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THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR
FORMS

F. PELLARIN

ABSTRACT. In this text we generalize the notion of Drinfeld modular form for the group
I' := GL2(FF4[f]) to a vector-valued setting, where the target spaces are certain modules
over positive characteristic Banach algebras over which are defined what we call the
‘representations of the first kind’. Under quite reasonable restrictions, we show that the
spaces of such modular forms are finite-dimensional, endowed with certain generalizations
of Hecke operators, with differential operators a la Serre etc. The crucial point of this
work is the introduction of a ’field of uniformizers’, a field extension of the valued field
of formal Laurent series Coo((u)) where w is the usual uniformizer for Drinfeld modular
forms, in which we can study the expansions at the cusp infinity of our modular forms
and which is wildly ramified and not discretely valued. Examples of such modular forms
are given through the construction of Poincaré and Eisenstein series.

After the discussion of these fundamental properties, the paper continues with a more
detailed analysis of the special case of modular forms associated to a restricted class of
representations ps; of I' which has more importance in arithmetical applications. More
structure results are given in this case, and a harmonic product formula is obtained which
allows, with the help of conjectures on the structure of an F,-algebra of A-periodic multiple
sums, multiple Eisenstein series etc., to produce conjectural formulas for Eisenstein series.
Other properties such as integrality of coefficients of Eisenstein series, specialization at
roots of unity etc. are included as well.
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1. INTRODUCTION

The aim of this volume is to introduce new perspectives in the analytic theory of Drinfeld
modular forms for the Drinfeld modular group GLa(IF4[6]). This theory was initiated in
the foundational works by Goss starting from his Ph. D. Thesis (see [35]) and continued
in the works of Gekeler, notably in [24]. Probably these are the main foundational papers.
The theory is in expansion since then thanks to the work of several authors. For ’analytic
theory’ we mean a collection of algebraic or analytic results coming from the study of
expansions at the cusp infinity, such as finiteness of dimensions of spaces of modular forms,
Hecke operators, differential operators, congruences.

Modular forms with values in positive characteristic fields @ such as

Co = BT

are at the center of an active domain of research with deep developments in several direc-
tions, for more general groups GLy(A) (n > 2), with A ring of functions over a smooth
projective geometrically irreducible curve regular away from an infinity point, its con-
gruence subgroups, leading to an algebraic and analytic theory of modular forms and to
compactification problems as in the works of Pink and Basson, Breuer and Pink [69, [§],
Gekeler [27, 28, 29, [30], Haberli [40], Hartl and Yu [41]. The arithmetic theory of Drinfeld
modular forms, if compared with that of classical modular forms, also has a different flavor.
We mention the investigations related to Galoisian representations and the cohomological
theory of crystals by Bockle [9, [10] and aspects of P-adic continuous families of Drinfeld
modular forms by Hattori [42] and Nicole and Rosso [50}, 51]. These works illustrate how
the theory ramifies deeply in a multitude of directions but the list of reference we give is
far from being representative. More references can be found in the above mentioned works.

In the present volume, we voluntarily restrict our attention to the simplest case of the
Drinfeld modular group

I' := GLo(F,[0])

and we follow yet another direction of research which, as far as we can see, has not been
deeply investigated yet. We want to begin the study of analytic properties of modular
forms associated with an extension of the notion of type, initially introduced by Gekeler
n [24]. We replace it with a class of representations of T

It is well known that the theory of modular forms for congruence subgroups of SLy(Z)
is deeply enriched by considering characters and multiplier systems, and Drinfeld modular
forms do not make exception to this principle. The type of a Drinfeld modular form
for the group I' can be viewed as a one-dimensional representation of I'. In this paper
we are interested in certain higher dimensional representations of this group that we call
'representations of the first kind’ and our basic observation is that they are naturally
contained in certain rigid analytic families at the infinity place.

The reader that wants to immediately skip to the description of the results contained
here can read directly; just below in we shall introduce simple explicit examples

IWith F,((6~1))*” a separable closure of the local field F,((6~")) and = denoting the completion.
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that, playing the role of Ariadne’s thread, can be helpful entering into the details of this
work.

1.1. Motivation through three examples. One of the principal initial reasons for our
endeavor comes from remarks on analytic families of modular forms first raised in the paper
[56], and later, in [61]. We shall give three explicit examples in various directions that can
help the reader to understand our viewpoint.

1.1.1. Serre’s example. Consider a prime number p > 2. We recall the fundamental exam-
ple of the p-adic family of Eisenstein series (for SLy(Z) in the settings and notations of
Serre 73] §1.6]; we will not recall all the definitions of the involved objects here). This can
be viewed as a family of formal series

1
ke Gp=SC(L=k)+ ) of1(Mg" € Q + qZ,[[q]],

n>1

in Zy|[q]] with g an indeterminate (which is often identified with the uniformizer at infinity
of the modular group), with the parameter k£ = (s,u) in the topological group

X, =7, x7Z/)(p—1)Z

submitted to the condition that « is a multiple of the class of 2. We do not recall the defini-
tion of (* and o}, in detail here (read Serre, loc. cit.), but * is essentially Kubota-Leopold’s
p-adic zeta function and o}, is the arithmetic function obtained from the arithmetic func-
tion oy, when we drop the divisors that are multiple of p, so that a X ,-exponentiation can
be defined. If we choose any k as above, it can be proved that the corresponding value

.. is a p-adic modular form of weight k in Serre’s sense. There is an injective group map
Z — Xp; if we choose k € 2N* (where N* = Z>1) the value of G* at k is the image in
Qy[[q]] of a modular form of weight k for the congruence subgroup I'g(p) of SL2(Z). Indeed

in this case (*(1 — k) = (1 — p*"1)¢(1 — k) € Q so that and we can view G} in Q[[g]] and
Gf = Gr—p" Gy,

whereif f =3 oo fnd™, flv :i=>,>0 [nd”", and where G,, € Q+qZ][q]] is the g-expansion
of one of the various normalizations of the Eisenstein series of weight w € (2N*). In
synthesis, the p-adic Eisenstein family, for even integer values of the parameter, specializes
to modular forms for I'g(p). The level p is therefore fixed, and the weight, non-constant,
varies in the topological group X ,,. If p is an irregular prime it can happen that (*(1—k) = 0
for some integral values of k. In this case, G is a cusp form.

1.1.2. Goss’ example. Inspired by the above example of Serre, and based on earlier works
of Petrov [66] 67], Goss [39] looked for an analogue picture in the settings of Drinfeld
modular forms for I' = GLy(A), where A := Fy[f]. One first choses P € A monic and
irreducible; an analogue of a prime number. While p-adic modular forms are, in Serre’s
approach, formal series in g, here Goss considers a new indeterminate u (E]) that can be
identified with the usual parameter at infinity for the Drinfeld modular group (more details

ZNot to be mixed up with Serre’s coordinate v in X,.
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about it will be given in the present paper; the definition is recalled in full detail in (|1.3))).
Then he proceeds constructing families of formal series in u that retrace some properties of
the above G}. Recall that in Serre’s example it was used, crucially that there is an action
of Z on formal series in q induced by G,, (indeed, there is the operator (-)|y); here there
is a similar action of A on formal series in u (it is not given by G,, but by its Drinfeldian
companion which is Carlitz’s module; see later). If a € A, we write u, € A[[u]] for the
image of u under the action of a (in Serre’s settings we would have written q, = qP).
Also, there is a simple way to define exponentiation a* of a monic polynomial a € A by an
element k of Goss’ topological group

Xp =17, x 7.)(q*®") —1)Z.

This can be boiled down to construct the map Xp — Apl[u]] (where Ap is the P-
completion of A, see [39] for details and more generality):

ko fo= Y afu, € Ap[[u]].

a€A
a monic

It is not difficult to show, in a way similar to Serre’s, that the special values corresponding
to k € N* with £ =1 (mod ¢ — 1) are the u-expansions of Drinfeld cusp forms of weight &
for the full Drinfeld modular group I" and by [39, Theorem 2], the above is a P-adic family
of Drinfeld modular forms in the sense of Serre. Again the level of the group is constant (full
level) and the weights vary. There is a substantial difference in the comparison with Serre’s
example. Goss observed that there is no non-zero constant term in these u-expansions of
forms; the elements of the family are all cusp forms. In clear, there is no occurrence of any
analogue of Kubota-Leopoldt zeta function in Goss’ construction.

1.1.3. A basic co-adic example. Serre’s and Goss’ examples are relative to the choice of a

finite place p of Q or P of K :=F,(6), but in the Drinfeldian setting, it is possible to also

work with the choice of the place infinity oo of K. In the present volume we are mainly

concerned with this aspect of the theory. Less known is the existence of certain non-trivial

oo-adic families. Here is an explicit example. We denote by Fy“ an algebraic closure of .
We consider a Dirichlet character

X (A/PA)* — (Fg°)~

of level P € A (monic and irreducible) that we extend to A in the usual way; now the
parameter of the oco-adic family that we construct can be specialized to x (so P varies).
We define the following rigid analytic function over the Drinfeld half-plane Q := Coo\ Koo —
Coo (Where Koo = Fy((3))):

(1.1) g(2) = —LLx) + 3 (az +b) "X (b),
a,beA

where the dash indicates a sum avoiding a = 0 and where L(1;x) is a Dirichlet L-value
_ac A, monic x(a)a=! which is also a special value of Goss’ abelian L-function. It is not
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difficult to show that given x, g, is a Drinfeld modular form of weight 1 for the principal
congruence subgroup I'(P) of I', thought neither is an Eisenstein series, nor a cusp form.

Is there an analytic space having the Dirichlet characters x as points, in such a way that
we can associate to the isobaric family g, a u-series expansion, knowing that the level now
varies as a function of x? The answer is affirmative, and it is essentially contained in the
papers [55], [61]. The present work proposes to widely extend the theory. The characters
x can indeed be viewed as closed points of the rigid analytic affine line Aé:o” (and more
generally we will encounter higher dimensional affine spaces as parameter spaces). Not only,
but there exists an co-adic analogue of the Kubota-Leopold’s zeta function that allows to
interpolate the constant terms of all the g, ; a class of zeta values in Tate algebras discussed,
for example, in [2] 5, 55]. Additionally, although the functions g, are not Eisenstein series,
the analytic function that interpolates them (a family) is a coefficient of a certain vector
Eisenstein series of weight 1 with values in Tate algebras for the full group I', associated to
a certain representation of I', and other entries of it sometimes deliver the special values
of Goss’ family. The reader will find a systematic study of these structures in this paper.
For instance, see our §7}

1.2. The field of uniformizers. To study congruences or Serre’s p-adic analytic families
of modular forms useful tool is provided by the series expansions at a cusp. For instance,
Gekeler’s seminal paper [24] uses ‘Fourier series’ of modular forms (we say ‘u-expansions’)
in an essential way. Many times, readers take for granted the existence of such expansions.

One bad news is that this viewpoint is no longer sufficient and in particular, it does not
extend to the example . It is more difficult to expand at a cusp the modular forms
that we are interested in. The good news is that there exists a field of uniformizers K
(Definition in which we can embed all the coordinates of our Eisenstein series with
values in modular forms, or more generally, our modular forms.

Recall that a Drinfeld modular form for the group I' in the sense of [35, 24] can be
identified with an element of the v-valued field

Coo((w),

where v is the u-adic valuation, which is discrete. More precisely, a Drinfeld modular form
f has a u-expansion
f=Y_faul, fi€Cx
i>0
A coordinate f of one of our vector modular forms with values in Tate algebras (including
the modular form interpolating ) can be identified, in unique way, with a formal series

(1.2) f="rfo+ > fid,

i>0
where fp is an element of the completion K of the fraction field of a Tate algebra for the
Gauss’ norm, and the coefficients f; are entire functions C,, — K that we call tame series,
and that in general, are not constant functions. The field of uniformizers will be described
in a rather important section of our work. We note that K is a valued field extension
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of C((u)), but the extension of the valuation on it is no longer discrete and the extension
of valuations is wildly ramified.

We present a spectrum of aspects which is limited to the construction of the analytic
uniformization at the cusp infinity and some consequences going from the proof that vector
spaces of modular forms are of finite dimension, to the construction of explicit examples
of Eisenstein and Poincaré series and the analysis of their expansions in K. This already
offered challenges and rich pictures and we decided to confine our attention only to those
aspects which are tangible by an appropriate generalization of the viewpoint of Gekeler’s
seminal paper [24].

The volume presents the foundations to study new aspects of Drinfeld modular forms and
to do this, it presents new tools with an elementary approach. It is enriched with several
questions, problems and conjectures. Among other crucial aspects that we do not develop
here we mention the interpretation of modular forms of our settings as sections of algebraic
vector bundles and their links with the theory of harmonic cocycles a la Teitelbaum.

1.3. Description of the basic objects. Let ¢ = p® be a power of a prime number p with
e > 0 an integer, let F, be the finite field with ¢ elements and characteristic p, and 6 an
indeterminate over F,. All along this text, we denote by A the F,-algebra F,[f]. We set
K =TF,(f). On K, we consider the multiplicative valuation | - | defined by |a| = ¢3°8(®) q
being in K, so that |0| = q. Let K :=F,((1/60)) be the local field which is the completion
of K for this absolute value, let K5” be a separable algebraic closure of K, let Co, be

the completion of K5" for the unique extension of | - | to Ka©. Then, the field Co is at
once algebraically closed and complete for | - | with valuation group ¢© and residual field

Fg?, an algebraic closure of F,.

The 'Drinfeld half-plane’ Q = C \ Koo, with the usual rigid analytic structure in the
sense of [22, Definition 4.3.1], carries an action of I' = GLy(A) and T' = PGLy(A) by
homographies: if v = (2%) € I, and z € Q,

_az+b
(z) = cz+d

Denote by
J(z ;)(z) =cz+d
the usual factor of automorphy I' x Q — CX. Let us consider w, m € Z; then, if w = 2m
(mod g—1), the map (7, z) — J,(2)" det(y) ™" defines a factor of automorphy for T. There
is a bijection between these factors of automorphy and the couples (w,m) € Zx7Z/(q—1)Z
submitted to the above congruence.
We thus suppose that w € Z and m € Z/(q — 1)Z are such that w = 2m (mod ¢ — 1).

We recall the definition of Drinfeld modular forms (as considered by Gekeler and Goss, see
[24, Definition (5.7)]).

Definition 1.1. A Drinfeld modular form of weight w € Z and type m € Z/(q — 1)Z for
the group I' is a rigid analytic function €2 i) Coo such that
F(¥(2)) = Ty(2)" det(7) ™ f(z) Vz€Q, VyeT
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and such that additionally, there exists 0 < ¢ < 1 with the property that if z € € is such
that |u(z)| < ¢, where

(13) wz =23
acA

7 € Coo \ Ko being a fundamental period of Carlitz’s module (EI), then there is a uniformly
convergent series expansion

(1'4) f(Z) = anu(z)n> Jn € Cw.

n>0
We say that a function f in (1.4)) is regular at the infinity cusp.

Note that (1.4)) is not the only formulation of the regularity at the infinity cusp (EI) We
can restate (1.4 equivalently by asking that the set of real numbers |f(z)| is bounded if
we choose z € ) such that |u(z)| is small.

The type in Definition [1.1| corresponds to a representation

(1.5) r & GLy(F,), meZ/(q—1)Z

In dimension > 1 it happens that certain representations of I' naturally have non-trivial an-
alytic deformations, and this makes it natural to consider functions with values in positive-
dimensional Tate algebras or in similar ultrametric Banach algebras. We consider ¥ C N*
a finite subset. Let Fy(tyx) be the field of rational fractions with coefficients in F, in the
set of independent variables ty. := (¢; : ¢ € X). We choose a representation

(1.6) I % GLy (Fq(;z)).
Let w € Z be such that the map (v, 2) — J,(2)"p(y) defines a factor of automorphy
T'xQ— GLy (Fq@z)).

The necessary and sufficient condition for this is that

(1.7) p(ply) = p Iy, peFy,

as it comes out after a simple computation.

We consider the field

Ky = Coo(ty)" = Coolty)
(the completion for the Gauss norm) (EI) so that GLx(Fy(ty)) € GLy(Ky). We denote
by || - || the multiplicative valuation of Ky, extending | - | of C. We further extend this
to a norm on matrices with entries in Ky, in the usual way by taking the supremum of

30ur’ analogue of 27i, see .

4Note also that classically, a modular form for SL2(Z) (or for a subgroup of SL2(R) which is commen-
surable with it) can be also defined as a holomorphic function f : H ={z =z ++/-1ly € C:z,y e R,y >
0} — C satisfying a well known family of functional relations and such that, if z = x ++/—1y with z,y € R,
there exists ¢ € R such that f(z +iy) = O(y° 4+ y~°) (compare with Miyake’s [48] Theorem 2.1.4]).

Observe the notation ()" that will be used when the other notation will lead to a too large hat.
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the multiplicative valuations of the entries. In we discuss the notion of rigid analytic
functions with values in Ky. Taking this notion into account:

Definition 1.2. A rigid analytic function
oL kY-
such that

(1.8) F((2) = L(2) p(f(z) VzeQ, Vyel,
is called modular-like of weight w for p. Additionally, we say that such a function f =
t(fl, ceey fN) is:
(1) A weak modular form of weight w for p if there exists M € Z such that ||u(z)™ f(2)]|
is bounded as 0 < |u(z)| < ¢ for some ¢ < 1.
(2) A modular form of weight w (for p)if || f(z)] is bounded as 0 < |u(z)| < ¢ for some
c <1l
(3) A cusp form of weight w if || f(z)|| — 0 as u(z) — 0.

Let B be a Cy-sub-algebra of Kyx;. We suppose that p as in has image in GLy(B).
We denote by M/, (p; B) (resp. My, (p; B), Sw(p; B)) the B-modules of weak modular forms
(resp. modular forms, cusp forms) of weight w for p such that their images are contained
in BN*1. We have that

Sw(p; B) C Myw(p; B) C M, (p; B).

If B=Cy, N =1and p=det™™, these C-vector spaces coincide with the corresponding
spaces of ’classical’ Drinfeld modular forms of weight w, type m in the framework of
Definition [L.1l

To be relevant, Definition must deliver certain primordial properties such as the finite
dimensionality of the modules M,,(p; B), or their invariance under the action of variants of
Hecke operators. We are far from being able to return satisfactory answers in such a level
of generality. However, there is a class of representations, called representations of the first
kind, introduced and discussed in which looks suitable for our investigation because
they contain a variety of arithmetically interesting examples. An explicit example of such
representations is, with ¢ a variable, the one which associates to a matrix v = (¢ fl) el
the matrix

(1.9) P = (X0 XD € GLate, ),

where x; is the unique Fy-algebra morphism F4[0] — F,[t] sending 6 to t. Another inter-
esting example is the contragredient (or dual) representation

p ;t = t'o ;tl’
investigated in [55] [63]; in the latter case, we have already explicitly described the module
structure of My, (p};T) (the values are in T2*! where

o —

T = Coolt]),
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is the Tate algebra completion of C[t] for the Gauss valuation ||| extending the valuation
of C) and proved that these T-modules are endowed with endomorphisms given by a
natural generalization of Hecke operators.

1.4. How to interpret the example. The very first non-trivial example of our Eisenstein
series, first observed in [55], is the following function Q — T?*! of the variable z € Q:

(1.10) E(L;p,) = Z/(az—i—b)_l(Xt(a)).

abeA xt(b)

It is an analytic function Q — T?*! following our It is not at all difficult to see that
E(1;p%,) € Mi(py,; T).

We look at the second coordinate, which can be rewritten, after an elementary manipula-
tion, as

(1.11) =—Clx)+ D, D (az—b)""x(b),

acA beA

a monic

with the negative of the (-value in Tate algebra

(1.12) Alix) = Y a e H (1 Xt](DP))_l e T

a€A
a monic

as a constant term, where the product runs over the irreducible monic polynomials of A
(introduced in [55]). Let P € A be monic and irreducible and consider one of its roots
¢ € (Fg¢)*. The evaluation evg of ¢ at f allows to identify ev¢ ox; with x a certain Dirichlet
character of level P Hence, viewing , gy can be identified the evaluation eve of the

function g in .

We have collected the functions g, in an analytic family g but we did not yet identify the
sum with some kind of u-expansion as in . The strong point of Definition is
its simplicity but in practice it does not allow to do computations with Drinfeld modular
forms. If we compare with Definition we still need a valuation at the infinity cusp,
available at least in the case of classical Drinfeld modular forms by considering the order
in w in (1.4). This problem is already mentioned in [63].

Although rather technical in general, the construction of the valuation can be made
more transparent, in the example we are discussing, with the use of Perkins’ series (see
(E[}. The simplest Perkins series is:

Y1 xe) = Z(Z —b) " xu (D).

beA

6We mention that Perkins’ investigations have also important connections with the notion of quasi-
periodic functions of Gekeler (as in [25]).
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It can be seen as a meromorphic function Co, — T of the variable z and allows to rewrite

(1.11]) in the following way:
(1.13) —Ca(lyxe) + Z V(15 Xt)as

a€A
a monic

where the function ¥ (1; x¢), is defined by replacing the variable z with az (in agreement
with the notation u,). Perkins proved formulas such as

(1.14) O(Lxe) = w(t) Fu(z) Y expe (H?—fl)t], 2o\ Al

Jj=0
In the right-hand side we have Carlitz’s exponential exp, and the Anderson-Thakur func-
tion w(t) (all these items will be reviewed in . We postpone presenting the definition
of the field of uniformizers K but this is a very first example of one of its elements. More
explicitly, 1(1; x¢) is a series Y, fiu’ with a unique non-zero monomial, of the form fju'

where _ B
T mZ .
_ J
Ji= S 2 expo (1)t
Jj=0
Our settings are such that the additive valuation v extending that of Co((u)), evaluated
on the left-hand side of ([1.14)), equals

~ 1
v(u) +o(fr) = 1+ vlexpe(rz/0)) = 1=,
and the leading term of the tame series f; is proportional to exp-(7z/6). It can be proved

that the series expansion of g in R is:

g = fO + Z fiul7

i>0
with fo = —Ca(1;x¢) and f; as above. The other coefficients fa, f3,... are progressively
more and more difficult to compute and there is no easily recognizable pattern that can
help in that task. Yet, it is easy to verify that the coefficients are elements of ﬁA[t] (the
constant term fy too, but this is a non-trivial property). In general, this process allows to
compute v-valuations of the entries of our Eisenstein series and more generally, of modular
forms.

We hope that at this point the reader has a good view of our theory of tame series and
the field of uniformizers, and its various consequences. Although it is difficult to explicitly
compute series expansions of our modular forms, the existence of the field K provides an
environment in which computations are virtually possible. Thanks to this formalism we
are able, without much additional effort, to reach most of the results of the first part of
the present paper. The reader may find the preliminary material and [4) heavy but
this reflect the complexity of the given settings. It is perhaps possible to get rid of the
field K and work more directly, starting with Definition but R is the natural field in
which one can study series expansions at infinity of our modular forms and also allows to
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introduce notions of rationality and integrality of the coefficients etc. for modular forms.
The difficulty of multiplying formal series in & mirrors the complexity of the behavior at
the cusp infinity of Drinfeld modular forms in our generalized setting.

We also take the opportunity to point out that, all along the present paper, a 'modular
form’ is understood to be a vector-valued modular form associated to one of these represen-
tations, while a ’scalar modular form’ is one of such forms associated to a one-dimensional
such representation.

1.5. Results of the text. The volume is organized in ten sections. These sections can
be roughly divided in three principal parts.

I. Sections [2 to [f] We present the foundations of the theory: field of uniformizers,
Hecke operators, Serre’s derivatives finiteness results.
II. Sections |Z| and [8l We study modular forms for the representations p5,. We discuss
the structure of strongly regular modular forms.
III. Sections [9] and We discuss arguments related to the harmonic product for
multiple sums that we apply to a sort of analogue of stuffle product in the theory
of classical multiple zeta values, for Eisenstein series, and we present open problems.

Part III can be read quite independently of the previous ones. Reading Part II is possible
without reading all proofs in Part I. The following synthesis summarizes the content of
the paper and our results (more precise statements will be formulated along the text). We
proceed in the order suggested by Parts I to III.

Content of Part I. The key environment is the field of uniformizers & (remember with
valuation v, additive non-discrete valuation group Z[%], residual field UgKy, valuation ring
9 and maximal ideal 9, to which the entire is devoted. The field K is constructed
explicitly in §3| by taking the completion of the fraction field of an integral ring of entire
functions that we call the ring of tame series. The next result is proved:

Theorem A. Let ¥ C N* be a finite subset and p : I' = GLN(Fy(tx)) be a representation
of the first kind, let w € Z be such that (v,z) — J(2)"p(7) is a factor of automorphy for

L. The following properties hold.

(1) There is a natural embedding of Ks-vector spaces M. (p;Ks) 2= gN*1,

(2) The image by vy, of the Ky-vector space of modular forms M, (p; Ks) can be iden-
tified with vs(M,,(p; Kg)) N OV,

(8) The vector space of cusp forms Sy (p; Ks) can be identified with the sub-vector space
of My (p; Ks) which is sent to MNV*1 by the embedding vy .

