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In a previous paper we showed a proof (probabilistic) by merging the infinite number of states into three SuperStates: the merged process was still a Markov process easily solvable. Now we provide a different probabilistic proof of the Conjecture via the Reliability Integral Theory and the SPQR Principle. We devise a "ideal machine" (Gedanken Experiment) which, as quickly as one wants, makes transitions between the SuperStates and finally ends into the "Collatz Cycle" where it stays forever.

Introduction

The author during 2019 presented several proofs of the conjecture; all but one are probabilistic: the last one [START_REF] Galetto | Collatz Conjecture, new proof by merging into three SuperStates[END_REF] merged the infinite states of the Markov Process (related to the conjecture) into three Superstates. In this paper we deal further with the three Superstates and provide a simple formula giving the probability of entering the "Collatz Cycle". In a previous paper [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF] we provided a probabilistic proof of the Conjecture; later, after we saw the interesting paper [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF]; both the papers tried to prove the Hailstone Conjecture using Markov processes. In another paper [START_REF] Galetto | Syracuse_Collatz Conjecture: Comparison of two Markov approaches towards the proof[END_REF], we compared the two probabilistic methods using the Reliability Integral Theory [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] and the SPQR Principle [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF]. Any probabilistic method makes "probable" the proof, but it is not really a mathematical proof. To overcome such a drawback later we showed a non-probabilistic proof using Flow Graphs and the SPQR Principle [START_REF] Galetto | Proof of Syracuse_Collatz Conjecture by Flow Graphs[END_REF].

The Collatz problem (also called the 3x+1 mapping, hailstone problem, Syracuse problem, ...), posed by L. Collatz in 1937, states that the system of the two difference equations, involving natural numbers, [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF] given the initial condition y 0 (any integer positive number) arrives after some (n is a number not known in advance) "continued" iterations to the value y n =1. It is considered a very difficult problem to be solved. As done in previous papers, we name "state of the system" the integer positive number generated by (1); so we see that the problem is transformed into the following:

given any initial state y 0 the system makes a certain number n of transitions (n is a number not known in advance) and finally it ends into the state y n =1. We can associate to any state of the system y k an edge e k+1 =(y k , y k+1 ) traversed at time k+1 the index of the row of a matrix P and to state y k+1 the index of the column of the same matrix P; then we can describe the graph by the matrix P with entries 1 related to the arrow of the transition y k y k+1 for any edge e k+1 =(y k , y k+1 ). Then for any state of the system y k there is an infinite dimensional row vector u(k), with all entries u i (k)=0, but one entry u y (k)=1, related to the edge e k+1 =(y k , y k+1 ): it is a unit vector of vector space. The vector u(k) refers to the k-th iteration of a mapping T. The mapping T is provided by an infinite-dimensional matrix P=[a ij ], named transition matrix (with infinite rows and columns); rows and columns are indexed by the natural numbers (states of the system) 1, 2, 3, 4, ..., n, n+1, ...; every a ij entry is 0, except , ........ [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF] where the indexes i and j are given by ( 1), for the arrows e k+1 =(y k , y k+1 ). The P matrix has a 3 by 3 submatrix (with rows and columns indexed by the numbers 1, 2, 4) such that  when the system is in the state 1, the next transition is to state 4: 1  4  when the system is in the state 2, the next transition is to state 1: 2  1  when the system is in the state 4, the next transition is to state 2: 4  2 All this means that when the system enters one of those 3 states [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] it never leaves out of them, the system (or the process) circulates in the set 1, 2, 4 forever. It is a "periodic process". The set 1, 2, 4 is the Collatz Cycle.

In the paper [START_REF] Galetto | Collatz Conjecture, new proof by merging into three SuperStates[END_REF] we could arrange the (infinite) matrix P with a SuperState SS 0 made of the 3 states [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] (the Collatz Cycle), a SuperState SS 1 made of the infinite EVEN states [6, 8, 10, …], a SuperState SS 2 made of the infinite ODD states [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF][START_REF] Galetto | Proof of Syracuse_Collatz Conjecture by Flow Graphs[END_REF], …] The matrix P was be partitioned into 6 submatrices, written simply as where P 00 , P 11 and P 22 are square matrices.

The submatrix P 00 is orthogonal: its inverse is its transpose = . It is important to notice that P 3 , the 3 rd power of the matrix P, is such that the submatrix is the identity matrix; when the system reaches the set 1, 2, 4 of the states it remains there forever. It follows that = = . The matrices P 00 , P 11 and P 22 are square matrices, while the others are rectangular.

The transition graph of the merged Markov Process

The process is bound to enter the SuperState SS 0 =1, 2, 4 because the rectangular submatrix in the middle left corner has only one 1 entry [the other entries are all 0] and the rectangular submatrix in lower left corner has only 0 entries. The "periodic process" circulating in the set 1, 2, 4 is ruled by the submatrix P 00 . The graph of the transitions is given in figure 2.

