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1 Introduction

In the modern world insurance companies operate in a financial environment. In particular,
they invest their reserves into various assets and this may add more risk to the business. To
our knowledge, the first model of an insurance company investing its capital into a risky
asset has appeared in the short note [12] where the author provided arguments showing
that the asymptotic behavior of ruin probability is radically different from that in the clas-
sical Lundberg–Cramér model. A rigorous analysis in [13] confirmed the conjecture. Using
Kalashnikov’s estimates for linear finite difference equations with random coefficients, [19],
it was shown that, independently of the safety loading, the ruin is imminent with unit prob-
ability when the volatility σ of the stock price is large with respect to the instantaneous rate
of return a (namely, when 2a/σ2 < 1), and the ruin probability is decreasing as a power
function, when the volatility is small (namely, when 2a/σ2 > 1). For the model with expo-
nentially distributed claims the exact asymptotic was found. Threshold case 2a/σ2 = 1 was
studied in the papers [27], [28] where it was shown, using techniques based on a renewal
theorem, that the ruin is imminent with unit probability. The setting of [13] and [27] is of the
so-called non-life insurance: the company receives a flow of contributions and pay primes.
The ruin occurs when a new claim arrives and its value is too large to be covered by the re-
serve: the risk process exits from the positive half-axis by a jump. The model can be studied
in the discrete-time framework but the method of differential equations happens to be more
efficient in the case of exponential claims where it allows to get the exact asymptotic.

In the present note we investigate the setting of life annuity, or pension, insurance, when
the company pays to the policyholder a rent and earns a premium when the insured person
dies, see, e.g., [16], p. 8 or [30]; in the classical literature such models are called models with
negative risk sums. The highly stylized model of the collective risk theory may describe the
situation where annuitant, entering the contract, pays a lump sum, e.g., the savings during
his working life, getting in exchange regular payments until the death. One can interpret
the premium as the reserve release. If the company has a large ”stationary” portfolio of
such contracts, with new arriving customers, then it is reasonable to think that the dates of
reserve releases form a Poisson process and the sizes of premiums are independent random
variables of the same distribution. A special type of life annuity, called le viager exists in
France. This practice is, basically, an exchange of property, a house or an apartment, for life-
long regularly payments. The annuitant enjoys a regularly income without having to give a
house. For the company having a portfolio of viagers the amount of premiums depends on
the real estate market.

For this classical model, where the reserve process has jumps upwards and may leave
the positive half-axis only in a continuous way, the ruin problem can be easily reduced to the
ruin problem for the non-life insurance using the so-called duality method, [2]. Its idea is
to define the ”dual” process by replacing the line segments of the original process between
consecutive jumps by downward jumps of the same depth and the upward jumps by line
segments of the same height with positive fixed slope. Note that in the literature the models
with upward jumps are often referred to as dual models, [3], [1].

The duality method does not work in our setting where the capital of the company or
its fraction is invested into a risky asset. The change of two signs to the opposite ones
in the equation defining the dynamics of the reserve leads to technical complications. In
particular, now the ruin may happen before the instant of the first jump and the latter is no
more the instant of the regeneration, after which the process starts afresh provided being
strictly positive.
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Nevertheless, a suitable modification of arguments of [13] and [27] combined with some
ideas allows us to obtain the asymptotic of the ruin probability as the initial reserve tends to
infinity. Expectedly, it is the same as in the non-life insurance case. In many countries there
are rules allowing insurance companies to invest only a small share of their reserves into
risky assets. Our simple model confirms that it is reasonable and even provides a quantitative
answer. To avoid the situation when the ruin happens with probability one, the proportion of
investment into the risky asset should be strictly less than 2a/σ2.

It should be emphasized that the life insurance case is rather different and its study is not
a straightforward exercise. The main difficulty in deriving the integro-differential equation
is to prove the smoothness of the ruin probability and the integrability of derivatives. This
issue is already delicate in the non-life insurance case. Unfortunately, it was not discussed
it in [13] where the reader was directed towards the literature. Now we are not sure that we
disposed at that time a clean reference. The smoothness of the exit probability is discussed
in many papers, see, e.g., an interesting article [31] where it the explicit formula for an
exponential functional of Brownian motion due to Marc Yor is used. Unfortunately, the
needed smoothness property was established only under constraints on coefficients. One of
the authors of the present note had a fruitful discussion with Marc on a possibility to deduce
smoothness of the ruin probability function and the integrability of its derivatives without
using complicated explicit formulae. His suggestions are realized here for the life insurance
case. Note that in the literature on non-life insurance one can find other methods to establish
the smoothness, for example an approach similar to verification theorems in the stochastic
control theory, see [5].

The structure of the paper is as follows. Section 2 contains the formulation of the main
results. In Section 3 we establish an upper asymptotic bound for the exit probability (from
]0,∞[) for a solution of a non-homogeneous linear stochastic equation and a lower asymp-
totic bound for a small volatility case. As a tool we use the Dufresne theorem rather than
Goldie’s renewal theorem from [15], which was the kew ingredient of arguments in [27].
The proof of Theorem 2 asserting that in the case of large volatility the ruin is imminent is
given in Section 4. The regularity of the non-ruin probability Φ is studied in Section 5 using
a method based on integral representations. At the end of this section we derive the integro-
differential equation for Φ. Section 6 contains the proof of the main theorem. Finally, in the
appendix we provide a formulation of an ergodic theorem for an autoregression with random
coefficients proven in [27].

Kalashnikov’s approach (developed further in his joint work with Ragnar Norberg [20])
plays an important role in our study. Our techniques is elementary. More profound and
general results can be found in [25], [24], [26], [22], [23] et al.

2 The model

We are given a stochastic basis (Ω,F ,F = (Ft)t≥0,P) with a Wiener process W indepen-
dent of the integer-valued random measure p(dt, dx) with the compensator p̃(dt, dx).

