−l) , β∗2 =

3(β − β)

8(2β + 1)
.

This means that the sequence (υ∗j )j≥1 is bounded, i.e.

sup
j≥1

υ∗j ≤
eβ

∗
2

eβ
∗
2 − 1

.

Therefore,
lim
n→∞

N(β) Υ∗n = 0 . (6.20)

The last term in (6.19) can be estimated through Lemma 8.10, i.e.

ES ζ
∗ 1{ζ∗≥λ̌1

√
lnn} ≤ m max

1≤j≤m
ES |ζ̃n(ȟj)|1{|ζ̃n(ȟj)|≥λ̌1

√
lnn}

≤ 2mλ̌1

√
lnn e−

1
8
λ̌2

1
lnn + 2m

∫ +∞

λ̌1

√
lnn

e−z
2/8 dz .

Therefore, for sufficiently large n (when λ̌1

√
lnn ≥ 1) we get that

ES ζ
∗ 1{ζ∗≥λ̌1

√
lnn} ≤ 2m

(
λ̌1

√
lnn+ 4

)
n−λ̌

2
1
/8 . (6.21)

Now the definition of the parameter λ̌ in (2.19) yields

lim sup
n→∞

N(β)m2√
n ȟ0

sup
S∈H(β)(ε,L,L∗)

ES |ζ∗|1{|ζ∗|≥λ̌1

√
lnn} = 0 .

Hence Theorem 3.5.

7 NUMERICAL EXAMPLES

Using Scilab, we establish the following simulations to illustrate the obtained results.

7.1 Nonadaptive Estimation

In this section we illustrate the results obtained in the case of nonadaptive estimation The purpose is to
estimate, at a given point z0, the function S defined over [0; 1] by

S(x) = (x− z0) |x− z0|α (7.1)
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for z0 = 1/
√

2 and α = 0, 3. Taking into account that for this function

Ωh(z0, S) = 0

we obtain that for any

0 < ε ≤ 1−
(

1√
2

)β
, L ≥ β and ε∗n > 0 (7.2)

the function (7.1) belongs to the class U (β)
n (ε, L, ε∗n) with β = 1, 3.

The numerical results approximate the asymptotic risk of a estimators defined in (2.11) used due to
the calculation of an expectation (it performs an average for M = 30000 simulations) and the finite
number of observations n. Here we calculate for the estimator the quantity

Rn =
1

M

M∑
k=1

∣∣∣S∗,kh − S(z0)
∣∣∣ .

For the standard Gaussian random variables (ξj)j≥1 in (1.1), and by varying the number of observa-
tions n, we obtain different risks listed in the following table:

n 1000 5000 10000 20000

Rn 0.034 0.021 0.017 0.012

For random variables (ξj)j≥1 reduced from uniform random variables on [−1, 1], we obtain :

n 1000 5000 10000 20000

Rn 0.038 0.022 0.018 0.014

For random variables (ξj)j≥1 centered and reduced from exponential random variables with param-
eter 1, we obtain :

n 1000 5000 10000 20000

Rn 0.028 0.016 0.012 0.010

7.2 Numerical Result for Non Sequential Kernel Estimator

Now we give the numerical results for the kernel estimator defined as

Ŝn(z0) =
1∑n

k=1 Q(uk) y
2
k−1

n∑
k=1

Q(uk) yk−1 yk .

For the standard Gaussian random variables (ξj)j≥1 in (1.1), and by varying the number of observa-
tions n, we obtain different risks listed in the following table:

n 1000 5000 10000 20000

Rn 0.046 0.026 0.020 0.010
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7.3 Adaptive Estimation

In this case we estimate the function (7.1) for z0 = 1/
√

2 and α = 0, 7. Obviously, this function belongs
to classH(β)(ε, L, L∗) with β = 1, 7, L∗ = 1 and for any ε and L satisfying the conditions (7.2).

In the adaptive estimation we take the lower regularity β = 1.6 and the higher regularity β = 1.8.
We model the sequential adaptive procedure Ŝa,n = S∗

ȟ
defined in (2.21). Numerical results ap-

proximate the asymptotic risk for this procedure by the calculation of an expectation via M = 30000

simulations.