In the figure 3 we show the flow graph of the 3 SuperStates SS 0 , SS 1 and SS 2 (of the merged process) and the transitions between them; notice that there are three arrows from SS 1 , one back to SS 2 , one forward to SS 0 and one re-entering into SS 1 (which accounts for the internal transitions within SS 1 ). The merged process is ruled by a matrix P merged as the following where the transition probabilities are shown (we shall see later how to find the probabilities p 10 and p 11 ). IF p 10 >0, the matrix P merged provides the "steady state probability vector" =[1, 0, 0] solution of the relationship =P merged , which states that the process stays forever in the SuperState SS 0 after entering it. After entering SS 0 the probability of being in the states [making the SuperState SS 0 ] 1, 2, 4 (Collatz cycle) is given by the "steady state probability vector" *=[1/3, 1/3, 1/3] solution of the relationship *=*P 00 . Now we consider our Gedanken Experiment [the "ideal machine" which makes transitions between the SuperStates (fig, 3), as quickly as one wants, and finally ends into SS 0 the "Collatz Cycle" where it stays forever].

The transitions are ruled by transition rates  1 (from SS 2 to SS 1 ),  (from SS 1 to SS 2 ),  0 (from 

SS0 SS1 SS2

SS 1 to SS 0 ); the transition rates are not probabilities! Let's see how our "ideal machine" works: when it is SS 2 it goes next into SS 1 after a random time ruled by the density transition probability  1 exp(- 1 t) while when it is SS 1 arises a competition between the random time T 0 , ruled by the density transition probability  0 exp(- 0 t) [to go to SS 0 ] and the random time T 2 , ruled by the density transition probability exp(-t) [to go to SS 2 ]; if T 0 <T 2 , then the machine goes to SS 0 (on the contrary it goes back to SS 2 ). According the Reliability Integral Theory [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] we define the functions R 2 (t) and R 1 (t) as the probabilities that the machine does not enter SS 0 (the Collatz Cycle) at time t, GIVEN that it started in SS 2 or SS 1 , respectively, at time 0 (when the machine begins its operation).

The two integral equations providing the probabilities R 2 (t) and R 1 (t) are

The solution R 2 (t) of the RIT integral equations [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] 

is ........ (3) 
where s 1 and s 2 are the absolute values of the negative roots of the characteristic equation

.... (4)

Since -s 1 and -s 2 are negative (whichever are the positive parameters  0 ,  1 and ) R 2 (t)0 as t: the Collatz Cycle (the superstate SS 0 ) is eventually entered as time pass by.

The transition rates for the merged Markov Process

Now we try to define the positive parameters  0 ,  1 and  of the Markov process in relation with the Collatz problem.

The rates refer to the number of transitions between the superstates, per unit time: it is the speed of our ideal machine. Since the speed is at our will we can fix  0 as we want; let's fix  1 =1/ns, 1 transition per nanosecond from SS 2 to SS 1 which mean a mean time 1/ 1 =1 ns. This consequence of this choice is that the mean time 1/( 0 +) for any transition out of the susperstate SS 1 (from SS 1 to SS 2 and from SS 1 to SS 0 ) and plus the mean time between transitions within the susperstate SS 1 must be 1 ns. To be consistent with the matrix P merged the "instantaneous" transition probability 0. The transition rate  0 is related to the transition probability p 10 of the P merged matrix: p 10 = 0 /( 0 +). We derive  0 =p 10 /(1-p 10 ). In the paper [START_REF] Galetto | Collatz Conjecture, new proof by merging into three SuperStates[END_REF] we set p 10 =1/[2(81m)], where m=3y 0 +1 with the initial condition y 0 (any integer positive odd number).

The figure 4 show two cases. The Mean Time To SS 0 (from SS 2 ) are respectively 151108 ns (with y 0 ) and 451108 ns (with y' 0 ) and (y 0 <y' 0 ).

Conclusion

Having applied to an "ideal machine" (Gedanken Experiment) the SPQR («Semper Paratus ad Qualitatem et Rationem») Principle and Reliability Integral Theory, the author thinks that his new probabilistic method is able to provide the proof of the Syracuse_Collatz Conjecture [he did already probabilistically in previous papers]. [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF][START_REF] Galetto | Syracuse_Collatz Conjecture: Comparison of two Markov approaches towards the proof[END_REF][START_REF] Galetto | Proof of Syracuse_Collatz Conjecture by Flow Graphs[END_REF] The "ideal machine" can be as fast as one wants, to go from the initial state y 0 to the superstate SS 0 : it all depends on the transition rate  1 and on the mean time 1/ 1 .
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 23 Figure 2. The graph of the transitions within and between the SuperStates SS 0 , SS 1 and SS 2 (only few of the total transitions are shown)
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 4 Figure 4. The "Reliabilities" from the SuperState SS 2 to SS 0 , for two initial values y 0 and y' 0 (y 0 <y' 0 )

  5 from SS 1 to SS 2 , we must put =0.5 transitions/ns, that is, in mean, it takes 2 transitions to go from SS 1 to SS 2 , because, in mean, 1 transition is spent within the susperstate SS 1 [transition from one state of SS 1 to another state of SS 1 ].