Let us consider a process X = Xu of the form

Xt = u+ a

∫ t

0

Xsds+ σ

∫ t

0

XsdWs − ct+
∫ t

0

∫
xp(ds, dx), (1)

where a and σ are arbitrary constants and c ≥ 0.
We shall assume that p̃(dt, dx) = αdtF (dx) where F (dx) is a probability distribution

on ]0,∞[. In this case the integral with respect to the jump measure is simply a compound
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Poisson process. It can be written as
∑Nt
i=1 ξi where N is a Poisson process with intensity

α and ξi are random variables with common distribution F ; the random variables W , N , ξi,
i ∈ N, are independent. We denote by Tn the successive jumps of N ; the inter-arrival time
intervals Ti − Ti−1 are independent and exponentially distributed with the parameter α.

In our main result (Theorem 1) we assume that F is the exponential distribution with
parameter µ.

Let τu := inf{t : Xu
t ≤ 0} (the instant of ruin), Ψ(u) := P (τu < ∞) (the ruin

probability), and Φ(u) := 1− Ψ(u) (the survival probability).
The parameter values a = 0, σ = 0, correspond to the life insurance ( i.e. the dual)

version of the Lundberg–Cramér model for which the risk process is usually written as

rt := u− ct+
Nt∑
i=1

ξi. (2)

In the considered case the capital evolves due to continuously outgoing cash flow with rate
c and incoming random payoffs ξi at times forming an independent Poisson process N with
intensity α. For the classical model with positive safety loading and F having a “non-heavy”
tail, the Lundberg inequality provides an encouraging information: the ruin probability de-
creases exponentially as the initial capital u tends to infinity. Moreover, for the exponentially
distributed claims the ruin probability admits an explicit expression, see [2] or [16].

The more realistic case a > 0, σ = 0, corresponding to non-risky investments, does not
pose any problem.

We study here the case σ > 0. Now the equation (1) describes the evolution of the
reserve of an insurance company which pays a rent and continuously reinvests its capital
into an asset with the price following a geometric Brownian motion. The same model can
be used for the description of the capital of a venture company funding R&D and selling
innovations, [4].
Notations. Throughout the paper we shall use the following abbreviations:

κ := a− 1

2
σ2, β :=

2κ

σ2
=

2a

σ2
− 1, ηt := κt+ σWt.

The solution of the linear stochastic equation (1) can be written using the Cauchy for-
mula:

Xt = eηt

(
u+

∫
[0,t]

e−ηsdrs

)
. (3)

Theorem 1 Let F (x) = 1− e−x/µ, x > 0. Assume that σ > 0.
(i) If β > 0, then for some K > 0

Ψ(u) = Ku−β(1 + o(1)), u→∞. (4)

(ii) If β ≤ 0, then Ψ(u) = 1 for all u > 0.

The formulation of this theorem is exactly the same as in [13] for the non-life insurance
model (the case β = 0 was analyzed in [27], [28]).

One must admit that in the life insurance models, especially, in the case of a company
keeping a portfolio of viager contracts, the hypothesis that the benefits (i.e. prices of houses)
follow the exponential distribution, are highly unrealistic. Nevertheless, we can claim, with-
out any assumption on the distribution, that the ruin probabilities lay between two power
functions, see Propositions 1 and 2.
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The next result (implying the statement (ii) above) says that for δ > 0 the ruin is immi-
nent. It requires only that the distribution F has moments of positive order.

Theorem 2 Assume that there is δ > 0 such that Eξδ1 < ∞. If β ≤ 0, then Ψ(u) = 1 for
any u > 0.

The same model serves well in the situation where only a fixed part γ ∈]0, 1] of the
capital is invested in the risky asset: one should only replace the parameters a and σ in (1)
by aγ and σγ. Theorem 1 implies that the ruin with probability one will be avoided only if
2aγ/(σγ)2 > 1, i.e. when the share of investment into the risky asset is strictly less than
2a/σ2.

It is worth mentioning that our conclusion are robust and holds for more general models.
The reader may contest that intensity of outgoing payments c is constant. Indeed, after the
death of the annuitant the payments stop and the intensity must decrease while with a new
customer it increases. Easy comparison arguments show that the above statements hold if
c = (ct) is a random process, such that 0 < C1 ≤ c ≤ C2 where C1 and C2 are constants.

The crucial part of the asymptotic analysis in Theorem 1 is based on the fact that for
the Markov process given by (1) the non-exit probability Φ(u) is smooth and satisfies the
following equation:

1

2
σ2u2Φ′′(u) + (au− c)Φ′(u)− αΦ(u) + α

∫ ∞
0

Φ(u+ y)dF (y) = 0. (5)

With σ > 0 this equation is of the second order and, hence, requires two boundary
conditions — in contrast to the classical case (a = 0, σ = 0) where it degenerates to an
equation of the first order requiring a single boundary condition, see [16]. The estimate
given in Proposition 1 shows that Φ(∞) = 1.

There is an extensive literature concerning of the regularity of the survival probability
for process with jumps in the context of non-life insurance models and models based on the
Lévy processes, see, e.g., [31], [14], [17], [6], [7]. Our Theorem 3 requiring only smoothness
of F ′ and the integrability of F ′′ seems to be the first result on the regularity of the survival
probability in the considered setting.

3 Asymptotic bounds for the small volatility case

3.1 Upper asymptotic bound

Let us consider the exit probability problem for a more general processX = Xu of the form

Xt = u+ a

∫ t

0

Xsds+ σ

∫ t

0

Xs dWs − ct+ Zt, (6)

where a, σ, c > 0 are arbitrary constants and Z = (Zt)t≥0 is an increasing adapted càdlàg
process starting from zero.

Proposition 1 Assume that in the general model (1) the parameter β > 0. Then

lim sup
u→∞

uβ Ψ(u) ≤ 2β cβ

σ2ββΓ (β)
.
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Proof. Let Y be a solution of the linear stochastic equation

Yt = u+ a

∫ t

0

Ys ds+ σ

∫ t

0

Ys dWs − ct.