(4) We have that Coo((u)) naturally embeds in & and v restricts to the u-adic valuation.

(5) The vector spaces My (p; Ks), Sw(p; Ks) are endowed with Hecke operators Ty as-
sociated to ideals a of A, which provide a totally multiplicative system of endo-
morphisms reducing, in the case ¥ = 0, to the classical Hecke operators acting on
classical scalar Drinfeld modular forms and cusp forms.

(6) We have Ky-linear maps &(Un) s My(p; Ky) = Swion(pdet™; Ky), defined for all
n > 0 and generalizing Serre’s derivatives.
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The slogan is therefore: modular forms are weak modular forms with entries in the ring
of integers of the field of uniformizer, and cusp forms are modular forms with entries that
are in the maximal ideal. The corresponding results in the body of the text are more
precise and cover a wider spectrum of applications. The main examples of modular forms
(construction of Poincaré series etc.) and the basic results concerning the spaces M, (p; Ks)
and Sy, (p; Ky) are contained in Parts (1), (2), (3) will be proved in Theorem and
(4) is an obvious consequence of the above (so, when p = 1 is the trivial representation
(sending every element of I" to 1 € GLy), our construction specialises to the known setting,
and M = @, M, (1;Cy) is the well known algebra of Cy-valued Drinfeld modular forms
for T' (of type 0 in Gekeler’s terminology). We will introduce Poincaré series in §5.3| as a
first non-trivial class of modular forms. Part (5) is our Theorem the proof is very
simple, thanks to the flexibility of the use of the field of uniformizers, and we can say the
same about part (6), which corresponds to our Theorem

A non-complete field Ly, intermediate between Ky and the fraction field of Ty, will be
needed in the next Theorem; it is defined in

Theorem B. The following properties hold, for p a representation of the first kind.

(1) For allw € Z, the Ly -vector space M, (p; Ly) has finite dimension. The dimension
s zero if w < 0.

(2) The dimension of the space Mi(p;Ly) does not exceed the dimension of the Ly-
vector space of common eigenvectors in Lg“ of all the matrices p(y) with ~ in the
Borel subgroup of T.

The matrices p(7y) have all the eigenvalues equal to 1. Note that (1) of Theorem B
only deals with modular forms with values in Ly. One reason for this restriction comes
from the fact that we use, in the proof, a specialisation property at roots of unity which is
unavailable in the general case of Ky-valued functions. This result corresponds to Theorem

Content of Part II. As we have mentioned, a scalar Drinfeld modular form for I' as in
Definition [1.1]has a unique u-expansion in Coo[[u]] and combining part (2) of Theorem
A and Proposition one sees that every entry f of a given element of M, (p;Ky) has
a uniquely determined series expansion

f=>fai
i>0
where for all ¢ > 0, f; is an entire function C,, — Ky, of the variable z € {2 of tame series
described in §3.2| (and additionally, fo is constant in Ky). This generalizes the case of
Definition [I.1] where the coefficients f; are all constant functions, in Cs. It is in general
very difficult to describe the coefficients f; but we make some attempts. For instance,
something can be done with Eisenstein series for the representations p3, (see @ by using

the already mentioned Perkins’ series as in see Proposition
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We fix a subset ¥ C N* of cardinality s and we consider, for all i € ¥ (*(-) denotes
transposition),

and
(1.15) 05 =) i

1€
This is indeed a representation of the first kind of degree s where N = 2/¥I  in the sense
of our Definition Additionally, p3, is an irreducible representation of I' in GLy (F[ts])
(see [57] or our Lemma [7.11)). An important feature of this class of representations is that
it allows to construct certain Eisenstein series in If s=w (mod ¢g—1) and w > 0 we
have the Eisenstein series of weight w:

(1.16) E(w; p5)(2) := Z (az +b)7" ® <Z((Z))>’

(a,b)€A2\{(0,0)} s>
a definition that extends ([1.10) to several variables ty,, which is a non-zero holomorphic
function Q — TX*!, where Ty is the completion Cu[ty,] of the polynomial algebra Co [ty
with respect to the Gauss norm || - ||, that is, the standard Tate algebra in the variables ¢,

(hence Ky is the completion of the fraction field of Ty, for ||-||). These series also generalize
the usual scalar Eisenstein series for I' (case of ¥ = (). We have

E(w; px) € Muw(p5; Tx) \ Suw(ps; Ts).
Writing
E(w; p) = (&, ..., En) € ONX!
we can prove that
E,...,EN_1 €M, EN'EE)\QR
(we recall that © and 90t are respectively the valuation ring and the maximal ideal of the
field of uniformizers).

It turns out that
En =—Ca(l;0x) (mod M),

which is a generalization of (1.11)) and (|1.13]), where

-1
(1.17) Caln;oy) == Z a "ox(a) = H (1 — 02]:3(5)> €Ty, neN

acAt P

with ox:(a) = [L;ex; Xt (a), the eulerian product running over the irreducible monic polyno-
mials of A (generalization of ), are the zeta values in Tate algebras studied in [2} 3} 5]
as well as in other papers. It can be proved [2, §2.1] that (4(n;oyx) extends to an entire
function of the variables ts,.

These Eisenstein series seem to be at the crossroad of several interesting features that
we gather in the next result (but see the text for more precise results). To begin, we must
point out that in we construct an indexation (£7) jcx, of the entries & of an Eisenstein



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 15

series £ = £(w; p%;) by the subsets J of X. With this indexation, the first entry & of £
equals £? and the last entry Ey equals £F. We have the next result.

Theorem C. The following properties hold for the Eisenstein series £(w; p%):

(1) Ifw =1 and J C X is such that |J| = (m—1)(¢—1)+1 withm >0 and1 <[ < qg—1
orm =0 and | = q — 1 then we have the v-valuation v(€') =1 —q¢ ™(q¢—1) >0
and v(EF) = 0.

(2) If w > 0, E(w; p3,) is v-integrally definable (it has an integrality property of the coef-
ficients that is described in our Deﬁnition for valuations v of K(ts,) associated
with a non-zero prime ideal p of A, and this for all but finitely many p.

(3) Evaluating the first entry of £(w; p%) at t; = 09" for all i € ¥ with k; € N yields,
up to a scalar factor, a Drinfeld quasi-modular form in the sense of [14] with an
A-expansion as in [67] and all these series occur in this process.

Part (1) can be generalized to some cases in which ¢,(w) < ¢ (the sum of the digits of the
g-ary expansion of w is < ¢) thanks to T heorem a result that describes the v-valuation
of Perkins series as in The question of the computation of these v-valuations in full
generality, related to the computation of the v-valuation of all Perkins’ series is, we should
say, not easy, and still open. It is related to a similar question on v-valuations of Perkins’
series and therefore of generalizations of Goss’ polynomials. The recent work of Gekeler
[31] suggests us that this is accessible but difficult.

Part (2) generalizes the properties of integrality of the coefficients of the u-expansion of
scalar Eisenstein series as in [24, (6.3)]. Note that our result is more recondite in the case
¥ # (). Indeed a notion of integrality of the coefficients of a series >, fiu’ with coefficients
fi which are tame series has to be introduced, and this is exactly what we do, and it is not
a triviality. Hence, Theorem C would not be meaningful without our investigations of
As for part (3), it was motivated by, and answers, a question by Goss (in a 2013 letter to
A. Petrov, [37]). A quick description of properties related to v-adic modular forms is given
in

In we will explore the arithmetic structure of negative weight modular forms for py
and deduce, by duality with Eisenstein series, a weak form of the functional identities [2]
Theorem 1].

In general, we do not control the dimensions and we are unable to construct bases of
the spaces My, (p; Ky) except when w =1 and p = p§. We have proved:

Theorem D. If |¥]| = 1 (mod ¢ — 1) the vector space Mi(p%;Lyy) is one-dimensional,
generated by E(1; p).

This is Theorem Part (2) of Theorem B (see Theorem also includes an upper
bound for the dimensions of the Ly-vector spaces, and implies a positive answer to the
question raised by [63, Problem 1.1] thanks to Theorem D. The proofs of (2) of Theorem B
and of Theorem D are easy but use a natural isomorphism between (scalar) Drinfeld mod-
ular forms for congruence subgroups of I' and spaces of automorphic functions (harmonic
cocycles) over the Bruhat-Tits tree of {2, and the same specialisation properties in terms of
the variables t; used in the proof of (1). When we do this with the entries of the elements
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of Mj(p;Ly) span scalar Drinfeld modular forms of weight one for congruence subgroups
of I'. The proof of this result is thus based on a crucial earlier remark of Gekeler (which
can be found in Cornelissen’s paper [19]).

From on, the paper almost exclusively focuses on structure properties of modular
forms for the representations p3,. We introduce here the notion of strongly reqular modular
form (see Definition . A strongly regular modular form f = t(fi,..., fn) (transpose)
is a Drinfeld modular form (in our generalized setting) which satisfies certain conditions
on the wv-valuations of its entries. Theorem allows a completely explicit structure
description for these modular forms which can be stated as follows (more precise results
can be found in the text).

Theorem E. Every strongly reqular modular form associated to the representation py. can
be constructed combining ’elementary’ Eisenstein series E(1; py;) and E(q; p;) fori € X by
using the Kronecker product, and scalar Fisenstein series. In particular, the M ®c., Kx-
module of Ks-valued strongly regqular modular forms is free of rank N = 2° where s = |X|.

The advantage of working with strongly regular modular forms is that to study them
we do not need the full strength of the tools developed in Part I of this text, namely, the
field of uniformizers and the theory of quasi-periodic matrix functions. To prove Theorem
E, we only need appropriate generalizations of the arguments of [63].

The continuous Fy(ty;)-linear automorphism 7 of Ky, extending the automorphism ¢ — ¢4
of Ky, induces injective Fy(t5;)-linear maps

(1.18) My (p5;Ks) = Mgw(ps; Ks)

and we have a similar property with Ky, replaced with Ly.. We show, in Theorem [8.9] that
for every w there exists k € N such that 7%(f) is strongly regular for every f € M, (p&; Ks).
This shows that Drinfeld modular forms in M, (p%;Ky) are not too distant from strongly
regular modular forms and this allows to deduce:

Theorem F. The Ky -vector spaces M,,(p3;; Kx) have finite dimensions.

Note that the functions of Theorem F have values in Kg *1 not just in ]Lg *1 50 that
the methods of proof of Theorems B and D do not apply for Theorem F. After Theorem
E for every modular form f € M,(p};Ky) there is k such that 7*(f) can be constructed
combining Eisenstein series, and the coefficients in the construction are in Ky. In full
generality, it seems difficult to overcome the use of the field 8 and prove Theorem F for
any representation of the first kind.

Content of Part III. This work ends with and which are more speculative and
contain a description of further perspectives of research. This part can be read quite
independently of the previous ones. We present here the harmonic product for multiple
sums, the interaction with multiple sums & la Thakur, multiple Eisenstein series, and
we propose conjectures based on identities between Eisenstein series and many explicit
formulas.

In §9 we prove (see Theorem a variant of a harmonic product formula for certain
A-periodic multiple sums and we apply it to compute several explicit formulas relating
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Eisenstein series for p35,. Some of these formulas have been conjectured in earlier works.
In §9] we state Conjecture where we evoke the potential existence of an IF,-algebra
of multiple Fisenstein series and an Fp-isomorphism with an Fj,-algebra of multiple zeta
values in Tate algebras. Additionally, we speculate that a multiple Eisenstein series is a
modular form for p5, in our settings if and only if the multiple zeta values in Tate algebras
corresponding to it, which also is related to its constant term, is eulerian following our
Definition We describe in a conjecture on certain identities involving zeta
values in Tate algebras a particular case of which has been recently proved by Hung Le
and Ngo Dac in [43] and we end the work with analogue conjectural identities involving
our Eisenstein series £(wj;p3;). These identities are so complicated that are essentially
undetectable by numerical experiments. They do not seem to have analogues in the classical
setting of C-valued vector-valued Eisenstein series for the group SLy(Z).
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2. PRELIMINARIES

Most commonly used notation.

N ={0,1,...} the set of natural integers.

N* = {1,...} the set of positive natural integers.

BMX*N. M-row, N-column arrays with coefficients in the set B.

I.: the r x r identity matrix.

LI disjoint union.

Diag(, ..., *) diagonal matrix.

£4(n) sum of the digits of the base-¢g expansion of the positive integer n.
[F, finite field with ¢ = p® elements, where p is a prime number and e > 0.
A=F,[0], K = Fy(0), Koo = Fy((})), Coo = K.

I' = GLa(A).

[ =T /F = PGLy(A).

1 the trivial representation sending I' to 1 € F;* = GL1(A).

J(z) the usual factor of automorphy.
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Q = Cy \ K& the Drinfeld half-plane.

u the uniformizer at infinity of €.

Sw, My, spaces of cusp forms and modular forms of weight w.
> a finite subset of N*.

Ty, Tate algebra in the variables ts, = (¢; : ¢ € X).

Ky, the completion of the fraction field of Ty, (see §2.1.3)).

Ly a certain intermediate field Ty, C Ly C Ky, (see §2.1.

R field of uniformizers, with valuation v, valuation ring 9, maxunal ideal 91, resid-
ual field UsKs:.

B°{(e)’ the B-module of tame series with coefficients in B.

w the function of Anderson and Thakur.

Overview of the section. In this section we collect the basic objects over which we are
going to build our theory. In §2.1.3] and [2.1.4] we describe the fundamental fields Ky, Ly,
depending on choices of finite subsets ¥ of N* = N\ {0} (and already used in the introduc-
tion). They serve to introduce, in a class of analytic functions with values in certain
non-archimedean countably cartesian Banach algebras, such as Ky, (ILy is not complete but
it is a filtered union of such algebras). For example, Proposition is a useful analogue
in our settings of Liouville’s Theorem stating that a bounded entire function is constant.
In the reader will find the basic tools related to the exponential and the logarithm of
a Drinfeld module, and allied functions. In §2.4| we discuss other relevant functions, no-
tably certain generalizations of Anderson and Thakur omega function, and generalizations
of the entire map x; : Coc — T that interpolates the map A 5 a +— a(t) € F,[t]. These
functions arise naturally when one studies quasi-periodic matrix functions in §4 In turn,
these quasi-periodic matrix functions are essential to construct and analyze expansions of
our modular forms.

2.1. Rings, fields, modules. For the general settings on valued rings and fields and local
fields, we refer to the author’s [60) §2], from which we borrow the basic notation, and the
books [16], [75].

We present here some basic tools that we need, on ultrametric Banach vector spaces
and algebras (§2.1.1)), Tate and affinoid algebras (§2.1.2)). In §2.1.3|and §2.1.4) we introduce
certain ultrametric fields Ky, Ly, (the former complete the latter not), crucial to us as they
constitute the target spaces of the entries of the vectorial modular forms we discuss in this
paper. The level of generality of this presentation is quite broad (it can be useful for other
works). Later in the present volume we only consider the cases of L = Cy or L a local
field containing IF,.

We consider a field L containing F,, valued with multiplicative valuation

L Ry,

We also choose an additive valuation

L% RU{oo}
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with the property that |- | = ¢, for some ¢ > 1. We denote by Or, My and kr,
respectively the valuation ring, the maximal ideal, and the residual field O/ My, of L.
The set £, whose elements are the subfields F' of L over which the restriction of | - | is

trivial, is non-empty (it contains ;) and it is ordered by inclusion. Hence there is a unique

maximal subfield k; over which the restriction of the valuation is trivial. This subfield is
algebraically closed in L and the inclusion map k7, — Op, induces an inclusion k;, — kr.

Lemma 2.1. If L is complete and if there is a ring map ki — Fg°, then EL = kr.

Proof. For all z € Of, there is m > 0 such that w(z) := lim, ,oc 2”" exists; it does not
depend on m. This defines a ring map k; — kr, inverse of the above map kr — kr. O

We suppose that L is complete and that k7, embeds in an algebraic closure of IF, and we
identify k; with the maximal subfield of L over which the valuation is trivial. If x € O,
we denote by T its image in k7, by the morphism of reduction modulo Mj.

2.1.1. Banach L-vector spaces and algebras.

Definition 2.2. A Banach L-vector space (B, |- |p) is the datum of an L-vector space B
together with a map

| . ‘B : B — RZO
such that

(1) for all z,y € B, |z + y|p < max{|z|p,|y|B}
(2) for all z € B and X € L, |\z|g = |\||z|B,
(3) for any = € B, |z|p = 0 if and only if z =0,
and such that B is complete for the metric induced by |- |p.
We say that two Banach L-vector spaces (B, |- |p,) and (Bs,| - |B,) are isometrically
isomorphic if there exists an isomorphism of vector spaces ¢ : By — By such that |p(z)|p, =
|z|p, for all z € B;.

The spaces cr(L). Let I be a countable set. We denote by c¢;(L) the set of sequences
(zi)ier € L' such that z; — 0 where the limit is for the Fréchet filter of I, that is, the filter
of the complements of finite subsets of I (we shall more simply write i — o0). The set
cr(L) is an L-vector space. We set [|(x;)icr|| = sup;er{|xi|} for (x;)icr € cr(L). Then, the
supremum is a maximum and (¢y(L), | - ||) carries a structure of Banach L-vector space.
Note that ||c;(L)]| = |L|, where

|L| := {r € R>g : 3z € L such that |z| =r};
the image of || - || equals the image of | - | in Rx>q.

Definition 2.3. A Banach L-vector space B is countably cartesian if it is isometrically
isomorphic to a space ¢;(L) with I countable. Let B = (b;);c; be a family of elements of
B. We say that B is an orthonormal basis if |b;|p = 1 for all 7 and if every element f € B
can be expanded in a unique way in a series

(2.1) f=Y fibi, fi€L, fi—0,

el
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so that |f|p = max; | fi].
Compare with [15, Chapter 2].

Definition 2.4. A Banach L-vector space (B,|-|g) with a structure of commutative L-
algebra with unit is said to be a Banach L-algebra if |1|p = 1 and |-|p is sub-multiplicative:
for all z,y € B, |zy|p < |z|Bly|p. We identify L with L -1 C B. A Banach L-algebra is
countably cartesian if the underlying Banach L-vector space is so.

2.1.2. Tate algebras, affinoid algebras. All along the present work we make use of the
following basic notations. Let R be a commutative ring with unit. We choose once and
for all independent variables t; with i € N* and we work in the R-algebra R[t; : i € N*|.
If ¥ is a finite subset of N* of cardinality |X| = s we denote by t5, the family of variables
(t; : i € ). Then, R[ty] denotes the R-algebra R[t; : ¢ € ] in the s variables ty,, embedded
in R[t; : i € N*] in the canonical way. If 3 = {i} is a singleton, then we often simplify our
notations writing ¢ = ;.

We consider ¥ a finite subset of N* and a sub-multiplicative norm |- |" on Lts;] which
restricts to |- | on L C L[ty] (L is identified with a subalgebra of L]ts;]). We denote by

L@E]H” < or L[Ez]m/)
the completion of Llts] for |- |’ (]ZI) It is a Banach L-algebra in the sense of Definition
For example, we can take |-|" = || - || the Gauss valuation over Llts], that is, the unique
norm of L[ty,] which extends |- |, such that

5[ =1
for all i = (i; : j € ¥) € N¥, where

ts =[]

JEX
It is easy to see that || - || is multiplicative (to see this it suffices to compute images in the
residual field). In this case we write
Trs = Lltsly-

We usually drop the reference to L if it is algebraically closed or if its choice is clear in the
context, hence writing in a more compact way Ty. This is the Tate algebra (or standard
affinoid algebra) of dimension s = |X|. If ¥ = {i} is a singleton we prefer the simpler
notation Ty, or T for this algebra, with variable ¢. Note that if ¥’ C ¥ then the canonical
embedding L{tsy] C L[ts] induces an embedding Ty, sy C Tpr 5.

The Tate algebra Ty, x; is isomorphic to the sub-L-algebra of the formal series

(2.2) f= Y fityeLts]]
i;>0VjES
i=(i;:j€X)

"The last notation is introduced for graphical convenience, in those circumstances where the hat in the
first displayed formula is too large.
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which satisfy
lim fz =0.

min{i;:j€X}—00

Thus, we have, for f a formal series of T ». expanded as above and non-zero, that

11 = sup|fil = max]
1 KA

and Tr, 5, is countably cartesian (Definition . It is well known that Ty, s is a ring which
is Noetherian and it is also a unique factorisation domain, normal, of Krull dimension s
(see [22, Theorem 3.2.1] for a wider treatise, see [15]). We will also use the L-sub-algebra
Er s of Ty x of the series f as above with the property that for all r € |[L*|,
lim | f]ratFin = 0.
min{i;:j€X}—00

If L is complete and algebraically closed, this can be identified with the L-algebra of entire
functions in the variables t5,. If ¥ is a singleton {i}, we will write Ey, or E for this algebra,
and we will use the variable t = ¢;.

An affinoid L-algebra A is the datum of a topological L-algebra A together with a
surjective L-algebra morphism

(2.3) Trs 5 A S CN, ¥ finite.
Every affinoid L-algebra comes equipped with a Banach L-algebra structure, with the norm

= inf , e A
gl w(f):gllfH g
The kernel of 1 is closed and we have the next result where we assume that L is algebraically
closed.

Lemma 2.5. Fvery affinoid L-algebra is countably cartesian.

Proof. We consider A an affinoid algebra, with ¢ and Ty, . as in . If L is algebraically
closed and J is an ideal of Ty, x;, by [12} §1.3 Theorem 6], there exists an orthonormal basis
(bi)icr of Ty x and a subset J C I such that (bj)jcs is an orthonormal basis of J. Then,
(¥(bi))ier\s defines an orthonormal basis of A. O

The general case is also true, where L is not necessarily algebraically closed.

Remark 2.6. Note that if A is the affinoid algebra associated to an affinoid subset of
IP’E’“” (with IP’E’“” the rigid analytic affine line over L), with its spectral norm, then it is
countably cartesian also as an easy consequence of the Mittag-Leffler decomposition [22,
Proposition 2.2.6].

2.1.3. The completion K 53 of the fraction field of T, 5. Let L be a valued field, complete,
containing F,. The fraction field of Ty, 5, is not complete, unless ¥ = (). We write K, 5,
for its completion. It is easy to see that this is also equal to the completion of L(ty.), for
the extension of the Gauss norm. If L is a local field, so that L = F((r)) with F a finite
field containing F, and 7 a uniformizer, then Ky = k(tx)((7)). The residual field ki,
of Krx is kr(ty). If ¥’ C X, we have an isometric embedding Ky, s C Kz, 5.
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Lemma 2.7. Let ¥ be a subset of ¥. Let B = (b;)icr be a family of elements of Ok,

such that (b;)ier is a basis of the kr(tsy)-vector space kr(ts;). Then, every element f of
Kpr,s can be expanded, in a unique way, as a converging series

f= Zfibi, fi €Ky, fi—=0,
iel
and || f|| = max;er || fi]-

In the above lemma I is countable (this follows from the fact that k is countable).
If we choose ¥ = () we see that Lemma implies that Kz s is countably cartesian as
in Definition In other words, the Banach L-vector space Ky x; is endowed with an
orthonormal basis providing us with an isometric isomorphism with a Banach L-space
cr(L). The proof that we present is essentially the same as Serre’s in [72, Lemma 1,
Proposition 1].

Proof of Lemma[2.7. One sees easily that |Kr | = |L|, therefore it suffices to show the
lemma for f € Ky with ||f|| = 1. Let us consider a € L[ty] with |laf] = 1. We can
decompose (in a unique way) a = ag+aq with a; € L[ty], a1 € kr[ts]\ {0}, and ||ag|| < 1.
For any multi-index k = (k; : i € ¥) € N* we have, in Ky » (with E% =[Lies tfi):

k 2
k- t (e7)) «
Lo 1_ 2 1_74_72_...
(65} a1 aq

(the series converges because ||ag|| < 1). For every k and j > 0, the image of ﬁ%a;j in
kr(ts,) for the reduction map can be expanded in the basis (b;);c;. We deduce that any
element f = g € L(ty), a # 0, can be expanded as a convergent series:

F=Y_fibi, fi—0, fieKy.
icl

This expansion is unique because otherwise, there would exist a non-trivial relation

0=">_ fibi
i€l
such that for some i € I, ||f;|| = 1, in contradiction with the fact that (b;);c; is a basis of
kr(ts) over kr(tsy). This means that there is an isometric embedding L(ts,) — ¢r(Kp s).
Completing, we are left with an isometric isomorphism of Banach L-vector spaces K, 5 =

cr(Kg sv) which terminates the proof. O

2.1.4. The non-complete fields L x.. Let X, L, ... as in §2.1.3| In this paper we also need
certain fields intermediate between the fraction field of Ty s, and Ky x. For any d €

krlts] \ {0} we have the affinoid L-algebra (completion for the Gauss norm) ’]I‘L,g/[?— 1]
which is a Banach L-sub-algebra of Ky, s» which also is countably cartesian. We consider

LL;; = U TL’E[dfl].
deke[ts]\{0}
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Lemma 2.8. L1 5 is a subfield of K 5.