Ra,n =
1

M

M∑
k=1

|Ŝka,n − S(z0)|

By varying the number of observations n, we obtain different risks listed in the following table:

n 1000 5000 10000 20000

Ra,n 0.021 0.013 0.009 0.007

8 Appendix

8.1 Concentration Properties of the Process (1.1)

In this section, we study the deviation (4.4) for the model (1.1).

Lemma 8.1. For any q > 1 and 0 < ε < 1 the random variables yk in (1.1) satisfy the following
inequality:

sup
n≥1

sup
0≤k≤n

sup
S∈Θε,L

sup
p∈Pς

ES,p |yk|q ≤ r∗q , (8.1)

where r∗q is defined in (4.1).

Proof. From (1.1) we obtain that for any k ≥ 1

yk = y0

k∏
l=1

S(xl) +
k∑
i=1

k∏
l=i+1

S(xl) ξi .

Therefore, for S ∈ Θε,L and 1 ≤ k ≤ n,

|yk|q ≤ 2q−1

|y0|q +

 k∑
j=1

(1− ε)k−j |ξj |

q .

Moreover, the Hölder inequality gives k∑
j=1

(1− ε)k−j |ξj |

q

≤

 k∑
j=1

(1− ε)k−j
q−1  k∑

j=1

(1− ε)k−j |ξj |q


≤
(

1

ε

)q−1
 k∑
j=1

(1− ε)k−j |ξj |q
 .
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Thus, taking into account the definition (2.2) we get for any p ∈ Pς

ES,p

 k∑
j=1

(1− ε)k−j |ξj |

q

≤
(

1

ε

)q
s∗q .

Hence Lemma 8.1.
Now we need the following Burkhölder inequality from [24].

Lemma 8.2. Let (Mk)1≤k≤n be a martingale. Then for any q > 1

E |Mn|q ≤ b∗qE

 n∑
j=1

(Mj −Mj−1)2

q/2

, (8.2)

where the coefficient b∗q is defined in (4.1).

Now we study the deviation (4.4).

Lemma 8.3. Let f be a R → R function twice continuously differentiable in [−1, 1]. Assume also that
the bandwidth h satisfies the condition (2.14) – (2.15). Then for any R > 0 and q > 1

lim sup
n→∞

sup
k∗≤k<m≤k∗

sup
β≤β≤β

sup
R>0

sup
‖f‖1≤R

1

(Rh)q
sup

S∈Θε,L

sup
p∈Pς

ES,p
∣∣%k,m(f)

∣∣q ≤ %∗q , (8.3)

where ‖f‖1 = ‖f‖+ ‖ḟ‖ and %∗q is defined in (4.1).

Proof. First of all, note that
m∑

j=k+1

f(uj)y
2
j−1 = Tk,m + ak,m , (8.4)

where Tk,m =
∑m

j=k+1
f(uj)y

2
j and

ak,m =

m∑
j=k+1

(f(uj)− f(uj−1)) y2
j−1 + f(uk) y

2
k − f(um) y2

m .

Moreover, from the model (1.1) we find

(1− S2(z0))Tk,m = Mk,m + ǎk,m +
m∑

j=k+1

f(uj)

where Mk,m =
∑m

j=k+1
(2S(xj) yj−1 ξj + ξ2

j − 1) f(uj) and

ǎk,m =

m∑
j=k+1

f(uj)S
2(xj)y

2
j−1 − S

2(z0)Tk,m . (8.5)

Then we can write %k,m(f) as follow

%k,m(f) =
1

nh γ(S)

(
Mk,m + ǎk,m

)
+
ak,m
nh

.