Introducing the notation

Rt := c

∫ t

0

e−ηv dv (7)

we express the solution as
Yt := eηt

(
u−Rt).

The difference X − Y satisfies the linear equation with zero initial condition. Since Z is
increasing, we have the inequality X ≥ Y showing that the exit of X from ]0,∞[ implies
the exit of Y . Thus,

Ψ(u) ≤ P (R∞ > u). (8)

and the asymptotic behavior of the ruin probability for this general model can be estimated
by the tail behavior of the distribution function of R∞. Using the change of variable v =

(4/σ2)t and observing that Bt := −(1/2)σW(4/σ2)t is a Wiener process we obtain the
representation

R∞ = c

∫ ∞
0

e−(a−σ
2/2)v−σWv dv =

4c

σ2

∫ ∞
0

e−2βt+2Bt dt =:
4c

σ2
A
(−β)
∞ .

The Dufresne theorem (see, [9] or [21], Theorem 6.2) claims that A(−β)
∞ is distributed as the

random variable 1/(2γ) where γ has the gamma distribution with parameter β. Thus,

P(R∞ > u) = P(2c/(σ2γ) > u)) = P(γ < 2c/(σ2u)) =
1

Γ (β)

∫ 2c/(σ2u)

0

xβ−1e−x dx

∼ 2β cβ

σ2ββΓ (β)
u−β

and the result follows from (8). 2

3.2 Lower asymptotic bound

The next result shows that the ruin probability decreases as the initial capital tends to infinity
not faster than a certain power function.

Proposition 2 Assume that β > 0. Then there exists β∗ > 0 such that

lim inf
u→∞

uβ∗ Ψ(u) > 0 .

Proof. Let Y = (Yk)k≥1 be the imbedded discrete-time process, that is the sequence of
random variables defined recursively as follows:

Yk =MkYk−1 +Qk, Y0 = u, (9)

where

Mk = e
ηTk−ηTk−1 and Qk = ξk − c

∫ Tk

Tk−1

eηTk−ηv dv .
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Let θu := inf{k : Yk ≤ 0}. It is clear that XTk = Yk for any k ≥ 1. So, for any u > 0

Ψ(u) = P(τu <∞) ≥ P(θu <∞). (10)

Take % ∈]0, 1[ and chose B sufficiently large to ensure that

B1 = B − 1

%2(1− %)
> 0.

Define the sets

Γk = {Mk ≤ %} ∩ {Qk ≤ %−1} , Dk = {Mk ≤ %−1} ∩ {Qk ≤ −B}. (11)

On the set ∩nk=1 Γk we have

Yn = u

n∏
j=1

Mj +

n∑
k=1

Qk

n∏
j=k+1

Mj ≤ u%n +
1

%(1− %) .

Therefore, on the set ∩nk=1 Γk ∩Dn+1

Yn+1 =Mn+1Yn +Qn+1 ≤ u%n−1 +
1

%2(1− %)
−B = u%n−1 −B1.

It is easy to check that u%n−1 ≤ B1, when u > B1 and

n = 3 +

[
ln(u/B1)

| ln %|

]
,

where [...] means the integer part. Therefore,

P(θu <∞) ≥ P
(
∩nk=1 Γk ∩Dn+1

)
= (P(Γ1))

nP(D1).

Taking into account that P(Γ1) > 0 and P(D1) > 0, we obtain that

lim
u→∞

uβ∗P(θu <∞) =∞

for any

β∗ >
lnP(Γ1)

ln %
.

This implies the claim. 2

4 Large volatility: proof of Theorem 2

We consider separately two cases: β < 0 and β = 0 and show that in both cases the ruin
probability is equal to one.

Proposition 3 Assume that β < 0 and E ξδ1 < ∞ for some δ > 0. Then Ψ(u) = 1 for all
u > 0.
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Proof. As in the proof of Proposition 2 we consider the imbedded discrete-time process
Y = (Yk)k≥1 defined by (9). By virtue of (10) it is sufficient to show that P(θu <∞) = 1.
Note that for δ ∈]0,−β[

Eeδηt = Eeδ(κt+σWt) = eδt(β+δ)σ
2/2 < 1,

and, therefore,

EMδ
1 =

∫ ∞
0

Eeδηtαe−αtdt < 1. (12)

According to ([8], p. 250) if a random variable ν is independent ofW and has the exponential
distribution with parameter α, then

E eqmaxv≤ν(µv+Wv) =

√
2α+ µ2 − µ√

2α+ µ2 − µ− q
. (13)

provided that √
2α+ µ2 − µ− q > 0.

Changing the variable and estimating the integrand by its maximal value we get that

E
(∫ T1

0

eηT1−ηv dv
)δ

= E
(∫ T1

0

eκv+σWv dv
)δ
≤ ET δ1 e

δmaxv≤T1 (κv+σWv)

=

∫ ∞
0

tδE eδmaxv≤t(κv+σWv)αe−αtd t

≤ 2 sup
t≥0
{tδ e−αt/2}E eδmaxv≤ν′ (κv+σWv)

= 2eδ(ln(2δ/α)−1) E eδmaxv≤ν′ (κv+σWv),

where ν′ is an exponential random variable with parameter α/2. In view of the equality (13)

E eδmaxv≤ν′ (κv+σWv) =

√
σ2α+ κ2 − κ√

σ2α+ κ2 − κ− δσ2
,

provided that

δ <

√
σ2α+ κ2 − κ

σ2
,

i.e. for such δ > 0 we have the bound

E
(∫ T1

0

eηT1−ηv dv
)δ
≤ 2 eδ(ln(2δ/α)−1)

√
σ2α+ κ2 − κ√

σ2α+ κ2 − κ− δσ2
. (14)

Using these estimates and the assumption of the proposition we conclude that E |Q1|δ <∞
for sufficiently small δ > 0. Thus, the hypothesis of the ergodic theorem for autoregres-
sion with random coefficients is fulfilled (see Proposition 8). The latter claims that for any
bounded uniformly continuous function f

P- lim
N

1

N

N∑
k=1

f(Yk) = E f(ζ), (15)
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where

ζ = Q1 +

∞∑
k=2

Qk

k−1∏
j=1

Mj .

