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Robust model selection for a semimartingale
continuous time regression from discrete data ∗

Konev Victor †and Pergamenchtchikov Serguei‡

Abstract
The paper considers the problem of estimating a periodic func-

tion in a continuous time regression model observed under a general
semimartingale noise with an unknown distribution in the case when
continuous observation cannot be provided and only discrete time
measurements are available. Two specific types of noises are stud-
ied in detail: a non - Gaussian Ornstein - Uhlenbeck process and a
time - varying linear combination of a Brownian motion and com-
pound Poisson process. We develop new analytical tools to treat the
adaptive estimation problems from discrete data. A lower bound for
the frequency sampling, needed for the efficiency of the procedure
constructed by discrete observations, has been found. Sharp non-
asymptotic oracle inequalities for the robust quadratic risk have been
derived. New convergence rates for the efficient procedures have been
obtained. An example of the regression with a martingale noise ex-
hibits that the minimax robust convergence rate may be both higher
or lower as compared with the minimax rate for the ”white noise”
model. The results of Monte-Carlo simulations are given.
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1 Introduction

Consider a regression model in continuous time

dyt = S(t)dt+ dξt , 0 ≤ t ≤ n , (1.1)

where S is an unknown function which belongs to the linear space V1 of 1 -
periodic R→ R cadlag functions; ξ = (ξt)t≥0 is an unobservable semimartin-
gale noise with the values in the Skorokhod space D[0, n] such that for each
function f from L2[0, n] the stochastic integral

In(f) =

∫ n

0

f(s)dξs (1.2)

is well defined and has the properties:

EQIn(f) = 0 and EQI
2
n
(f) ≤ κQ

∫ n

0

f 2(s)ds , (1.3)

where κQ > 0 is some positive constant depending on the noise distribution
Q on the space D[0, n]; EQ denotes the expectation under the distribution
Q. The noise distribution Q is unknown and assumed to belong to some
distribution family Qn specified below. All necessary tools concerning the
stochastic calculus can be found, for example, in [18].

The problem is to estimate the unknown function S in the model (1.1)
on the basis of observations

(ytj)0≤j≤np , tj = j∆ , ∆ =
1

p
, (1.4)

where p ≥ 3 is an odd number depending on n. Such an assumption about
discrete time observations arises if the continuous observation of the process
(1.1) cannot be provided. There are many papers devoted to the similar
nonparametric estimation problems for the regression model (1.1) and other
continuous time processes on the basis of the discrete observations (1.4).
Gobet, Hoffmann and Reiss [14] and Comte, Genon-Catalot and Rozenholc
[5] studied the problem of estimating the coefficients of a diffusion process
from discrete data. Hoffmann, Munk and Schmidt-Hieber [15] investigate
nonparametric estimation for diffusion coefficients from discrete data, when
the observation are blurred by an additive noise. Comte and Genon-Catalot
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[4] studied nonparametric estimation problem for pure jumps Lévy process
in the model (1.1) based on discrete time observations.

In this paper we consider the estimation problem in an adaptive setting,
i.e. when the regularity of S is unknown. The quality of an estimate S̃n (any
one periodic R → R function constructed from discrete data (1.4)) will be
measured with the quadratic risk

RQ(S̃n, S) = EQ ‖S̃n − S‖2 , (1.5)

where ‖f‖2 =
∫ 1

0
f 2(t)dt. Since the noise distribution Q is unknown, it seems

reasonable to introduce the robust risk of the form

R∗
n
(S̃n, S) = sup

Q∈Qn
RQ(S̃n, S) , (1.6)

which enables one to take into account the information that Q ∈ Qn and

ensures the quality of an estimate S̃n for all distributions in the family Qn.
It will be noted that similar criteria in the problems of nonparametric es-
timation were used in a number of papers (see, for example, the papers by
Galtchouk and Pergamenchtchikov in [10], by the authors [24] and the refer-
ences therein).

The goal of this paper is to develop a model selection method for esti-
mating a continuous time semimartingale regression (1.1) from discrete data
(1.4). The origin of the model selection method goes back to early seventies
with the pioneering papers by Akaike [1] and Mallows [25] who suggested
to use penalizing in a log-likelihood type criterion. Barron, Birgé, Massart
[3], Massart [26] and Kneip [19] developed a non-asymptotic model selec-
tion method which enables one to derive non-asymptotic oracle inequalities
for the nonparametric regression models with Gaussian disturbances. The
model selection procedures for the regression schemes with dependent noises
and unknown distributions were studied by Comte and Genon-Catalot [4],
Fourdrinier and Pergamenchtchikov [8], Galtchouk and Pergamenchtchikov
[9], and by the authors (see, [23], [21] for details and further references). The
interest to the model selection procedures can be explained by the fact that
they provide adaptive solutions to the non-asymptotic regression models by
the technique of sharp non-asymptotic oracle inequalities. As is known (see,
for example, [3]), the oracle inequality gives an upper bound for the risk
via the minimal risk corresponding to a chosen family of estimates. In con-
structing an adaptive model selection procedure, in this paper, we will use
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the approach close to that of the papers [12], [11], [13], developed for a het-
eroscedastic regression model in discrete time. The key idea of the method
in [12] is to combine the Barron-Birgé-Massart non-asymptotic penalization
method [3] and the Pinsker weighted least squares method of minimizing
the asymptotic risk [27], [28]. The advantage of this method is two-fold: it
deals with a robust risk and enables one to construct asymptotically efficient
procedures.

The rest of the paper is organized as follows. Section 2 gives two specific
examples of the noise in the model (1.1). First, a non - Gaussian Ornstein
- Uhlenbeck process driven by a finite intensity Lévy process and second -
a deterministic but time - varying linear combination of a Brownian motion
and a compound Poisson process. In Section 3 we construct a model selec-
tion procedure based on the weighted least squares estimators and, under
general moment conditions on the distribution ξ in (1.1), obtain sharp non-
asymptotic oracle inequalities for the risks (1.5) and (1.6). Moreover, we
check these conditions for the examples given in Section 2. Section 4 illus-
trates the performance of the proposed model selection procedure through
numerical simulations. It turns out that the sample convergence rate is close
to that obtained in [12] for heteroscedastic regression models in the discrete
time. Section 5 deals with the asymptotic properties of the proposed proce-
dure under the additional assumption that the unknown function S in (1.1)
belongs to a Sobolev ball. In this section we obtain an asymptotic sharp
lower bound for the robust risk (1.6) and we calculate the Pinsker constant
for the model (1.1). Then we find the lower bound for the frequency sampling
p which is needed for constructing efficient estimation procedures from dis-
crete data. It is shown that the limit of the risk (1.6) for the proposed model
selection procedure, normalized by the minimax rate, equals the Pinsker
constant, i.e. the procedure is efficient. Section 6 gives the proofs of all the
theorems. In the Appendix some technical results are established.

2 Examples

2.1 Non-Gaussian Ornstein-Uhlenbeck process

First we consider an example of the disturbance (ξt)t≥0 in (1.1) given by a
non-Gaussian Ornstein-Uhlenbeck process with the Lévy subordinator. Such
processes are used in the financial Black-Scholes market models with stepwise
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randomly evolving coefficients (see [2] for details and further references). Let
the noise process in (1.1) obey the equation

dξt = aξtdt+ dut , ξ0 = 0 , (2.1)

where a ≤ 0, ut = %1wt + %2zt, %1 and %2 are unknown constants, (wt)t≥0 is
a standard Brownian motion, (zt)t≥0 is a compound Poisson process of the
form

zt =

Nt∑
j=1

Yj (2.2)

where (Nt)t≥0 is a standard homogeneous Poisson process with unknown
intensity λ > 0 and (Yj)j≥1 is an i.i.d. sequence of random variables with

EY1 = 0 , EY 2
1

= 1 and EY 4
1
<∞ . (2.3)

Let (Tk)k≥1 denote the arrival times of the process (Nt)t≥0, that is,

Tk = inf{t ≥ 0 : Nt = k} .

The parameters λ, a, %1 and %2 of the process (2.1) are assumed to satisfy
the following conditions −a∗ ≤ a ≤ 0 , λ ≥ λ∗ ,

%min ≤ %1 ≤ %max , %min ≤ %∗ ≤ %max ,
(2.4)

where %∗ = %2
1

+ λ%2
2
. For this noise model the family Qn consists of all

distributions on the Skorokhod space D[0, n] of the process (2.1) with the
parameters satisfying the inequalities (2.4) with unknown bounds λ∗, a∗,
%min and %max.

Remark 2.1. The estimation problem from the continuous data for the mod-
els of type (1.1), (2.1) has been studied in a parametric setting in [6], [16],
[17] and [20].

2.2 Martingale noise

Next we consider a martingale noise in (1.1) obeying the equation

dξt =
√
%1(t)dwt +

√
%2(t)dzt , (2.5)
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where %1 and %2 are positive two times continuously differentiable R+ → R+

nonrandom functions; the process (zt)t≥0 is as defined in (2.2)–(2.3). We
assume that λ ≥ λ∗ for some unknown λ∗ > 0. Moreover, denoting

%̃(t) = %1(t) + λ%2(t) , (2.6)

we assume that, there exist R+ → R+ continuous functions %min(·) and
%max(·) such that for t ≥ 0

%min(t) ≤ %̃(t) ≤ %max(t) (2.7)

and, for any δ > 0,

lim
t→∞

tδ %min(t) = +∞ and lim
t→∞

%max(t)

tδ
= 0 . (2.8)

In addition, let the first two derivatives of the functions %̃(·) satisfy the
following conditions for some positive constants %′∗ and %′′∗

sup
t≥0

(t+ 1)

∣∣∣∣ d

dt
%̃(t)

∣∣∣∣ ≤ %′∗ , sup
t≥0

∣∣∣∣ d2

dt2
%̃(t)

∣∣∣∣ ≤ %′′∗ . (2.9)

In this case Qn is the family of all distributions of the process (2.5) on D[0, n]
satisfying the conditions (2.7) and (2.9) for some fixed unknown parameters
λ∗ > 0, %min(·), %max(·), %′∗ and %′′∗.