Proof. The relation of divisibility in kf[ty] induces a filtration of Ly, y; by Banach L-sub-

algebras of the form Ty ».[d~!] so that Ly y. is an L-sub-algebra of Ky 5. We still need to
show that every non-zero element f of L, x; is invertible; we follow the same ideas of Lemma
there is no loss of generality if we suppose that || f|| = 1. There exists d € k[ts] \ {0}
such that f € T x[d"". We can write f = a1 — ap where a1 € kr[ty][d7!] \ {0} and
where ag € Ty s[d71]" is such that |Jag|| < 1. Therefore, in K, x:

-1 i
ESREN )
f ] ] aq >0 o1

and the series converges in T L,E[J_I]A C Lz 5, for some element d € kts)- O

Note that LL;, 5; contains the fraction field of Ty, and is not complete, unless ¥ = 0. The
fields Ly, »; and Kz, 5, both have residual field k(ty;) and Ky 5 is the completion of Ly »
for the Gauss norm.

2.2. Analytic functions with values in non-archimedean Banach algebras. In this
subsection we suppose that L is an algebraically closed valued field with multiplicative
valuation | - |, complete with respect to this valuation, with residual field Fg°. We choose
(B,|-|B) a Banach L-algebra which is countably cartesian in the sense of Definition

Let X/L be a rigid analytic variety, that is, the datum of (X,T,Ox) with X a set, a
G-topology T and a structure sheaf Oy of L-algebras. In all the following, we denote by
Ox/p the presheaf of B-algebras defined, for & = (U;); an affinoid covering of X, by

Ox/(U;i) = Ox(U;) @1 B = Ox(U;) ®r cr(L),
the completion being taken for the spectral (sub-multiplicative) norm on U; (see [15] §3.2]),
and where = indicates an isometric isomorphism of Banach L-vector spaces.

An analytic function (also called holomorphic function) from X to B is by definition an
element of Ox/p(X). Equivalently, an analytic function f : X — B is a function such
that for every rational subset Y C X, the restriction f|y is the uniform limit over Y of a
sequence of elements of Ox(Y) @ B. As an alternative notation, we choose

f € Hol(X — B).

Let B = (b; : i € I) be a orthonormal basis of B (countable). Every element f € Hol(X —
B) can be expanded, in a unique way, as

= fbi
i€l
where f;|ly — 0 for the spectral norm associated to any rational subset Y of X (remember

(2.1))). For example, we can take B = Ky or B = Tx[d~!]" with d € ki [ts] \ {0}.
Let C be a sub-L-algebra of B (not necessarily complete). We write

HOIB(X — C)
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for the C-algebra of holomorphic (or analytic) functions from X to B such that the image
is contained in C, and we omit the subscript if B = C' to meet with previously introduced
notation. For instance, we can take C = Ly, C Ky = B. We denote by

Ox/B/c

the presheaf of C-algebras determined by Ox,p,c(Y) = Holp(Y — C) for Y rational sub-
set of X. Since C is an L-algebra, for every U = Spm(A) affinoid subdomain, Ox,p,c(U)
is an A-module and we can define, for M a finitely generated A-module, the pre-sheaf
MB/C on X by

Mpc(U) =M @4 Oxp/c(U).

Tate’s acyclicity theorem (see for example [22, Theorem 4.2.2]) is easily seen to extend
to this framework and we have the next result:

Lemma 2.9. The presheaf Mp,c is a sheaf of C-algebras.

We omit the details of the proof because the proof of the version of Tate’s acyclicity
theorem given in the above reference can be easily adapted to our framework, thanks to
the hypothesis that B is countably cartesian. We will limit ourselves on few aspects, in the
case of M trivial. If U = Spm(.A) is an affinoid subdomain of X and (U;);es an admissible
covering of U (with J a finite set), saying that Ox|y is a sheaf of L-algebras amounts to
saying that there is an exact sequence of L-algebras

0— Ox(U) R HOX(U]‘) ﬁ) H Ox(U; NU)
jeJ J,ked

where a is defined by the restrictions on the U;’s and B((f;)jes) = (filv,nv. —fxlu;nuy)jke-
Taking ()@ 1B determines an exact sequence of B-algebras because, denoting by « and
the resulting maps, with | - |y the spectral norm over U, sup; |a(f)|y;, = max;|a(f)|y; =
| flu (a is isometric) so that if (f;) e is an element of [ Ox (U;)®1,B such that 8((f;);) =
0 then, writing f; = > ,c; fJ@bi with f](-i) — 0 as i — oo (expansion in the orthonor-
mal basis (b;)e; of B), for all i € I there exists f) € Ox(U) with a(f®) = (f](i))jg
for all i, and f@ — 0 for | - |y and therefore, f = >, f)b; defines an element of
Ox (U)®LB such that a(f) = (f;);. Now, the maps o and 8 define C-algebra maps be-
tween Ox/p/c(U), Hj Ox/B/c(Uj) ete. and the map resulting from « is injective, while the

element f € Ox,p(U) constructed above clearly belongs to Ox,p,c(U) if f; € Ox/p/c(Uj)
for all j.

2.2.1. Structure of Ox/p/c with X a curve. We consider B a Banach L-algebra which
is countably cartesian and we suppose that A is a partially ordered countable set, with
partial order <, such that there is a family (B))xeca of Banach sub-L-algebras of B with
the following two properties:

(1) If )\ < )\, then B)\ C B)\/’
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(2) For all \,\ € A such that A < )\ there exists an orthonormal basis (b;);c; of B
(depending on \) and subsets J C J' C I with (b;);cs an orthonormal basis of By
and (b;);csr an orthonormal basis of By.

We set C' = UyB,. This is a sub-L-algebra of B. We have the next Lemma.
Lemma 2.10. Let X be a rigid analytic curve over L. The following identity holds:

Holp(X — C) = | ] Holp, (X — By).
AEA
Proof. We first show the lemma when X = Spm(A) where A is an integral affinoid L-
algebra. If f: X — L is analytic with infinitely many zeroes, then it is identically zero.
Now, let f be a global section of Ox/p/c. For all z € X there exists A € A such that
f(z) € By. Therefore, there exists a map

X 2,

defined by associating to every x € X a choice of A € A such that f(z) € Bi.

Since the set underlying X is uncountable (because L is uncountable, due to the fact
that it is complete) while the target set is countable, there exists an infinite subset Xy C X
and A € A, such that ®(x) = A for all x € Xy. Then f(Xo) C By. We expand f in an
orthonormal basis (b;)icr of B such that for some J C I, (bj);jcs is an orthonormal basis

of B)\Z
F=> fibj+ > fibi
jeJ i€I\J
(with f; — 0 as j — oo, uniformly on X). Since for all i € I'\ J, fi(z) =0 for all z € X,
fi € Ox(X) has infinitely zeroes and therefore vanishes identically and we deduce that

Suppose now that X is an affinoid subdomain of an affinoid curve X’. Let f be in
Holg(X’ — C). Then by what seen above, we can find A\, ) € A such that A < X and

fe OX’/B}\/? flx € OX//B/\(X). Writing
= fiby+>1b;
jred\J jeJ

we note that for all j € J'\ J, fj(x) = 0 for all x € X which is infinite, and f; vanishes
identically on X. This means that f € Ox//p,. The lemma follows easily working on an
admissible covering of a given rigid analytic curve. (]

2.2.2. Entire functions. We look at B-valued analytic functions on polydisks, where (B, |-
|B) is a Banach L-algebra which is countably cartesian. If X is the polydisk
Dp(0,7)" ={z = (x1,...,2,) € L"; x| < r}

with 7 € [L| and with the usual structure sheaf of converging series, then Holp(X — B)
equals the ring of series ) .., fiz® where i = (i,...,i,) with i; > 0 for all j, where

2t =2} ... xi and where f; € B are such that |f;|prit™ *n — 0 as i — co. We deduce
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that the B-algebra Holg(A}*" — B), with A7**" the analytic n-dimensional affine space
over L, is equal to the B-algebra of the functions L™ — B defined by the formal series
> o0 fizt € Bl[x1, ..., xy)] such that |fi|prtt Tin — 0 for all r € |B|p. It is also easy to
see that a function f : L™ — B belongs to Holg(A7*" — B) if, on every bounded subset
U of L, f can be obtained as a uniform limit of polynomial functions f; € B[z, ..., x,],
fi + U — B. These functions are called B-entire (or simply entire if the reference to
B is understood). The following property is easily checked. Let (f;)i>0 be a sequence
of B-entire functions. If for every such r, the sequence (f;)i>o converges uniformly over
Dr,(0,7)", then the limit function L™ — B is a B-entire function.

The next result is a simple generalization of the analogue of Liouville’s theorem which
can be found in Schikhof’s |71, Theorems 42.2 and 42.6]. See also [61, Proposition §].

Proposition 2.11 (B-analogue of Liouville’s Theorem). Assuming that the Banach L-
algebra B is countably cartesian, any bounded B-entire function is constant.

Although the principles of the proof are completely elementary, we prefer to give all the
details. Let n be a positive integer and f : D (0,1)"” — B a B-analytic function, so that,
with = (z1,...,2,) € D(0,1)",

:Zfigia fi€B7

Whereac—:rz1 coegin if § = (iy,...,i,) and |f;|p — 0 as i — oo. We set
|flBswp = sup |f(z)|B.
QEDL(O,].)"

We also set || f||p = sup{|fi|p : i € N"} = max{|f;|p : i € N"}.
Lemma 2.12. We have |f|psup = || fllB-

Proof. There is no loss of generality to suppose that || f||z = 1. Indeed, |B|g = |L| because
B is countably cartesian. It is easy to see that |f|psup < | f||5 and we only need to prove
the opposite inequality. We proceed by induction on n > 0. Let us write z = (x1,2')
(concatenation). We note that

[f|Bsup = sup ( sup |f($1,90’)|3> = sup [ f (21, )|Bsup = sup || f(21,-)[
x1 xr1

21€D(0,1) \ 2’€D(0,1)"~?
by the induction hypothesis. Let B’ be the L-algebra
Holg (D (0,1)" ! — B)

with the norm |- |ggup = || - [|B. It is easy to see that B’ is a Banach L-algebra which is
countably cartesian. Then, we can identify f with a B’-analytic function f Dr(0,1) = B,
where f = Yiso fixh, fi € B, fi = 0. We see that SUpy, | f(z1,)|lB = HfHB’ the latter
norm equals ||f||z. Hence
Lemma. For this, we follow |71, Lemma 42.1].
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Let us therefore consider an element f € Holg(Dr(0,1) — B) with f(z) = > ;5 fiz",
fi = 0. Of course | f|psup < ||f||5 and we can again suppose that || f||p = 1. If | fo|p = 1
then 1 = |f(0)|g < |f|Bsup < ||fllB =1 and we are done. Otherwise, let N be the smallest
integer j such that |f;|p = 1. We have N > 0. Let € > 0 be such that € < 1 — max{|fi|p :
0 <4< N}. Since |L*| is dense in R~q there exists € L* such that 1 —e < |zV]| < 1. We
claim that |f( )IB = |2V| > 1 — €. To see this note that max{|fi|p: 0<i< N} <1—¢so
that |fo + -+ + fy_12V7!|p < 1 — €. On the other hand the sequence (|7¢|);>y is strictly
decreasing so that | >, v fiz'|p = |fna™|p = |2V ]|. Hence

|f ()|B—max{‘f0+ o+ vz ‘ }:‘Zfil'iB>l—€.
i>N
The claim follows by letting € tend to 0 and the proof of the lemma is complete. g

Remark 2.13. If B is an algebraically closed field, Lemma [2.12]is contained in the argu-
ments of [15, §5.1.4].

Proof of Proposition [2.11]. Let f be B-entire (in n variables). If r € |L*| we can choose
a = (aq,...,a,) € (L) so that |a1] = -+ = |a,| = r and apply Lemma to the
B-entire function f(ajx1,- -+, apxy,). We deduce that

sup | f(z)|p = max|f|prt T

QGDL(OJ‘)TL L

Assume now that |f|p is bounded, say, by M > 0. Then max; |f;|grit Tin < M for all
r € |L*|. This means that |f;|p = 0 for all i # 0 and f is a constant map A" — B that

can be identified with its constant term fo. O

2.3. Drinfeld modules and exponential functions. For a more extensive background
on Drinfeld modules, lattices and exponential functions we refer to Goss’ book [36] and
[60, §3]. As in the introduction, we write A for F,[f], the F,-algebra of polynomials in 6.
We denote by K its fraction field F4(6) and by Ko = Fy((3)) the local field which is its
completion at the infinity place or, which is the same, the completlon for | - | the multi-
plicative valuation of K normalized by |0| = ¢. Finally, we denote by C, the completion
of an algebraic closure K of K. We recall that the residual field k¢, of C is F©
algebraic closure of F,, that we can view as a subfield of C, (Lemma . From now on
we set
L =Cy

and we consider the C,.-algebras

TE = TL,E, ]LE = IL,L;;, KE = KL;).

In this subsection we collect several tools related to the difference algebras structures on
Ty, Ly and Ky, determined by the automorphism ¢ +— ¢? of C4, and to the uniformizability
of certain Fy(ty)[6]-modules associated to Drinfeld A-modules defined over Cy as in [5].
Not all the material illustrated here is used in the body of the paper. However, the tools
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we develop can be useful in further investigations in these themes, and the chosen level of
generality does not make proofs more complicated.

2.3.1. On the automorphism T of Ty, Ly, Ky. The automorphism ¢ +— ¢? of Co, (Frobe-

nius) extends in a unique way to an [y [ty;]-linear automorphism 7 of C [t5;] and therefore,

to each of the three C-algebras Ty, C Ly C Ky, defined in Recall that || - || denotes
the unique extension of the Gauss norm to Ky. Recall that by Lemma (Ks, || - 1))
is a Banach C-algebra which is countably cartesian. For all f € Ky, we have that

(A= LA
It is also well known that the subring
TE !

of the elements f € Ty, such that 7(f) = f is the polynomial subring Fy[ts]. Let us recall
the proof. Consider the injective morphism of Cuo-algebras Ty, — Cxl[ty]] defined by
(2.2) and notice that 7 : Ty, — Ty extends to Co[[ty]] in an unique way to an Fy[[ts]]-
linear automorphism. By the uniqueness of the power series expansions of the elements
of Cool[ts]] we immediately see that Coo[[ts]]™=" = F,[[ts]]. Now, it is easily checked, by

using (2.2), that Ty N Fy[t5]] = Fylts]-
Furthermore:

Lemma 2.14. We have the identities of subfields of T-invariant elements
(2.4) Fy(ts) =L5 ' =KE

Proof. Tt suffices to show that KE=! C F,(t5;). By Lemma with ¥/ = (), every element
[ € Ky can be expanded in a unique way as f = > .., fib;, where (b;);es is an Fg®-basis of
Fi<(ts;) and f; € Co for i € I, with f; — 0. Let f be an element of KI=. All we need to
do, is to show that if || f|| = 1, then f € F,(ty). Indeed, if f # 0 we can write f = A\f with
A e CX, f € K such that ||f|| =1 and || f|| = [\|. Expanding f =3,; fib; as above, we
set [ ={i€Z:|f|=1}and Iy = I\ I;. We write f = Yicr, fibi and f1 =371 fib;
so that f = fO+ fl. Clearly, I; is a finite set and 7 induces a permutation of both I; and
Iy denoted by o. There exists k > 0 such that ¢* is the identity on I;. Since 7%(f) = f
we have
T = =10 =T ).

But 7F(f1) — f' = Zieh(fiqk — fi)b; so that if 7F(f1) — f1 # 0, then ||7%(f') — f1 = 1.
However, ||f° —7%(f°)|| < 1 which is impossible. Hence we have 7%(f!) = f! which means
in particular that f! e Fx(ts)* because fiqk = f; for all i € Iy, and O = 7%(f°). Now,
I7(fO) || = ||°)|7" and therefore, fO = 0. In particular, we have proved that f = fl €
F . (ts)*. But it is easily seen that Fui(ts)™=" = Fy(ty) for all k > 0. O

In this text we also consider the non-commutative Ky-algebras Ky |[7] and Kg[[]] (the
multiplication is defined by the commutation rule 7f = 7(f)7 for f € Ky). Similarly, we
have the algebras Ly[7] and Ly[[7]]. We are going to study certain elementary properties
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of Fy(ts)-linear endomorphisms of Ky, and Ly, determined by evaluations of operators of
Ky [r] and Ly[7]. The evaluation L(f) of
L=a+aT+- - +a71" €Kg[r]
at f € Ky is by definition the element
L(f)=aof +ar7(f) + -+ a7 (f) € Kg.

Analogously, we define the evaluation of an element of Ly[7] at an element of L.
In order to proceed, we can appeal to the next simple lemma that is also used later
in the proof of Proposition w By Lemma there exists an Fg-basis B = (bi)ier of

Fa¢(ty:) determining an orthonormal basis of the Banach Cu-algebra Ky.

Lemma 2.15. Let J be a non-empty finite subset of I. There exists J finite, with JcJc
I with the following properties: (1) There is a matriz M; € GL 5 (Fg¢) such that, writing
b; for the column matriz (b;)ic.r,

7(by) = Mib;.
(2) There is a vector spaces decomposition
(2.5) Fq¢(ts) = Vectrge (by) © Vectpse ((bi)ien.s)

which splits the action of T.
Proof. It follows from an easy study of the orbit under the action of the group Gal(F,(b; :

J€J)/Fq(ts)). O
We can now tackle the promised basic properties of Fy(ts;)-linear endomorphisms of Ky,
and Ly associated to evaluations as above.

Lemma 2.16. Let L = a9+ a17 + -+ + a,7" € Kg[1] be such that aga, # 0. Then the
induced Fy(ty,)-linear evaluation map L : Ky, — Ky, is surjective. Similarly, if £ € Ly[7],
the Fy(ts)-linear map L : Ly, — Ly, is surjective.

Proof. First notice that £, as an IFy(tx,)-linear endomorphism of Ky, (or Ly;), is well defined.
By the way, we are obviously allowing some (harmless) abuses of notation, because alter-
natively, £ denotes: an element of Kx[7] or an element of Ly [7], and at once alternatively,
an endomorphism of Ky; or an endomorphism of Ly. Also, we only prove the properties
correspondent to the endomorphisms of Ky leaving the rest of the proof to the reader
(providing a small hint in a special case). Without loss of generality, we can suppose that
ap = 1. It is easy to see that there exists p € |CX|, p > 0, such that £ induces an isometric
automorphism of Dg_(0,p) := {f € Ky : [|f|| < p}. This can be proved with the study of
the Newton-Puiseux polygon of the operator £ with respect to || - ||. Let y be in Kyg. We
can write:
_,0 1

y=y +y
where y° € Dy (0,p) :=={f € Ky : [|fI| < p} and yt e @jej(coobj with .J a finite subset
of I. There exists z¥ € Dy (0, p) such that L(2%) = y°. It remains to construct z' € Ky,
such that £(z!) =y
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Let J, Mj be respectively the subset of I, and the matrix, both given by Lemma [2.15
and let us write b = b; and M = M;. By Lang’s theorem [46, Corollary p. 557] there
exists U € GL;(Fg©) such that 7(U) = MU. We deduce

™) = *(U)Ub, Vk > 0.

Note that there exists a unique ¢ € CL‘QXI such that y' = fc-b. Since C is algebraically
closed, there exists a € CL‘QXI such that £(*aU) = ‘cU. Hence

L(a-b)=L(a) U b ="'UU b=y

Setting #! = fa - b yields £(z') = y' and the proof that £ : Ky — Ky is surjective is
complete.

For the case of the endomorphisms of Ly, we give some details in a special case only (the
reader can easily deduce the general case). We suppose that £ = 1 — 7 (so we partially
overlap with the proof of Lemma . Even though Ly is not complete, it is a filtered
union of complete spaces. Let y be an element of Ly. Then there exists d € Fy[ts] \ {0}

—

such that y € Tg[1]. We can decompose y = y° + y* with yo € D1C1)‘/[\1} (0,1) (complete
space) and y! € @jejcwbj for some finite subset J of I. There exists 2¥ € D; [1](0, 1)
=13

such that 7(2°) — 2 = y° and 2! € ®D,cs Coobj with 7(z') — 2! = y'. It is easy to show
that there exists d’ € Fy[ts]\ {0} such that both Tx[}] and 2! € @D ,cs Cobj are contained
in Tx[5] C Ly. O

The next result we want to study is related with computations of kernels of operators
such as £ above. Suppose additionally that £ = ag + -+ - + a,7" € C[7], again such that
apa, # 0. It is well known (because C, is algebraically closed) that the set of the zeroes
of the evaluation map L|c_ : Cooc = C is an Fy-vector space of dimension 7:

KGI‘(E‘(COO):VeCt[Fq(Bl,...,ﬁr), 517"'757’ GC;;O

We have stressed that L is restricted to Co because we can also view L as an Fy(ty,)-linear
endomorphism of Ky; and Ly. In this case we have:

Lemma 2.17. With £ as above:
Ker(L) = Ker(L|Ly,) = Vectr, (1) (B1,- - -, Br)-

Proof. Without loss of generality we can suppose that ag = 1. We first deal with the case
of the map L : Ky, — Ky. We proceed by induction on 7: the result is trivial for » = 0.
Also, by the right euclidean division [36 Proposition 1.6.2] we can factor £ € C[7]:

L=1—-a7) - (1—a17), a1,...,a, € CL,

where we can choose a; = 611 ~9. Note that the factors do not commute in general, and the
factorization is not unique. Setting £1 = (1—a,—17) -+ (1—a17), we have £ = (1—a,.7)L;.
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Note that Ker(£) is a subvector space of Ker(£). By induction hypothesis we can choose
L1 in such a way that

Ker(‘cl) = VeCth(zz)(ﬂlv B 7/87‘71)
Let us consider 8 € Ker(L) \ Ker(£1). Then,
L1(8) € Ker(1 — a,.7),

so that 7(£1(8)) = a; '£1(8). Using Lemma this implies that there exists x € CX
such that

L1(B) € Fy(ts)r

and there exists A € Fy(ty)™ such that £;(A\3) € C. By Lemma there exists § € CX
such that

Li(B—A"'B)=0.
Therefore, by the induction hypothesis, 3 — A~* B € Vecth@E)(ﬁl, ..., Br—1). This implies
that 0 = L(B) = E()\_lg) and B € Ker(£L|c,,) = Vecty, (1) (81, . .., Br) implying our result.
The case of the restriction of £ on Ly; is similar and left to the reader. ]

Combining with Lemma [2.16] we get the more precise:

Corollary 2.18. There are exact sequences of Fy(tx,)-vector spaces
0= Fyty) = Ly —5 Ly — 0, 0— Fy(ts) = Ky — Ks; — 0.

2.3.2. The exponential of a Drinfeld module. Let ¢ be a Drinfeld A-module of rank n
defined over Co, let exp, : Coo — Coo be its exponential function and Ay = Ker(exp,) C
Cw its lattice period which is a free module of rank n over A discrete for the metric of Cy

induced by | - |. We recall that exp, is an Fj-linear entire function Co — Cs that can be
computed by means of the following everywhere convergent Weierstrass-like product
/ Z
(2.6) expy(Z) = Z [] (1 — A) , Ze€Cy
)\EA¢

(the dash ’ indicates that the product runs over Ay \ {0}). This product expansion also
shows that locally at 0, exp, induces an isometric Fy-linear automorphism. Indeed, if
Py = minyep ,\ (0} |Al; exp, induces an Fy-linear automorphism of

D& (0,p5) = {2 € Cou t 2] < py}
such that for all z € Dg_ (0, py), | exp,(2)| = |2|. In fact it can be proved that exp, induces
an isomorphism of Cs.-rigid analytic spaces Aé’i" JAy = A(lc’fo". With ¢(Cy) the A-module
induced by ¢, there is an exact sequence of A-modules

0—>A¢—>Cwﬁ>¢(cm)—>0

(exp¢ is uniquely determined by the condition of being an entire A-module morphism with
first derivative exp;) = 1). We fix a finite subset ¥ C N* and a Drinfeld module ¢ defined
over Cy. There is a unique structure of A ®p, F,(ty)-module ¢(Kyx) over Ky which is
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defined by extending the operators ¢, (of multiplication by a € A in the A-module ¢(Cy))
[Fy(ts)-linearly to Ky, along the extension of the map (z — 27) : C.c - C to the map
7 : Ky — Ky. Explicitly, if ¢ = (a)o + (a1)7 + - -+ + (a),7" with (a)o, ..., (a), € Cs and
x € Ky, the action of a on z is defined by the evaluation of ¢, at x (compare with [5]).
Similarly, we can define the A ®F, F,(t5)-module ¢(Ly).

By using the tools developed in we can easily prove:

Proposition 2.19. For all a € A\ {0} the Fy-linear map ¢q : Coo — Co determines a
short exact sequence of Fy(tx)-vector spaces:

1
0— exp¢ (EA(;S) ®]Fq ]Fq(zz) — KE ¢—a) KE — 0,

where the second arrow is the inclusion, and a similar exact sequence holds with Ky, replaced
by Lz.