Let us represent ζ in the form

ζ = ξ1 −
∫ T1

0

eηT1−ηvdv + eηT1 ζ1, ζ1 :=

∞∑
k=2

Qk

k−1∏
j=2

Mj .

Clearly, the random variables ξ, ζ1 and (ηT1
,
∫ T1

0
eηT1−ηvdv) are independent. Moreover,

Lemma 1 given after the proof implies that the support of conditional distribution of the
integral

∫ t
0
eηt−ηvdv given ηt = x is unbounded from above. From this we easily infer that

the support of distribution of ζ is unbounded from below. Thus, for

f(x) = 1{x≤−1} + |x|1{−1<x<0}

the right-hand side of (15) is strictly positive and, therefore, P
(
infk≥1 Yk < 0

)
= 1. 2

Lemma 1 Let σ > 0. Then the support of conditional distribution of the random variable

I =

∫ 1

0

eσWvd v

given W1 = y is unbounded from above.

Proof. It is well-known (see, e.g., [29]) that the conditional distribution of the Wiener process
(Wv)v≤1 given W1 = y coincides with the distribution of the Brownian bridge By with
Byt =Wt+t(y−W1). Thus, the conditional distribution of I is the same as the unconditional
distribution of

Ĩ :=

∫ 1

0

eσ(Wv+v(y−W1))d v.

Since the Wiener measure has the full support in the space C0[0, 1] of continuous functions
on [0, 1] with zero initial value, the support of distribution of Ĩ is unbounded from above. 2

Proposition 4 Assume that β = 0 and E ξδ1 < ∞ for some δ > 0. Then Ψ(u) = 1 for all
u > 0.

Proof. In the considered case the imbedded discrete-time process is defined by (9) with

Mk = eσ∆Vk and Qk = ξk − c
∫ Tk

Tk−1

eσ(WTk
−Wv) dv,

where Vk =WTk and∆Vk := Vk−Vk−1. To study the asymptotic properties of the equation
(9) we use the approach proposed in [27] for the non-life insurance models. To this end,
define recursively the sequence of random variables putting θ0 := 0 and

θn := inf{k > θn−1 : Vk − Vθn−1
< 0}, n ≥ 1. (16)

Note that θn =
∑n
j=1 ∆θj where (∆θj)j≥1 is a sequence of i.i.d. random variables dis-

tributed as θ1. It is known (see, e.g., XII.7, Theorem 1a in [11]) that

C := sup
n≥1

n1/2P(θ1 > n) < ∞ . (17)
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Putting yk = Yθk , we obtain from (9) that

yk = ak yk−1 + bk, y0 = u, (18)

where

ak =

∆θk∏
j=1

Mθk−1+j = e
σ(Vθk−Vθk−1

)

and

bk =

∆θk∑
l=1

 ∆θk∏
j=l+1

Mθk−1+j

 Qθk−1+l.

It is clear that ak < 1 a.s. Moreover, the first condition in Theorem 2 and the inequality (14)
with κ = 0 implies that E|Q1|δ <∞ for any sufficiently small δ. Now, taking into account
that

|b1| ≤
∆θ1∑
l=1

 ∆θ1∏
j=l+1

Mj

 |Ql| = ∆θ1∑
l=1

a1∏l
j=1 Mj

|Ql| ≤
∆θ1∑
l=1

|Ql|,

we can get, for r ∈]0, 1[ and an increasing sequence of integers ln, that

E |b1|r ≤ 1 + r
∑
n≥1

1

n1−r
P(|b1| > n)

≤ 1 + r
∑
n≥1

1

n1−r
P

 ln∑
j=1

|Qj | > n

+ r
∑
n≥1

1

n1−r
P(|t1| > ln)

≤ 1 + rE |Q1|δ
∑
n≥1

ln

n1−r+δ
+ r C

∑
n≥1

1

n1−rl
1/2
n

.

Putting here ln = [n4r] we obtain that E |b1|r < ∞ for any r ∈]0, δ/5[. Therefore, due
to Proposition 8, we obtain that for any bounded uniformly continuous function f

P- lim
N

1

N

N∑
k=1

f(yk) = Ef(ζ),

where

ζ = b1 +

∞∑
k=2

bk

k−1∏
j=1

aj . (19)

Now we show that
P(ζ < −x) > 0 for any x > 0.

Indeed, the random variable (19) can be represented as

ζ = b1 + a1 ζ1, ζ1 =

∞∑
k=2

bk

k−1∏
j=2

aj .

It is clear that the ζ1 is independent on b1 and a1. Note that on the set {∆θ1 = 1} we
have a1 =M1 and b1 = Q1. Therefore, for any x > 0

P(ζ < −x) ≥ P(b1 + a1 ζ1 < −x, ∆θ1 = 1) = P(Q1 +M1 ζ < −x , wT1
< 0)

and we conclude as in the previous proposition. 2
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5 Regularity of the ruin probability

5.1 Integral representations

The proof of smoothness of a function H admitting an integral representation is based on a
simple idea which merits to be explained.

First, we recall the classical result on differentiability of the integralH(u) =
∫
f(u, z)dz

where f(u, .) ∈ L1 for each u from open subset U ∈ R. If f(., z) is differentiable on an open
interval ]u0 − ε, u0 + ε[ for almost all z and, on this interval, |∂f(., z)/∂u| ≤ g(z) (a.e.)
where g ∈ L1. Then H is differentiable at u0 and H ′(u0) =

∫
∂f(u0, z)/∂u dz.