3 Oracle inequalities

In this section we construct a model selection procedure for estimating a
function S in (1.1) by the discrete time observations (1.4) and establish the
oracle inequalities for its risk. Let (φj)j≥1 be the standard trigonometric
basis in L2[0, 1] defined as

φ1 = 1 , φj(x) =


√

2 cos($jx) for even j ≥ 2;

√
2 sin($jx) for odd j ≥ 3 ,

(3.1)

where $j = 2π[j/2], [x] denotes the integer part of x. The restrictions of the
functions {φ1, . . . , φp}, p ≥ 3, on the sampling lattice

Tp =
{
t1, . . . , tp

}
, tj =

j

p
,
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form an orthonormal basis in the Hilbert space RTp with the inner product

(x, y)p =
1

p

p∑
j=1

x(tj)y(tj) for x, y ∈ RTp (3.2)

and the norm ‖x‖p =
√

(x, x)p. It is clear that the space RTp is isometric to

Rp. One can check directly that for any odd p

(φj , φi)p = χ{i=j} . (3.3)

This implies that the function S on the lattice Tp coincides with its discrete
Fourier transformation, i.e.

S(t) =

p∑
j=1

θj,p φj(t) , if t ∈ Tp , (3.4)

where θj,p = (S, φj)p. The first step in constructing the model selection
procedure consists in estimating the coefficients θj,p for S in (1.1) from the
discrete data by the formulae

θ̂j,p =
1

n

∫ n

0

ψj,p(t) dyt , ψj,p = Dp(φj) . (3.5)

Here Dp stands for the linear mapping given by the equation

Dp(f)(t) =

np∑
k=1

f(tk)χ{tk−1<t≤tk} . (3.6)

Furthermore, we note that the system of the functions (ψj,p)1≤j≤p is orthonor-

mal in L2[0, 1] because (ψj,p , ψi,p) =
∫ 1

0
ψj,p(t)ψi,p(t)dt = (φj , φi)p = χ{i=j}.

In the sequel we need the Fourier coefficients for the function S with respect
to these functions which can be written as

θj,p = (S, ψj,p) =

∫ 1

0

S(t)ψj,p(t) dt = θj,p + hj,p , (3.7)

where hj,p = hj,p(S) =
∑p

l=1

∫ tl
tl−1

φj(tl)(S(t) − S(tl))dt. Substituting (1.1)

in (3.5) yields

θ̂j,p = θj,p +
1√
n
ξj,p and ξj,p =

In(ψj,p)√
n

. (3.8)
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Besides we will impose the additional conditions on the distribution of the
noise ξt in (1.1). For any x = (x1, . . . , xp) from Rp, we set

#(x) =

p∑
j=1

1{|xj |>0} and |x|2 =

p∑
j=1

x2
j
. (3.9)

We need the following conditions.
C1) There exists a variance proxy σQ ≥ 0, which may be depend on n ≥ 1,
such that the sequence ζj,p = EQξ

2
j,p
− σQ satisfies the following inequality

L1,Q(n) = sup
p≥3

sup
x∈H1

∣∣∣∣∣∣
p∑
j=1

xj ζj,p

∣∣∣∣∣∣ <∞
where H1 = {x ∈ [−1, 1]p : #(x) ≤ n}.

C2) Assume that

L2,Q(n) = sup
p≥3

sup
x∈H2

EQ

 p∑
j=1

xj ξ̃j,p

2

<∞

where H2 = {x ∈ Rp : |x| ≤ 1 , #(x) ≤ n} and ξ̃j,p = ξ2
j,p
− EQ ξ

2
j,p

.

Remark 3.1. As is shown in the paper [24], which considers the estimation
problem for the model (1.1) under continuous observations, one needs some
stability conditions of the noise variances in (3.8) and the boundedness of
their deviations to derive the oracle inequalities for the robust risk. In the
estimation problem from discrete data the noise properties depend highly on
the frequency of observations as well. The additional supremum in the Con-
ditions in C1) and C2) over p ≥ 3 assumes that the stability of the noise
variances and their deviations hold uniformly in p. Further restrictions on
the functionals L1,Q(n) and L2,Q(n) will be imposed in Section 3.2.

As will be shown in the Section 3.3, the conditions C1) and C2) are satisfied
for the model (1.1) with the noises (2.1) and (2.5). Now we introduce a
weight least squares estimate for S(t) as

Ŝγ(t) =

p∑
j=1

γ(j)θ̂j,pψj,p(t) , (3.10)
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where γ = (γ(1), . . . , γ(p))′ ∈ [0, 1]p is the vector of weight coefficients. The
model selection procedure will be chosen from a finite family of such estimates
(Ŝγ)γ∈Γ. The set of weight sequences Γ will be given below. We will need the
following characteristic of this set and the corresponding system of weight
sequences

νp = cardΓ and µp = max
γ∈Γ

#(γ) . (3.11)

We assume that
µp ≤ n . (3.12)

Remark 3.2. The last inequality means that we cannot use more than n
nonzero terms in the estimate (3.10). We need this condition because the
noise variance in (3.8) tends to zero as n−1.

Now note that in view of the definition (3.7), the empirical squared error of
the estimator (3.10) can be represented as

Err(γ) = ‖Ŝγ − S‖2 =

p∑
j=1

γ2(j)θ̂2
j,p
− 2

p∑
j=1

γ(j)θ̂j,p θj,p + ‖S‖2 . (3.13)

Since the Fourier coefficients (θj,p)j≥1 are unknown, the weight coefficients
(γ(j))1≤j≤p cannot be determined by minimizing this quantity. To circumvent

this difficulty we replace the terms θ̂j,p θj,p by

θ̃j,p = θ̂2
j,p
− σ̂n

n
, (3.14)

where σ̂n is an estimator for the variance proxy σQ in the condition C1). We
will need the following characteristics of this estimate

rQ(σ̂n) = EQ|σ̂n − σQ| and r∗
n
(σ̂n) = sup

Q∈Qn
EQ|σ̂n − σQ| . (3.15)

For replacing the terms θ̂j,p θj,p by the estimates (3.14) on the right-hand side
of the empirical squared error (3.13), one has to pay some penalty. Thus,
one comes to the cost function of the form

J(γ) =

p∑
j=1

γ2(j)θ̂2
j,p
− 2

p∑
j=1

γ(j) θ̃j,p + ρ P̂ (γ) (3.16)
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where ρ is some positive constant and P̂ (γ) is the penalty term defined as

P̂ (γ) =
σ̂n |γ|2

n
, (3.17)

where |γ|2 =
∑p

j=1 γ
2(j). If σQ is known, one can put σ̂n = σQ and

P̂ (γ) = PQ(γ) =
σQ |γ|2

n
. (3.18)

Substituting in (3.10) the values of the weight coefficients γ(j), minimizing
the cost function (3.16), that is

γ̂ = argmin
γ∈Γ

J(γ) , (3.19)

yields the model selection procedure

Ŝ∗ = Ŝγ̂ . (3.20)

Our first goal is to obtain the oracle inequalities for the quadratic risk of
the estimate (3.20) defined in (1.5). To state the result we introduce the
sequence

ΨQ(n, p) = 2
(

3L1,Q(n) + νp L2,Q(n)
(
σQ
)−1

+ νpκQ
)
. (3.21)

Proposition 3.1. Let the conditions (1.3), C1) and C2) imposed on the
noise distribution (ξt)t≥0 in (1.1) hold. Then, for any n ≥ 2, p ≥ 3, 0 < ρ <
1/3 and any set Γ with the property (3.12), the estimator (3.20) satisfies the
following oracle inequality

RQ(Ŝ∗, S) ≤ 1 + 3ρ

1− 3ρ
min
γ∈Γ
RQ(Ŝγ, S) +

1

n

ΨQ(n, p)

(1− 3ρ)ρ

+
6µp rQ(σ̂n)

n(1− 3ρ)
. (3.22)

The proof of Proposition 3.1 is given in Section 6.
If the proxy variance σQ in the Condition C1) is known, then one comes to
the following result.
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Corollary 3.2. Suppose that the conditions of Proposition 3.1 hold with
known σQ > 0. Then, for any n ≥ 2, p ≥ 3, 0 < ρ < 1/3 and any set Γ with
the property (3.12), the estimator (3.20) satisfies the oracle inequality

RQ(Ŝ∗, S) ≤ 1 + 3ρ

1− 3ρ
min
γ∈Γ
RQ(Ŝγ, S) +

1

n

ΨQ(n, p)

(1− 3ρ)ρ
. (3.23)

Remark 3.3. It should be noted that Comte and Genon-Catalot in [4] use
the oracle inequality of type (3.22) to find an adaptive convergence rate for
the density estimation problem for the Lévy processes from discrete data. In
this paper we will use this inequality to study efficiency properties for the
procedure (3.19).

3.1 Estimation of σQ

In this section we will consider the case of an unknown proxy variance σQ in
the condition C1) and derive the oracle inequalities for the continuous time
estimate (3.10). We additionally assume that the unknown function S(t) in
(1.1) has an absolutely integrable derivative. First we have to estimate σQ
and find an upper bound for rQ(σ̂n) in (3.22). One can use the following
estimate for σQ

σ̂n =
n

p̌

p̌∑
j=l0

θ̂2
j,p

and p̌ = min(p, n) , (3.24)

where l0 ≥ 1 will be specified later. We set σ̂n = 0 for l0 > p̌.

Lemma 3.3. Assume that the conditions (1.3), C1) and C2) hold and the
unknown function S(t) is differentiable for 0 ≤ t ≤ 1 and such that for some
r > 0

‖S‖2 + ‖Ṡ‖2 =

∫ 1

0

(
|S(t)|2 + |Ṡ(t)|2

)
dt ≤ r . (3.25)

Then, for any n ≥ 1 and p ≥ 3, the quantity rQ(σ̂n), defined in (3.15),
satisfies the inequality

rQ(σ̂n) ≤ KQ(n)

(
n

p̌l0
+
l0
p̌

+
1√
p̌

)
, (3.26)

where KQ(n) = 16r + 8
√
rκQ + L1,Q(n) + σQ +

√
L2,Q(n).
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The proof of Lemma 3.3 is given in Section 6.
Minimizing the right hand side of the last inequality with respect to l0 we
find the appropriate value for l0 in (3.24), namely

l0 =
[√
n
]
, (3.27)

which yields

rQ(σ̂n) ≤ 3 KQ(n)

(√
n

p̌
+

1√
p̌

)
:= 3KQ(n) g∗

p,n
. (3.28)

Combining Proposition 3.1 and Lemma 3.3 leads to the following result.