Proof. Clearly expy(a™'Agy) ®p, Fq(ts) is an Fy(ts)-subvector space of dimension r :=
degg(a)n of Ker(¢,) where n is the rank of ¢. Setting £ = ¢,, the computation of the
kernel then follows from Lemma [2.16] while the surjectivity of ¢ follows from Lemma

217 O

The case ¥ = {i}, i € N* is considered in [33] Theorem 7.1.1, Proposition 8.2.1].
Since Ky, is complete we have an Fy(ty)-linear map exp, : Ky — Ky, continuous and
open, which induces a morphism of A ®p, IF,(t5)-modules

exp
Ky —2 ¢(Ksx)

such that Ay ®p, Fy(ty) C Ker(expy). We note that also the map Ly Lo, o(Ly) is
well defined, in spite of the fact that Ly is not complete. Indeed, if x € Ly, there exists

—

d € Fylts]\ {0} such that z € Tx[2] and this space is complete. It is easy to show that expy
induces an isometric Fy(ty;)-linear automorphism of Dg (0, ps) = {f € Kg : [[fIl < py},
and a similar property holds with Ky replaced with Ly,. Moreover, we have:

Proposition 2.20. Let ¢ be a Drinfeld A-module with exponential expy. The map expy
induces an exact sequence of A ®p, Fy(ts,)-modules:

(2.7) 0 — Ag @, Fylts) = Ky —2 ¢(Ks) — 0.

To prove this result we can use the next lemma. Let J C I be a finite subset and let J
be any finite subset of I as in Lemma so that J C J C I.

Lemma 2.21. The exponential map expy induces a surjective Fy-linear endomorphism of
BjesCoobj with kernel Ay @r, Fylts)l1*1.

Proof. Since J is fixed in the proof, let us write more simply b = b; and M = M; where
M is the matrix given by Lemma Also, if X is any matrix with entries in Ky, we
set X = 71(X) (coefficient-wise application of 7%). Note that since b!) = Mb, we have
b = M. AfWAL b for all 4 > 0. In the proof of Lemma we have constructed
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a matrix U € GL(F2) such that 7(U) = MU. Hence, U® = M=V ... MU MU for all
1 > 0. We deduce

b =y@Oy-1p, i>0 and (U )M =U"1b.

Hence U'b € F(ts))! by (2.4).
Let us compute, for a € CL‘é'Xl (column vector), (‘a - b)(i), 7 > 0. We immediately see:

(ta-b)D = (ta - U)DU~1h. Transposing we get:
tla-p)® =t tU - (‘U - a)D,
hence, if f ='a-b € ®jc;Cocbj,
expy(f) = expy(‘a-b) ="b- (U ) expy('U - a) € BjesCocb;.

Since the map exp, : (CL‘QXl — CL‘QXl is surjective, expy : @jesCocb; — BjesCocb; is
surjective. Now consider an element f ="'a-b € @;c;Coob; such that exp¢(f) = 0. By the
above computation, this is equivalent to expd,(tU -a) =0, so that

aetU ) A

But ta-b € A;XU'U_I-Q and we have seen that U~1-b € Fq(§E)|J|X1. The lemma, follows. [

Proof of Proposition [2.20. We first show that exp, is surjective. Let us consider g € Ky.
There exists J C I finite with b = (b;)jes = b, with (b)) = M - b as in Lemma and
additionally, we can decompose
g =90+ 9

with ||go|| < pgy and g1 € @jesCx0bj. By Lemma there exists f1 € @;esCqb; such
that exp,(f1) = g1 and since expy induces an isometry over Dy (0, py), there also exists
fo € Dg_ (0, pg) such that exp,(fo) = go. Setting f = fo + f1 we deduce expy(f) = g.

It remains to compute the kernel of exp, over Ky. Let f € Ky be such that exp¢( f) =
0. Again, we can write f = fo + fi with || fol| < py and fi € ®jesCxb;. We write
fo = f) @ f3 where fJ belongs to the Banach Co-sub-vector space of Ky generated by
(bi)ier\s and fo € ®jesCoobj. By the hypothesis on J we see that exp¢(f8) = ZieI\J cibi
while exp,( fo + f1) € ®jesCoobj. Hence, again by the fact that exp, induces an isometry
over Dg_ (0, pg), we can suppose that fo = 0. We can conclude by using Lemma O

Let 6 be an element of F,(t5)*. From the proof of Proposition one deduces that
the exponential function exp, of a Drinfeld A-module ¢ also induces an F,[ty][d]-linear
surjective endomorphism of Tg[d]" C Ky, and we deduce the next result (compare with

Proposition and [3]):

Corollary 2.22. For any 0 € Fy(ts) the map exp, induces an evact sequence of Alts][0]-
modules:

(28) 0= Ag @, Fylts][6] = Ts[d] —2 ¢(Ts[o]) - 0.
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Hence, we also have an exact sequence of Fy(ts)[0]-modules:

(2.9) 0= Ay @r, Fylts) = Ly —2 ¢(LLg) — 0.
The proof of the next Lemma, that will be used later, is easy and left to the reader.

Lemma 2.23. Let ¢ be a Drinfeld module over Co, and exp, be its exponential function.
Let f : Ky — Ky be a Kg-entire function. Then the composition expy of is a Kyg-entire
function. Additionally, if f(ILs) is contained in Ly, then the image of expyof is contained
in L. Finally, if f(2) = Az with A\ € Ky, then expyof is a Fy(ty)[0]-module morphism
KE — d)(KE)

Remark 2.24. In the following, we essentially only use the Drinfeld A-module ¢ = C,
Carlitz’s module, defined by the condition that Cy = 6+7. However, our work has a natural
extension to modular forms for the group GL,(A) with n > 2, where it is important to
consider the general case. This motivates the chosen level of generalization so far.

2.4. Some functions associated with the Carlitz module. The functions mentioned
in the title of the present subsection, and that will be described here, are required as basic
tools to describe the analogues of Fourier series for our modular forms. One of the simplest
examples of Drinfeld A-modules is the Carlitz module C. In this subsection, after a quick
review, in of well known properties of C' and the associated exponential function
expe : Ky — Ky (for a more complete treatise, read, for example, Goss’ [36, Chapter 3]
and [60] §4]), we introduce in a matrix generalization of the so-called omega function
of Anderson and Thakur (omega matrices). There is a large amount of references discussing
the omega function of Anderson and Thakur, which is a central object in function field
arithmetic. Among them we suggest, due to a good compatibility of notations, the paper
[3, §2]. It is likely that the first appearance of w in the literature is in the seminal paper [1]
by Anderson and Thakur. In we introduce a matrix generalization of Perkins’ map
Xt : Coo — Tx [65], another remarkable object in function fields arithmetic. These tools
will be heavily used in

2.4.1. Basic notions on Carlitz’s module. We recall that the Carlitz module C(Ky) over
Ky, is the Fy(ty;)-algebra morphism
C
A ®[Fq Fq@z) — Enqu( )(Kz>

25
defined by C(6) = Cy = 0 + 7, the multiplication by 6. Just like any Drinfeld module
¢, C can also be viewed as a functor from the category of Cy(ty)[f][7]-modules to the
category of F,(ty)[f]-modules (with appropriate morphisms) so that we can define the
modules C(Ty), C(Ly), C(A),... as well. To describe the associated Carlitz exponential,
we introduce, following [36 §31 and 3.2], the analogue of the sequence of numbers ¢"! in
the following way:
dy, = H a,
a
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where the product runs over the monic polynomials a of A of degree n. It can be proved
(see [36l, Proposition 3.1.6]) that

(2.10) dy, = (m" - 9) . (m" - eq’“) c A\ {0}, n>0.
The map expy : Ky — Ky, defined by

expo(z) = ) d; '7'(2)

i>0

is the exponential function associated to the Carlitz module, which is a continuous, open
[F,(ty;)-linear endomorphism Ky, — Ky, to which we can apply Proposition and Corol-
lary In particular, the kernel of exps (over Ly, or Ky) is equal to 7F,(ty;)[f] where

o0 A -1
(2.11) 7=0(-0)71 [ (1 _gl-a ) ,
i=1
which belongs to KOO((—H)q%l) \ K (we make a choice of a (¢ — 1)-th root of —6, and
1
we note that (—6)a—1 = expo(70~1)). It is rare that, for a given Drinfeld A-module ¢,

we can provide such explicit descriptions of the main characterizing objects exp,, Ay etc.

From this product expansion one immediately sees that |7| = ](—9)(1%1| = \9]4%1 It can
be proved that 7 is transcendental over K; there are several ways that lead to this result,
using the above product expansion. See [54, [60] for an overview.

We sometimes also use the notation expy for the Carlitz exponential operator which is
formal series >, -, d, 7" € K[[]] C Kx[[7]], unique such that the first term for n = 0 is
1 = 70 (normalized), satisfying, for the product rule of Kx[[7]], Cpexps = exp 6.

The inverse of the Carlitz exponential operator exp € Kyg[[7]] for the composition is
the Carlitz logarithm defined by the locally convergent series

loge(2) = 3177 (2),

i>0

where [,, is equal to (—1)" times the monic least common multiple of all polynomials of A
of degree n. It can be proved (see again [36, Proposition 3.1.6]) that

(2.12) Iy = (e—m) (9—9‘1").
More precisely, logs induces an isometric Fy(ty;)-linear automorphism
o ~y log o ~
Di(0,[7]) —= D0, [7),

where F' = Ly, or F' = Ky, and similar properties occur with F' = Tx;[0] with 6 € F,(t5,) etc.
We also identify, sometimes, loge with the Carlitz logarithm operator 3, 1, 7" € K[[7]].
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2.4.2. Omega matrices. We need certain invertible matrices with entries in Ly similar to
Anderson-Thakur omega function. Let

A% By(ts)™"
be an injective F4-algebra morphism. We set
9= x(0) € Fy(ts)™™ ™.

Let d € Fyts]\ {0} be such that d € Fy[ts]"*". Then, the image of x lies in F[ty][3]™*".
We set

T ) " _ —— nXxn
Wy = Zexpc (W) ¥ = expe (W(@In — 1) 1) e Ty[d™t]  C L&,
i>0
where the map expq is applied coefficientwise and F,(ty)-linearly, on the entries of the
matrix 7(01, —9)~! € K& (in the same way as in [3, §2.2]). We have, for all a € A, with

C, € K[1]™*™ the multiplication by a over C(Ky)™*":
(2.13)

Calewr) = expe (Fa(01, = 9)™") = expe (F(aly = x(@) (01 = )71 ) + x(@)w, = x(@)wy,
because al, —x(a) = (01, —9)H with H € A[J]"*", so that 7(al,—x(a)) € Ker(exps)"*".

Lemma 2.25. We have w, € GLn(Tg[é]/\) and wy 15 solution of the linear T-difference
system

T(X) = (v —0I,)X.
Moreover, every solution X in K%Xl of this difference system is of the form X = w,m,
with m € Fy(ty)™<1.

Proof. Observe that
wy = eXpg (%(GIn - 19)_1) = expo (%9_1(171 - 190_1)_1> = expo(70 I, + R

where R € K&*" is such that ||R| < ]9]‘1%1 = |70~ = |expa(70~1)|. This proves
that wy, € GL,(Tx[4]"). The fact that w, is a matrix solution of the system indicated
above follows directly from with ¢ = 6. Finally, if X is a column solution of the
system above, we have that w; "X has entries in the constant subfield of Ky which is
Fy(ts) = F4(ts;), and this proves the last assertion. O

We denote by Ex;[3]" the Coc-algebra generated by all the series
(2.14) > fid™', fi €Es,

i>0
with the property that | fi[r® — 0 for all 7 € [C|. Observe that Ex[1]" is not complete
for || - ||, unless ¥ = (); for example, E is not complete. The completion of Ex[2] is easily

seen to be equal to Tx[2]" (the completion of E for the Gauss norm is T). We therefore
adopt this notation that should not lead to confusion. We have the next:
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Corollary 2.26. We have the identity

-1
we = (=0)7 [ (1 —0077)
i>0
up to the choice of an appropriate root (—9)711. Hence, w' € GL, (T[N N (Eg[4]M)7m.

Note that the factors of the infinite product commute each other.

Proof of Corollary[2.20. First of all note that
-1
Fe=(-0)7 [] (In 99 ) € (Tg[d~P)m<n
i>0

is a matrix solution X of the difference system 7(X) =
applies and there exists a matrix V' € GL,(F, j
proceed to prove that V = I,,. We recall that (— ) =
(— H)q 1. We have seen, in the proof of Lemma [2.25| that wy, = exps(76~1)I, + R where
R e K& is such that || R|| < \9|q . We also have F = exp(70~1)I, + R, R’ € Ky, such

that ||R/|| < qqfl. Hence V = I,. Additionally, note that (6L, — )~ € (Tx[5]")"*"
so that, by Corollary wy has entries in Tx[4]". Also, F in this case is an element of
GL,(Tx[2]"). Writing 9 = d~'v with v € Fy[ty]" ", we see that F = }_,. c;v'd™" with
¢; € Coo such that |¢;|ré — 0 for all € |Coo|. But then ¢ € Coo [ts]™*™ with ||/ [|rf — 0
and therefore, the entries of w; ' belong to Exg[4]". O

(0 —6I,)X, in GL,(Kyx). Lemma
)) uch that F' = Vw,. Now we

- pC( ) for a unique choice of

2.4.3. A class of entire functions: Perkins’ maps. We recall that we have set ¥ = x(0) €
Fq(ts)™*™ and that d € Fy[ty] \ {0} is such that d¥ € Fy[ty]. For z € Co, we set (EI)

(2.15) X(z) := expco <%z(9[n - 19)_1>w;1,

where w, € GL,(Tx[3]") has been introduced in By Lemma this is an entire
function in HOITE[%}/\(COO — Ty[4]M)™*". We now use the material developed in this

section to show the following (compare with [61, Lemmas 15, 17]).

Proposition 2.27. The function X satisfies the following properties:
(1) It has image in (Ex[2]")™".
(2) It satisfies X(a) = x(a) for all a € A.
(3) It satisfies the T-difference system 7(X) =X + expc(%z)wgl.

Proof. (1) Since
expo (7rz(0] —9)" ) Zd 0‘1] -9, z2eCy

>0

8Note that the factors commute.
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and Hdi_l(ﬂqiln — )71 = 6]V for all i > 0, the image of the map ¥ is contained in
(Eg[é}A)"X”A (we recall from Corollary that w ! has entries in Ex[1]"). (2) Observe
that if a € A,

X(a) = exp¢o (%a(@[n—ﬁ)_1>w;1
Ca(wx)w;1
= x(a).

(3) We set F' = expg (T2(01, —9)~'). Then,
7(F) = —0F +expg (%z(ﬁ[n — 9+ 9)(01, — 19)—1)
= OF +expy (%’(z(@[n . 19)*1)79) + expe(72) I
= F-(9—0L,) + expo(72) L.
O

From now on, we will denote both maps, 4 % Fy(ts)™*™ and Cy X, K$ ", with x to
simplify our notations.

2.4.4. An example with n = 1. We consider, to illustrate a well known example (the reader
familiar with the theory of the function w can skip this subsection), the above picture in
the case when x = x¢, where x; is the unique Fs-algebra map

A XL Ft]

defined by 0 — t (therefore, n = 1). In this case wy, is the function of Anderson and Thakur
w. It is likely that this function appeared for the first time in the literature in the paper
of Anderson and Thakur [I, Proof of Lemma 2.5.4 p. 177]. We have:

ot = (57

Corollary allows to recover the well known factorization formula

(2.16) wit) = (~0)7 T [] <1 _ ! >_1 e T,

qi
i>0 0

for a fixed choice of the (¢—1)-th root, and the inverse of w is an entire function in E := Ey,
with X a singleton. The element w can also be viewed as a function of the variable ¢ € C,
because the infinite product converges for all

t € Coo \ {075k >0}

and defines a meromorphic function over the above set, with simple poles at 9qk, k> 0.
The element w is a (0 — t)-torsion point in the Carlitz A[t]-module C(T). In particular, w
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is a generator of the free sub-F,[t]-module of rank one of T, kernel of the evaluation of the
operator

Co—t =7+6—tec K[t][7],
so that w is a solution of the linear homogeneous 7-difference equation of order 1 (see also
[52, Proposition 3.3.6]):

(2.17) T(w)(t) = (t — O)w(t).

All these properties easily follow from Corollary
For the function y; : Coc — T the results of §2.4.3| specialize in the foundations of
Perkins’ theory in [65]. We note that explicitly,

o ()
xt(2) = T7

We deduce that x; defines an entire function Co, — E which satisfies x:(a) = a(t) for all
a € A, and the 7-difference equation

(2.18) T(xi(2)) = xi(2) +

z € Cxo.

expo(72)
T(w)
To mention an additional property of the entire function y:, it can be proved that the
xt(2)

function z — 2= € E is non-constant, entire, without zeroes.

2.4.5. Further commentaries. We already pointed out in the introduction that in this vol-
ume, we mainly focus to K&¥-valued modular forms for GLa(A). However, it is natural to
compare the theory developed so far with that of scalar modular forms for GL,(A) with
n > 3 by Basson, Breuer, Gekeler, Haberli, Hartl, Pink, Yu et al. already cited in the
introduction |1, A GL, (A)-generalization of our theory is likely to be meaningful but will
hopefully be the object of another work. After having read the present volume the reader
will attain a more precise intuition: the content of the present section §2.4] can be updated
to raise the level of generality of In the crucial next section [3] we explain in what
sense the Carlitz module is involved in the analogues of ‘Fourier series’ of our GLa(A)-
modular forms. The link is indeed guaranteed by the omega matrices and the functions x
we just described. Higher rank Drinfeld modular forms are involved in the corresponding
‘Fourier series’ of GL,,(A)-modular forms with n > 3 and indeed analogues of the elements
wy and the functions x can be associated to Drinfeld modules of any rank. This is briefly
outlined, in the special case x = x¢, in the paper [59, §4]. We refrain from giving full
details here because this would bring us too far from the purposes we fixed for the present

paper.
3. FIELD OF UNIFORMIZERS

The crucial feature of the modular forms we study in the present text is that their
entries can be identified with certain formal series generalizing the Fourier series of classical
Drinfeld modular forms f : 2 — C4, for I'. These formal series can be seen as elements
of the field of uniformizers K& (Definition which provides a natural environment to
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do computations and to prove our results. Roughly speaking, if f : Q@ — Kg *Lis a
modular form of weight w for a representation of the first kind p, then the entries of f can
be viewed as elements of an algebraically closed field of generalized formal series in the
sense of Kedlaya [44], containing the valued field Ky ((u)) with u the uniformiser defined in
. We need to be a bit more precise however, as in practice, these series span a much
smaller field and in the sequel, we need to gain a certain control on their expansions. The
main results in this section are Propositions and where the reader can find an
explicit description of the elements of & as formal Laurent series with coefficients which
are tame series, certain entire functions defined in §3.2] Similar constructions have also
been considered in [59]. We begin with where we introduce some algebraic settings.

3.1. Some algebras and fields. In this subsection, we consider an integral commutative
A-algebra B with the structure induced by a morphism

A5 B.

Additionally, we suppose that B is endowed with an F,-algebra endomorphism 7 which
acts as the map ¢ — ¢? over 1(A) so that (B, 7) is a difference ring. We set

(3.1) © = ().
In the paper, we are going to restrict to the case ¢ injective. In this case, we identify ©
with 6 but in the first general discussions, we prefer to keep © and 6 distinct.
We consider, further, the polynomial B-algebra
in infinitely many variables X;, and the ideal P generated by the polynomials
qu +0X;, —X,_1, i€LZL.

Then, with X the collection (X; :i € Z) and j =), = Z[%]zo expanded in base ¢
(so that only finitely many terms occur), we set
(X)) =[x} e R/P.
1€EZ
The quotient B-algebra R/P can be identified with the ring B(X) whose elements F' are
formal finite sums in the indeterminates X;, i € Z:

(3.2) F= > FXY= Y F[[x Fes

JEZ[$]>0 JEZ[L]>0  KEL

where we have expanded the indices j = >, jxq~" in base ¢ (the coefficients j; are almost
all zero and belong to {0,...,q — 1}).

An expansion is uniquely determined. Indeed, supposing the converse, we are led
to the existence of elements

F=) FiX)y =0
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in B(X) with the coefficients Fj not all zero. The B-module P(< ¢) with elements the
polynomials P in P such that for all i, degy, (P) < ¢ — 1, is trivial, while F' admits a
representative in R with the degree in X; which is in {0,...,¢ — 1} for some j; this is
impossible.

We observe that a product over B(X) is well defined in virtue of the rules X! = X;_; —
©X;. We have thus identified, after a mild abuse of notation, B(X) with a complete system
of (canonical) representatives of elements of R modulo P and we have defined over it a
product which makes it isomorphic to the quotient R/P. A canonical representative in R
is a polynomial that has degree between —oo and ¢ — 1 in each indeterminate X;, ¢ € Z.

The reader must carefully distinguish (X )jqk and ((X)J )qk: these are distinct elements of
B(X)!

Examples. If B = A and ¢ is the identity, since the multiplication by 6 of the Carlitz
A-module is given by Cp = 6 + 7, we have X;_1 = Cp(X;) in the A-module C'(A(X)). If
B = Cy and ¢ is the inclusion A C Co, the substitution X; — ec(g7), where ec is defined
by

ec(z) = expo(72),
yields a Cyo-algebra homomorphism
Coo(X) — Map (K — Co) .
We come back to the general settings of this We define a map
B(X) = Z[p~']<o U {oo}

in the following way. We define v(0) := oo and we set v(B \ {0}) = {0}. Further,
for a monomial (X)7 = [[;c; X" (so only finitely many factors satisfy j; > 0), we set
v((X)7) = —j. Note that distinct monomials (X)7 correspond to distinct values in Z[%]go

so that v is injective over {(X)7 :j € Z[%]zo}- If F' is non-zero as in , then we set
o(F) = inf{o((X)?) : F; # 0};
the infimum is a minimum.
Lemma 3.1. With j, k € Z[%]Zg we have (X)(X)F = (X)7** + F where F € B(X)
satisfies v(F) > v((X)I+F).
Remark 3.2. Note that in general,
(X)UX) #(X)™H, 0,5 € Zp™ >0

The equality holds if there is no base-¢q carry over in the sum i+ j. For example, the reader
can verify the formula:

! 1,41 1
(33) @OV = (X)) -0 ) X)X v 1,
=0
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Proof of Lemma|[3.1. The proof is rather long and articulate but elementary. We decided
to give all the details so that the reader can better familiarize with these structures. There
is no loss of generality if we suppose that 0 < j,k < ¢. Indeed we can shift the indexes,
i.e. replacing X; — X, ; for all ¢ for some [ € Z. This defines a B-linear automorphism of
B(X) that rescales v of a factor ¢~ because it acts by sending (X)7 <K>qflj.

For some r > 0 we can thus suppose that j = jo +j1¢~  + -+ jr.¢ ", k = ko + k1g~ ' +
oot kg with 0 < j;, k; < g—1 for all i. We shall show the following properties. (1) There
exists F' € B(X) with v(F) > —(j+k), such that (X)/(X)* = (X)7+*k + F. (2) There exists
G € B(X) with v(G) > —(j + k 4+ ¢77), such that (X)¥(X)*X, = (X)Itkta™" 1 G. (1) is
exactly the statement of the Lemma, but we also need (2) in the proof. Note that F,G
need not to belong to B[Xy, ..., X,], however one can show that F,G € BJ..., Xy,..., X,].
We proceed by induction on r > 0. To see (1) for » = 0 we note that there is nothing to
prove in case j + k = jg + ko < ¢ — 1. Suppose now that jy + kg > ¢. In any case we have
Jo+ ko < 2¢ — 2 so that jo + ko — ¢ < ¢ — 2. Hence we have the identities, in B(X):

<X>j+k _ X(J)'oJrko _ X(J)'mLkOiq(X,l —0X)) =

— X30+k0*(1X71 _ @XgoJrk(H“l*q — <X>j0+1€0 _ @<X>j0+ko+1—q )
A A
=—F

To see (2) for r = 0 the reasoning is the same and the only case which needs an explanation
is when jg + kg + 1 > ¢g. Note that in any case, jo+ ko +1— ¢ < ¢ — 1. Then:

<X>j+kXT — <X>j+k+1 _ @X30+k0+2—q )

A A

=—G

If jo = ko = ¢ — 1 we have XJ°TH+270 — x7 — ¥ | — ©X, (in B(X)) and the v-value is
-1 > —q = —(]0+k0—|—2—q) :v(<£>j0+k0+1). '

We now prove (1) for 7 > 0. If j+k, < g—1 we can write: (X)7(X)% = X7 (X)7" (X )¥
where j' = j — j.¢”" and kK’ = k — k,.q”" (j', k" have one g-ary digit less so we can apply
recursion). By induction hypothesis we get

(07 (20)* = X ()7 4 F)
where F’ € B(X) is such that v(F') > —j' — k. Then (X)/(X)* = (X)7™* + F where
F = X{""* F’_ This proves (1) for the integer r because writing F/ = > F (X)7" we
have I = > F (X)3"+a7" """ thanks to Remark Then, v(F) = —q /=% —o(F') >
_q_]r—kr —j -k =—j—k.
Let us now suppose that j,. + k, > ¢q. Then

s/

(34) (X)(X)* = XP R0, (07 (0N - ex (X (X)F.