Suppose that we are given a bounded measurable function h(z) and a Gaussian random
variable ζ ∼ N(0, 1). Let H(u) = Eh(u+ ζ) =

∫
h(u+ x)ϕ0,1(x)dx. Then H is differen-

tiable and even of the class C∞. Of course, the above result cannot be applied directly. But
using the change of variable we get the representation

H(u) =

∫
h(u+ x)ϕ0,1(x)dx =

∫
h(z)ϕ0,1(z − u)dz.

Now the parameter u appears only in the function ϕ0,1, the integrand is differentiable in u
and we can apply the classical sufficient condition.

The issues here are: an integral representation, the smoothness of the density, and the in-
tegrability of its derivatives. In the case of survival probability Φ the integral representation
is obtained from the strong Markov property. Unfortunately, the structure of the represen-
tation is rather complicated, the random variable standing for ζ is not a Gaussian one, and
its density is not given by a simple formula. Nevertheless, the idea of using a change of
variable to move the parameter from the unknown function on which we have only a limited
information (essentially, the boundedness and measurability) to the density still does work.
The main difficulty is to check the smoothness of the density and find appropriate bounds
for its derivatives.

Theorem 3 Assume that the distribution function of ξ1 has a density f differentiable on R+

and such that f ′ ∈ L1(R+). Then Φ(u) is two times continuously differentiable on ]0,∞[.

Proof. We again consider the process

Y ut = eηt (u−Rt) , (20)

where Rt is defined in (7). Put

θu := inf{t ≥ 0: Y ut ≤ 0}. (21)

By virtue of the strong Markov property of Xu

Φ(u) = EΦ(Xu
θu∧T1

). (22)

Note that the process Y u is strictly positive before the time θu, zero at θu, and strictly
negative afterwards. Due to the independence of the Wiener process and the instants of
jumps, θu 6= T1 a.s. Thus, {Y uT1

> 0} = {θu > T1} a.s. Taking into account that Φ(0) = 0,
we get that

Φ(u) = EI{Y uT1>0}Φ(X
u
T1

) = EI{Y uT1>0}Φ(Y
u
T1

+ ξ1) = Φ1(u) + Φ2(u),
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where

Φ1(u) := α

∫ 2

0

EG(Y ut )e−αtdt, Φ2(u) := α

∫ ∞
2

EG(Y ut )e−αtdt

with

G(y) := 1{y>0}EΦ (y + ξ1) = 1{y>0}

∫ ∞
0

Φ(y + x)dF (x).

We analyze separately the smoothness of Φ1 and Φ2 using for this function appropriate
integral representations.

5.2 Smoothness of Φ2

We start with a simpler case of Φ2 and show that this function is infinitely differentiable
without any assumptions on the distributions of ξ1.

From the representation

Y ut = eηt−η1Y u1 − c
∫ t

1

eηt−ηsds, t ≥ 1,

we obtain, using the independence of Y u1 and the process (ηs − η1)s≥1, that

E(G(Y ut )|Y u1 ) = G(t, Y u1 ),

where

G(t, y) := EG

(
eηt−η1y − c

∫ t

1

eηt−ηsds

)
.

Substituting the expression for Y u1 given by (22) we have:

Φ2(u) = E

∫ ∞
2

E(G(Y ut )|Y u1 )αe−αtdt = EH
(
eκ+σW1(u−R1)

)
,

where H is a function taking values in [0, 1] and given by the formula

H(y) := α

∫ ∞
2

G(t, y)e−αtdt.

Taking into account that the conditional distribution of the process (Ws)s≤1 given W1 = x

is the same as of the Brownian bridge Bx = (Bxs )s≤1 with Bxs = Ws + s(x − W1) we
obtain the representation

Φ2(u) =

∫
EH(eκ+σx(u− ζx))ϕ0,1(x)dx (23)

where

ζx := c

∫ 1

0

e−(κs+sx+σ(Ws−sW1))ds. (24)

Lemma 2 below asserts that for every x the random variable ζx has a density ρ(x, .) on
]0,∞[ and we easily obtain from (23) by changing variable that

Φ2(u) =

∫ u

0

∫
H(eκ+σxz)ρ(x, u− z)ϕ0,1(x)dxdz. (25)
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Lemma 2 The random variable ζx has a density ρ(x, .) ∈ C∞ such that for any n ≥ 1

sup
y≥0

∣∣∣∣ ∂n∂yn ρ(x, y)
∣∣∣∣ ≤ CneCn|x| (26)

with some constant Cn and (∂n/∂yn)ρ(x, 0) = 0.

Proof. We obtain the result using again the integral representation. Let us introduce the
random process

Ds :=
(
(Ws − 2sW1/2) + s(W1/2 −W1)

)
I{s≤1/2}

+
(
(1− s)(Ws −W1/2))− s(W1 −Ws)

)
I{s>1/2},

and the piecewise linear function

γs := sI{s≤1/2} + (1− s)I{s>1/2}, s ∈ [0, 1].

The following identity is obvious:

Ws − sW1 = Ds + γsW1/2.

Since Ds and W1/2 are independent random variables, for any bounded Borel function g we
have:

E g(ζx) = E

∫
g
(
c

∫ 1

0

e−(κs+sx+σDs+σγsv)ds
)
ϕ0,1/2(v)dv

Let v(x, .) be the inverse of the continuous strictly decreasing function

y 7→ c

∫ 1

0

e−(κs+sx+σDs+σγsy)ds

depending on the parameter x (and also on ω omitted as usual). Note that v(x, 0+) =∞ and
v(x,∞) = 0. After the change of variable, we obtain, using the notation

K(x, z) := cσ

∫ 1

0

γse
−(κs+sx+σDs+σγsz)ds,

that

Eg(ζx) =

∫ ∞
0

g(y)ρ(x, y)dy,

where

ρ(x, .) := E
ϕ0,1/2(v(x, .))