22



and

ES,p |%k,m(f)|q ≤ 3q−1

ε2q
ES,p

(( |Mk,m|
nh

)q
+

( |ǎk,m|
nh

)q
+

( |ak,m|
nh

)q)
. (8.6)

where κ̃ = (1 + κ∗)/κ∗. Now we note, that in view of the first condition in (2.15) for sufficient large n

nκn ≥ κ̃ ,

where κ̃ = (1 + κ∗)/κ∗. Therefore, for sufficiently large n we get

1

nh
≤ (κ̃)2/(2β+1) h ≤ κ̃h , (8.7)

Furthermore, note that (Mk,j)k<j≤m is a martingale. So, by applying the Burkhölder inequality (8.2)
and, taking into account that k∗ − k∗ ≤ 2nh, we get

ES,p

(
1

nh
Mk,m

)q
≤

b∗qR
q

(nh)q
ES,p

 k∗∑
j=k∗+1

(
2S(xj) yj−1 ξj + ξ2

j − 1
)2q/2

≤
b∗qR

q

(nh)q/2+1

k∗∑
j=k∗+1

ES,p

(
2S(xj) yj−1 ξj + ξ2

j − 1
)q

≤
4qb∗qR

q

(nh)q/2

(
r∗q s
∗
q + s∗2q + 1

)
≤ 4qb∗q κ̃

q Rq
(
r∗q s
∗
q + s∗2q + 1

)
hq ,

where the coefficients r∗q and s∗q are given in (8.1) and (2.2). Note that the term (8.5) can be rewritten as

ǎk,m = S2(z0)

 m∑
j=k+1

(f(uj)− f(uj−1)) y2
j−1 + f(uk)y

2
k − f(um)y2

m


+

m∑
j=k+1

f(uj)(S
2(xj)− S2(z0))y2

j−1 .

We recall, that the function f and its derivative ḟ are bounded by R. Therefore, taking into account that
for all S ∈ Θε,L and k∗ ≤ j ≤ k∗ the deviation |S(xj)− S(z0)| ≤ L|xj − z0| ≤ Lh, we obtain

|ǎk,m| ≤ R

( 1

nh
+ Lh

) m∑
j=k+1

y2
j + y2

k + y2
m



≤ κ̃ R

(L+ 1)h
m∑

j=k+1

y2
j + y2

k + y2
m

 .

Therefore,

sup
S∈Θε,L

sup
p∈Pς

ES,p

(
1

nh
|ǎk,m|

)q
≤ 2q−1 κ̃qRqr∗2q

(
2q(1 + L)qhq +

2q

(nh)q

)
≤ (4R(1 + L))q r∗2qh

q .

23



Similarly,

sup
S∈Θε,L

sup
p∈Pς

ES,p

(
1

nh
|ak,m|

)q
≤ 3 2q−1 κ̃q Rq r∗2q h

q .

Then, taking this into account in (8.6) we obtain the upper bound (8.3). Hence Lemma 8.3.

8.2 Uniform Limit Theorem

In this section we study the following sequence

ζ̃n(h) = ζn(h)1(Aν,n≥H) , (8.8)

where ζn(h) defined by (6.4), the bandwidth h is defined (2.14) and the threshold H is given in (2.13).
We will make use of the following result.

Lemma 8.4. (cf. [10], p. 90-91) Let 0 < δ < 1 and r > 0. Assume that (mk)k≥1
is a martingale

difference with respect to the filtration (Fk)k≥1 such that

|mk| ≤ δr1/2 and
∞∑
k=1

E
(
m2
k|Fk−1

)
≥ r .

Let

τ = inf

k ≥ 1 :
k∑
j=1

E(m2
j |Fj−1) ≥ r

 .

There exists a function ρ : (0,+∞)→ [0, 2] not depending on distribution of the martingale difference,
such that limx→0 ρ(x) = 0 and

sup
x∈R

∣∣∣∣∣P
(

1

r1/2

τ∑
k=1

mk ≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ ρ(δ) ,

where Φ is the standard normal distribution function.

Lemma 8.5. The sequence (6.4) satisfies the following limiting property:

ζ̃n =⇒ ζ ∼ N (0, 1) uniformly in p ∈ Pς and S ∈ Θε,L .