Proposition 3.4. Assume that the conditions (1.3), C1) and C2) hold and
the function S satisfies the inequality (3.25) for some r > 0. Then, for any
n ≥ 1, p ≥ 3, 0 < ρ < 1/3 and any set Γ with the property (3.12), the
estimate (3.20) obeys the oracle inequality

RQ(Ŝ∗, S) ≤ 1 + 3ρ

1− 3ρ
min
γ∈Γ
RQ(Ŝγ, S) +

BQ(n, p)

n(1− 3ρ)ρ
, (3.29)

where BQ(n, p) = ΨQ(n, p) + 18KQ(n)µpg
∗
p,n

.

Remark 3.4. Note that the oracle inequality (3.29) involves the term BQ(n, p)
which depends on n and p. Our goal is to find conditions on the noise dis-
tribution Q and the frequency p providing the boundedness of this term by
any power of n as n → ∞. As will be seen later, this property implies the
efficiency of model selection procedure (3.20). To this end we need to study
the robust risks for this estimate.

3.2 Robust estimation

In order to obtain the oracle inequality for the robust risk (1.6) of the esti-
mate (3.10) we will impose additional conditions on the distribution family
Qn of the noise ξ in the equation (1.1). Actually these conditions are stipu-
lated also by the further studies of the asymptotic properties of the procedure
(3.20) provided that both the number of observation periods n and the obser-
vation frequency p tend to infinity. Let Pn denote the class of all probability
measures on the space D[0, n] and P∗

n
be its subclass defined as

P∗
n

=
{
Q ∈ Pn : L1,Q(n) ≤ L∗

1,n
, L2,Q(n) ≤ L∗

2,n

}
, (3.30)
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where L1,Q(n) and L2,Q(n) are functionals from the conditions C1), C2) and
L∗

1,n
and L∗

2,n
are numerical sequences such that for any δ > 0

lim
n→∞

L∗
1,n

+ L∗
2,n

nδ
= 0 .

H1) Assume that each distribution in the family Qn enters the class (3.30),
i.e. Qn ⊆ P∗n for each n ≥ 1. Besides, the constant κQ in (1.3) and the
variance proxy σQ from the condition C1) are such that for n = 1, 2, ...

{
κ∗(n) := sup

Q∈Qn
κQ <∞ , σ∗(n) := sup

Q∈Qn
σQ <∞ ,

σ∗(n) := infQ∈Qn σQ > 0
(3.31)

and for any δ > 0

lim
n→∞

κ∗(n)

nδ
= 0 , lim

n→∞

σ∗(n)

nδ
= 0 and lim

n→∞
nδ σ∗(n) = +∞ . (3.32)

Taking into account these notations, we get the following upper bounds for
the functions ΨQ(ρ) and KQ(n) in (3.21) and (3.26)

Ψ∗
n
(p) = 2

(
2L∗

1,n
+ νp L∗

2,n
(σ∗(n))−1 + νpκ

∗(n)
)

and
K∗
n

= 16r + 8
√
rκ∗(n) + L∗

1,n
+
√

L∗
2,n

+ σ∗(n) .

Now proceeding from Theorem 3.4 we come to the following result.

Theorem 3.5. Assume that the conditions (1.3) and H1) hold and the func-
tion S satisfies the inequality (3.25) for some r > 0. Then, for any n ≥ 1,
p ≥ 3, 0 < ρ < 1/3 and any set Γ with the property (3.12) the estimate
(3.20) satisfies the oracle inequality for the robust risk (1.6), i.e.

R∗
n
(Ŝ∗, S) ≤ 1 + 3ρ

1− 3ρ
min
γ∈Γ
R∗
n
(Ŝγ, S) +

B∗
n
(p)

n(1− 3ρ)ρ
, (3.33)

where B∗
n
(p) = Ψ∗

n
(p) + 18K∗

n
µpg

∗
p,n

.
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3.3 Specification of weights in the model selection

Now we will specify the weight coefficients (γ(j))1≤j≤p in the way proposed
in [12]. Consider a numerical grid of the form

A = {1, . . . , k∗} × {t1, . . . , tm} , (3.34)

where ti = iε and m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and
n−2 ≤ ε ≤ 1 are functions of n, i.e. k∗ = k∗(n) and ε = ε(n), such that

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ σ
∗(n)ε(n) = 0 and limn→∞ nδε(n) = +∞

(3.35)

for any δ > 0. One can take, for example, for n ≥ 2

ε(n) =
1

(σ∗(n) lnn) ∧ n2
and k∗(n) = k∗

0
+
√

lnn , (3.36)

where a ∧ b = min(a, b) and k∗
0
≥ 0 is some fixed constant. For each α =

(β, t) ∈ A, we introduce the weight sequence

γα = (γα(j))1≤j≤p

with the elements

γα(j) = 1{1≤j<j∗} +
(
1− (j/ωα)β

)
1{j∗≤j≤ωα} (3.37)

where j∗ = [ωα/ ln(n+ 1)], ωα = (τβ t n)1/(2β+1) and

τβ = (β + 1)(2β + 1)/π2ββ. Now we specify the set Γ in (3.19) as

Γ = {γα , α ∈ A} . (3.38)

Note that for any p ≥ 1 the number of elements in Γ equals νp = k∗m.
Therefore, in view of the assumptions (3.35), for any δ > 0, one has

lim
n→∞

k∗m

nδ
= 0 . (3.39)

Taking into account that τβ < 1 for β ≥ 1 and that ε ≥ n−2, we obtain

ω∗ = sup
α∈A

ωα ≤ (n/ε)1/3 ≤ n . (3.40)
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Therefore, for any p ≥ 1 and n ≥ 1

µp = sup
α∈A

p∑
j=1

1{γα(j)>0} ≤ ω∗ ≤ n ,

i.e. the condition (3.12) holds. Moreover, the last condition in (3.35) yields

lim
n→∞

sup
p≥1

µp

n1/3+δ
= 0 for any δ > 0 .

Our main goal is to bound asymptotically (as n → ∞) the term B∗
n
(p) in

(3.33) by any power of n. To this end we note that if

p ≥ p∗ = 2[n5/6/2] + 3 , (3.41)

then the upper bound (3.28) can be estimated as g∗
p,n
≤ 2n−1/3, i.e.

lim
n→∞

1

nδ
sup
p≥p∗

µpg
∗
p,n

= 0 , ∀ δ > 0 . (3.42)

Therefore, using these properties in (3.33) one comes to the following result.

Theorem 3.6. Assume that the conditions (1.3) and H1) hold, the function
S satisfies the inequality (3.25) for some r > 0. Then, for any n ≥ 3, p ≥ 3
and 0 < ρ < 1/3, the estimate (3.20) with the weight coefficients (3.38)
satisfies the oracle inequality (3.33), in which, for any δ > 0,

lim
n→∞

1

nδ
sup
p≥p∗
B∗
n
(p) = 0 . (3.43)

Remark 3.5. It will be noted that the assertion of Theorem 3.6 holds true,
generally speaking, for any random process (ξt)t≥0 in (1.1) for which the
stochastic integral (1.2) is well defined and satisfies the conditions (1.3) and
H1). The class of square integrable semimartingales, in our opinion, is the
most appropriate one for the estimation problems with the quadratic risks
(1.5) and (1.6). As an alternative, one could consider, for example, non-
semimartingale regression models based on the fractional Brownian motions
with the Hurst parameter H 6= 1/2. However, in the latter case, the stochastic
integral is defined not for functions from L2[0, n], but for some special spaces
(see [7] for details). This does not agree with the the definition (1.5) and,
moreover, the first limiting relation in (3.32) fails to hold.
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Now we consider the model (1.1)–(2.1) with the parameters satisfying
the conditions (2.4) and derive the oracle inequality for the model selection
procedure (3.20). To this end we set

M∗ =

(
116 + 33

EY 4
1

λ∗

)
%2
max

;

τ∗ = a∗
(
1 + ea∗ + 2 (

√
2a∗e

a∗ + 3)2 e2a∗
)
.

(3.44)

Theorem 3.7. Let the model be given by (1.1)–(2.1) with the parameters
satisfying the conditions (2.4). Then, for any n ≥ 3, p ≥ 3 and 0 < ρ <
1/3, the estimate (3.20) with the weight coefficients (3.38) satisfies the oracle
inequality (3.33) in which κ∗(n) = 3%max, σ∗(n) = %max, σ∗(n) = %min,
L∗

1,n
= 3%maxτ∗, L∗

2,n
= 96M∗ and the term B∗

n
(p) has the property (3.43)

and can be represented as

B∗
n
(p) = c1 k

∗m+ c2 + c3µpg
∗
p,n

(3.45)

for some positive fixed constants c1 and c2.

When considering the estimation problem for the model (1.1) with the
martingale noise (2.5), we set

L∗
1,n

= κ∗(n) + %
′

∗/2 + %
′′

∗ (3.46)

and

L∗
2,n

= 8κ∗(n) + 11(ln 2)2
(
%
′

∗

)2

+ 8
(κ∗(n))2EY 4

1

λ∗
, (3.47)

where the parameters %
′

∗, %
′′

∗ are defined in (2.7) and κ∗(n) = sup
0≤t≤n |%max(t)|.

Moreover, we set σ∗(n) = n−1
∫ n

0
%min(t)dt and

σ∗(n) = n−1

∫ n

0

%max(t)dt . (3.48)

Theorem 3.8. Let the model be given by (1.1)–(2.5) with the parameters
satisfying the conditions (2.7), (2.8) and (2.9). Then, for any n ≥ 3, p ≥ 3
and 0 < ρ < 1/3, the estimate (3.20) with the weight coefficients (3.38)
satisfies the oracle inequality (3.33) with the parameters (3.46) – (3.48), in
which the term B∗

n
(p) possesses the property (3.43) and has the form
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B∗
n
(p) = c1

(
1 + κ∗(n) +

1 + (κ∗(n))2

σ∗(n)
k∗m

)
+ c2 (1 + κ∗(n))µpg

∗
p,n

for some constants c1 > 0 and c2 > 0.

Remark 3.6. It will be noted that the equation for B∗
n
(p) in the Theorem 3.8

reduces to the form (3.45) provided that the functions %min(t) and %max(t) are
constant.