By the induction hypothesis we can apply the properties (1) and (2) for the integer r—1 and
we deduce that in the first term on the right of , X, (X)X = (X)) R+ L
with G’ € B(X) such that v(G') > —(j'+k +¢' 7). Since Xj T =9(x )"tk +a™" — (x)itk
and since writing G; = X7 71G’ we immediately see (Remark [3.2) that v(G1) > —(j, +
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/

kr—q)qg " = (5 + K 4" ) = —j— k we get XPTTFTUX, (X)) (X)F = (X)IHF 4Gy with
v(G1) > —j—k. As for the second term on the right of we have, always, j,+k,+1—¢q <
q—1. So we can apply Remark 3.2 again to show that there exists F} € B(X) with v(F}) >
—(jr+kr+1—q)qg~" with the property that X 19 x\i"(X\¥ = (X)i"tF+(1-aa™" 4 py
and the whole term Fy = @Xﬂ’"+k"+1_q<£)j/ (X)* satisfies v(Fy) > —j — k — ¢~ so that
setting G := G + F» we get what we want in this case, namely: (X)7(X)* = (X)/*F 4+ @
with v(G) > —(j + k).

It remains to show that the property (2) holds for an integer » > 0. We handle the case
in which j. + k- +1 < ¢ — 1 in a way identical to that of the case j,. + k., < g — 1 for the
property (1) so we omit the details. We suppose that j, + k, +1 > ¢. we can write, in
B(X):

(35) X (X)(X)F = XPrHRerimax, (X)T(XOF — xR e x) T (XN,
We first focus on the first term in (3.5). By the induction hypothesis we have
X, (X (XN = (X)) @

with v(G") > — (5" + kK + ¢'™"). In any case j, + k. + 1 — q < ¢ — 1 so that applying
Remark 3.2, X7 o0 x, (X)) (X)W = (X)IThta" 4 Gy with o(Gy) > —(j+k+q77).
The handling of the second term in is slightly more involved because there are two
subcases. If (2.a) at least one of the terms j,, k, is < ¢ — 1 then j, + k, +2—qg < qg—1
and this term can be handled just as the second term in so we omit the details. It
remains to consider the subcase (2.b) where j, = k, = ¢ — 1. We see that

Gy = XP T 220(X)T (0O = XXM = X, (X)T (0O - eX,(X)7 (X
By the property (2) for the integer r — 1 we can write X, (X)7 (X)¥ = (K)j%k/ﬂ’lir +G
with v(G") > —(j' + k' + ¢'~"). Additionally by Remark we have X, (X)7'(X)¥ =
(XY Hence v(Ge) = —(5' + K +¢"7") > —(j+k+q ") = v((X)IHFHTT) (the
middle inequality follows from the choice of j,, k.). Writing G := G7 — ©G2 we have
v(G) > —(j + k+q7), we can write X,.(X)7(X)F = (X)ITF+7" + @, and this is what we
wanted. ]

As an immediate consequence we record the following important corollary.

Corollary 3.3. The map v is an additive valuation.

In other words, v(FG) = v(F) +v(G) if F,G € B(X).
Since B(X) is a valued ring by Corollary it is integral and we deduce that P is a
prime ideal. The residual ring of B(X) is B. Further, defining

T(Xz> = X:I = Xi—l — @Xz (HlOd ,P)

induces an endomorphism of B(X). '
It is easy to show that, for all F' € B(X), v(7(F)) = qu(F). Indeed, for all j, ({(X)7)? =
T7((X)7). Since F' € B(X)\{0} is such that F' € B if and only if v(F') = 0 (and F' € B(X)\B

if and only if v(F) < 0) we immediately see that the subring B(X)™=! of the elements F
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such that 7(F) = F is equal to B™=!. Note that even in the case of (B, 7) inversive, 7 does
not extend to an automorphism of B(X).

3.1.1. The maps A\, pu,v. We present certain auxiliary maps A : B(X) \ {0} —> N and
w,v : B(X)\ B — N that are necessary to develop the arguments from § on. If
F € B(X) is non-zero, we call depth of F' the total degree in the indeterminates (X )iez of
the canonical representative in R of F. We have that F' € B(X) \ {0} has depth 0 if and
only if F' € B. Let F' € B(X) \ B be as in . We denote by u(F) the largest m € Z
such that the variable X, occurs in at leabt one non-zero monomial of F' (remember that
the elements of B(X) are polynomials so that p(F') is well defined). Similarly, we denote
by v(F') the smallest n € Z such that the variable X, occurs in at least one non-zero
monomial of F. Clearly, the function ¢ dominates the function v over B(X) \ B (in the
natural ordering of Z). More precisely, A, u, v are connected by the following inequalities:

0<u(F) —v(F) < (¢-1)7'AF), VFeBX)\B

The next result collects some properties of the maps A, u, v in relation with the product
structure. They are applied in the proof of Proposition [3.11}

Lemma 3.4. For two monomials (X)* and (X)7 in B(X) the following properties hold:

(1) A(X)(X)7) < M(X)') + A((X)),
(2) p((X)"(X)7) = max{p({(X)"), n((X)7)}, , ,
(5) v((X)(X)7) € {min{r((X)"), v((X)7)}, min{v ((X)"), v((X)7)} - 1}.

Proof. (1) We set A\(0) = —oo. It is easily seen that any representative in R of F' € B(X)
modulo P has its total degree which is larger than A(F'). This suffices to justify this
property because A((X)"(X)7) < deg({(X)"(X)’) < deg((X)’) + deg((X)?) = A((X)") +
A((X)7). (2) This property has been already mentioned in the proof of Lemma and
it is straightforward. We leave the details to the reader. (3) Identifying X; with (X)4
for all ¢ and allowing a harmless abuse of notation, we show by induction on r > 0 that,
for any fixed jo,...,Jjr € {0,.. — 2}, v(Xp° -+ X77) € {0,~1} and, if X1 occurs in
some term of the expansion of the canonical representative of Xj Jo.. Xﬂr, it occurs with
degree 1. If r = 0, this is clear (ﬂ) Suppose now that the property is proved for the integer
r — 1. Then we have V(le .- X"y € {0,1}, and if the value is 0 then X; occurs in the
expansion of the canonical representative with degree 1 by induction hypothesis. The proof
is complete by multiplying by X?° (with jo € {0,...,2¢—2}) as we obtain a representative
in B[X; : i € N] that has degree < ¢ in all the indeterminates X; with ¢ > 0 and whose
degree in X is at most 2¢g — 1, a property from which it is easy to conclude. ]

3.1.2. The B-module B{X)). We analyze a difference B-module containing B(X) strictly.

Definition 3.5. We define B{(X)) to be the B-module of formal series as in (3.2]), without
the condition of finiteness of the sums, and such that the following conditions hold:

9t can be proved, more generally, that if o > 1 and if [ is an integer such that ¢ < m < ¢'*', then
v(Xgh) > —1. Moreover, A(X§") < £4(m), the sum of the digits of m in base q.
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(1) There exists L > 0 (depending on F') such that if Fj # 0, then ¢,(j) < L, with
¢4(j) denoting the sum of the digits of j in base ¢ (which means that the length of
the base-g expansions of the exponents j involved is < L).

(2) If F; # 0, then j < M with a constant M > 0 depending on F.

It is clear that there is an inclusion of B-modules B(X) C B({(X)). The first condition
also means that the number of factors X; of the monomials occurring in F' € B{(X)) is
bounded.

The depth map A extends to B((X)) \ {0}. The second condition can be justified in the
following way. If j € Z[%]>0 then we can write, with ro < r1 integers,

J=1Jrq " +jro+1q_1_r0 +e +jr1—1q1_rl + i@ drodr 0, Ji €{0,...,¢—1}
so that ¢7™ < j < ¢'~". Hence we have, setting M = ¢'~", that (X)’ only contains
factors of the form X; with ¢ > rg if and only if j < M. In the above definition, condition
(2) is therefore equivalent to the existence, for a series F as in (3.2), of an integer ro such
that if X; occurs in a monomial (X)7 with F; # 0, then i > ro. The map v extends to
BUX)\ {0},

Let F € B{X)) \ {0} be an element with expansion (3.2). We denote by Supp(F) the
subset

Supp(F) = {j € Z[p~'] : Fj # 0}.
We also set:
v(F):=inf{—j:j € Supp(F)} € R, v(0) := o0.

Lemma 3.6. If F € B(X)) \ {0}, v(F) is a minimum, in Z[%ko-

Proof. Directly from Definition we see that Supp(F') can be covered by finitely many
non-empty subsets S of Z[%] of the form

(3.6) S= {joq—"o i 0 € N}, L<SAF),  joo-q €{1,..., 1}
The lemma follows from the fact that any such subset has the property that every non-
empty subset has a maximum. O

Corollary 3.7. Let F be an element of B{(X)). The expansion is unique.

Proof. Otherwise, there would exist an expansion 0 =}, ¢;(X ) with ¢; € B not all zero

and we would have oo = —j for some j € Z[%] which is impossible. O
Let F be an element of B{(X)) \ {0}. By Lemma [3.6| there is a unique expression
(3.7) F=F_yp(X)"") + F

where F_,(py € B\ {0} and F" € B{(X)) is such that v(F") > v(F'). The uniqueness follows
from Corollary
This allows to obtain the following.

Corollary 3.8. The ring B{(X)) is complete for the v-metric.
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Proof. Consider a Cauchy sequence (F},)n>0 in B{(X)). This is equivalent to v(F,,11—F}) —
oo as n tends to infinity. Suppose by contradiction that F, 11 — F;, # 0 for infinitely many
integers n. For these integers, by the fact that F,, 11 —F,, € B(X)), we have v(F,11—F,) <0
in contradiction with the fact that the sequence is Cauchy. This means that the sequence
(Fy)n>0 is ultimately constant and therefore, convergent to an element of B({(X)). O

The function v is particularly useful to construct new elements of B{(X)) out of a given
sequence of elements in B({(X)), by ‘finite sums out of a possibly infinite family of terms.’

Lemma 3.9. Let (G;)i>0 be a sequence of elements of B{(X)). Assume that v(G;) — oo
and that there exists L > 0 such that \(G;) < L for all i. Then the infinite sum

> G
i>0
defines, canonically, an element G € B{(X)) with A\(G) < L.

Proof. Let j be an element of Z[%]. Since v(G;) — oo, j € Supp(G;) for finitely many
indices and we can define

G=> FjXx),

where Fj = 3,5 G j, having written G; = 3, G ;(X)7 (finite sum). The condition on
A(G) is obvious. O

Remark 3.10. Note that the series defining G' in Lemma may be divergent for the
topology induced by v. The process of summation defining G is that of finite sums. As an

example, let F' be in B{(X)) defined by 1} Let us choose a bijection f : N — Z[%]zo.
Set G == Fy (X)/@. Then Lemma applies and F' = G with G the element defined
by Lemma while the series (3.2) may diverge for the v-valuation. This process of
summation is rather common when one studies wildly ramified extensions of local fields
and draws a connection with the so-called Hahn series. To illustrate this we recall the
famous example by Chevalley constituted by the polynomial X? — X — ¢t~ € F,(())[X]
that has as a root, the formal series
€Tr = Z t_l/pi’

i>1

a series that diverges in the complete field F@ac. For more in this direction, read Ked-
laya’s paper [44] and the bibliographical references therein. See also Part (4) of Proposition

3.1.3. Difference algebra structure on B{(X)). We show the next result:

Proposition 3.11. The following properties hold.

(1) The B-module B{(X)) is endowed with the structure of a difference B-algebra with
endomorphism T, extending that of the difference algebra (B(X),T).
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(2) The B-algebra structure of B{X)) is compatible with the map v : B{(X)) \ {0} —
Z[p]>0 that therefore defines a valuation extending that on B(X). Additionally, for
dl F & B(X), o(r(F)) = qu(F).

(8) If (B, T) is inversive, then (B{(X)),T) is inversive.

(4) If (B, ) is inversive and F' € B{(X)) has no constant term in its expansion
then there exists G € B{(X)) such that 7(G) — G = F.

Proof. (1) We show that there is a rlng product on B({(X)) that extends the product of
B(X). We use that (X)/ = X3(X)" if j = jo+ 7 with 0 < jo < ¢—1 and j' € Z[ ]
is such that 0 < j* < 1. We consider F,G € B((X)) and we proceed by induction on
AF) 4+ A(G) > 0 to prove that F'G is a well defined element of B{(X)) is we construct the
product by using the product of B(X) and furthermore, A(FG) < A(F) + A(G), v(FG) >
min{v(F),v(G)} — 1, and if v(FG) = min{v(F),v(G)} — 1 then the degree of FG in
Xmin{v(F)w(G)}—1 18 equal to one. There is nothing to prove if A\(F) + A\(G) = 0. Let us
now suppose that A(F) + AG) > 0. There is no loss of generality if we suppose that
F = XJOFl and G = X, °G1 with 0 < jo, ko < ¢—1, jo+ ko > 0 and v(Fy),v(Gy) > 1
Clearly, A(F1) + A(G1) < AM(F') + A(G). Hence the product F1G; is well defined in B({(X));
let us denote it by H;. By Part (3) of Lemma v(Hy) € N. If v(Hy) > 0 we are
done, because the product Xj Jotko f) s trivially Well defined. If v(H;) = 0 then we know
that the canonical representatlve of Hy has degree 1 in Xg. In this case we can write
Hy = XoHy+ Hs where v(Hy), v(Hs) > 0. The products X7° ™ Hy, X707 [3 are trivially
well defined and X7 X Hy = X3 0 Hy = (X1 — ©X0) X T 7H, is well defined
(note that jo+ko+1 < 2¢—1) and B({X)) carries a structure of B-algebra, extending the
structure of B(X). That this is additionally a difference algebra with the extension of 7 is
clear.

(2) The valuation v of B(X) extends to a valuation of B{(X)). This follows from (3.7).
Indeed, clearly, if F,G € B{(X)), then v(FG) = v(F) + v(G). A little additional thought
allows to also justify that v(7(F)) = qu(F) for all F' € B{(X)).

(3) Assuming now that (B, 7) is inversive, we observe that

Y= 300X, € B(X)

>n

for all n € Z, with ©(-1) = 771(4(#)) in B (this element exists by hypothesis), satisfies
v, = X, Indeed,

Yn(l) _ Z@Z ny z+1
>n
= > O(X; - 0Xi41)
>n
= X,.
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Therefore, inductively, if we set:
(38) Yo=Y (M)ynmEtlet)rmasl (gt e B(X)),
1> >0 >n

then YAZ) = X, for all r > 0 and n € Z. Note that A\(Y,,,) = 1,v(Y,,,) = n+ r for all
n,r and that Y, , = X, +Y,, , with Y, - € B{X)) such that v(Y, ) > —¢~""". To go a
step further and prove that B({(X)) is inversive, let us choose j € Z[%]>o with g-expansion

W= [

> kg~ " and write

kEZ
This is a well defined element of B{(X ) and we have A((Y)%) = A((X)7) for all r. Moreover,
(3.9) v((Y)1) = v((X)) +r+1 - (( ).

These properties follow easily from Lemma and . We have that
(MDD =(X)7, Vi,
Assuming that B is inversive, we are going to prove by induction over A > 0 the next
property. If F' = > . ;n, F;(X)? € B{(X)) is such that A = A(F) and n = v(F),
p1>

then, for any r > 0, there exists G, € B((X)) such that 7"(G,) = F with A(G) = A,
v(G)>n+r+1-A\

The property is clear for A = 0. In fact, (3.8 justifies it also for A = 1 but we do not

need it. Suppose that A > 0. Since r is fixed we write G = G, for simplicity. Without loss
of generality we can suppose that n = v(F') = 0 and

F=XPFR

with jo € {0,...,¢—1} and F} € B{(X)) is such that \; := A\(F1) < A\, v(F}) > 1. Note that
A1+jo = A. Indeed, the canonical representative of F; does not depend on Xy. By induction
hypothesis there exists G1 € B{((X)) such that 7"(G1,) = F satisfying A\(G1,) = A1,
v(Giy) > r+2— A1, Recall that X3° = (X)% and (Y)7° satisfies ((Y)7°)? = X},
M) = jo, v((Y)) > v+ 1 jo (by (B9)). Setting G == (Y)¥G1, we thus get
7"(G) = F with A\(G) = A(F). From Part (3) of Lemma [3.4] and we deduce

v(G) > min{v(G1),v((Y))} =1 >min{r+1—Ai,r —jo} >r+1—-X\ —jo=7+1- A\
Hence, if B is inversive, B(X) is inversive.

(4) It remains to show that if B is inversive then, any equation 7(X)— X = F is solvable
in B{(X)) if F' € B{(X)) has no constant term (note that B needs not to be closed for
Artin-Schreier equations). In order to do so, we use the previous Part (3) and its proof.
We have seen that for all » > 0 there exists an element 77"(F) = G, € B{(X)) such that
T"(r7"(F)) = F, with A\(77"(F)) = MF) and v(77"(F)) > v(F) +r + 1 — A. Hence
v(t7"(F')) — oo as r — oo and the hypotheses of Lemma are satisfied, so that

G = ZT#(F

r>0
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is a well defined element of B{(X)) satisfying 7(G) — G = F. O

Remark 3.12. By using the above proposition and its proof it is easy to deduce the
following properties. If L is an inversive field extension of K then L((X)) is inversive, as
well as its fraction field. If additionally L contains all roots of equations 7(X) — X = F
(e.g. L =Ky), then L{(X)) contains all roots of equations 7(X)— X = F with F' € L{(X)).

3.1.4. Depth homogeneity. We denote by B{(X))s the B-submodule of B({(X)) whose ele-
ments are the formal series F' as in such that if Fj # 0, then (X)7 has depth equal to
s, 1.e. £4(j) = s. It is easy to see that

(3.10) B(X)) = €D B(X)s
s>0
as a B-module. If F' € B((X)), we can expand in finite sum and in a unique way

(3.11) F=> pbl

s>0
where FI¥l € B{(X)),.

The next Lemma, not used in the present text, is an aside observation. The proof of
which is left to the reader.

Lemma 3.13. For any s > 0, 7 induces an endomorphism of the B-module B{X))s.
Remark 3.14. The B-algebra B((X ) is not graded by the depths. Instead, we have that

B<<X C@B 5+sf j(g—1)>
7>0

where we set B((X))s = {0} if s < 0. This property is easy to show and we omit the proof.

3.1.5. The case of B a difference field. We keep working under the hypotheses of the previ-
ous sections and, although several properties also hold in broader generality, we additionally
suppose in this subsection that B = L is a field together with an embedding A — L and
an endomorphism 7 : L — L extending the Fj-endomorphism ¢ — ¢? in A. We introduce
the subvector space of L{{X)):

L°{(X)) := Vecty, (F € L{X) :v(F) > 1) & L.
Only the variables X7, Xo, ... occur in the series defining L°{(X)). We have

v(L4XN \ {0}) = Z[p~']n] — 1,0].
In particular, L°{{X)) has no ring structure compatible with v. It has the family ((X)7 :
j € Z[p~1)N] —1,0]) as an L-basis. Note that L°((X)) need not to be 7-closed, that is, such
that for all f € L°(X)), 7(f) € L°<<X ). If we suppose that L is inversive, then it follows
easily from Part (4) of Proposition [3.11|that 7! defines an L™=!-linear endomorphism of
L°(X).
We set
X = Xo.
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Lemma 3.15. For any F € L{(X)) there exist n and fo,...,fn € L°(X)) such that
F=fo+ fiX+ -+ fuX", and this expression is unique.

Proof. We begin by illustrating a simple claim on polynomials in several variables that
holds in broader generality. Let F' be an element of L(X) \ B such that u(F) < 0. By
iterate substitution of X_j — X{ , + ©X;_; with & > 0, defining a map from the set
of representatives of R = L[X; : i € Z] modulo P, we deduce that there is a unique
representative in R of F' which belongs to the subring L[X] (in particular, the degree in
X needs not to be between 0 and ¢ — 1). This representative is uniquely determined. Let
us consider F' € L{(X)) \ {0} with expansion (3.2)). If ¥(F) > 0 there is nothing to prove.
Assume now that v(F) < 0. Then we can rearrange the terms in in such a way that
there are ji,...,j, € Nand Gy,...,Gp € L°{(X)) with

h
F =) (X)*G.
k=1

This expansion is uniquely determined. The above claim now suffices to complete the
proof. O

Hence we have ‘
LX) = @ Le(x)x’.
i>0
We can write, loosely:
L{X)) = L°(X))[X].

We now consider Fraﬂ& )y, the completion for the valuation v of the fraction field
of L{X)) (the latter is clearly a domain).

Proposition 3.16. Every element [ of Fraﬁl)})v can be expanded in a unique way as
a sum
f=Y HXT' fie LX)
i>ig
Remark 3.17. Note that in the above expansion the depths of the coefficients f; may be
unbounded in their dependence on i.

We can write L°((X))((X 1)) for the L-vector space of the formal series f = D i fixi
as above, with f; € L°{(X)) for all 4, with the warning that this is not a field for the usual
Cauchy product rule of formal series, since, as pointed out previously, L°{(X)) is not a ring
but just an L-vector space. The wsition tells us that this set in fact carries a structure
of complete field, and equals Frac(L{(X))),, but the product rule is not the Cauchy’s one.

To prove the proposition we will need the next two Lemmas. The first one describes the
valued ring structure of L°{X)((X~1)).

Lemma 3.18. The set L°(X)((X™1)) has a structure of commutative ring with unit, over
which the valuation v extends in a unique way from L°{(X)), and which is complete for it.



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 51

Proof. Recall from Corollary that L{(X)) is complete. It is not difficult to deduce
that L°{(X)) is also complete. Since L°((X)) is an L-vector space, in order to show that
LoYX)((X™1)) is a ring, all we need to do is to show that the product of L{X)) extends
to a product structure on LX) ((X1)). Let f=>",o, fiX " and g = 250 g; X7 be
two elements of L°{X)((X~1)). We note that hy := > ik fig; € L{X)) has valuation
in | —2,0] U {oco} and we can write hy = apX + Bk, with ag, O € L°(X)). We define

h=fg= > X =) aX"F+> X Feroqx)H((x ).
k>ko:=i0+jo k>kg k>kg
From this, we obtain the required ring structure. If f = 3 .5, fiX7L e LX) (X7Y)
is such that f;, € L°(X) \ {0}, then we set v(f) := v(fi,) + 40 €Jio — 1,i0] and it is
plain that v defines a valuation over the ring L°{(X)((X~!)) and that every such series of
LeYXN((X™Y)) converges for this valuation.

Note that f =Y, iX " € L°(X)((X 1)) is such that v(f) > N where N is charac-
terised by the following condition: the smallest ig such that f;, # 0 is such that i > N +1.
This is meaningful, indeed, if f;, € L°(X)) \ {0}, v(fiu X %) €Jip — 1,i0]. Thus, if (F))x
is a Cauchy sequence of L°(X)((X 1)), the sequence (Fy — F)r = (Zle(Fi_l — F)k
converges to an element of L°{(X)((X 1)) which is then complete. O

3.1.6. The rings L*{(X)). We introduce the ring:
L*(X) := LEXN (X)) 7 2 j € ZIp™ 20| = LEXN[X; ' i € Z),

which contains L{X)). Every element f of L*((X)) has a well defined valuation v(f) in

Z[%]. To see this we note that for every g € L*({(X)), there exists j € Z[ |>0 such that

(X)1g € L{(X)) and this provides the unique extension of the valuation map over L®{(X)).
Lemma 3.19. We have L*{(X)) C L°(X)((X~1)).

Proof. If n > 0 we can identify X~} with an element in X~7"(1 + X 'A[[X"!]]) and
therefore X_,, has a multiplicative inverse X e xX)(x _1)) for all n > 0. Now, we

show that X; has a multiplicative inverse X, E LX) ((X~Y)) for all i > 0. To see this,
we need the following useful identity in L{(X)), the proof of which is left to the reader:

(3.12) X{ = Xo - (60X +01xf+---+ 07X, w0
Thanks to the identity (3.12)) we can write, in the fraction field of L{(X)):
1 xo! X7
(313) ~ = L T = ‘ . i—1 :
Xi  x¢ X0(1 — L (OX) +©uXY 4.+ 00 X! ))

Observe that the element of L®({(X)):

(3.14) h=X;' (0X) + 09X+ + 07 ' X1

7
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has valuation 1 — qfl > 0. Indeed, one can show that ©X; + ©9X] + --- + @qi_leFl =
(©+07+ ...+ 07 )X + r; where v(k;) > —g~ . We have v(h?) — oo as j — oo so that
we obtain a converging series expansion

(3.15) Xt = X;(: Y oW e L(XN((XT)
Jj=0

(the reader can observe that it is not completely straightforward to determine explic-
itly the coefficient of X7 for given j, in this series expansion.) More generally, ﬁ €

LX) ((X~Y)) for all 5, and the lemma follows remembering that L{X)) = L°(X)[X]. O
Proof of Proposition[3.16. Tt suffices to show that we can embed Frac(L{X))) in (L*{(X))?

v
(completion for v). Taking completions, we get the proposition. To see this property, we
only need to show that if f € L{(X)) is not proportional by an element of L* to (X)’
for some j € Z[%]Zo, then there exists g € (L*{X)))) such that fg = 1. Now, write
f = a(X)? — h for some j, where a € L* and where h € L{X)) is such that v(h) > —j.

