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To transform the chromatic number research to the chromatic index one in cubic graph Summary: We present how to transform the chromatic number research in any graph into chromatic index research in bridgeless cubic graph.

Introduction

First we remind some notions and naming convention and particularly the Cartesian sum of graph.

Knowing an algorithm for edges coloring of a 3-regular graph called cubic, without isthmus, we know how to find the chromatic number of any graph. Indeed, we explain how to reduce it to a problem SAT and following the article of Ian Holyer [START_REF] Holyer | The of edge-colouring[END_REF], we reduce it to a problem of chromatic index research of a cubic graph without isthmus.

Reminders and conventions

• G = (X, A) is the graph which has X as set of vertices and A as set of edges.

• |Y| is the cardinal of a set Y.

• We note d G (x) the degree of x vertex on graph G.

• A vertex clique is a set of vertices linked together in pairs by edges. We note  the maximum number of a clique.

• N is the vertices number of G (or |X|) and M the edges number (or |A|).

• We name χ', the chromatic index of G corresponding to the minimum number of colors to strongly color the edges. In Claude Berge's books [1] [2], this number is noted q(G).

• χ is the chromatic number of G corresponding to the minimum number of colors to strongly colour the vertices. In Claude Berge's books [1] [2], this number is noted  (G).

• K q represents the order clique q.

• G is noted as the complement of G.

• G1 + G2 denote the Cartesian sum of two graphs (cf. [1] [2]).

Reminder: Cartesian sum of graph. A Cartesian sum G e of a graph G with another graph R is a graph consisting of the union of k duplications of the graph G, where k is the cardinal of X R and edges of R connecting the vertices of different duplicates (Gi). We can see graphically a duplication Gi in horizontal axis and a duplication Rj inside the vertical plan.

Here we will mainly use the Cartesian sum G + K q .

Example: Let a graph G with X = {pa, pb, ca, cb} and A= {(pa, ca), (pa, cb), (pb, ca)}, G e = G + K 3 = {(pa1, pa2), (pa1, pa3), (pa2, pa3), (pb1, pb2), (pb1, pb3), (pb2, pb3), (ca1, ca2), (ca1, ca3), (ca2, ca3), (cb1, cb2), (cb1, cb3), (cb2, cb3)}).
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It is the Cartesian sum, G + K 3 which gives graphically:

pa pb ca cb G pa1 pb1 cb1 ca1 G 1 pa2 pb2 cb2 ca2 G 2 pa3 pb3 cb3 ca3 G 3 edges of K 3 linked to cb G e Figure 1.

Resulting graph

The edges set {(cb1, cb2), (cb1, cb3), (cb2, cb3)} will be named K 3 (cb) linked to the vertex cb of G.

Remark: for the chromatic number research χ, we will associate color i to the i th duplication.

From chromatic number to chromatic index

This part takes up the graph sum Cartesian G + K q and is based on Ian Holyer's work seen in [START_REF] Holyer | The of edge-colouring[END_REF]. We will show that looking for the chromatic number of G it is like developing the problem in several steps: first in a graph G+K q . Once done, the second step is to create a problem of SAT. The third step resulting from Ian Holyer's work [START_REF] Holyer | The of edge-colouring[END_REF] will apply a transformation of the SAT problem into a cubic graph where it wills only remain to apply chromatic index research.

Stage 1. Let us take again the original graph G. We transform it into a graph G+K q with:

-Gi = (Xi, Ai) the graph of ith iteration where vertices xi will mean « x can be of color i » and -K q (x) the clique of cardinality q associated to the vertices x of G, linking all vertices xi of Gi, i=1 to q. We can initialize by default q as being the maximum degree.

Stage 2. We will transform this resulting graph into a problem to satisfy (SAT in the sense of Garey and Johnson [START_REF] Garey | Some simplified polynomial complete problems[END_REF] [START_REF] Garey | Computers and Intractibility, A guide to the Theory of NP-Completeness[END_REF]) with clauses and literals. These problems have:

-literals based on Boolean variables xi or its negation (xi or not xi noted xi); -clauses linking these literals by the operator « or » noted . These clauses are linked between them by the operator « and » noted ˄.