Now we write the oracle inequality for the “white noise” regression model,
i.e. for the process (1.1), (2.5) with %1 ≡ 1 and %2 ≡ 0. In this case the
distribution family Qn consists of a single distribution Q.

Theorem 3.9. Let the model be given by (1.1)–(2.5) with %1 ≡ 1 and %2 ≡ 0.
Then, for any n ≥ 3, p ≥ 3 and 0 < ρ < 1/3, the estimate (3.20) with the
weight coefficients (3.38) satisfies the following oracle inequality

RQ(Ŝ∗, S) ≤ 1 + 3ρ

1− 3ρ
min
γ∈Γ
RQ(Ŝγ, S) +

1

n

6k∗m

(1− 3ρ)ρ
.

The proofs of Theorems 3.7– 3.8 and Theorem 3.9 are given in Section 6.

4 Monte Carlo simulations

In this section we report the results of a Monte Carlo experiment to assess
the performance of the proposed model selection procedure (3.20). We define
S in (1.1) as 1 - periodic function with S(t) = t sin(2πt) + t2(1− t) cos(4πt)
on [0, 1] and then simulate the model as

dyt = S(t)dt+ dξt , (4.1)

where ξt is a non-Gaussian Ornstein–Uhlenbeck process obeying the equation

dξt = −ξtdt+ 0.5 dwt + 0.5 dzt .

Here zt is a compound Poisson process (2.2) with the intensity λ = 0.1 and
a Gaussian N (0, 1) sequence (Yj)j≥1.

The frequency of observations in (1.4) per period equals p = 100001. We
use the weight sequence (3.37) in the procedure (3.20) as proposed in [12]
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for a discrete time model: k∗ = 100 +
√

lnn, ε = 1/ lnn and m = [1/ε2] and
σ∗(n) = 1. We used the cost function (3.16) with ρ = (3 + lnn)−2, which
satisfies the condition (5.4) below. We define the empirical risk as

R =
1

p

p∑
j=1

Ê
(
S̃n(tj)− S(tj)

)2

, (4.2)

and the relative quadratic risk

R∗ = R/‖S‖2
p
. (4.3)

For the model (4.1) the empirical norm ‖S‖2
p

= 0.18836. The expectations

in (4.2) was taken as an average over N = 10000 replications, i.e.

Ê
(
S̃n(·)− S(·)

)2

=
1

N

N∑
l=1

(
S̃l
n
(·)− S(·)

)2

.

The following table gives the values for the sample risks (4.2) and (4.3) for
different numbers of observation period n.

n R R∗

20 0.0465 0.2471(24.7%)

200 0.0078 0.0415(4.2%)

1000 0.0028 0.0148(1.5%)

Table : Empirical risks

The Figures 1–3 show the behavior of the regression function and its esti-
mates by the model selection procedure (3.20) depending on the values of
observation periods n.
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Figure 1: n=20

Figure 2: n=200
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Figure 3: n=1000

Remark 4.1. In the simulations we took k∗
0

= 100 in (3.36). Note that the
parameter k∗(n) is the upper bound for the regularity order of the function
S. So, it will be reasonable to choose maximum possible values for this upper
bound for non large n, but not too large since we need to minimize the cost
function in (3.19).

5 Robust asymptotic efficiency

In this section we assume that the unknown function S in the model (1.1)
belongs to the Sobolev ball W k

r
defined as

W k
r

= {f ∈ Ck
per

[0, 1] :
∞∑
j=1

aj θ
2
j
≤ r} , θj =

∫ 1

0

f(s)φj(s)ds , (5.1)

where Ck
per

[0, 1] is the set of k times differentiable [0, 1]→ R functions f such

that the k− 1 derivative f (k−1) is absolutely continuous and f (i)(0) = f (i)(1)

for all 0 ≤ i ≤ k; aj =
∑k

i=0

(
$j

)2i
, $j is given in (3.1) and (θj)j≥1 are

the Fourier coefficients of the function f . It is well known that the optimal
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(minimax) estimation convergence rate for the functions from the set (5.1)
is n2k/(2k+1) (see, for example, [28], [27]). We will see that asymptotically
the robust risk (1.6) normalized by this rate is bounded from below by the
Pinsker constant R∗

k
which in this case has the following form

R∗
k

= ((2k + 1)r)1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (5.2)

To this end we denote by Πn the set of all estimators Ŝn measurable with
respect to the sigma-algebra σ{yt , 0 ≤ t ≤ n} generated by the process (1.1).
Moreover, we denote by Q0 the distribution of Wiener process with the scale
parameter σ∗(n) defined in (3.31).
H2) Assume that the distribution Q0 belongs to the family Qn.
Through this condition we obtain the following lower bound.

Theorem 5.1. Under the condition H2)

lim inf
n→∞

(dn)2k/(2k+1) inf
Ŝn∈Πn

sup
S∈Wk

r

R∗
n
(Ŝn, S) ≥ R∗

k
, (5.3)

where dn = n/σ∗(n).

Proof of this theorem follows directly from Theorem 3.2 in [22].
Now we show that, under some conditions, the normalized robust risk for the
model selection procedure is bounded from above by the same constant R∗

k
.

H3) Assume that there exists δ̌ > 0 such that

lim
n→∞

n5/6+δ̌

p
= 0 .

Furthermore, we assume that in the procedure (3.20) the parameter ρ = ρ(n)
is a function of n such that

lim
n→∞

ρ(n) = 0 and lim
n→∞

nδ ρ(n) =∞ (5.4)

for all δ > 0.

Theorem 5.2. Assume that the conditions H1) and H3) hold. Then the

robust risk (1.6) for the model selection procedure Ŝ∗, defined in (3.20) with
the weight coefficients (3.38), admits the following asymptotic upper bound

lim sup
n→∞

(dn)2k/(2k+1) sup
S∈Wk

r

R∗
n
(Ŝ∗, S) ≤ R∗

k
. (5.5)
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Theorem 5.1 and Theorem 5.2 imply the following result

Corollary 5.3. Under the conditions H1), H2) and H3)

lim
n→∞

(dn)2k/(2k+1) inf
Ŝn∈Πn

sup
S∈Wk

r

R∗
n
(Ŝn, S) = R∗

k
. (5.6)

Remark 5.1. It should be noted that the equality (5.6) means the robust effi-

ciency holds with the convergence rate (dn)2k/(2k+1). In view of the conditions
(3.32) the sequence σ∗

n
is slowly changing, i.e. asymptotically (as n → ∞)

n−δ ≤ σ∗
n
≤ nδ for any δ > 0. So, if the σ∗

n
= const, then one obtains the

usual minimax rate for the Sobolev ball (see, for example, [28], [27]). Fur-
thermore, this rate becomes worse if the maximal value of the noise intensity
σ∗(n) → ∞ as n → ∞, and it improves if σ∗(n) → 0 as n → ∞. For the
regression model (1.1) with the martingale noise (2.5), the parameter σ∗(n)
is given in (3.48). If, for example, ρmax(t) = ln(t + 2), then σ∗(n) → ∞
as n → ∞. In the case when ρmax(t) = 1/ ln(t + 2), one has σ∗(n) → 0 as
n→∞.

To show Theprem 5.2 we need to estimate the function S from W k
r

in the
nonadaptive setting, i.e. in the case when the parameters k ≥ 1, r > 0 and
σ∗(n) are known. To this end we set

γ0 = γα0
and α0 = (k, t0) , (5.7)

where t0 = [r/ε]ε, r = r/σ∗(n) and ε satisfies the conditions in (3.35). Note
that for sufficiently large n the pair α0 belongs to the set (3.34).

Theorem 5.4. The estimator Ŝγ0 satisfies the following asymptotic upper
bound

lim sup
n→∞

d2k/(2k+1)
n

sup
S∈Wk

r

R∗
n

(Ŝγ0 , S) ≤ R∗
k
. (5.8)

Now taking into account the upper bound (5.8) in the oracle inequality
(3.33) and using the property (3.43) we come to Theorem 5.2.
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6 Proofs

6.1 Proof of Proposition 3.1

For each estimate (3.10) with γ ∈ Γ, combining (3.13) and (3.16) yields

Err(γ) = J(γ) + 2

p∑
j=1

γ(j)θ′
j,p

+ ‖S‖2 − ρ P̂ (γ) , (6.1)

where θ′
j,p

= θ̃j,p − θj,p θ̂j,p. From (3.8) and (3.14), one finds

θ′
j,p

=
1√
n
θj,pξj,p +

σQ − σ̂n
n

+
ζj,p
n

+
ξ̃j,p
n
,

where the sequences ζj,p and ξ̃j,p are defined in the conditions C1) and C2)
respectively. Furthermore, for any x = (x1, . . . , xp) ∈ Rp we set

U(x) =

p∑
j=1

xj , V(x) =
1√
n

p∑
j=1

xj θj,pξj,p ,

B1(x) =

p∑
j=1

xj ζj,p and B2(x) =

p∑
j=1

xj ξ̃j,p . (6.2)

Taking this into account, we rewrite (6.1) as

Err(γ) = J(γ) + 2V(γ) +
2(σQ − σ̂n)

n
U(γ) +

2B1(γ)

n

+ 2
√
PQ(γ)

B2(e(γ))
√
nσQ

+ ‖S‖2 − ρP̂ (γ) (6.3)

where e(γ) = γ/|γ|. Now let γ0 be a fixed weight vector in the set Γ and γ̂
be as in (3.19). Substituting γ0 and γ̂ in (6.3), we arrive at the equation

Err(γ̂)− Err(γ0) = J(γ̂)− J(γ0) +
2(σQ − σ̂n)

n
U(x̂) +

2

n
B1(x̂)

+ 2
√
PQ(γ̂)

B2(ê)
√
nσQ

− 2
√
PQ(γ0)

B2(e0)
√
nσQ

+ ρP̂ (γ0)− ρP̂ (γ̂) + 2V(x̂) (6.4)
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where x̂ = γ̂ − γ0, ê = e(γ̂) and e0 = e(γ0). From (3.11) it follows that for
each γ ∈ Γ,

|U(x̂)| ≤
p∑
j=1

(|γ̂(j)|+ |γ0(j)|) ≤ 2µp .

Similarly, in view of the condition C1) we obtain

|B1(x̂)| ≤ |B1(γ̂)|+ |B1(γ0)| ≤ 2L1,Q(n) .