K(x, v(x, .))
. (27)

Thus, ρ(x, .) is the density of distribution of the random variable ζx. It remains to check that
it is infinitely differentiable and find appropriate bounds for its derivatives.

Put

Q(0)(x, z) :=
ϕ0,1/2(z)

K(x, z)
, Q(n)(x, z) := −Q

(n−1)
z (x, z)

K(x, z)
, n ≥ 1.

Then

∂

∂y
Q(0)(x, v(x, y)) = Q

(0)
z (x, v(x, y))vy(x, y) = −

Q
(0)
z (x, v(x, y))

K(x, v(x, y))
= Q(1)(x, v(x, y))
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and, similarly,

∂n

∂yn
Q(0)(x, v(x, y)) = −Q

(n−1)
z (x, v(x, y))

K(x, v(x, y))
= Q(n)(x, v(x, y)).

It is easily seen that

Q(n)(x, z) =
ϕ0,1/2(z)

Kn+1(x, z)

n∑
k=0

Pk(z)Rn−k(x, z), (28)

where Pk(z) is a polynomial of order k and Rn−k(x, z) is a linear combination of products
of derivatives of K(x, z) in variable z. Note that for any x, y ∈ [0, 1] we have the bounds

−|x| − σ|z| − 3σW ∗1 ≤ κs+ sx+ σDs + σγsz ≤ κ+ |x|+ σ|z|+ 3σW ∗1

where W ∗1 = sups≤1 |Ws|. It follows that there exists a constant Cn > 0 such that

|Q(n)(x, z)| ≤ CneCn|x|(1 + zn)e−z
2

eCnW
∗
1 . (29)

Since E eCnW
∗
1 < ∞, for each x, y and n the derivative (∂n/∂yn)Q(0)(x, v(x, y)) admits

a P-integrable bound. Thus, we can differentiate under the sign of expectation and obtain
that

∂n

∂yn
ρ(x, y) = E

∂n

∂yn
ϕ0,1/2(v(x, y))

K(x, v(x, y))
= E

∂n

∂yn
Q(0)(x, v(x, y)) = EQ(n)(x, v(x, y)).

Moreover, the bound (29) ensures that, for some constant C̃n,

sup
y≥0

E

∣∣∣∣ ∂n∂yn Q(0)(x, v(x, y))

∣∣∣∣ ≤ E sup
z∈R
|Q(n)(x, z)| ≤ C̃neCn|x|

and the bound (26) holds.
Since v(x, 0+) =∞, the bound (29) implies that (∂n/∂yn)ρ(x, 0) = 0. 2

Remark 1 It is worth to trace in these arguments the dependence of the constant C̃n on the
parameters c and σ when they are approaching zero. From the formula (28) it is clear that
C̃n should be proportional to (cσ)−n.

Proposition 5 The function Φ2(u) belongs to C∞(]0,∞[).

Proof. Putting

H̃(u, z) :=

∫
H(eκ+σxz)ρ(x, u− z)ϕ0,1(x) dx,

we rewrite the formula (25) as

Φ2(u) =

∫ u

0

H̃(u, z) dz. (30)

Clearly, the function H̃ is continuous on ]0,∞[×]0,∞[. Using Lemma 2 we obtain that

∂

∂u
H̃(u, z) =

∫
H(eκ+σxz)

∂

∂u
ρ(x, u− z)ϕ0,1(x) dx
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and

sup
u,z

∣∣∣∣ ∂∂u H̃(u, z)

∣∣∣∣ < ∞.
By induction, for every n ≥ 1,

∂n

∂un
H̃(u, z) =

∫
H(eκ+σxz)

∂n

∂un
ρ(x, u− z)ϕ0,1(x) dx

and

sup
u,z

∣∣∣∣ ∂n∂un H̃(u, z)

∣∣∣∣ < ∞.
By virtue of Lemma 2 ρ(x, 0) = 0, i.e. H̃(u, u) = 0. So,

d

du
Φ2(u) = H̃(u, u) +

∫ u

0

∂

∂u
H̃(u, z) dz =

∫ u

0

∂

∂u
H̃(u, z) dz.

In the same way we check that

dn

dun
Φ2(u) =

∫ u

0

∂n

∂un
H̃(u, z) dz.

for any n ≥ 1. 2

5.3 Smoothness of Φ1

Arguing in the same spirit as in the previous subsection but taking this time the conditional
expectation with respect to Wt we obtain that

E1{Rt<u} h(e
κt+σWt(u−Rt)) =

1√
t
E

∫
1{ζt,x<u}h(u, t, x)ϕ0,1

(
x√
t

)
dx

where we use the abbreviations

h(u, t, x) := h(eκt+σx(u− ζt,x)), h(y) = EΦ (y + ξ1)

and

ζt,x := c

∫ t

0

e−(sx/t+κs+σ(Ws−(s/t)Wt) ds.

It is easily seen that the random variable ζt,x has infinitely differentiable density (the
same as of ζx defined in (24) but with the parameters ct, κt, and σt1/2). Unfortunately,
derivatives of this density have non-integrable singularities as t tends to zero (see Remark at
the end of previous subsection). By this reason we cannot use the strategy of proof used for
Φ2. Nevertheless, the hypothesis on the distribution of ξ1 allows us to establish the claimed
result.

Note that the function x → ζt,x is strictly decreasing and maps R onto R+. Let denote
z(t, .) its inverse. The derivative of the latter is given by the formula

zx(t, x) = −
t

L(t, z(t, x))
,
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where

L(t, z) = c

∫ t

0

se−(sz/t+κs+σ(Ws−(s/t)Wt) ds. (31)

Changing the variable we obtain that∫
1{ζt,z<u}h(u, t, z)ϕ0,1

(
z√
t

)
dz = t

∫ u

0

h(u, t, z(t, x))D(t, z(t, x)) dx,

where

D(t, z) =
ϕ0,1

(
z/
√
t
)

L(t, z)
.