Proof. First for some 0 < δ < 1 we set

mj = Q(uj) y̌j−1 ξ̌j1{ν<j≤n} + δξ̌j1{j>n} ,

where y̌j = yj 1{|yj |≤δ2 Ȟ1/2}, Ȟ = Ep ξ̌
2
1 H and ξ̌j = ξj 1{|ξj |≤δ−1} − Ep ξ1 1{|ξ1|≤δ−1}. It is clear

that the sequence (mν+j)j≥0 is a martingale difference with respect to (Gj)j≥0, where Gj is σ - field
generated by the observations {y1 , . . . , yν+j}. Now we set

ζ̌Ȟ =
1√
Ȟ

τ̌H∑
j=1

mν+j ,
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where τ̌H = inf
{
k ≥ 1 :

∑k
j=1

E (m2
ν+j |Gj−1) ≥ Ȟ

}
. Note, that τ̌H = τH on the set {Aν,n ≥ H}

for any H > 0. Lemma 8.4 implies that ζ̌Ȟ goes in distribution to N (0, 1) uniformly in p ∈ Pς and
S ∈ Θε,L as δ → 0. Now we set

Ω̌n = ∩k∗j=ν {yj = y̌j} .

Using Lemma 8.1 through the Markov inequality we obtain that

sup
S∈Θε,L

sup
p∈Pς

PS,p

(
Ω̌c
n

)
≤

(k∗ − ν) r∗4
δ8Epξ̌

2
1(nh)2

→ 0 as n→∞ .

Moreover, note that on the set Ω̌n ∩ {Aν,n ≥ H}(
H

Ȟ

)1/2

ζ̃n − ζ̌Ȟ = ∆̌1 + ∆̌2 , (8.9)

where

∆̌1 =
1√
Ȟ

τH∑
j=ν+1

(κj − 1)Q(uj) y̌j−1 ξj , ∆̌2 =
1√
Ȟ

τH∑
j=ν+1

Q(uj) y̌j−1 ξ̃j

and ξ̃j = ξj − ξ̌j = ξj 1{|ξj |>δ−1} −Ep ξ1 1{|ξ1|>δ−1}. Note, that

ES,p
(
∆̌2

1|G0

)
≤ δ4ES,p

 k∗∑
j=ν+1

(1− κj)
2|G0

 ≤ δ4 .

Moreover, taking into account that y̌2
j ≤ y

2
j , we get

ES,p
(
∆̌2

2|G0

)
≤

Ep ξ̃
2
1

Ȟ
ES,p

 τH∑
j=ν+1

Q(uj) y̌
2
j−1|G0


≤

Ep ξ̃
2
1

Ȟ

(
H + δ4Ȟ

)
= Ep ξ̃

2
1

(
1

Ep ξ̌
2
1

+ δ4

)

Taking into account here, that

lim
δ→0

sup
p∈Pς

Ep ξ̃
2
1 = 0 and lim

δ→0
sup
p∈Pς

∣∣Ep ξ̌2
1 − 1

∣∣ = 0 ,

we obtain
lim
δ→0

sup
S∈Θε,L

sup
p∈Pς

max
(
ES,p ∆̌2

1 , ES,p ∆̌2
2

)
= 0 .

Therefore, Lemma 5.1 and the representation (8.9) yield for any µ > 0

lim
δ→0

lim sup
n→∞

sup
S∈Θε,L

sup
p∈Pς

PS,p

(∣∣∣ζ̃n − ζ̌Ȟ ∣∣∣ > µ
)

= 0 .

Hence Lemma 8.5.
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8.3 Properties of ζ̃n(h)

Lemma 8.6. For all z ≥ 2

sup
n≥1

sup
h>0

sup
S∈C[0,1]

PS

(
ζ̃n(h) ≥ z

)
≤ 2e−z

2/8 . (8.10)

The proof of this Lemma is the same as Lemma A.5 from [2].
Using this lemma we can obtain that for any q > 2

sup
n≥1

sup
h>0

sup
S∈C[0,1]

ES |ζ̃n(h)|q ≤ µ∗q , (8.11)

where µqq = 2q + 2q
∫∞

0
tq−1 e−t

2/2dt.
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