Therefore, by the definition (3.19) one gets

Err(γ̂)− Err(γ0) ≤
4|σ̂n − σQ|

n
µp +

4L1,Q(n)

n
+ 2
√
PQ(γ̂)

B2(ê)
√
σQn

− ρP̂ (γ̂)

+ ρP̂ (γ0)− 2
√
PQ(γ0)

B2(e0)
√
nσQ

+ 2V(x̂) . (6.5)

Further, by applying the elementary inequality

2|ab| ≤ εa2 + ε−1b2 (6.6)

with ε = ρ, one has

2
√
PQ(γ)

|B2(e(γ))|
√
nσQ

≤ ρPQ(γ) +
B2

2
(e(γ))

nσQρ
.

Since 0 < ρ < 1, this inequality and (6.5) imply that

Err(γ̂) ≤ Err(γ0) +
4L1,Q(n)

n
+

2B∗
2

nσQρ
+

1

n
|σ̂n − σQ|

(
|γ̂|2 + |γ0|2 + 4µp

)
+ 2ρPQ(γ0) + 2V(x̂) ,

where B∗
2

= sup
γ∈Γ

B2
2
(e(γ)). Moreover, taking into account here that

sup
γ∈Γ
|γ|2 ≤ µp, we get

Err(γ̂) ≤ Err(γ0) +
4L1,Q(n)

n
+

2B∗
2

nσQρ
+

6µp
n
|σ̂n − σQ|

+ 2ρPQ(γ0) + 2V(x̂) . (6.7)
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By the condition C2), one has

EQ B∗
2
≤
∑
γ∈Γ

EQ B2
2
(e(γ)) ≤ νp L2,Q(n) , (6.8)

where νp = card(Γ) is defined in (3.11). Now we examine the last term in
the right side of (6.7). To this end for any x = (x1, . . . , xp) ∈ Rp we set

Sx(t) =

p∑
j=1

xj θj,pφj(t) and Ŝx(t) =

p∑
j=1

xj θ̂j,pφj(t) . (6.9)

Using (1.3), one obtains that for any non-random vector x from Rp

EQV2(x) ≤ κQ
1

n

p∑
j=1

x2
j
θ

2

j,p
=

κQ
n
‖Sx‖2 . (6.10)

Let denote Z∗ = maxx∈Γ1
nV2(x)/‖Sx‖2 and Γ1 = (Γ− γ0) \ {0}. The

average of this quantity can be estimated as

EQ Z
∗ ≤

∑
x∈Γ1

nEQ V2(x)

‖Sx‖2
≤
∑
x∈Γ1

κQ ≤ κQ νp . (6.11)

By applying (6.6) one gets

max
x∈Γ1

(
2|V(x)| − ρ‖Sx‖2

)
≤ Z∗

nρ
. (6.12)

Now we need to find an upper bound for ‖Sx‖2. To this end note that for
each x ∈ Γ1, one has the following estimate

‖Sx‖2 − ‖Ŝx‖2 =

p∑
j=1

x2
j
(θ

2

j,p
− θ̂2

j,p
) ≤ −2V(x2) ,

where x2 = (x2
1
, . . . , x2

p
). Since |xj| ≤ 1, one gets, for each x ∈ Γ1,

EQV2(x2) ≤ κQ

∑p

j=1
x4
j
θ

2

j,p

n
≤ κQ

∑p

j=1
x2
j
θ

2

j,p

n
= κQ

‖Sx‖2

n
.
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Denoting Z∗
1

= maxx∈Γ1
nV2(x2)/‖Sx‖2, one has

EQ Z
∗
1
≤ κQ νp . (6.13)

By the same argument as in (6.12), one shows that for any x ∈ Γ1

2|V(x2)| ≤ ρ‖Sx‖2 +
Z∗

1

nρ
.

From here provided that 0 < ρ < 1, it follows that

‖Sx‖2 ≤ ‖Ŝx‖
2

1− ρ
+

Z∗
1

nρ(1− ρ)
. (6.14)

Substituting this bound in (6.12) yields

max
x∈Γ1

(
2|V(x)| − ρ‖Ŝx‖2

1− ρ

)
≤

Z∗(1− ρ) + ρZ∗
1

nρ(1− ρ)
≤

Z∗ + Z∗
1

nρ(1− ρ)
.

Since the range of the random vector x̂ is included in Γ1, the last inequality
implies

2|V(x̂)| ≤ ρ‖Ŝx̂‖2

1− ρ
+

Z∗ + Z∗
1

nρ(1− ρ)
.

Note that the norm ‖Ŝx̂‖2 can be estimated as

‖Ŝx̂‖2 = ‖(Ŝγ̂ − S)− (S − Ŝγ0)‖
2 ≤ 2(Err(γ̂) + Err(γ0)) ,

i.e.

2V(x̂) ≤ 2ρ(Err(γ̂) + Err(γ0))

1− ρ
+

Z∗ + Z∗
1

nρ(1− ρ)
.

From here and (6.7), it follows that for 0 < ρ < 1/3

Err(γ̂) ≤ 1 + ρ

1− 3ρ
Err(γ0) +

4L1,Q(n)

(1− 3ρ)n
+

2B∗
2

ρσQ(1− 3ρ)n

+
6µp|σ̂n − σQ|

(1− 3ρ)n
+

2ρ

1− 3ρ
PQ(γ0) +

Z∗ + Z∗
1

ρ(1− 3ρ)n
.
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Taking the expectation and making use of (6.8), (6.11) and (6.13) we get

EQ ‖Ŝ∗ − S‖2 ≤ 1 + ρ

1− 3ρ
EQ Err(γ0) +

4L1,Q(n)

(1− 3ρ)n
+

2νp L2,Q(n)

ρσQ(1− 3ρ)n

+
6µp rQ (σ̂n)

(1− 3ρ)n
+

2ρ

1− 3ρ
PQ(γ0) +

2νpκQ
ρ(1− 3ρ)n

,

where rQ (σ̂n) is defined in (3.15). Lemma A.1 yields

EQ ‖Ŝ∗ − S‖2 ≤ 1 + 3ρ

1− 3ρ
EQ Err(γ0) +

2(2 + ρ)L1,Q(n)

(1− 3ρ)n
+

2νp L2,Q(n)

ρσQ(1− 3ρ)n

+
6µp rQ (σ̂n)

(1− 3ρ)n
+

2νpκQ
ρ(1− 3ρ)n

.

From here, in view of the definition of the function ΨQ(n, p) in (3.21), one
comes to the inequality (3.22). Hence Proposition 3.1.

6.2 Proof of Lemma 3.3

It is clear that the inequality (3.26) holds for l0 > p̌. Let now l0 ≤ p̌. Setting
x
′

j
= 1{l0≤j≤p̌} and substituting (3.8) in (3.24) yields

σ̂n =
n

p̌

p̌∑
j=l0

(θj,p)
2 +

2n

p̌
V(x

′
) +

1

p̌

p̌∑
j=l0

ξ2
j,p
. (6.15)

Furthermore, putting x
′′

j
= p̌−1/2 1{l0≤j≤p̌}, one can write the last term on

the right of (6.15) as

1

p̌

p̌∑
j=l0

ξ2
j,p

=
1√
p̌

B2(x
′′
) +

1

p̌
B1(x

′
) +

p̌− l0 + 1

p̌
σQ ,

where the functions V(·), B1(·) and B2(·) are defined in (6.2). Note now
that through the Cauchy inequality the condition (3.25) implies |S|2

1
≤ r and
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|Ṡ|2
1
≤ r. Hence, Lemma A.3 yields

EQ|σ̂n − σQ| ≤
8rn

p̌

∞∑
j=l0

j−2 +
2n

p̌
EQ

∣∣∣V(x
′
)
∣∣∣+

√
EQ |B2(x′′)|2
√
p̌

+
|B1(x

′
)|

p̌
+
l0 − 1

p̌
σQ .

Taking into account that
∑

j≥l0
j−2 ≤ 2/l0 and the conditions C1) – C2), one

comes to the following upper bound

EQ|σ̂n − σQ| ≤
16 rn

l0p̌
+

2n

p̌
EQ

∣∣∣V(x
′
)
∣∣∣+

√
L2,Q(n)
√
p̌

+
L1,Q(n) + (l0 − 1)σQ

p̌
. (6.16)

Moreover, in view of the inequality (6.10), one gets

EQ

∣∣∣V(x
′
)
∣∣∣ ≤

κQ
n

p̌∑
j=l0

θ
2

j,p

1/2

≤
4
(
rκQ

)1/2√
n l0

≤
4
(
rκQ

)1/2

l0
.

This implies immediately Lemma 3.3 .

6.3 Proof of Theorem 3.7

One has to check the conditions (1.3), C1) and C2) for the model(1.1)-(2.1)
and apply Theorem 3.6. The property (1.3) for this model is checked in [24]
with κQ = 3%∗ and %∗ = %2

1
+ λ%2

2
. Therefore, from the definition of the

distribution family in (2.4) we obtain κQ = 3%max. A straightforward but
tedious calculation shows that

EQ ξ
2
j,p

= %∗ (1 + τj) , (6.17)

where τj = n−1
∫ n

0
ψj,p(t)εj(t) dt and εj(t) = a

∫ t
0
ea(t−s) ψj,p(s) (1 + e2as)ds.

It is easy to check that |τ1| ≤ 2. For j ≥ 2 we represent τj and εj(t) as

τj = τ1,j + τ2,j and εj(t) = ε1,j(t) + ε2,j(t) ,
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where ε1,j(t) = a
∫ t

0
ea(t−s) ψj,p(s) ds, ε2,j(t) = a

∫ t
0
ea(t+s) ψj,p(s) ds

τ1,j =
1

n

∫ n

0

ψj,p(t)ε1,j(t) dt and τ2,j =
1

n

∫ n

0

ψj,p(t)ε2,j(t) dt . (6.18)

In view of (3.6) τ1,j can be represented as

τ1,j =
a

n

np∑
k=1

k∑
l=1

φj(tk)φj(tl)κk,l ,

where

κk,l =

∫ tl

tl−1

(∫ tk

tk−1

(ea(t−s) 1{s≤t})dt

)
ds .

Integration yields κk,k = κ∗
0
(∆) = (ea∆ − 1 − a∆)a−2 and for 1 ≤ l < k

the coefficients κk,l = κ∗
1
(∆) eatk−l with κ∗

1
(∆) = a−2 (e−a∆ − 1) (1 − ea∆).