Summarizing, we get that

Φ1(u) = αE

∫ 2

0

√
tH(t, u) e−αt dt,

where

H(t, u) :=

∫ u

0

h(u, t, z(t, x))D(t, z(t, x)) dx. (32)

Proposition 6 Under the conditions of Theorem 3 the function H(t, u) defined in (32) for
any fixed u0 > 0 satisfies the following inequality

sup
t∈]0,2]

E sup
u≥u0

(|Hu(t, u)|+ |Huu(t, u)|) <∞. (33)

Proof. In virtue of the hypothesis the function h(y) = EΦ(y + ξ1) is differentiable. Differ-
entiating (32) we get that

Hu(t, u) = h(0)D(t, z(t, u)) +

∫ u

0

hu(u, z(t, x))D(t, z(t, x)) dx, (34)

where h(0) = EΦ(ξ1) and

hu(u, t, z(t, x)) = h′
(
eκt+σz(t,x)(u− x)

)
eκt+σz(t,x).

Note that
∂

∂x
h(u, t, z(t, x)) = hu(u, t, z(t, x))

[
σzx(t, x)(u− x)− 1

]
.

Therefore,∫ u

0

hu(u, z(t, x))D(t, z(t, x)) dx = −
∫ u

0

ϕ0,1

(
z(t, x)/

√
t
)

σt(u− x) + L(t, z(t, x))
dx h(u, t, z(t, x)).

Integrating by parts and taking into account that z(t, 0+) =∞ we get that

Hu(t, u) =

∫ u

0

h(u, t, z(t, x))Θ(u, t, z(t, x))ϕ0,1

(
z(t, x)/

√
t
)
dx, (35)

where

Θ(u, t, z) =
z

L(t, z)(σt (u− ζt,z)) + L(t, z))
− tσL(t, z) + tLz(t, z)

L(t, z) (σt (u− ζt,z) + L(t, z))2
.
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Inspecting the formula (31) defining L(t, z) we conclude that there exist positive con-
stants C0 (”small”) and C1 (”large”) such that

max
t∈]0,2]

(L(t, z) + t|Lz(t, z)|) ≤ C1e
C1(|z|+W∗t )

and for any t ∈]0, 2]
|L(t, z)| ≥ C0 t

2 e−C1(|z|+W∗t ),

where W ∗t := maxv≤t |Wv|. Taking this into account we obtain that for some C > 0

|Θ(u, t, z)| ≤ C t−6 eC(|z|+W∗t ) . (36)

Using a generic notation C for a constant (which may vary even within a single formula) we
obtain, for any t ∈]0, 2]

|Hu(t, u)| ≤ Ct−7eCW
∗
t

∫ ∞
z(t,u)

eC|z|−
z2

2t L(t, z) dz

≤ Ct−7eCW
∗
2 e−

z2(t,u)
4t

∫ ∞
0

eC|z|−
z2

4 dz.

So, we have the bound

|Hu(t, u)| ≤ Ct−7eCW
∗
2 e−

z2(t,u)
4t .

For any u ≥ u0 > 0 and t ∈]0, 2]

u0 ≤ u = ζt,z(t,u) ≤ ct e2|κ|+σ|z(t,u)|+σW
∗
t ,

i.e.

|z(t, u)| ≥ 1

σ
ln
e−2|κ|u0

tc
−W ∗t .

Put

t0 := min

(
e−2|κ|−3σu0

c
, 2

)
, Γ := {W ∗t ≤ t1/4}.

Thus, for t ∈]0, t0] on the set Γ we have the inequality

|z(t, u)| ≥ 1.

Taking into account that E eaW
∗
t <∞ for any a and t > 0, we obtain that

E max
t∈[t0,2]

sup
u≥0
|Hu(t, u)| ≤ Ct−70 E eCW

∗
2 <∞.

For t ∈]0, t0] we have

E max
u≥u0

|Hu(t, u)| ≤ Ct−7
(
e−

1
4t +EeCW

∗
t 1Γ c

)

≤ Ct−7
(
e−

1
4t +

√
E eCW

∗
2

√
P
(
W ∗t ≥ t1/4

))
.
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By the Chebyshev inequality we have:

P
(
W ∗t ≥ t1/4

)
≤ e−t

−1/4

E e
W∗t√
t = e−t

−1/4

E eW
∗
1 ,

that is

sup
t≥0

et
−1/4

P
(
W ∗t ≥ t1/4

)
<∞.

This implies that

max
t∈]0,t0]

E max
u≥u0

|Hu(t, u)| <∞.

Therefore,

max
t∈]0,2]

E max
u≥u0

|Hu(t, u)| < ∞.

Differentiating (35) we find that

Huu(t, u) = h(0)Θ(u, t, z(t, u))ϕ

(
z(t, u)√

t

)
+

∫ u

0

Υ (u, t, z(t, x))ϕ

(
z(t, x)√

t

)
dx,

where

Υ (u, t, z) = hu(u, t, z)Θ(u, t, z) + h(u, t, z)Θu(u, t, z).

By assumption, the distribution function F has the density f whose derivative f ′ is a con-
tinuous function on R+ integrable with respect to the Lebesgue measure. Changing variable
we get that

h′(y) =
d

dy

∫ ∞
0

Φ(y + x)f(x)dx =
d

dy

∫ ∞
y

Φ(x)f(x− y)dx

=− Φ(y) f(0)−
∫ ∞
y

Φ(z)f ′(z − y) dz,

i.e.

sup
x≥0
|h′(x)| < ∞ .

Similarly to (36) we obtain that

|Υt(u, z)| ≤ C t−8 eC(|z|+W∗t ).

Therefore,

|Huu(t, u)| ≤ Ct−9 eCW
∗
t e−

z2(t,u)
4t ,

implying that

max
t∈]0,2]

E max
u≥u0

|Huu(t, u)| <∞.

Proposition 6 is proven. 2
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5.4 Integro-differential equation for the survival probability

Proposition 7 Suppose that Φ ∈ C2. Then Φ satisfies the equation (5).