Thus the transformation puts three types of clauses which are:

 On a same Gi=(Xi, Ai), if (xi, yi) belongs to Ai, the following clause is: (not xi or not yi) or (xi  yi) o This indicates that two vertices connected by an edge cannot have the same color i ;  On a same K q (x), for all xi of Gi and all xj of Gj, (not xi or not xj) i.e. (xi  xj) o This indicates that the same vertex x of G cannot cumulatively have two colors i and j  On a same K q (x) of cardinality q, (x1 or x2 or … or xq) i.e. (x1

 x2  …  xq)
o This indicates that there is at least one color between 1 and q for the same vertex x of G.

Stage 3. A SAT problem has not always same length for their clause. It depends on the nature of the constraint representing by the clause and on the variables number on which it applies this constraint.

We adapt the transformation process of Ian Holyer [START_REF] Holyer | The of edge-colouring[END_REF] to create a new basic graph named H. This one is adapted from Ian Holyer's method by taking a clause of k literals, k being variable.

We keep the inverting component shown in figure 1 of [START_REF] Holyer | The of edge-colouring[END_REF] for a literal. We keep also how to build the variablesetting component representing the consistency between the literals of a same variable like the example shown in figure 2 of [START_REF] Holyer | The of edge-colouring[END_REF].

We only change the corresponding cycle named "the satisfaction testing component" representing a clause described in the figure 3 in [START_REF] Holyer | The of edge-colouring[END_REF]. It can now connect not only three variable-setting components. The only constraint is to link always an odd number of variable-setting components (see figure 2 in [START_REF] Holyer | The of edge-colouring[END_REF]) and then an odd number of input pairs of edges.

If the clause connects an even number of literals then we add in the same way an input pairs of edges connected together by one vertex of degree 3 to create a "False" component. The two edges linked by a vertex means as explained in [START_REF] Holyer | The of edge-colouring[END_REF] that they must be always of different colours interpreting the False value for SAT problem. We add a third edge such that the vertex is of degree 3. We will see after how to complete the link for this edge.

The following figure gives an example on four literals, each of them connecting input pair of edges of an inverted component. These inverted components are represented by the same symbol described and linked together in the same way as in [START_REF] Holyer | The of edge-colouring[END_REF]: About the third edges introduced by this new vertex making a "False" component, as written in [START_REF] Holyer | The of edge-colouring[END_REF], the cubic graph is made by two copies of this first built graph H "by identifying the remaining connected edges in corresponding pairs".

We note Sat-3Reg (problem SAT) the method of creating a 3-regular graph for the research of its chromatic index from a SAT problem. If the graph of degree 3 resulting from this method is "4 colorable", then the problem SAT is not satisfied. If it is "3-colorable", then the SAT problem is satisfied giving the coloring of the graph G.

Iteration on the three stages. We loop from i = q to 1, starting from graphs G + Ki starting with a 'q' close to an upper bound (max degree at least). If the SAT problem coming from the graph G+K i is satisfied but the graph G + K i-1 is not satisfied then the chromatic is equal to i.

Synthesis

Here is a summary of the main results with G=(X,A) and G+K q =  where G i =(X i , i ) i th copy of G and K q (x) copy of K q linked to a vertex x of X :

 χ to χ' ; Let SAT i = {    ˄    ˄   }
With the transformation, Sat-3Reg, to transform a SAT problem to a cubic graph, we have:  i 1  i  upper bound of χ (max degree for example), such that χ'(Sat-3Reg (SAT i ))=3 and χ'(Sat-3Reg (SAT i-1 ))=4 and χ(G)=i.

Conclusion

We describe how one can reduce the research for the chromatic number of any graph to the research of the chromatic index of a particular cubic graph by way of transformations into problems SAT.

Figure 2 .

 2 Figure 2. A satisfaction testing component linking four literals

We have explained in another paper how to carry out this research for the chromatic index of a cubic graph.

We will show in future article the use of these algorithms and a particular construction of graph to solve some problems of operational research as scheduling of tasks and even of allocation of resources. This article will explain how to set at the same time constraints of order, disjunction and even cumulative "a minima" or "a maxima" in order to optimize these resources.