Therefore,
τ1,j = aκ∗

0
(∆)p+ aκ∗

1
(∆) p2Aj,p , (6.19)

where

Aj,p =
1

np2

np−1∑
l=1

υj,l , υj,l =

np∑
k=l+1

φj(tk)φj(tl) e
atk−l .

It should be noted that

0 ≤ κ∗
0
(∆) ≤ ∆2

2
and 0 ≤ κ∗

1
(∆) ≤ ∆2 ea∗ . (6.20)

From the definition of the functions (φj)2≤j≤p it follows that

υj,l =

np−l∑
k=1

cos($jtk) e
atk + (−1)j

np−l∑
k=1

cos($j tk+2l) e
atk := υ̃j,l + (−1)j υ̂j,l .

So, setting

Ãj,p =
1

np2

np−1∑
l=1

υ̃j,l and Âj,p =
1

np2

np−1∑
l=1

υ̂j,l ,
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we can represent Aj,p in the form Aj,p = Ãj,p + (−1)jÂj,p, in which

Ãj,p =
1

p
Re

q̃j
1− q̃j

− B̃j,p and Âj,p =
1− ean

np2
B̂j . (6.21)

Here

B̃j,p =
1− ean

np2
Re

q̃j
(1− q̃j)

2
and B̂j = Re

q̃jq̂j
(1− q̃j)(1− q̂j)

,

where q̃j = ea∆+i$j∆ and q̂j = e−a∆+i$j∆. First, note that

Re 1

1− q̃j
=

1− ea∆ cos($j∆)

1− 2ea∆ cos($j∆) + e2a∆
=

1− ea∆ + 2ea∆ sin2($j∆/2)

(1− ea∆)2 + 4ea∆ sin2($j∆/2)
.

Taking into account that

sin(x) ≥ 2x/π, 0 ≤ x ≤ π/2 ,

and
$j ≥ 2πj/3 , 2 ≤ j ≤ p ,

we obtain for 2 ≤ j ≤ p

2 sin($j∆/2) ≥ j∆ . (6.22)

Therefore,

1

p

∣∣∣∣Re 1

1− q̃j

∣∣∣∣ ≤ |a|∆
4pea∆ sin2($j∆/2)

+
1

2p
≤ a∗e

a∗

j2
+

1

2p
, (6.23)

where a∗ is given in (2.4). Now we estimate B̃j,p. We have

B̃j,p =
(1− ean)ea∆

(
cos($j∆)− 2ea∆ + e2a∆ cos($j∆)

)
np2

(
1− 2ea∆ cos($j∆) + e2a∆

)2

=
(1− ean)ea∆

((
1− ea∆

)2 − 2
(
1 + e2a∆

)
sin2($j∆/2)

)
np2

(
(1− ea∆)2 + 4ea∆ sin2($j∆/2)

)2 .
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Applying the inequality (6.22) yields

|B̃j,p| ≤
|a|2∆2

16p2ea∆ sin4($j∆/2)
+

1

4p2ea∆ sin2($j∆/2)

≤ ea∗
(
a2
∗ j
−4 + j−2

)
. (6.24)

By making use of the estimates (6.23) and (6.24) in (6.21) we obtain

sup
n≥1

|Ãj,p| ≤
1

2p
+

(a∗ + 1)ea
∗

j2
+
a2
∗e
a∗

j4
. (6.25)

To estimate Âj,p we represent B̂j as

B̂j =
cos($j∆)

2(cos($j∆)− ch(a∆))
,

where ch(x) = (ex + e−x)/2. From here and (6.22), it follows that

|Âj,p| ≤
1

2np2

(
1

ch(a∆)− cos($j∆)

)
≤ 1

2np2

(
1

1− cos($j∆)

)
=

1

4np2 sin2($j∆/2)
≤ 1

nj2
. (6.26)

Combining (6.25) and (6.26) yields

p−1 sup
n≥1

|Aj,p| ≤ A∗
(
p−1 + j−2

)
, A∗ = 1 + (1 + a∗ + a2

∗)e
a∗ .

This and (6.19), in view of (6.20), implies that

j−2 sup
n≥1

|τ1,j| ≤ τ ∗
1

(
p−1 + j−2

)
, τ ∗

1
= a∗ (1 + ea∗ A∗) . (6.27)

It remains to estimate τ2,j in (6.18). First we note that

τ2,j =
a

2n
ι2
j,p

and ιj,p =

∫ n

0

ψj,p(t) e
atdt .

It is easy to check that for 2 ≤ j ≤ p

ιj,p =

√
2(e−a∆ − 1)

|a|
(1− ean)

(
Υj

(
1

1− q̃j

)
− 1

)
, (6.28)
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where Υj(z) = Re(z) for even j and Υj(z) = Im(z) for odd j. For even j,
in view of (6.23), one gets the inequality

|ιj,p| ≤ ι∗
(
p−1 + j−2

)
, ι∗ =

√
2 a∗ e

2a∗ + 3 ea∗ . (6.29)

For odd 3 ≤ j ≤ p one has the estimate∣∣∣∣Im 1

1− q̃j

∣∣∣∣ ≤ 1

j∆
,

which implies that

|ιj,p| ≤
√

2 ea∗
(
p−1 + j−1

)
≤ ι∗

(
p−1 + j−1

)
. (6.30)

Therefore,
sup
n≥1

|τ2,j| ≤ a∗ ι
2
∗

(
p−2 + j−2

)
, 2 ≤ j ≤ p .

From here and the definition of τj in (6.17), we obtain

sup
n≥1

p∑
j=1

|τj| ≤ τ∗

1 +
∑
j≥1

j−2

 ≤ 3τ∗ ,

where τ∗ is defined in (3.44). This, in view of (6.17), shows that the condition
C1) holds with σQ ≤ %max. Since, for any Q from the noise distribution family
Qn defined in (2.4), σQ ≤ %max, we obtain the upper bound for the functional
L1,Q(n), i.e. L1,Q(n) ≤ 3%∗τ∗ ≤ 3%maxτ∗ := L∗

1,n
. Now we check the condition

C2) and find the upper bound L∗
2,n

for L2,Q(n). We have

EQ

 p∑
j=1

xj ξ̃j,p

2

≤ 2EQ ξ̃
2
1,p

+ 2EQ

 p∑
j=2

xj ξ̃j,p

2

and

EQ

 p∑
j=2

xj ξ̃j,p

2

=
1

n2

p∑
j=2

p∑
l=2

xj xl EQ Ĩn(ψj,p) Ĩn(ψl,p) , (6.31)
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where Ĩn(f) = I2
n
(f)− EQI

2
n
(f). To study this term we will use the correla-

tion measure introduced in [24]. The correlation measure for two integrated
[0,+∞)→ R functions f and g is defined as

Υf,g = max
0≤v≤n

max
0≤t≤n−v

|
∫ t

0

f(u+ v)g(u)du|

and Υ∗
f,g

= max
(
Υf,g,Υg,f

)
. Denoting υj,l = Υψj,p,ψl,p

and υ∗
j,l

= Υ∗
ψj,p,ψl,p

,

and applying Theorem 4.4 from [24], we obtain for any Q from the distribu-
tion family Qn the following inequality

|EQ Ĩn(ψj,p) Ĩn(ψl,p)| ≤ 2nMQ

(
1 + υ∗

j,l
+ υ∗

j,1
+ υ∗

l,1

)
,

where MQ = 116(%∗)2 + 33λ%4
2
EY 4

1
. It is clear, that υ∗

1,1
= n, i.e.

EQ ξ̃
2
1,p

=
1

n2
EQ

(
Ĩn(ψ1,p)

)2

≤ 8MQ .

Furthermore, note that for any t, v ≥ 0 and j ≥ 2∣∣∣∣∫ t

0

ψj,p(u+ v) du

∣∣∣∣ =

∣∣∣∣∣
∫ v+t

v+[t]

ψj,p(u) du

∣∣∣∣∣ ≤
∫ 1

0

|ψj,p(u)| du ≤ ‖ψj,p‖ = 1 ,

i.e. sup
j≥2

υ∗
j,1
≤ 1. Therefore, for j, l ≥ 2

|EQ Ĩn(ψj,p) Ĩn(ψl,p)| ≤ 2nMQ

(
3 + υ∗

j,l

)
. (6.32)

To estimate the term υj,l note that for any 1 ≤ j, l ≤ p

υj,l = max
0≤v≤1

max
0≤t≤n−v

∣∣∣∣∣[t]Vj,l(v) +

∫ t

[t]

ψj,p(u+ v)ψl,p(u) du

∣∣∣∣∣ ,
where Vj,l(v) =

∫ 1

0
ψj,p(u+ v)ψl,p(u) du. Therefore,

υj,l ≤ 2 + n max
0≤v≤1

∣∣Vj,l(v)
∣∣ . (6.33)
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Taking into account the definition (3.5), we find that for ts−1 ≤ v ≤ ts the
function Vj,l(v) can be represented as

Vj,l(v) = (ts − v)

p∑
k=1

φl(tk)φj(tk + ts−1)

+ (v − ts−1)

p∑
k=1

φl(tk)φj(tk + ts) . (6.34)

It is straightforward to verify that for any u, v ≥ 0 the trigonometric functions
φj satisfy the following equation

φj(u+ v) = k∗
j,1

(v)φj−1(u) + k∗
j,2

(v)φj(u) + k∗
j,3

(v)φj+1(u) ,

with the bounded coefficients, because maxj≥1 max1≤i≤3 sup
v≥0
|k∗
j,i

(v)| ≤ 1.

From here and (6.34), it follows that, Vj,l(v) = 0 for |l − j| ≥ 2. So, taking
into account in (6.33) that sup

j,l≥1
|Vj,l(v)| ≤ 2, we can represent the upper

bound (6.33) as υj,l ≤ 2 + 2n1{|l−j|≤1} and, therefore, υ∗
j,l
≤ 2 + 2n1{|l−j|≤1}.

Substituting this estimate in (6.32) yields

|EQ Ĩn(ψj,p) Ĩn(ψl,p)| ≤ 2nMQ

(
5 + 2n1{|l−j|≤1}

)
.