Then, the series Zizo(ﬁ)i converges in (L*{(X)))/ and we can set

1 ho\'
(3.16) g—a<X>j;<a<X>j) € L*(X),.

By Lemma (Frac(L{X)))2 € L°{XN((X~1)) which is complete. On the other hand,
any series y -, fi X" with the coefficients f; in L°((X)) converges (for v) and the partial
sums are elements of L*{(X)[X 1] C (Frac(L{X))), from which we can conclude that
(Frac(L{X)))» = L°{X)((X~1)) and also, we note that in this way, L°(X)((X1))
carries the structure of a complete valued field (although performing explicitly the product
of two formal series in it, or computing the inverse of a non-zero series in it, is in general
a difficult matter). O

Note that the field L°{X))((X~!)) has valuation ring
Lo@Loqxyx

>0
and maximal ideal
P L)X
>0
The residual field is L.

3.1.7. Link with Hahn series. This subsection is not needed in the rest of the paper but it
illustrates useful properties of our rings and fields, and comparison with known theories.
We suppose here that, in addition to the hypotheses of B = L is an inversive field
containing A such that 7(z) = ¢ for z € A. By Proposition [3.11], L{(X)) is inversive. We
give some complements on the structure of L{{X)). We provide here an alternative way to
represent the elements of L°{(X)).
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Let X be an indeterminate over L. We consider the following set of generalized formal
series, or Hahn series, in the sense of Kedlaya, [44]

(3.17) L°{XP=<f= > fiX':f; €L and there exists
i€Z[p—1]N[0,1]

¢ > 0 such that f; # 0 implies £,(i) < c »,

where £,(-) denotes the sum of the digits in the base-p expansion of an integer. Equivalently,
L°{ X }} can be described as the set of all the generalized formal series in the indeterminate
t = X! which are supported by the sets Sy of [44}, §3] with a =1, b= 0 and ¢ > 0.

Lemma 3.20. Identifying the indeterminate X of with the element X = Xy €
L{X)) gives rise to a canonical isomorphism of L-vector spaces L°{X}} = L°({(X)).

Proof. First of all, note that, for S C Z[%]zo non-empty, ¢,(S) C N is finite if and only
if £,(S) C N is finite. We deduce that every element f € L°{{X}} can be expanded, in a

unique way, as a finite sum of generalized series f = 250:0 fi where

f= Z Jrl.7lAA)(*J‘1t1—l'1+---+jztriz7 fij €L,
J1s-J1€N
where i = (i1,...,4) € (N\{0})" and j = (j1,...,5) € {0,...,¢— 1} (the term with { =0
corresponds to the constant term). We have a well defined L-linear map ¢ : L°{X}} —
L° (X)) defined by Xj1qul +---+j%q_” »—>'Yoj’;1 e Y(')inl whgre the elements Y, are as in 1’
We note that Yojjl ~~-Y0”Z-l =X ---Xi]ll + F = (X)ha " ++0a™" L F where F € L°((X))

i1 )
satisfies v(F') > —(jig™™ + -+ + 5ig~"). Hence the above mentioned linear map is an

isomorphism. O

The above isomorphism ¢ is canonical in the sense that it is an isometry if we give
L°{{X}} the norm induced by the degree in X, and additionally, if f € L°{{X}} is such
that 7(f) € L°{X}}, then 7(¢(f)) = o(7(f)). If L is inversive, it is easy to see that
771 L — L extends in a unique way to an L"~'-endomorphism of L°{{X}} and we can
identify L°{{X}} and L°{(X)) as L[r]-modules.

Corollary 3.21. If L C C has no non-trivial Artin-Schreier extensions then the com-
pletion of the fraction field of L{X)) for the valuation v has no non-trivial Artin-Schreier
exrtensions.

Proof. We consider an Artin-Schreier equation X? — X = f with f in the completion
Frac(L{(X))), of the fraction field of L{(X)). If f lies in the maximal ideal, the result is

obvious. Indeed the formal series f+ fP+ fP° +--- converges in Frac(L{(X ), to a solution
g of XP — X = f. Hence, without loss of generality, we can suppose that f belongs to
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the complement of the maximal ideal in the completion of the fraction field of L{(X)). We
can decompose, in a unique way, f = fo + f1 with v(fp) > 0 (i.e. in the maximal ideal of

Frac(/LTX»)y) and f; € L{(X)) such that v(f1) < 0. By the above discussion, there is a
solution gy in the maximal ideal, of the equation X? — X = fj.

By Proposition the complement of the maximal ideal equals L{{X)). It remains to
solve the equation X? — X = f; with f; € L{X)). By a simple variant of Remark [3.12) . for
all f € L{(X)) there is g € L{{X)) such that g% — f Setting f L+ M+ 4+ f1
(with ¢ = p®, e > 0) we thus get that g —g— f1 is solutlon of X+ XP+---4+XP"" =0 hence
belonging to the algebraic closure of Fy in L. There exists A € L such that g —g = fi + A
Let p € L be such that u? — u = A that exists because L has no non-trivial Artin-Schreier
extensions. Then g1 = g — pu € L{{X)) satisfies g7 — g1 = f1 and g = go + g1 is a solution
of X? — X = f. Clearly, all the solutions are in g 4 [F,,. ]

Remark 3.22. The reader should compare Proposition with [44], Lemma 7]. By
Theorem 6 ibid., if L is algebraically closed, the field

— _1

U Frac(L(X)), (X))

n>1
contains an algebraic closure of L((X~1)).
3.2. Tame series. The rings L({(X)) of the previous section, or the completions of their
fraction fields, are not enough to study the behavior at co of our modular forms. To do
this we need a refined notion and we introduce tame series.

Unless otherwise specified, we shall fix, throughout this subsection, a T—diﬁerence sub-A-

algebra B of Ky, for some 3. We identify 6 with ¢(6) (so that © =6 in (3.1)). We denote
by B{( X))’ the subset of B{{X)) formed by the series as in , satlsfylng sup; || F[| < oo

((-)? stands for ’bounded’). It is easy to show that it is complete for the v-topology, see
the proof of Corollary We leave to the reader the proof of the following:

Lemma 3.23. B{(X)’ is a difference sub-B-algebra of B{(X)) containing B(X).

We consider the map B(X) ER Hol(Cs — Ky) defined by J(X;) = e;, where

e; = ec (02> = exXpc <%9f>

for all i € Z. 1t is easy to see that J is a B-algebra morphism and defines an algebra map
from B{(X »? to the maps from Co, to Ky; this follows from the fact that, for all z € C,
lei(2)| = | 57| for all i sufficiently large (depending on z). We set

e= (e :1€Z).

We denote by B{((e)® the image J(B{X)®) of J in the Ky-valued maps. We call it the
B-algebra of tame series. Explicitly, if we set

e =J(xX)) =[[es 7= sia" €Zps0, Gx€{0,...,q— 1},

1EZ 1€EZ
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we can make the next:

Definition 3.24. A tame series with coefficients in B is a map C,, — Ky which is defined
by an everywhere converging series f of the type

(3.18) = >, file, fjeB

J€Zp~]50
satisfying the following properties.

(1) There exists an integer L > 0 such that if f; # 0, then ¢,(j) < L.
(2) There exists M > 0 such that, for all j € Z[p~']|>0, f; € B satisfies || f;|| < M.

(3) There exists N € N such that if j € Z[%]zo is such that f; # 0, then j < N.

Proposition 3.25. The map J extends to a B-algebra morphism
B{X)® L Hol(Cop — Ky
and this is a morphism of T-difference rings.

Proof. Let us consider a series f as in () Observe that for all j € Z[%]zm the function

z + (e)J is Kg-entire. It suffices to show that, for all R € |Cy|, the series defining f
converges uniformly over the disk Dc_ (0, R). One immediately sees that f(z) is a tame
series if and only if f(07'2) is a tame series. Hence, we are reduced to prove the above
property in the case R = 1. Now, observe that the set {j € Z[p~!]>0: f; # 0 and j > 1} is
finite (because of the conditions (1) and (3) of Definition [3.24). Hence, we can decompose

(3.19) F=> filer+ Y file).
i>1 0<j<1

The first sum is finite and therefore defines an entire function. Note now that if j =
>k jrg* < 1 then we can write

<§>j =e; (z)jl e, (Z)jl

where i = (i1,...,4) € (N*)!. Then, for |z| < 1, by the fact that exp is locally an
isometry,

[(e)| = |es, (2)7F - - - 5, (2)7] < |7 [fal)|g|~ Gt tinqn)
Hence
1f5(e) || < M[m|F|g)~Crt i) — 0
where L, M are as in (1) and (2) of Definition the limit being considered for the
Fréchet filter over the set of couples (i,j) with j = (j1,...,). This means that in the

above decomposition (3.19)), the second series defines a Ky-entire function and the series
defining f converges to a Ky-entire function. O
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3.2.1. Asymptotic behavior of tame series. It is the asymptotic behavior of tame series that
allows to endow their rings with a weight map, and a valuation. For j € Z[%]zo we call

(e)) a monic tame monomial. Its depth is the integer A({e)?) = £,(j) and its weight is j.
To fix ideas, the weight of ey = ec(z) is one and the weight of 1 or of a non-zero constant
is 0. Distinct tame monomials have distinct weights. The condition of finite depth, jointly
with the fact that for any tame series e; does not occur in the series expansion
for i < ig for some ig (equivalent to Conditions (1) and (3) in Definition ensures
that the supremum of the weights of the monomials composing a non-zero tame series is a
maximum.

In the following, we call leading tame monomial of a tame series f # 0 the unique tame
monomial of maximal weight. The weight w(f) of f is by definition equal to the weight of
the leading tame monomial. The weight —oo is assigned to the zero tame series. We now
discuss the question on whether, assigning to a non-zero tame series f the weight w(f), we
have defined a degree map

B(e)” = Z[p~ )20 U {~o0},

that is, the opposite of a valuation. Of course, this is related to the uniqueness of the tame
expansion of a function such as in (3.18)), entire after Proposition we are going to
focus on these questions now. We recall that ec(z) := exps(72) = eo(2).

Lemma 3.26. We consider a monic tame monomial f(z) = (e) = e;, (2)71 - - - e;,(2)7t with
i1 >+ > and ji, ..., 5 €40,...,q—1}. Let z € Cs be such that |z| & |07, If|z] > |0]",
we have |£(2)] = ec()].

Proof. Let z € Cy be such that |8]"~1 < |z| < |0]?, for n € Z. Let us suppose that n > 1.
From the Weierstrass product expansion of the function e4(z) = 7! exp(72):

(3.20) ea(z) = ZH/ (1 - Z) ;

we see that

ea@l =TI -2 =1 T |3 =1 II el

a#0 0<lal<|z| 0<|a|<|0]n—1

Therefore

lec(2)] = [&l=" [ lal™,

0<]al<|0]|™—1

it il 2 q" i
eczo " = 7= T

i
0<|al<|@|n—1-*
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One computes easily HO<|a|§q"*1 a”l = é—’; with D,, and [,, defined in (]2.10[) and (]2.12[)

"1
and |llTnn‘ = |9|qqu,nqn from which we deduce
q' ,
e %) ) q' .
’CL — ‘%’qulwilfq" M -1
ec) 7

To resume, if i is a non-negative integer and n >4 (note that || & |6|%), then
z L
ei(2)| = |ec (7:)] = lec (@)l

This suffices to complete the proof of the Lemma. O

Proposition 3.27. Let us consider a non-zero tame series f as in and let (e)7° be
its leading tame monomial. Then, for all z € Cy such that |z| € |0|* and with |z| large

enough depending on f, || f(2)|| = || filllec(2)]7.

Proof. Let z € Cu be such that [9]"~" < |z| < []", for n € Z. Let us suppose that

n < 4. Then, |z| < |0]" and |2/0°] < 1. In this case the product expansion (3.20] yields

ec ()| = 7 | |
We consider an arbitrary tame monomial (e)?, and z as above. Writing j = j1g™" +

st gigT " with 4 > -+ >4y and j; € {0,...,¢g — 1}, we can set

den="" D> dm@ ™, Gsn= D Jmq ™ €Zp 50

m such that m such that
n<im >0,
so that
j = an + j>n

without carrying over in the base-¢ sum. Then,
<§>j - <§>j§n<§>j>n‘
By Lemma(3.26/we have |{¢)’>"| = |ec(2)]’>". On the other hand, writing j<,, = jr41¢~*+1+
o4 i (hence jen = j1g”" + -+ + jrq~ %), we see that
(Fz)tali<n)  |7|4al)
<
IR

where 0, := ix11Jk+1 + - - - + 41J;- Then, we see that

e)] < lec(2)P 101~ |7 2|".
Let us choose w € Z[%], positive. Then, for |z| > Ry with Ry € |Cy| suitably chosen,
depending only on @ and L (L as in (1) of Definition [3.24)), we have that |7z|% < |ec(2)|?,
so that

(e)<| = 21/,

[(e)] < lec(=)"*|6] .
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Now, let us consider a non-zero tame series f that we can write in the following way
f=1ne”+> file)
J#Jo
with fj, # 0. There exists w € Z[%]Zg such that if j # jo is such that f; # 0, then
j < j+w < jo. Hence:
1£5(e)ll < Cilec ()10 7, |2| > Ro,

where C is an upper bound for the absolute values || f;||. Since §,, — oo, we have that

3 fiteV|| < Celec(2)*,  |2] = Ro,
Jj#jo

for w' € Z[]>0, 0 < w' < jo and Ry depending on f. Hence,

1
p
1£(2) = finte)®|| < Calec (=)'
and if |z| > Ry depending on C3 and w’, we get

IF @I = 1£5oll - eyl = [ £ioll - lec ()
(Cq,C5 are constants depending on f). O

Remark 3.28. We define, for z € C,
|z|g =inf{|z — | : 1 € Ko} = min{|z -] : | € Ko}

(see [60, §5]). The statement of Proposition holds under the weaker condition that
|z|g is large enough. We leave the details to the reader.

We have the following important consequence of Proposition [3.27]

Corollary 3.29. If f is an entire function which belongs to B((e)®, then its tame series
expansion is unique.

Proof. 1t suffices to show that a tame series as in (3.18]) cannot vanish identically, if not
trivially. But otherwise, such a series would then have a unique leading tame monomial,
which would contradict the property of Proposition [3.27 ]

Thanks to Corollary and Proposition (that stipulates that B(( X)) is a ring),
J is injective, B{(e))® has a structure of B-algebra, the map w o .J is the opposite of the
valuation v and the depth A(f) of a tame series f defined as the depth of g € B{(X))® such
that J(g) = f becomes a well defined invariant of the entire function it represents. Note
that B((e)? is also complete for the v-metric; the proof is identical to that of Corollary
. The map J is continuous.

Remark 3.30. The opposite of the weight is an additive valuation on tame series that
we denote by v. While a tame series as in in general diverges for the v-valuation,
it converges for the inf-valuation associated to any disk D¢ (0, R), R € |CX| by the fact
that it is an entire function.
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3.2.2. The field of uniformizers. Several constructions of can be reproduced in con-
nection with the B-algebra B((e))?, with very little changes. We set B°{(e))? = J(B°{(X))?).
Explicitly, B°((e))® is the B-module of the series satisfying the items (1) to (3) of Defini-
tion with the additional property that only the functions ey, es, ... occur, just as for
the indeterminates X7, Xo, ... in the definition of L°({(X)) at the beginning of The
reader can check, writing
e:=ep=ec,
the next result:

Lemma 3.31. Every element f € B{(e)® can be expanded, in a unique way, as
T
=Y fie", fieB(e).
=0

If B= L is a field, We set
R = Frac(L{(e)?)
(v-adic completion); we call this the field of uniformizers over L. The next proposition
provides a simple way to represent the elements of Kz.

(2

Proposition 3.32 (u-expansions). Every element f of K1 can be expanded in a unique
way as a sum
F=> fe™l, fie L°(e)”.
i>io

Proof. The proof closely follows that of Proposition [3.16] The additional point is that we
must take care of condition (2) in Definition which is not relevant in Proposition
3.16l But apart from this detail, the proof runs along the same ideas. It suffices to
give a deeper look at the proofs in §3.1.6] If we take an element such as h in
then the series expansion (3.15) belongs to L°(X)°((X~1)). Indeed, if we write z =
OX1+ 01X+ + @qllefl_l € L°{(X)?, it is rather straightforward, although tedious,
to show by induction that for all n > 1, we can expand in a unique way 2" € L°({(X))°[X]
with degree < max{0,log,(n) — 1} in X. From this we deduce that for all i > 0, X; ! can
be expanded in a unique way in L°{(X)°((X 1)) (we know from the proof of Lemma
that this is already possible in L°{X)((X~1))). If we set

LX) o= LN (X)) 2 € Zp7s0] = LYXNIX! si € 2)

we get L*(X)’ c L°{X)P((X~')) following the scheme of proof of Lemma The
other relevant point is justifying that if h € L{{X))®, then the series in (3.16)) converges in
L*{X)P((X~1)). Suppose that we have h € L{X)? with v(h) > j, j € Z[;]>0. We have

ﬁ € L*{(X)®. We can expand ﬁ in L°{X)°((X~1)) and therefore, if f is any element

of LOYXNP((X 1))\ {0}, thanks to (3.16) f is invertible in L°(X)®((X~1)). This justifies
that the completion of the fraction field of L°(X W) is L°(X)®((X~1)). To recover the
corresponding properties of tame series, it suffices to apply the injective map J. O
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We also need to introduce the valuation ring 97 and the maximal ideal i, of &;. The
residual field is L. We have, as L-vector spaces:

My =P Lofehbe, OL=LoM,.
>0

We write, for simplicity, Ry for fg,,.

Definition 3.33. The field of uniformizers is the complete v-valued field
=8
b

We denote by O, the valuation ring and the maximal ideal of v.

Remark 3.34. It is easy to see that f € R if and only if we can expand f in series
> isi, fieTt with f; € K§, {(e)? with, for all i, ¥; finite subset of N. This can be easily
deduced from the property that, if f is non-zero, then we can write in a unique way in the
form

f=hvY " +f, HEKS weZp s, i€Z, fiek

(an identity of the same type as (3.7)) where ¥ is a finite subset of N and the weight w(f1)
is strictly smaller than w — 3.

In the present paper all the elements of & that we are going to extract from modular
forms are not of such a general form. They can be identified with rigid analytic functions
) — Ky, for some ¥ finite subset of N (meromorphic over Co). For example, elements of
Ry can be identified with formal series Y-, fie™" with f; € C, {(e)? (the latter are entire
functions Co, — Co). The u—expansions_of scalar Drinfeld modular forms are also
of this type (remember that v = e~!). In this case the f;’s are all constant C.o-valued
functions. If ¥ = {1} is a singleton, elements of Ry, can be identified with formal series

D isio JieT" with f; € K {(e)®.

3.2.3. Some endomorphisms. Hecke operators acting on spaces of our modular forms (see
are defined through certain affine endomorphisms of K that we discuss here. We
consider a difference field extension L O C, contained in Ky. Typical examples are Ly
and Ky, with ¥ C N* finite. The rings

LEXN, (XN (X)), L{eh’ (e 1), Lo(e)*((e™), -
also have L-linear endomorphisms coming from affine endomorphisms
X —aX + 6.

We therefore study homotheties and translations in these rings. The main result of the this
subsection is Proposition below. In fact, we are going to only study here a restricted
class of endomorphisms of L{(e))® and L°{(e)’((e™!)) but in the course of our proofs we
make a partial use of endomorphisms of the other rings as well.
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We begin with homotheties. Let y be an indeterminate over L and let us choose o €
L((y™1)). Let us write

(3.21) o= Z oy, a €L, oy € L%

i>i
Then we have an L-linear map ¢, : L{X)) — L{(X)) defined by setting

pa((X)) =D i (XY,

i>i

for all j € Z[%]zo- This map is well defined by Lemma Indeed note that for all
i, M(X)9T) = A(X)9). For all j,k € Z[%]Zo it is easily verified that ¢, ((X)7(X)*) =
0a({(X))pa((X)F), and ¢, is an L-algebra endomorphism of L{{X)). Having supposed that
the leading term in (3.21)) is invertible we recognize that ¢, is in fact an automorphism of

inverse p,-1. We have thus defined a group homomorphism (injective)
L((y ")) £ Autr (L{X)).

The above group homomorphism also targets the group Auty(L°{(X)((X1))) and we
have, for all f € L°(X)((X™1)):

v(@alf)) = g2 @u(f).

To see this we recall from Corollary [3.8| that L{(X)) is complete for v, so that in particular
¢a is v-continuous. It is clear that for o € L((y~1))*, ¢ defines a continuous L-algebra
automorphism of L{(X)) such that v(¢s(f)) = ¢2&(@u(f) for all f e LX) (use (3.7)).
We can therefore conclude by using Proposition (pa extends to the completion of the
fraction field of L{{X)) in a unique way), and the compatibility with respect to v is clear.

Now, we focus on L{{e))? and L°{(e))?((e™!)). Consider again « as in with a; € L,
a;, € L™, and additionally suppose that the set {||c;| : i € Z} is bounded. Then, via the
continuous injective map J we already discussed, such that X; — e; for all i, ¢, induces a
v-continuous endomorphism of L{(e)? satisfying v(¢a(f)) = ¢2°&(@u(f) for all f € L{e)®.
It needs not to be an automorphism this time. This is due to the fact that the above subset
of a’s with bounded coefficients in L((y~1))* is not a subgroup.

With « as above, ¢, also extends to an endomorphism of L°((e))®((e~!)) compatible with
v because L°{(e))’((e™!)) is the completion of the fraction field of L{(e))* by Proposition
.02

As for the analogues of translations, we shall be briefer. We consider

B=> By €Ly,
i>io
again with the property that the set of positive real numbers {||3;|| : i € Z} is bounded.
One sees easily that the correspondence

ej — €+ Z ,Biej(eii)

1219
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defines a continuous automorphism

g+ Le)” — L{e)’

that also extends to a continuous algebra automorphism of L°{(e)*((e~!)) that is an isom-
etry.

All the properties of tame series that we have discussed so far, and that will be used in
the rest of the present paper, are collected for commodity in the next Proposition.

Proposition 3.35. Let L be a field extension of Co contained in Ky, that is a T-difference
field and let f be in K] .

(1) There exists a unique series expansion

F=> fe?d fiel(e)’

J>jo

and v(f) equals o(fo) + o if f, # 0.
(2) If o, B are elements of L((y~1)) such that the || - ||-norms of the coefficients of their
y~'-ezpansions are bounded, then oo (f),vs(f) € & such that

v(pa(f) = a5 Du(f),  v(¥s(f) = v(f).
(3) For allk €N, 78(f) € &5 is such that v(*(f)) = ¢"v(f).

3.2.4. Final remarks on tame series. There are entire functions C,, — C, which are not
tame series. One of them is the identity map z +— 2. Indeed, one sees easily that for all

w € Q,

)
3.22 lim ————— € {0,00}.
(8.22) m TeaGye € 1009

Therefore, (z + 2) & Coo{(e)® as otherwise, we could assign a well defined weight in Z[%]
to it.

To define B{(e))?, we have used formal series with bounded coefficients in B (in Definition
3.24)). This seems to be a heavy complication in the theory, but it is necessary. One of the
reasons for this choice is that the isomorphism .J of Proposition [3.25] is hardly definable
over a larger sub-algebra of B((X)). We illustrate the problem for B = C.

We set

G = Z‘géXH-l = SOa(XO) € CZO«X»,
>0
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where « is as in (3.21)). Then, we have the identities in C (X)) (we have used a compu-
tation similar to what follows to show that Co (X)) is inversive for 7):

q

G = Z H%Xi—l-l
>0

= Z einqul
>0

= Z 0'(Co(Xit1) — 0Xip1)
i>0

= ) 0(X; - 0X11)
>0

= N 0x =Y 0 Xy
i>0 i>0

= X

Note the exclamation point over the next to the last equality. In parallel, let us set

9= Zaéei—&-l-

>0

This is not an element of Co((e))® because the sequence (]95 |); is not bounded. We claim
that g defines an entire function. Indeed, for all R € |C| and all z € D(0, R), we have, for
any i large enough, |e;11(2)] = [7]|2]|0] 71 so that |#ae;41(2)| < |7|[0]a~ "R — 0 which
implies the uniform convergence of the series defining g over any disk D(0, R).