Proof. For h > 0 and ε > 0 assumed to be small enough to ensure that u ∈]ε, ε−1[ we put

τ εh := inf
{
t ≥ 0: Y ut /∈ [ε , ε−1]

}
∧ h.

Using the Ito formula and taking into account that on the interval on [0, T1[ the process Xu

coincides with Y u we obtain the representation

Φ(Xu
τεh∧T1

) = Φ(u) + σ

∫ τεh∧T1

0

Φ′(Y us ) dWs

+

∫ τεh∧T1

0

(
1

2
σ2(Y us )2Φ′′(Y us ) + (aY us − c)Φ′(Y us )

)
ds

+(Φ(Y uT1
+ ξ1)− Φ(Y uT1

))I{T1≤τεh}.

Due to the strong Markov property Φ(u) = EΦ(Xu
τεh∧T1

). For every ε > 0 the integrands
above are bounded by constants and, hence, the expectation of the stochastic integral is zero.
Moreover, τ εh∧T1 = h when h is sufficiently small (the threshold below which we have this
equality, of course, depends on ω).

It follows that, independently of ε,

1

h
E

∫ τεh∧T1

0

(
1

2
σ2(Y us )2Φ′′(Y us ) + aY us Φ

′(Y us )− c
)
ds→ 1

2
σ2u2Φ′′(u) + (au− c)Φ′(u).

Finally,

1

h
E(Φ(Y uT1

+ ξ1)− Φ(Y uT1
))I{T1≤τεh} = αE

1

h

∫ τεh

0

(Φ(Y ut + ξ1)− Φ(Y ut ))e−αt dt.

The right-hand converges to α(EΦ(u + ξ1) − Φ(u)) as h → 0 in virtue of the Lebesgue
theorem on dominated convergence. It follows that Φ satisfies the equation (5). 2

6 Proof of Theorem 1

Assume that the claims are exponentially distributed, i.e. F (x) = 1 − e−x/µ. Similarly to
the classical case, this assumption allows us to obtain for the ruin probability an ordinary
differential equation (but of a higher order). Indeed, now the integro-differential equation
(5) has the form

1

2
σ2u2Φ′′(u) + (au− c)Φ′(u)− αΦ(u) + α

µ

∫ ∞
0

Φ(u+ y)e−y/µdy = 0. (37)

Notice that

d

du

∫ ∞
0

Φ(u+ y)e−y/µdy = −Φ(u) + 1

µ

∫ ∞
0

Φ(u+ y)e−y/µdy.

Differentiating (37) and adding to it the obtained identity multiplied by µ we exclude the
integral term and arrive at a third order ordinary differential equation. It does not contain
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the function itself and, therefore, is reduced to a second order differential equation for the
function G = Φ′ which can be easily transformed to the form

G′′ − p(u)G′ + p0(u)G = 0, (38)

where

p(u) :=
1

µ
− 2

(
1 +

a

σ2

)
1

u
+

2c

σ2
1

u2
,

p0(u) := −
2a

µσ2
1

u
+ (a− α+ c/µ)

2

σ2
1

u2
.

The substitution G(u) = R(u)Z(u) with

R(u) := exp

{
1

2

∫ u

1

p(s) ds

}
eliminates the first derivative and leads to the equation

Z′′ − q(u)Z = 0 , (39)

where

q(u) :=
1

4µ2
+
(
a

σ2
− 1
)
1

u
+

4∑
i=2

Ai
1

ui

with certain constants Ai which are of no importance in our asymptotic analysis. It is easy
to check that ∫ ∞

x0

(
|q′′(x)|
q3/2(x)

+
|q′(x)|2

q5/2(x)

)
dx < ∞,

where x0 = sup{x ≥ 1: q(x) ≤ 0}+ 1.
According to [10], pp. 54-55, the equation (39) has two fundamental solutions Z+ and

Z−

Z±(x) =
√

2µ exp

{
±
∫ x

x0

√
q(z)dz

}
(1 + o(1)) , x→∞,

i.e.

Z± ∼ exp

{
±
(
x

2µ
+
a− σ2

σ2
lnx

)}
.

Since

R(x) ∼ exp

{
x

2µ
− a+ σ2

σ2
lnx

}
,

we obtain that (38) admits, as solutions, functions with the following asymptotics:

G+(x) ∼ x−2e
1
µx, G−(x) ∼ x−2a/σ

2

.

The differential equation of the third order for Φ has three solutions: Φ0(u) = 1,

Φ+(u) =

∫ u

x0

G+(x) dx Φ−(u) = −
∫ +∞

u

G−(x) dx .

The ruin probability Ψ := 1− Φ is the linear combination of these functions, i.e.

Ψ(u) = C0 + C1Φ+(u) + C2Φ−(u).
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Since Φ+(u) → ∞ as u → ∞, we obtain immediately that C1 = 0. For the case β > 0 we
know from Proposition 1 that Ψ(∞) = 0. Thus, C0 = 0 and

Ψ(u) = C2

∫ ∞
u

x−2a/σ
2

(1 + δ(x)) dx,

where δ(x) → 0 as x → ∞ and C2 > 0. The integral decreases at infinity as the power
function u−β/β and we obtain Theorem 1. 2

7 Appendix: ergodic theorem for an autoregression with random coefficients

Let (an , bn)n≥1 be an i.i.d. sequence of random variable in R2 and let x0 be an arbitrary
constant. Define the sequence (xn) recursively by the formula

xn = an xn−1 + bn, n ≥ 1.

Proposition 8 Assume that there exists δ ∈]0, 1] such that

E |a1|δ < 1, E |b1|δ <∞.

Then for any bounded uniformly continuous function f

P- lim
N

1

N

N∑
n=1

f(xn) = E f(ζ),

where

ζ =

∞∑
k=1

bk

k−1∏
j=1

aj with
0∏
j=1

aj = 1.

The proof is given in [27].
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