Thus, taking into account that #(x) ≤ n and |x| ≤ 1, we estimate the right
hand side of (6.31) as

EQ

 p∑
j=2

xj ξ̃j,p

2

≤
10MQ

n

p∑
j=2

p∑
l=2

xj xl

(
1 + n1{|l−j|≤1}

)

≤ 10MQ

 1

n

 p∑
j=2

xj

2

+

p∑
j=2

xjxj−1 +

p∑
j=2

x2
j

+

p−1∑
j=2

xjxj+1


≤ 40MQ ,

which shows that L2,Q(n) ≤ 96MQ and proves the validity of the condition
C2). For each noise distribution in the family Qn, defined in (2.4), we obtain
that MQ ≤ M∗. Therefore, the upper bound for L2,Q(n) in the condition
C2) is equal to L∗

2,n
= M∗. Hence Theorem 3.7.
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6.4 Proof of Theorem 3.8

By making use of (2.5), (2.6) and applying Ito’s formula, one obtains that
for any square integrable R+ → R functions f and g

E It(f) It(g) =

∫ t

0

f(u)g(u) %̃(u) du . (6.35)

Therefore, the condition (1.3) holds with

κQ = κQ(n) = ‖%̃‖∗,n = sup
0≤u≤n

|%̃(u)| ≤ ‖%max‖∗,n := κ∗(n) .

By the condition (2.8)

lim
n→∞

1

nδ
κ∗(n) = 0

for any δ > 0. Further we will show that the proxy σQ in C1) can be defined
as

σQ =
1

n

∫ n

0

%̃(u)du . (6.36)

From (3.8) and (6.35), it follows that E ξ2
1,p

= σQ. Moreover, taking into

account that φ2
j
(t) = 1 + (−1)j cos(2$jt) for j ≥ 2, we obtain that

E ξ2
j,p

= σQ + (−1)j Aj,p , where Aj,p = n−1
∑pn

k=1
cos(2$jtk)

∫ tk
tk−1

%̃(u)du.

First we note that sup
j≥1
|Aj,p| ≤ κ∗(n) . We use this estimate to check the

condition C1) for p ≤ 5, i.e.

p∑
j=1

|E ξ2
j,p
− ςQ| ≤

5∑
j=2

|Aj,p| ≤ 4κ∗(n) . (6.37)

Using the notations

A
′

j,p
=

1

2n sin($j∆)

np−1∑
k=1

bk sin
(
$j(2tk + ∆)

)
and bk =

∫ tk+1

tk
%̃(u)du−

∫ tk
tk−1

%̃(u)du, one can represent Aj,p as

Aj,p =
1

2n

∫ ∆

0

(%̃(u+ n−∆)− %̃(u)) du− A
′

j,p
.
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This implies that |Aj,p| ≤ ∆κ∗(n)/n+ |A′

j,p
|. The last term can be rewritten

as

A
′

j,p
=

∑np

k=2
(bk − bk−1) cos(2$jtk) + b1 cos(2$j∆)− bnp

4n sin2($j∆)
.

In view of the conditions (2.9), we obtain sup
k≥1
|bk| ≤ %

′

∗∆2 and

sup
k≥2
|bk − bk−1| ≤ %

′′

∗ ∆3. This yields

|A′

j,p
| ≤

(%
′

∗ + 2%
′′

∗)∆
2

4 sin2($j∆)
.

Note that 0 < $j∆ ≤ π/2 for 2 ≤ j ≤ ι̌∗ = 2[p/4] + 1 and π/2 < $j∆ ≤ π
for ι̌∗ < j ≤ p. Therefore, similarly to (6.22) one gets sin($j∆) ≥ j∆ for
2 ≤ j ≤ ι̌∗. For ι̌∗ < j ≤ p−1, we get sin($j∆) = sin(π−$j∆) ≥ (p−j) ∆ .

Thus, estimating |A′

p,n
| from above κ∗(n), we obtain that for p ≥ 9

p∑
j=1

|E ξ2
j,p
− ςQ| ≤ 2κ∗(n) +

ι̌∗∑
j=2

|A′

j,p
|+

p−1∑
j=ι̌∗+1

|A′

j,p
|

≤ 2κ∗(n) + %̌∗

 ι̌∗∑
j=2

j−2 +

p−1∑
j=ι̌∗+1

(p− j)−2


where %̌∗ = (%

′

∗ + 2%
′′

∗)/4. From here taking into account that
∑

j≥1
j−2 ≤ 2,

one gets

sup
p≥1

p∑
j=1

|E ξ2
j,p
− ςQ| ≤ L∗

1,n
.

Therefore, the condition C1) holds. It remains to verify the conditions C2).
We have

E

 p∑
j=1

xj ξ̃j,p

2

=
1

n2

p∑
i=1

p∑
j=1

xixjEĨn(ψi,p) Ĩn(ψj,p) , (6.38)

where Ĩt(f) = I2
t
(f) − E I2

t
(f). By applying Ito’s formula one can calculate

that for any bounded R+ → R functions f and g

E Ĩn(f) Ĩn(g) = 2τ̃ 2
f,g

(n) + λEY 4
1

∫ n

0

f 2(t)g2(t) %2
2
(t) dt , (6.39)
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where τ̃f,g(t) =
∫ t

0
f(u) g(u) %̃(u) du. First, we take f = g = ψi,p and get

E Ĩ2
n
(ψj,p) ≤ 8n2 κ∗(n) + 4 EY 4

1
n (κ∗(n))2 λ−1

∗ .

If f = ψi,p and g = ψj,p then

τ̃ψi,p,ψj,p(n) = −
np−1∑
k=1

∫ tk

tk−1

(%̃(u+ ∆)− %̃(u)) du
k∑
s=1

φi(ts)φj(ts) .

Now, taking into account the orthogonality property (3.3) for i 6= j we get
that for the k = rp+ ι with 1 ≤ ι < p∣∣∣∣∣

k∑
s=1

φi(ts)φj(ts)

∣∣∣∣∣ =

∣∣∣∣∣
ι∑

s=1

φi(ts)φj(ts)

∣∣∣∣∣ ≤ p‖φi‖p ‖φj‖p = p .

Thus, in view of the condition (2.9)

∣∣∣τ̃ψi,p,ψj,p(n)
∣∣∣ ≤ np−1∑

k=1

∫ tk

tk−1

|%̃(u+ ∆)− %̃(u)|
∆

du ≤ 2

∫ n

0

∣∣∣∣ d

dt
%̃(t)

∣∣∣∣ dt ≤ 2%
′

∗ ln(n+1) .

Therefore, for i 6= j and n ≥ 3∣∣∣EĨn(ψi,p) Ĩn(ψj,p)
∣∣∣ ≤ 8

(
%
′

∗

)2

ln2(n+ 1) + 4 EY 4
1
n (κ∗(n))2 λ−1

∗

≤ 11(ln 2)2
(
%
′

∗

)2

n + 4 EY 4
1
n (κ∗(n))2 λ−1

∗ .

This directly implies that the condition C2) holds with the parameter L∗
2,n

given in (3.47). Hence Theorem 3.8.

6.5 Proof of Theorem 3.9

One can check directly that in this case for 1 periodic functions f and g

E In(f) In(g) = n (f, g) and E Ĩn(f) Ĩn(g) = 2n2 (f, g)2 .

This implies the conditions C1) and C2) with σQ = 1, L1,Q(n) = 0 and
L2,Q(n) = 2. Therefore, through Corollary 3.2 we obtain Theorem 3.9.
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6.6 Proof of Theorem 5.4

First, we note that in view of (3.8) one can represent the quadratic risk with
the norm (3.2) for the estimate (3.10) as

EQ ‖Ŝγ0 − S‖
2
p

=
1

n

p∑
j=1

γ2
0
(j) EQ ξ

2
j,p

+ Θp ,

where Θp =
∑p

j=1

(
θj,p − γ0(j) θj,p

)2
. The first term can be estimated by the

condition H1) as

sup
Q∈Qn

EQ

p∑
j=1

γ2
0
(j) ξ2

j,p
≤ σ∗(n)

p∑
j=1

γ2
0
(j) + L∗

1,n
.

Therefore, taking into account that dn = n/σ∗(n), we get

sup
Q∈Qn

EQ ‖Ŝγ0 − S‖
2
p
≤ 1

dn

p∑
j=1

γ2
0
(j) +

L∗
1,n

n
+ Θp .

To examine the first term on the right hand of this inequality, we note that

lim
n→∞

1

d1/(2k+1)
n

p∑
j=1

γ2
0
(j) =

2(τk r)
1/(2k+1) k2

(k + 1)(2k + 1)
. (6.40)

Furthermore, by the inequality (6.6) for any 0 < ε̃ < 1 we get

Θp ≤ (1 + ε̃) Θp + (1 + ε̃−1)

p∑
j=1

h2
j,p
, (6.41)

where Θp =
∑p

j=1 (1 − γ0(j))2 θ2
j,p

. In view of the definition (3.37), we can

represent this term as Θp =
∑[ω0]

j=ι0
(1− γ0(j))2 θ2

j,p
+
∑p

j=[ω0]+1 θ
2
j,p

:= Θ1,p +

Θ2,p , where ι0 = j∗(α0), ω0 = ωα0
= (τkt0n)1/(2k+1) and t0 = [r/σ∗(n)ε] ε. By

applying Lemma A.5 and the inequality (6.6) yield

Θ1,p ≤ (1 + ε̃)

[ω0]∑
j=l

(1− γ0(j))2 θ2
j

+ 4π2r(1 + ε̃−1)ω3
0
p−2 .
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Similarly, through Lemma A.4

Θ2,p ≤ (1 + ε̃)
∑

j≥[ω0]+1

θ2
j

+ (1 + ε̃−1) r p−2 .

Hence,

Θp ≤ (1 + ε̃) Θ∗
ι0

+ (1 + ε̃−1)
(
4π2rω3

0
+ r
)
p−2 ,

where Θ∗
l

=
∑

j≥l (1− γ0(j))2 θ2
j
.

To estimate the last term on the right side of (6.41) we note that

sup
S∈W 1

r

max
1≤j≤p

h2
j,p
≤ ‖Ṡ‖2 p−2 ≤ r p−2 .

Moreover, W k
r
⊆ W 2

r
for any k ≥ 2. From here and Lemma A.6 one has for

any k ≥ 1 the inequality

sup
S∈Wk

r

p∑
j=1

h2
j,p
≤ r

(
p−1 1{k=1} + 3p−21{k≥2}

)
.