Now, g? # e. One way to see this is by observing that e = 7z + h9, with h an entire
function. If g9 = e, the identity map z — z would be equal to the g-th power of an entire
function, which is impossible. To compute g¢ — e we cannot use the argument we applied

to show the identity G? = Xj; this argument breaks at the level of the equality L because
the series of functions ), 0i€i+1 is divergent outside 0 although the series >, HiXiH
defines an element of C, ({X)). -

To compute g? we proceed in the following way. We set

) =D tein € Bl e)”
>0

Tz
—t

¢=€c(9

where ec is defined F,[t]-linearly as in §2.3.2| It is easy to see that lim; ,y(0 — t)¢ = 7z,
But

ec(2) = Copi(9) = (0 — 1)+ 7(9)
so that e = ec(z) = Tz + limip 7(¢) = T2 + 3,50 0'el,, = 7z + g?. We thus obtain:

gl —e=Tz.
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From this identity we deduce (1) that g ¢ Coo{(e)® (because z is not tame) and (2) the
map J does not extend to a Coo-algebra map over Co (e)?[G].
On another hand, the sequence (X,%”)nzo C L°{(X)) diverges for the v-valuation and

therefore, also the sequence (e%n)zo of elements of the ring of tame series. But the latter
converges to the zero map for the sup-norm associated to the disk D¢_ (0, p) for all p €
|CX |, as the reader can easily verify.

3.2.5. Ezxamples of tame series. To conclude this section, we give examples of tame series
of the kind which will be used in the present paper. Following §2.4.3] we consider, in the
notations introduced there, a function

X € Holy (411 ((Coo = (Esx [d*l]A)”X")

analytically extending an [F-algebra morphism A — Fy(t5x)"*" (see Proposition where
X = X)- We now use the properties of tame series to show the following result.

Proposition 3.36. The function x can be identified with an element of K™*" and is
the unique entire function f : Coo — K& such that f(a) = x(a) for all a € A with
I expc(%z)féf(z)H — 0 as expo(72) — 0.

Proof. We have already seen in Proposition that the entire function y interpolates the
map x : A — Fy(ts)"*". We now prove the growth estimate. But note that

X(z) = expc <%(9[n — @)_12’)(,0;1 = w;l Z €i+1@_i S <T2[d_1]/\o<<§>>b)”><”‘
>0

We deduce that w(y) = w(ey) = %. Hence, by Proposition we have that the function

| expe(72) "7 f(2)| is bounded as expg(F2) — 0.
It remains to show uniqueness. Consider f € Holg, (Coo — K&*") such that f(a) = x(a)
for all @ € A. Then the function g = f — x is in Holg,(Coo — KE*™) and vanishes on

9(2)
expo (7z)

A C Cy. Therefore ex}féz(z?z) is entire and limey, ,(72)—0

g vanishes identically.

4. QUASI—PERIODIC FUNCTIONS, REPRESENTATIONS OF THE FIRST KIND

= 0. By Proposition

One of the basic observations in the theory of modular forms for the full modular group
SLo(Z) is that they are Z-periodic, so that they have a Fourier series development, also
called g-expansion. There is a very similar property for scalar Drinfeld modular forms
for the full modular group I' = GL3(A) which are A-periodic, and indeed we have in this
case u-expansions, which is the appropriate structure to study their behaviour at the cusp
infinity as well as a large part of their theory.

For the vector-valued modular forms in our Definition (studied from on), we
note that they behave like quasi-periodic functions under the translations z — z 4+ a with
a € A (Definition . The first task is to study this behavior for a special class of
representations of I' called representations of the first kind introduced below (Definition
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. In this section we study quasi-periodic functions, which can also be understood as a
kind of generalization of Goss polynomials. The terminology chosen comes from Gekeler’s
paper [25] (]EI) The central result obtained here is Theorem which asserts that every
modular form in the sense of Definition [1.2| can be expanded as a formal series in the field
of uniformizers . We also give an application of these structures in Theorem [£.13] where
we show that the spaces of our modular forms and cusp forms are endowed with Hecke
endomorphisms, generalizing [63, Proposition 5.12], which deals with the very special case
of N =2 and p = pf (with an ad hoc proof unfortunately very hard to generalize to our
more general settings).

4.1. Quasi-periodic functions. Let k be any field, and R a commutative k-algebra. We
denote by B(R) the Borel subgroup {({%)} C GL2(R) and by U(R) the unit upper-
triangular subgroup {(} 1)} € GL2(R). Let Y be an indeterminate and E/k(Y) be a field
extension. Suppose we are given

(4.1) GLo(k) & GLy(E) & U(K[Y))

two representations such that [y ) = v[ye) and such that for all A € £ and a € k[Y],

(4.2) p( Dv(§ Du(ry 9) =v(gX).
Then, there is a unique representation p : GLa(k[Y]) — GLy(E) which restricts to u,v
respectively on GLy(k) and U(k[Y]).

Indeed, see [49] [74], we have that GLa(k[Y]) is the amalgamated product of GLa(k) and
B(k[Y]) along the common subgroup B(k):

GLa(k[Y]) = GLa(k) *p(x) B(k[Y]).
By Bruhat’s decomposition
GLa(k) = B(k)(} §)U (k) U B(k)
this implies that every element v € GLa(k[Y]) can be written in a unique way
vy=A1B1---AB
for some [, where A; € B(k)(Y §)U(k) and B; € B(k[Y]). Therefore, the identities
BDGDHR ) =)

are the gluing condition for u, v giving rise to a unique representation p of I'.

10gee his §2. Gekeler uses what he calls quasi-periodic functions to construct an analogue of the De
Rham isomorphism associated to a Drinfeld module (between a ‘De Rham module’ of classes of biderivations
and a ‘Betti module’). More precisely, he constructs (in his §4) certain Poincaré series to show that the
map is surjective (while injectivity follows essentially from the fact the the logarithm series does not extend
to an entire function). These Poincaré series have inspired the construction of Perkins’ series and are
similar to the quasi-periodic functions we study in the present paper. It is possible to use them to prove
an appropriate version of the De Rham isomorphism for the Carlitz functor evaluated on certain difference
algebras.
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We now take k = Fy and Y = 6 and we recall that I' = GLa(A) with A = F,[0]. We also
recall that © denotes the rigid analytic space whose underlying set is C, \ Koo as defined,
for instance, in [24] (see also [60, §5, 6]). We set, for a € A,

(4.3) To=(§9), S=073")
(in I'). Given a representation
(4.4) I' % GLy(B)

with (B, |-|p) a countably cartesian Banach Co.-algebra, we first analyze its restriction to
U(A) and the corresponding part in Definition This brings us to the next definition.

Definition 4.1. (a) Let p be a representation as in (4.4). An analytic function

oL g
such that
(4.5) f(z+a)=p(Ts)f(z) VaeA,

is called a p-quasi-periodic function, or more simply, a quasi-periodic function. We say that
f is tempered if there exists M € Z such that
lim  f(z)u(z)™ =0

J2/=lz]a 00

where u is defined in . We further say that f is reqular if there exists a constant ¢ > 0
(depending on f) such that the set {|f(2)|p : |z|g > ¢} is bounded (remember that | - |5
has been introduced in Remark .
(b) Let

f:Q— BVXN
be an analytic matrix function such that its columns are p-quasi-periodic in the sense of
the point (a) above, so that

f(z+a)=p(Ta)f(z) Vae A.
We say that f is of type | € Z/(q — 1)Z if for all v € F{, we have

fz)=v='p(5 ) f(2)p(5 )~
(c) We denote by QP}(p; B) the B-module of tempered p-quasi-periodic functions

QO — BNXN

of type [, and by QP;(p; B) the sub-module of quasi-periodic regular functions.

If n=1and p =1 (with 1 the trivial map which sends every element of I' to 1 € F),
then a quasi-periodic function is a holomorphic function f : Q — B such that f(z 4+ a) =
f(z) for all a € A. Explicit examples are ec(z) = expa(7z) and

R SEI

ec(z)
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Both functions are obviously tempered. The function ec(z) is of type —1 and the function
u(z) is regular, of type 1. We record the next Proposition.

Proposition 4.2. Let f : Q — B be rigid analytic, such that f(z+a) = f(z) for alla € A.
Then, the following properties hold:
(a) There is a unique series expansion
(4.6) F=Y_fau)", fa€B,
neZ

convergent if z € Q is such that |z|s > ¢ for some ¢ € |CZ].
(b) If | f(2)|B is bounded for |u(z)| < ¢ for some c € |CX|, then f, =0 for all n < 0.
(c) If f extends to an entire function over Coo, and there exists M € Z such that

()M f(2)|B = 0
as |u(z)| = 0, then f € Blu(z)™1].
Sketch of proof. This result is basically well known but there is a lack of complete reference
in the literature. Let us give some details.

(a) The proof of [60, Proposition 6.1] can be adapted to our setting. We recall from ibid.
that for an integer n we define

B, =D (0,0/\ |J De.(a1), Cu=DZ (0,]lu))\ D2, (0,1),
a€A(n)
(recall that Dg._(a,r) is the 'open’ disk of center a and radius r in C,) which are filtered

unions of affinoid subsets of Co, (A(n) denotes the F-vector space of all the elements of
A which are of degree < n in #). One can verify that, for all n,

Oc, /5(Cn) = {Z feulk : fr€ Bforall k, f_y — 0 as k — oo, firl l79F 5 0
keZ

as k — oo, for alle>0}.

This follows from the explicit use of an orthonormal basis of O¢, (C,,) and yields an explicit
description of the sheaf O¢, /p. Similarly, the sub-sheaf of Op,,p whose global sections
g are such that g(z + a) = g(z) for all a € A(n) equals the pull back &£;0c, g where
En(z) = 1,En(2), Ey, being the n-th Carlitz polynomial (see [60, §4.2]). This follows from
an application of Proposition 6.2 of ibid. After these observations, the proof of Proposition
6.1 can be slightly modified to yield the existence of the expansion . Uniqueness follows
easily from the connectedness of ().
Before considering the point (b) of our proposition, we define, after :

F(u) := Z fau", F~(u):= anu”, FT(u) := anu"
nez n<0 n>0
We have that F' converges for all

ue De(0,¢) ={z€Cs:0< |2 <c}
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where ¢ € [CX|, ¢ <1 and f(z) = F(u(z)). The series F~(u) converges for all 0 < |u| < ¢
and ¢ < 1. In other words, |fx| pc ¥ — 0, which implies that the sequence f_j tends to
zero as k — oo. In particular, F'~ (u) converges for every u # 0.

(b) Applying (a), lim, o F(u) exists and |F(u)|p is bounded on D¢__(0,¢). We write
Jn = icr fnibi with fn; € Coo, where (b;);es is an orthonormal basis of B. We note that

| fr,il max{rf,r5} — 0 as i — oo,

for all 71,72 € |CX| such that 7 < 73 < ¢. Therefore we have unconditional series
convergence with u in Dc_ (0, ¢) for an appropriate choice of ¢ and we can write:

F(u) = Z (Z fn,zbz> u" = Z <Z anZ‘Un) b;.
nez \iel i€l \neZ

We get that for all i € I, the limit for u — 0 of ) fyu" exists. By [7, §3, Theorem

(Riemann I)], f,; =0foralli,n <0 and F — F* € B.

(c) Let f: Coo — B be entire, such that f(z + a) = f(z) for all a € A. Then, by (a) of

this proposition,

f(z) = F(u) =Y fru, with fy € B, Vk €L
kEZ
By the above remarks, setting f~(2) = F~(u(z)) if z ¢ A and 0 otherwise, f~ defines a B-
entire function. hence f*(z) = F™(u(z)) = f(z) — f~(z) is B-entire and at once, bounded
at infinity. By Proposition it is constant, hence identically zero; We conclude that
f(z) = f~(2) = F~(u(z)). Now, assume that there exists M such that |[u™ F~(z)|p is
bounded in B as u — 0 (i.e. as |z|g = |z| = o). Then, by (b), we have that G := u™ F~
is such that G = G (in the above notations). This suffices to conclude. O

Propositionimplies that QP}(1; B) can be embedded in B[[u]][u']¥*N and for alll €
Z/(q—1)Z and a representation p as in , QPj(p; B) is a module over QP}(1; B)N*N,
and a similar property holds for the regular quasi-periodic functions. Of course, we can
specify the target space; the meaning of QP}(/); Ly) etc. is therefore understood.

4.1.1. The series V,,(p). There are three types of quasi-periodic matrix functions that are
needed in the present work. They are denoted by W,,(p),Z, and ®,. Here we study the
first type ¥,,(p). We consider a representation p : I' = GLy(B). We additionally suppose
that:

(4.7) la™ p(Ty)|g — 0, as |a] — oo with a € A.
Lemma 4.3. Let m be a positive integer. The function V,,(p) defined, for all z € Cx \ A,
by

Vo(p)(2) = Y (2 —a) " p(T),

acA
determines a non-zero element of QP (p; B).
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Proof. 1t is easy to show that U,,(p) converges uniformly for z € Co \ (UgeaD(a,r)) with
r € |CX], 0 < r < 1. This implies that ¥,,(p) defines a holomorphic function Q — BV*N,
and this function is non-zero because it has, in any disk D¢ (0,7) with » € |[CX], a
meromorphic extension which has poles of order m at every a € D(0,r) N A. Moreover, we
have, for all z € C» \ A and b € A, writing ¥ for ¥,,(p):

Ue—b) = S (z—a—b) "p(T)

a€A

- Z(z —a—=b)""p(Tysp)p(T_p)

acA
= U(z)p(T-p) = p(T-p)¥(2).
so that
(4.8) U(z+a) =V(2)p(T,) = p(T,)¥(z), Vae€ A.

(A0 Ao «
T“_<O 1>TA1“<0 1), Vae A, MNeFg,

Since

for all \ € IFqX:

Tz = S (Az—a) "p(TL)

a€A

=y Dy ).

and the type is m. It remains to show that ¥ is regular. We need to show that there exists
¢ > 0 such that if z € C satisfies |z|g > ¢, then ||¥(2)|| < M for some M independent on
z. But note that if |z|g > ¢ > 0 then |z—a| > ¢ for all a € A and therefore, |z—a|™™ < ¢™™.
Hence ||¥(z)]| < ¢™™ (because ||p(T,)|| < 1 for all a, due to the fact that the representation
is of the first kind). Hence ¥ € QP,,(p; B). O

4.2. Representations of the first kind. We now introduce a class of representations of
I" for which we can construct explicitly entire non-zero quasi-periodic functions in several
ways, and these functions turn out to have tame series expansion, or at least, expansion in
the field of uniformizers. First of all, we introduce a useful definition.

Definition 4.4. We say that a representation p : I' = GLx(F,(tx)) is of degree | €
Z[(q—1)Z if for all p € F, p(ulz) = p . We write | = deg(p).

We recall that after , Jy(2)"p(7) is a factor of automorphy for [ if and only if p is
of degree w. For example, det™™ is of degree 2m (the double of the type). The identity
map over I is of degree —1. All the representations that we consider in this text have a
well defined degree.
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Definition 4.5. Let x : A — Fy(t5)"*" be an injective [ -algebra morphism, let d €
Fqts] \ {0} be such that dx(#) € F,[ts]"*". Then the map

px : T = GLap (Fyts][d™"]) © GLan(Fy(ts))
defined, with y = (2%) € I, by

_ (x(a) x(b))
PX('Y) : <X(C) X(d) )
is a representation of degree —1, called the basic representation associated to x. Note also
that

det(py (7)) = det(x(ad — be)) = det(y)".

If p is a representation, we write

p* — tp—l

for its contragredient (also called dual) representation. If p is of degree [, p* is of degree —I.
Let p : T' — GLy(t5) be a representation. We say that p is a representation of the first kind
if p can be obtained from basic representations by finitely many iterated applications of
the following elementary operations: (-)*, direct sums @, Kronecker products ®, symmetric
powers S™, exterior powers A, in such a way that p has a well defined degree. For further
use, we will call these operations admissible operations.

Note that if p and v are two representations such that p has degree [ and v has degree
m, then:

p @1 has degree [ (if [ =m)

pRY l+m,
S"(p) rl,
N'p rl,
p* _la

where in the right, (-)*,®, ®,S” and A" denote respectively the contragredient, direct sum,
Kronecker product, r-th symmetric power and the r-th exterior power, of representations.

To define a representation of the first kind, in view of the compatibility conditions
and , all we need is: finitely many injective [F4-algebra maps

(4.9) Xi:A—=Fy(ts)™, i=1,...,r

and a sequence of admissible operations. It is therefore obvious that the set of represen-
tations of the first kind is countable. On another side, for any N > 1, it is easy to see
that the set of equivalence classes of representations of I' in GLy (IF4(ty;)) is uncountable.
This can be deduced from and and the fact that A = F,[f] obviously finitely
generated as an F,-algebra, is an infinitely dimensional vector space over F,. Therefore,
there are representations of I' on GLn(F,(ty;)) which are not of the first kind. To see
explicit examples, see Remark
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4.2.1. The functions Z,. For any representation of the first kind p, we can canonically
associate a quasi-periodic function =, with entries in the field of uniformizers £. This allows
to show that, for L C Ky a field extension of C, the Ky ((u))N*N-module QP! (p; Kx)
is free of rank one. Additionally, , has entries in (Ex[2]")°((e))®. Let us first assume that
p = py is a basic representation. We denote by x the function x of Proposition We
know from Proposition that it belongs to £"*™.

By using Proposition and the identity x(z+a) = x(z)+x(a) for z € C» and a € A,
we see that the function

(4.10) E,(z) = <Ig X}?) ,

belongs to QP (p; Ex[2]") (with dx(0) € Fy[ts]\{0}). In fact, we have more. Indeed, since
x(z+a) = x(2)+x(a) = x(z+a) = x(a)+ x(2), we have Z,(z) = p(T5)=,(2) = Z,(2)p(T0)
for all a € A.

If now p is a representation of the first kind, by definition it can be constructed from basic
representations p1, . .., pm by finitely many iterated applications of direct sums, Kronecker
products, exterior and symmetric powers, contragredient, and following the same process,
we can combine the functions =, ,...,Z,, to construct a quasi-periodic matrix function

Ep, € QP!O(/); Ez[éb NRNV*N for some d. More precisely, we set, for p, 1) two representations
of the first kind:

(4.11) Spov = Zp®Ey,
Epgy = Ep® Iy,
Esrpy = S"(Ep),
Enrp = N'E,,
5 = (&)
We thus get:
(4.12) Eo(z+a) =p(To)=E,(2) = E,(2)p(Ta), a€ A
To simplify our notations we write, in the following,
(4.13) ¢ :=Eg[d '],

where Ex[d~!]" has been introduced in (2.14)).

Proposition 4.6. If p is a representation of the first kind then we have the following
properties:
(1) Ep € QPy(p; €) N (Ksi{(e)®) VN,
(2) E, € GLy(Ks((e)?) and =5 = Iy and
(3) ©mQP:(0;Ks) € KY*N s both a left and a right Ks((u))N*N-module, free of
rank one.

Proof. The fact that =, is quasi-periodic is clear from (4.12). Moreover, it is easy to
see that Z, is of type 0. It suffices to check this for basic representations. For this
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note that, for v € FY, and for any F,-algebra morphism x : A — F,(ts), (™ xXvz)y —

q> 0 I,
—1 .
(16‘ ”’}iz)) = (”é" Ii)(lg Xl(j))(” OI" I(i)' But since p = p,, we have p(gg) = (‘g: Zﬁ:) for

all (2%) € GLy(F,), and therefore,

(4.14) =,(v2) = p <’6 ?) =,(2)p (g ?) o

Additionally, since the entries of the function x are tame series in virtue of Proposition
E, is tempered thanks to Proposition Now, note that det(=Z,) = 1 due to the
fact that this equality holds true for p a basic representation. Hence E;l € (Kg((e)?)VxN
which confirms (1). For (2), note that =, € GLy(Ks(e))®) (with determinant one) and

Eh = Iy for p a basic representation, just by construction. The general case follows easily.
Finally for (3), note that by (4.12)), for all a € A,

=,z +a) " = Z,(2) (T = p(TL)E ()

Let ® be an element of QP! (p;Kys) for some m. Then U; := E;ICD and Uy = E;l
are both A-periodic and tempered. By Proposition [{.2] we see that Uj,Us belong to
Ks((u)V*N. Hence ® = Z,U; = UsZ, € &Y Y. A simple computation indicates that
U1, Uy are both of type m. O

Along with (4.11]) we also define, with p, : I' = GL2, (F4(¢5)) a basic representation and

wy as in (2.4.2):

(4.15) wne = (29
(4.16) Woyy = Wp D wy,
Wogyp = Wp & Wy,
wsr(p) = S"(wp),
warp = Nwp,
wpr = (wp)"

This allows to associate, in a unique way, to every representation of the first kind p of
dimension N, an element w, € GLy(Ly). We have:

Lemma 4.7. If p is a representation of the first kind there exist V1, ...,Y, € Fy(ts;) such
that wapw;1 € (A[V1,..., 9. ]{e)?)N >N,

Proof. This follows, with p = p, basic, from (“5: ?:) (é’; Xf(j)) <“;)il ?Z) = (é: “Xﬁ(z)),

and the property that, with ¥ = x(0), wyx(2) = expc (%z(&[n - 19)_1) = > >0 Vi1 €

(Fg[9]((e)®)™™ and (2.15). O
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4.2.2. The functions ®,. The third important class of matrix-valued functions is the fol-
lowing one, that we are going to study now:

(4.17) P, =ea¥i(p),

where we recall that W1 (p) = >, 4(z — a)"'p(T,), depending on the choice of a represen-
tation of the first kind p. For the next proposition, we recall the notation (4.13)).

Proposition 4.8. The following properties hold:
(a) The function ®, extends to an entire function Coo — EN*N,
(b) We have that ®, € QP}(p; €).

(¢) There exist, uniquely determined depending on p, two matrices
U1, Us € (€lec(z))V*NY
of type 0 such that
Ui — Iy € ec(2)(€lec(z))VN, i=1,2
are p-nilpotent, and such that
¢, =UE,=E,Us.

(d) We have @, € (€°((e)*)V*N and this is the unique element f of (€°{e)*)NV*N such
that f(a) = p(1y) for all a € A.

Note that if p = 1 is the trivial representation, with N = 1, then we have =, = 1 and
®, = 1, because ¥1(p) =3 pca 755

Proof of Proposition[/.8 (a). In any disk D(0,r) with r € |[CZ|, the product
AW (0)(2)

extends to a holomorphic matrix-valued function because of the Weierstrass factorization

! z
ealz) =z (1 - 7>

(dash indicating the omission of a = 0). This immediately implies that ®, has entire
entries, and the target space is easily determined.

(b). Since p is a representation of the first kind, Z, can be constructed applying finitely
many operations as in to finitely many functions =Z,, associated to basic represen-
tations p;, which take the elements T, with a € A to unipotent matrices (in fact, upper
triangular with one on the diagonals). Therefore Egl defines an entire function C,, —
eNXN Hence, Uy (z) := ®,(2)Z,(z) ! has entries which are holomorphic {2 — VXV and
Ui(z 4+ a) = Ui(z) for all a € A, by ([£.8). Moreover, since Z, is tempered and ||¥1(p)(z)|
tends to zero as |z|g = |2| — 0o, there exists L € Z such that u(z)*Uy(z) — 0 as |z|g — oo.
By (b) of Proposition Ui can be identified with an element of &[[u]][u=']V*" and we
easily check that ®, € QP}(p; €).

(c). By (2) of Proposition we see that =, € GLy(€&((e))®) therefore by the arguments of
the point (b), we additionally observe that U; = ®,(2)E," € €[[u]][u"]"*" extends to an
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entire matrix function which, in virtue of (c) of Proposition belongs to &[ec(z)]V*V.
Note that for all a € A\ {0}, Ui(a) = ®,(a)Z,(a)"! = ®,(a)p(T-a). Now, ®,(a) =
lim, g ea(2)¥1(p)(2) = lim,,ea(2)(z — a)"p(T,) = p(T,) because ¢/, = 1. Hence,
Ui(a) = In and the various properties claimed for U; follow. Similar arguments hold for
Us.

(d). From (c) above, ®, € (€((e))*)V*N. We denote by w € Z[;l)]zo the supremum of the
weights of all the entries of ®,. Then ¥y (p) € u(€¢{(e)*)V*V and since we have the obvious
limit lim, o200 | ¥1(p)(2)]| = 0 we note that w < 1 so that ®, € (€°((e)*)V*N. An
element f € K$((e))® satisfies [|u(z)f(2)|| — 0 as |z|g = |2| — co. By Proposition [2.11] for
any map g : A — Ky, there exists at most one element f € €°((e))® such that f(a) = g(a)
for all € A. Consequently, if f is an element of (€°({(e)*)V*N such that f(a) = p(T,) for
all a € A, then, ®, = f. d

We have the next corollary, where p is a representation of the first kind.

Corollary 4.9. The tame series expansion of ®, is provided by the unique representative
in the €-module (€°(e)*)N*N of the matriz =, in the quotient of (€((e)*)V*N by the
principal ideal generated by egly. Moreover, we have det(®,) =1, ®, — Iy is p-nilpotent
and @;1 € (e°(e))NN. If w, is the matriz introduced in , then wpq)pwp_l €
(A1, ..., 9, °UeN)N*N for elements V1, ..., 0, € Fy(ts).