Moreover, in view of the conditions (3.32) and H3)

lim
n→∞

d2k/(2k+1)
n

(
p−11{k=1} + ω3

0
p−2
)

= 0 .

So, lim sup
n→∞ d2k/(2k+1)

n
sup

S∈Wk
r

Θp ≤ lim sup
n→∞ d2k/(2k+1)

n
sup

S∈Wk
r

Θ∗
ι0
.

To estimate the term Θ∗
ι0

we set υn = d2k/(2k+1)
n

sup
j≥ι0

(1−γ0(j))2/aj , where

the sequence (aj)j≥1 is defined in (5.1). This leads to the inequality

sup
S∈W 1

r

d2k/(2k+1)
n

Θ∗
ι0
≤ υn

∑
j≥1

aj θ
2
j
≤ υn r .

The conditions (3.35) imply limn→∞ σ
∗(n)t0 = r, and therefore

lim sup
n→∞

υn ≤ π−2k (τk r)
−2k/(2k+1) ,

where the coefficient τk is given in (3.37). This implies immediately that

lim sup
n→∞

d2k/(2k+1)
n

sup
S∈Wk

r

Θp ≤
r1/(2k+1)

π2k(τk)
2k/(2k+1)

. (6.42)
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Taking into account that

R∗
k

=
2(τk r)

1/(2k+1) k2

(k + 1)(2k + 1)
+

r1/(2k+1)

π2k(τk)
2k/(2k+1)

and applying (6.40) and (6.42)

lim
n→∞

d2k/(2k+1)
n

sup
S∈Wk

r

sup
Q∈Qn

EQ ‖Ŝγ0 − S‖
2
p
≤ R∗

k
. (6.43)

Moreover, Lemma A.2 yields that for any ε̃ > 0

sup
S∈Wk

r

R∗
n
(Ŝγ0 , S) ≤ (1 + ε̃) sup

S∈Wk
r

sup
Q∈Qn

EQ ‖Ŝγ0 − S‖
2
p

+ (1 + ε̃−1)r p−2 .

So, in view of the condition H3), we derive the desired inequality

lim
n→∞

d2k/(2k+1)
n

sup
S∈Wk

r

R∗
n
(Ŝγ0 , S) ≤ R∗

k
.

Hence Theorem 5.4.

7 Conclusion

In this paper, we have developed a model selection method for estimating
a continuous time regression with semimartingale noises from discrete data.
The discreteness of observations is a key factor which seriously complicates
the estimation problem because the efficient estimation procedures proposed
in papers [21] – [24] for the continuously observed regression models do not
work in this case. Moreover we are faced with the new problem of having to
specify the sampling frequency which allows one to construct a robust adap-
tive efficient procedure. To this end we have derived non-asymptotic oracle
inequalities for the robust quadratic risks under some general conditions C1)
and C2). These conditions have been verified in two important examples.

Acknowledgment. The authors are grateful to the anonymous referees
and to the AE for careful reading and for helpful comments.
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8 Appendix

A.1 Upper bound for the penalty term (3.18)

Lemma A.1. Assume that the condition C1) holds. Then for any n ≥ 1
and γ ∈ Γ,

PQ(γ) ≤ EQ Err(γ) +
L1,Q(n)

n
.

Proof. Taking into account (3.8) and the condition C1) in (3.13) we obtain

EQErr(γ) ≥ 1

n

p∑
j=1

γ2(j) E ξ2
j,p
≥ PQ(γ)−

L1,Q(n)

n
.

Hence Lemma A.1.

A.2 Relations between the norms ‖ · ‖ and ‖ · ‖p.
Lemma A.2. Let f be an absolutely continuous [0, 1] → R function with
‖ḟ‖ <∞ and g be a simple [0, 1]→ R function of the form g(t) =

∑p
j=1 cj χ(tj−1,tj ](t),

where cj are some constants. Then ∀ ε̃ > 0 the function ∆ = f − g satisfies
the following inequalities

‖∆‖2 ≤ (1+ ε̃)‖∆‖2
p
+(1+ ε̃−1)

‖ḟ‖2

p2
, ‖∆‖2

p
≤ (1+ ε̃)‖∆‖2 +(1+ ε̃−1)

‖ḟ‖2

p2
.

Proof. Applying the inequality (6.6) we obtain

‖∆‖2 = ‖∆‖2
p

+

p∑
l=1

∫ tl

tl−1

(
2∆(tl) (∆(t)−∆(tl)) + (∆(t)−∆(tl))

2) dt

≤ (1 + ε̃)‖∆‖2
p

+ (1 + ε̃−1)

p∑
l=1

∫ tl

tl−1

[∆(tl)− (∆(t))]2 dt

= (1 + ε̃)‖∆‖2
p

+ (1 + ε̃−1)

p∑
l=1

∫ tl

tl−1

|f(tl)− f(t)|2 dt.
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Noting that, for tl−1 < t ≤ tl, one has the estimate

|f(tl)− f(t)|2 ≤

(∫ tl

tl−1

|ḟ(u)|du

)2

≤ p−1

∫ tl

tl−1

|ḟ(u)|2du ,

one comes to the first inequality. Similarly, one can verify the second in-
equality. Hence Lemma A.2.

A.3 Properties of the Fourier coefficients.

Lemma A.3. Let the function S(t) in (1.1) be absolutely continuous and
have an absolutely integrable derivative. Then the coefficients (θj,p)1≤j≤p de-
fined in (3.8) satisfy the inequalities

|θ1,p| ≤ |S|1 and max
2≤j≤p

j|θj,p| ≤ 2
√

2 |Ṡ|1 , (A.1)

where |S|1 =
∫ 1

0
|S(t)|dt.

Proof. We note, that if j = 1, then |θ1,p| = |
∫ 1

0
S(t)dt| ≤ |S|1. If j ≥ 2, then

the coefficients θj,p can be represented as θj,p =
√

2Υj

(∑p

k=1
qk
j

∫ tk
tk−1

S(t)dt
)

where Υj = Re(z) for even j and Υj = Im(z) for odd j, qj = ei$j∆, ∆ = 1/p.
Taking into account that the function S is 1 - periodic we transform the sum
as

p∑
k=1

qk
j

∫ tk

tk−1

S(t)dt = qj (1− qj)
−1

p∑
k=1

qk
j
ak ,

where ak = ak(S) =
∫ tk+1

tk
S(t)dt −

∫ tk
tk−1

S(t)dt. Moreover, noting that

|ak| ≤ ∆
∫ tk+1

tk−1

|Ṡ(u)|du , we obtain

|θj,p| ≤
√

2 |1− qj|−1

p∑
k=1

|ak| ≤ 2
√

2∆|Ṡ|1 |1− qj|−1 .

Applying the inequalities (6.22) yields |1−qj| = 2 sin($j∆/2) ≥ j∆ and we
obtain the second upper bound in (A.1). Hence Lemma A.3.
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Lemma A.4. For any p ≥ 2, 1 ≤ N ≤ p and r > 0, the coefficients
(θj,p)1≤j≤p of functions S from the class W 1

r
satisfy, for any ε̃ > 0, the

following inequality

p∑
j=N

θ2
j,p
≤ (1 + ε̃)

∑
j≥N

θ2
j

+ (1 + ε̃−1) r p−2 . (A.2)

Proof. Note that
∑p

j=N
θ2
j,p

= minx1,...,xN−1
‖S −

∑N−1

j=1
xjφj‖2

p
≤ ‖fN‖2

p
,

where fN(t) =
∑

j≥N θjφj(t). By applying Lemma A.2 and taking into

account that ‖fN‖2 =
∑

j≥N θ2
j

and ‖ḟN‖2 ≤ r, we obtain the bound (A.2).

Hence Lemma A.4

Lemma A.5. For any p ≥ 2 and r > 0, the coefficients (θj,p)1≤j≤p of func-
tions S from the class W 1

r
satisfy the following inequality

max
1≤j≤p

sup
S∈W 1

r

(
|θj,p − θj| − 2π

√
r j p−1

)
≤ 0 . (A.3)

Proof. First of all we note that θ1,p = θ1. Therefore, it suffices to check that
the upper bound (A.3) holds for 2 ≤ j ≤ p. Moreover, note that if S ∈ W 1

r

then the function S is absolutely continuous. Therefore, the coefficients (3.4)
and (5.1) satisfy the inequalities

|θj,p − θj| ≤ p−1

∫ 1

0

∣∣∣(S(u)φj(u)
)′∣∣∣ du ≤ 2$j

p

√∫ 1

0

(|S ′(u)|2 + |S(u)|2) du .

Using here that
∫ 1

0

(
|S ′(u)|2 + |S(u)|2

)
du ≤ r, we obtain (A.3).

Lemma A.6. For any p ≥ 2 and r > 0 the correction coefficients
(
hj,p
)

1≤j≤p
for the functions S from the class W 2

r
satisfy the following inequality

sup
S∈W 2

r

p∑
j=1

h2
j,p
≤ 3r p−2 . (A.4)

Proof. By making use of the definition of hj,p in (3.7) we can represent it

as hj,p = −θ′
j,p
/(2p) +Hj,p, where θ

′

j,p
= (S

′
, φj)p, Hj,p =

∑p

l=1
φj(tl) υl and
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υl =
∫ tl
tl−1

(∫ tl
t

(
S
′
(tl)− S

′
(z)
)

dz
)

dt . Since the derivative S
′

belongs to W 1
r
,

we can get through the upper bound (A.2) with ε̃ = 1, that for p ≥ 2

p∑
j=1

(
θ
′

j,p

)2

= ‖S ′‖2
p
≤ 2‖S ′‖2 + 2‖S ′′‖2 p−2 ≤ 2r + 2r p−2 < 3r .

Since S
′

is absolutely continuous, i.e. S
′
(tl) − S

′
(z) =

∫ tl
z
S
′′
(u) du, we

can rewrite Hj,p as Hj,p = 2−1
∑p

l=1
φj(tl)

∫ tl
tl−1

(t− tl−1)2 S
′′
(t)dt. Therefore,

|Hj,p| ≤ 2−1/2p−2
∫ 1

0
|S ′′(t)|dt ≤ 2−1/2p−2

√
r and we get the inequality (A.4).

Hence Lemma A.6.
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