Proof. The first property follows directly from Proposition (c), (d). To show the second
property we first note that the matrices p(7y), a € A, can be simultaneously (upper)
triangularised over an algebraic closure F,(t5)% of F,(ty), and the diagonal entries are
all equal to one because T = I for all a. Hence, ¥y(p) is conjugated over Fy(t5)% to
an upper triangular matrix having e4(z)~! as diagonal entries. This implies that ®, is
conjugated over Fy(t5;)? to an upper triangular matrix having 1 in the diagonal. Hence,
det(®,) =1, (P, — In)? = 0 and <I>;1 € (€°{e)?)N*N_ The last property follows easily
from Lemma 0

4.2.3. Ezxplicit example. In this part we illustrate an explicit example that governs the
quasi-periodic functions associated to basic representations. This covers the representations
considered in [60, §9]. Let x : A = Fy(t5)"*" be an F,-algebra morphism and denote by

p the basic representation py : I' = GLy(Fy(ts)) defined by p(25) = (i((g ;‘gg))), with

N = 2n. For a matrix f € &Y Y, v(f) denotes the infimum of the v-valuations of the
entries of f (where v is the valuation defined after Proposition [3.32]). We have:

Corollary 4.10. We have ®, =Z,, v(®,) = —% and v(®, — w;lel) > —%.

Proof. By definition, =, = (Ig ) and x(z) = ec(2(01, — 19)—1)%;1 (with 9 = x(0)) has
entries in K$((e))? so we have already ®, = =, by Corollary M Moreover, the tame series
expansion of ec(z(01, —9)™!) is ec(2(0I, —9)~') = e1 I, +terms of smaller weight, which

implies the remaining properties. ]
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Note that the proof of the above corollary does not use the injectivity of the maps y in
Definition 4.5

4.2.4. Application to column quasi-periodic functions. We consider, in this subsection, a
representation of the first kind I' 2 GLy (F ¢(ts)). Recall the notation Ry, = Rk, where,
for a subfield L of Ky, £, has been defined after Proposition [3.32] We recall that the
v-valuation ring is denoted by Oy, the maximal ideal is denoted by IMiy:.

Proposition 4.11. If f : Q — Kg“ s p-quasi-periodic and tempered, we can identify
it with an element of ﬁg“. If additionally f is reqular, then we can identify it with an
element of Dg“. In the latter case, we can erpand in a unique way

(4.18) f=fo+) fal, foeKE  fie Ky(e)H)M, i>0,

1>0
and the coefficients f; are Kx-linear combinations of the columns of ®,. In equivalent
terms, we can expand, in unique way,

F=®,> flu', feKY

i>0

Proof. The second type of expansion is clearly equivalent to the first. In the proof of part (c)
of Proposition we have seen that ®, can be identified with an element of GLx (Kx (€))®).
Hence, the function <I>;1 f:Q— Kg *! has entries which are all A-periodic and tempered.
By part (b) of Proposition the entries are thus elements of Kx((ey')) = Kx((u)) and
the entries of f = <I>p<1>;1f are therefore in K% ((e))?((ey*)) which is equal, by Proposition
to Ry. This proves the first part of the proposition.

Since ®, is a matrix function which is quasi-periodic we have f = ®,g where g €
Ks((u))V*!. Corollary [4.9] implies that ®, € GLy (K% {(e)®). Namely, det(®,) = 1 and
o1 e (KS, (eH?)N*N - Observe that g = <I>;1f. Since the entries of @1 are in K, {e)?,
for |z|g > ¢1 for some constant ¢; € |CX|, we have HCIJ’jlfH < e2]ea(z)|" by Proposition
where w € Z[%] N [0, 1[, for some ca > 0. This means that [[u”g| < c2 as |z|g is
large. Let a > 0 be such that p®w € Z. Then |[uP""gP”| is bounded at infinity and
uP v gP” € Ky[[u]]V*1. Therefore, u%g € Kg[[up%]]N“ by Proposition (b) and we
deduce that, necessarily, g € Ks[[u]]V*!. Writing g = 3,5, giu’ with g; € KY*!, by the
fact that f = ®,9 € Dg“ and since f; := ®,g; belongs to (K& ({(e)?)V*! by Corollary
we get the expansion in &Y !

f=> fud,

1>0

from which we also see that fy € Kg <L O
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4.2.5. First results on modular forms. We recall Definition and the spaces Sy, (p; B) C
M,y (p; B) € M), (p; B). We denote by M. (p; B) the B-module of modular-like forms of
weight w for p (without the temperedness condition). In the following we also use the term
‘modular-like’ sometimes loosely, to designate the spaces /\/lg,(p; Ky,) of meromorphic func-

tions Q L KY*! (in the obvious sense) satisfying 1) Clearly M} (p; Ks) D M., (p; Ks).
Taking into account Definition we deduce parts (1), (2), (3) of Theorem A in the
introduction, where the hypothesis that p is of the first kind is essential:

Theorem 4.12. For all w € Z, there is a natural embedding
M, (3 Kx) 2 &3
such that
Mo Ke) = 15" (1m(M;, (i Ks)) 1 DY)

and
Sulpi ) = 151 (1M (55 Ks)) N MY ).

Proof. Since a weak modular form is also a tempered quasi-periodic (column) function and
a modular form is a regular quasi-periodic function, the first part of the result follows
directly from Proposition 4.11] To prove the two other parts of the statement, namely the
characterisation of the image of M, (p;Ky;) and S, (p; Kx), we combine Proposition [3.32]
with Proposition which allows to derive, from the fact that f is bounded at infinity
(resp. has zero limit at infinity) that valuations of the entries of f are non-negative (resp.
positive). O

4.3. Hecke operators. We show here part (5) of Theorem A in the introduction. As an
immediate consequence of the above investigations, we will now define Hecke operators
acting on the spaces My, (p; Kx), My (p; Ly), Sw(p; Ks) and Sy, (p;Ly), with w € Z, when
I 2 GLy(F,(ty)) is a representation of the first kind. Although not explicitly considered
in the general purposes of it, Miyake’s book [48] essentially contains everything we need
to set up the basis of the present discussion. Following [48] §2.7 and §4.5] we consider the
Hecke algebra R 4(I', A) where A = (§ )N A%*2 N GLy(K) is the semigroup generated by
the elements of G = GLy(K') with entries in A and with the lower left coefficient equal to
zero. Explicitly, R4(I",A) is the free A-module generated by the double cosets I'6I" with
d in A, endowed with the structure of A-algebra induced by ibid. (2.7.2), after reduction
modulo p of the integral coefficients. It is easy to see, using [48, Theorem 2.7.8], that
Ra(T,A) is commutative. For a € A, we set T'(a) = T'({ 9)I' € Ra(I', A). The proof of
ibid. Lemma 4.5.7 can be easily modified to show that, if P € A is irreducible, then

T(P)T(P") = T(P™") + ¢l )P, PYT(P™Y), n>1,

where T(P, P) = I'({ )T’ (compare with ibid. (4.5.15)). But K has characteristic p | ¢
so that T(P)T(P") = T(P™*!). Similarly, the proof of Lemma 4.5.8 in Miyake’s book
implies that if a,b € A are relatively prime, then T'(a)T'(b) = T'(ab) in R4(T',A). The
map A — T'(a) is therefore totally multiplicative. Also, given any right action of A on a



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 7

B-module M, R(T',A) acts on MI' = {m € M : m|y = m,Vy € T}, as described in [48,
Lemma 2.7.2], where we denoted by m/|y an action of v on m.

We consider p : I' = GLn (FF4(ty)) a representation of the first kind. Then, p determines
in a unique way to a semi-ring map

A= Fq@z)NXN

(this even if we drop the injectivity of some F,-algebra map in Definition and, to a
representation G = GLg(K) — GLx (Fy(ts)V*) if we have injectivity of the F -algebra
maps). There exists d € Fylty] \ {0} such that p(A) C F,lts][d V>N, Let w be an
integer and B a C..-algebra contained in Ky such that it contains Tx[d!]". We set
M := Holg (2 — BN*1).

Let f be in Mp. The Petersson slash operator fly ,v on f is defined, for any v €
GL2(K)7 by

(4.19) (flup)(2) = Ty (2) " p(n) T f(1(2)).

It is easily seen that this gives rise to an action of G over My, (p; B), the B-module of the
modular-like functions of weight w for p of Definition [I.2] For instance, the reader can
easily check that
(f‘w,p’)/) w,p6 = f|w,p’76

for any v, € GLa(K). By the above discussion, we have a well defined R 4(I", A)-module
structure on My, (p; B). If T'0T is a double coset in R4(I', A) we can expand in a finite
sum I'0I' = . T'6; with §; € A for all ¢ as described in [48, Lemma 2.7.3] and the action
is given by

(ST, £) = > Flupbi.

We also denote by T,(f) the image of the action of T'(a) on f, with a € A. Then,
To(Ty(f)) = Tap(f) for all a,b € A. For example, since for P € A irreducible,

T(P)zF(IJ ?)u b|g_l r(é ]l;)
bl<IP|

(see very similar computations in [48, Lemma 4.5.6]), we have, for f € M,,(p; B):

am @ =o(§ Y) s S o( b)) 1R seo

ol <|P|

Comparing with [24, (7.1)] we have here a different normalisation for these operators. In
the case of p = 1 so that N = 1, denoting by Tp the weight w operator of ibid., we have
Tp = P~%Tp.

The following result holds:

Theorem 4.13. Assuming that p is of the first kind, we have that for all a € A and

w € 7Z, T, defines a B-linear endomorphism of MI!U(,O; B) which induces endomorphisms of
My (p; B) and Sy(p; B).
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Proof. Thanks to the above observations it suffices to prove the result for a = P irreducible.
Theorem [4.12] implies that Tp operates, via the slash operator of weight w associated with
p, on ﬁg *1 and furthermore, it leaves DJEV *1 and E)J?JEV *1 invariant. O

This generalizes [63, Proposition 5.12] (which deals with the very special case of N = 2
and p = p;, with an ad hoc proof hard to generalize to our settings).

Ezample. Assume that p = p5, = tpgl for a finite subset > of N* and consider f =
Y fry.- ., fN) € My(p; B). Then the first entry (Tp(f))1 in (4.20) is

(4.21) (Tp(f)hr = on(P)i(P2)+ P™ 3 fi <Z;b>'

ol <|P|

The last entry is slightly more involved. We have:

(422)  (Tp(f)n = fn(P2)+ P ¥ <®(xti<b>,xt,.<P>)>.f(z;b).

[b|<|P| \ i€X

Note that the whole column vectors f (%b) occur in the right-hand side.

4.4. Remarks on representations. We collect here miscellaneous remarks on the set-
tings we choose for this work.

Remark 4.14. For basic representations p1, ..., px, any representation of the first kind
p: T = GLy(Fy(ts))

constructed combining them with the admissible operations &, ®, A", S extend to monoid
homomorphisms A2*2 — F,(t5)V*N. This is used in .
The operation (-)* does not satisfy this property. However, the comatrix representation

Co(p) := det(p) ® p*

also extends to a monoid homomorphism and is isomorphic to p.
Indeed, in general, if p is any representation of I', we have that det(p) = det 4°8() 5o
that

(4.23) p = det 9°8(P) p* = (o,

(the symbol 2 indicates that the representations p and det 98(P) p* are isomorphic). For
all v € T, writing v* := !y~ and recalling that S is defined in (4.3)),

() = p(v")
= p<det(v)’1(SvS’1))
= det(7)*€ () p(v)p(S)
The discussed property is false for GL,, with n > 3.
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Note that, for any representation p of I', there are canonical isomorphisms of vector
spaces or modules

Wa(p*s B) = Wa(det @ p; B), W € {8, M, M', M', M"}.
The isomorphism is f + p(S)~!f in virtue of (4.23).

Remark 4.15. We discuss the choices we made in Definition Firstly, we could have
decided to set, for representations of the first kind, our target spaces to be vector spaces
over FZC(LE), but we noticed that this is an unnecessary complication, at least at the stage
of the present work, as the most interesting examples are related to representations in
GLy (F4(ts;)). Secondly, and this is perhaps more important to point out, we could have
removed the condition of injectivity of x to define basic representations in Definition
Several properties we prove for representations of the first kind extend to the larger class
of representations satisfying all the conditions in Definition but the injectivity of all
the algebra maps x; in , used to build them. Many properties still hold. For instance,
the maps ¥,,(p) of or ®, are defined for any representation p : I' = GLx (Fy(ty)).
The reader can also verify that the maps =, of (which are essential to show that
modular forms associated to representations of the first kind have series expansions in the
field of uniformizers, see Theorem can be constructed also for such representations
that are constructed just as in Definition starting from F,-algebra maps x; in (4.9)
which are not all injective. But the injectivity condition is important to obtain several
other properties. One example is the construction of Hecke operators in §4.3] Another
example is the harmonic product formula of §0} see the injectivity in the Data which
looks essential. Also, if p : I' = GLg(F4(ty)) is an arbitrary representation, even when
it is possible to construct Poincaré series as in §5.3] it is hard to show that the functions
constructed are non-zero, and in general it does not seem to be possible to construct
Eisenstein series in the way we do in

Remark 4.16. We briefly explain the chosen terminology: representations of the first
kind. The reader can notice that Definition benefits of quite a long list of good proper-
ties making it an excellent starting point in the study of our higher dimensional Drinfeld
modular forms. However, a slight generalization can be equally interesting, that can be
called representations of the second kind. These representations of the second kind will
be only marginally discussed in this paper, but they are not difficult to define. Definition

can be modified allowing the F,-algebra map x defined over A to have, as a target
space, K&*" for some finite subset ¥ C N* and n € N*, instead of just Fy(tx)"*™. So, a
representation of the second type is one coming from an algebra map x as above, which
is not of the first kind. These representations are also very interesting in that associated
non-trivial modular forms in the spirit of the present paper do exist and carry important
properties, but they will be the object of another discussion (in general, tame series are
not enough to describe their behavior at infinity). To end this remark we point out that it
is rather difficult to us to make a comparison with the way one usually classifies complex
vector valued modular forms for SLg(Z). There is a well known moderate growth condition
in vertical strips that allows to expand entries of modular forms in expressions involving
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powers of log ¢ and Puiseux formal expansions, and also a condition of semisimplicity on
p((l) 1) that, if added, neutralizes the logarithmic components (typical of vector modular
forms coming from e.g. quasi-modular forms), that somehow resemble to our expansions
in the field of uniformizer (although without phenomenon of wild ramification). This may
suggest that these conditions are the analogues of representations of the first and of the
second kind respectively. But a notable difference is that we work with analytic families
of representations that have no known analogues in the complex theory.

Remark 4.17. Given any representation
p:T'— GLy(Fq(ts))

(not necessarily of the first kind), the function

Bp(z) = ea(z) 3 (2 — a) 'p(T)

acA

is well defined with entire entries. However, the hypothesis that p is of the first kind is
crucial in order to obtain that all the entries of ®, are tame series. This comes from the
existence of the exponential function exp, which is not just Fg-linear, but also a morphism
of A-modules. The functions =, can be associated to representations of the first kind only,
and occur in the proof of Proposition via Proposition

We now construct representations

p: T = GLy(Fy(ts))

to which we can associate a quasi periodic function ®, having entire functions entries, but
we also prove that these entries are not all in the field of uniformizers. As a consequence,
these representations p are explicit examples of representations which are not of the first
kind.

To construct such representations p we start with a representation of the first kind
p:T' = GLN(Fy(ty)) and we modify it. Having and in view, we set p to be the
unique representation I' - GLy (IF4(ty;)) such that (a)

p|GL2(]Fq) = ﬁ’GLQ(Fq)

(b) p(Ty:) = p(Ty:) for all ¢ € N such that ¢ ¢ S, where S is a non-empty finite subset of
N*. We can additionally suppose that (c)

G =" (== )" (plTy) = 5Ty
€S
is a non-constant matrix function. It is elementary to show that representations like this
exist; they even exist when the target space of p is Fév and p is not of the first kind! We
observe that
¢, =5+ G.

Assume by contradiction that ®, can be identified with a matrix with entries in the field
of uniformizers. Since also ®; does, by the fact that p is a representation of the first kind,
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G is a matrix with entries in the field of uniformizers. But one entry g of G is a non-
constant rational function in the variable z. This contradicts which, as the reader
can verify, implies that Ky(z) and £ are linearly disjoint over Ky. In particular, p is not
a representation of the first kind.

5. STRUCTURE RESULTS FOR MODULAR FORMS

We consider, in this section, a representation
I % GLn (Fy(ts))-

We recall that M., (p; Ls), Mw(p;Ls), Sw(p; Ls) denote respectively, the Ly-vector spaces
of weak modular forms, modular forms, and cusp forms in Holg,, (Q — LY *!) of weight w
for p (in the sense of Definition , so that Sy, (p;Ls) C My(p;Ls) C M), (p;Ls). The
operator 7 induces Fy(ty;)-linear injective maps

Mw(ﬂ? LE) 5 qu(p; LZ);

and similarly for M} (p;Ls), Sw(p; Ls) etc. Of course, this depends on the choice of ¥. To
simplify, we will sometimes also write M, (p) for M, (p;Lys) etc. when the reference to the
field Ly, is clear. The next sub-section also allows to justify this abuse of notation.

5.1. Changing the coefficient field. We have defined the Lyx-vector space of modular
forms Wy, (p; Ly) and the Ky-vector space of modular forms W, (p; Kyx) (with W a symbol
such that W € {M', M, S}). Let ¥’ be finite such that ¥ C ¥’ C N*. Then, we also have
the spaces Wy, (p;Lyy) and Wy, (p; Ksy). The next result allows to compare these spaces
for ¥’ D ¥. It is important in that it confirms that there are bases of these spaces which
depend on the representation only. The notation W,, stands for M, M,, S, in all the
following.

Proposition 5.1. We have that (1)
Wa(p; Ksr) = W (p; Ks) @ K

where @Kg means that every element f of Wy, (p; Kyr) can be expanded as a series f =
> aifi where a; € Kyy, fi € Wiy (p; Ky) for all i, and a;f; — 0 for the supremum norm of
every affinoid subdomain of Q. (2) If dimg,,(My(p; Kyx)) < oo then

Wy (p; Ksr) = Wy (p; Ks) ®ky, Ksy.
Moreover (3) if dimp, (M, (p;Ly)) < oo, then
My (p;Lyr) = My(p;Ly) @1y, Ly, Sw(p;Lyr) = Sw(p;Ly) Ly Ly

Proof. Let (b;)icr be a basis of Fg(ts,) over Fi¢(ty;). By Lemma (b;)icr is an orthonor-
mal basis. In other words, every element x € Ky can be expanded, in a unique way, as
a series k = ) . K;b; with k; € Ky such that x; — 0. Let us choose a basis (c;j)jes of
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Fg¢(ts) over Fg¢ so that (bicj);; is an orthonormal basis of Ky over Co. Now consider
f € Wy(p; Kyr). We can expand

f(z) = Zfi,j(Z)bz‘Cj

where f; ; € Holc (2 = Coo)™*! for all 4, j, with the property that f; ; — 0 with respect
to the supremum norm relative to any choice of an affinoid subdomain of €2. Observe that

f(v(Z))ZJv(Z)wZ p(v)Zfi,j(Z)cj bi,

7

because f is modular-like. Since p(v) > ; fij(2)c; € KN for 2 € Q and (b;); is an
orthonormal basis of Ky over Ky, we deduce that for all ¢ € I, setting f; = Zj fij(2)cj,

filv(2)) = J1(2)" p(7) fi(2),
and one sees that f; € Wy, (p;Kyx). Since f = ), f;b; with the above convergence con-
ditions, we get f € W, (p; Ks)®k,Ksy which proves (1). Now observe, for (2), that the
above sum reduces to a finite sum if dimg (M, (p; Kyx)) < oo. The proof of part (3) of the
proposition is similar but we restrict to Wy, = M, Sy. First notice that by Lemma [2.10]
which can be applied to B = Lyy (it satisfies the conditions at the beginning of @, if
f € Wiy (p; Lsy) then there exists d' € Fg[ts,]\ {0} such that f € Wy,(p; Tsy[]") by Lemma
We can even choose d,d with d € Fyltsy] \ {0} such that d | d’ and such that the
image of p is contained in GLy (Fy[ts][4]). The proof of the first part of the proposition can
be modified to obtain that f can be expanded as a series f = ), ai fr, where a;, € 'H‘g/[%]/\
and f; € Wy (p; Tg[é]), and a;f; — 0 for the supremum norm associated to any affinoid
subset of Q2. If now dimp g M, (p;Ly) < 0o, we deduce the result. O

Remark 5.2. We have excluded W,, = M/, because in general, dimp, M} (p;Ls) = oo.
However there are some canonical subspaces that are often finite dimensional. For instance,
if v9 € R it can be proved (but we omit the details) as a consequence of our Theorem
that the spaces

My, (p3Ls) = {f ="(f1,. -, fn) € My(psLy) : v(f1), ..., 0(fn) > vo}

are finite-dimensional. Then, results similar to the above hold, with similar proofs.

Remark 5.3. In full generality, we do not know if W, (p; Ks) = Wi, (p; Ly) @1, Ky and we
do not know how to compare the dimension over Ly and Ky,. Note that the proof above
imply the following: when d | d’ and if p(I) is in GLy (Fy[ts][d]), then M, (p; Tsy[5]") =
My, (p; T [517) Drg[iin Tsy[5]". In particular, we have

My(p; Ts[d™')") @pgg-1)n Le = My (p; Ly),

and similarly for the spaces of cusp forms and the tempered forms.
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The next direct consequence of Proposition will be used in Compare with [55]
Lemma 13].

Corollary 5.4. With B =Ky, Ly, Tx[] we have, for allw € Z and m € Z/(q — 1)Z,
M, (det™™; B) = M,(det™™; C) ®c,, B.

In other words, scalar B-valued modular forms are B-linear combinations of Drinfeld
modular forms a la Goss-Gekeler (with same weights and types).

5.2. Finiteness results. In this subsection we suppose that the representation p : I' —
GLn (Fq4(ts)) is of the first kind. We also recall that Ry is the completion of the fraction
field of Kx((e)® for the valuation v, and that Oy, 9y are respectively the valuation ring
and the maximal ideal of v. We have the following results which correspond to part (1) of
Theorem B in the introduction:

Theorem 5.5 (Finiteness Theorem). The Ly -vector space My (p;Ly) has finite dimension

rp(w) and we have rp(w) < (L4 [ )N if ¢> 2 and rp(w) < 2(1+ [ ])N if ¢ =2.

_w_
q+1

In particular, if w < 0, then r,(w) = 0 and M, (p;Ly) = {0} but this property will be
actually proved separately to obtain the general result. The proof of this theorem makes
use of an important feature of our Drinfeld modular forms when they take values in Ly;
the possibility of evaluating the variables ¢; (i € ) at roots of unity. There is not such a
property for Ky-valued modular forms. In we prove Theorem [5.5] by using that the
spaces of modular forms of negative weight are trivial. This is a consequence of the fact
that classical negative weight (scalar) Drinfeld modular forms for congruence subgroups of
I" are zero. The upper bound for the dimensions in Theorem can be slightly refined,
but our methods do not allow an explicit computation.

5.2.1. Ewvaluating at roots of unity. The representation of the first kind p is constructed
starting from a finite set of basic representations p; associated with injective [Fy-algebra
morphisms x; : A = Fy(ts) (¢ = 1,...,7). If di,...,d, € Fylty] \ {0} are such that
the entries of d;x;(f) are in Fy[ty] then the image of p is in GLN(IFq[;E][d—II, ce i]) C
GLn (Fy[ts][2]) for some d € Fy[ts] \ {0}. We thus get, after Proposition that

_ _—— NxN
=)@y € Hol (Coo = Exld 1] ).

Let ¥ = U UV be a finite subset of N* written as a disjoint union of subsets U, V', with
U non-empty. The set
Vu(d) = {¢ € (Fg)" = d(¢) = 0}
is Zariski-dense in (FZC)U. Let ¢ = (¢; : 4 € U) be an element of (FZC)U \ Vu(d).
The evaluation map

—

eve : Teld 1] — Ty leve(d) ]
is the Ty -algebra morphism uniquely determined by the correspondence t; — (; for i € U.
If there is no possibility of confusion, we write f(¢) in place of ev¢(f). We extend this map
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to matrices with entries in Tx[d7!]". Tt is easy to see that if X is an analytic space over
Coo and f € Hol(X — Tx[d~']"), then ev¢(f) € Hol(X — Ty [d(¢)~"]"). Moreover:

Lemma 5.6. Let X be a rigid analytic space over Coo. If f € Hol(X — Tg[é]/\) and if
for all ¢ € (FZC)U \Vu(d), eve(f) € Hol(X — TV[%}A) is constant, then f is constant.

Proof. 1t is enough to prove the result for X = Spm(.A) affinoid. By Lemma we can
choose an orthonormal basis (a;);c; of the Banach Cy-algebra A. We can even assume,
without loss of generality, that a;, is the constant function equal to one for an index
ig € I. Then, for all ¢ # g, a; is non-constant over X. We can expand every element f of
Hol(X — Tx[4]") as f = 3, fiai with f; € Tx[2]", where the series converges for the
supremum norm of X. Hence,

eve(f) = eve(fi)ai,

el
and ev¢(f;) = 0 for all i # 49. Since this happens for all ¢ € (IFZC)U \ Vu(d) which is
Zariski-dense, we obtain f; = 0 for all ¢ # ig and f is constant over X. O

Let n be a non-zero ideal of A. We denote by I'(n) the associated principal congruence
subgroup of I':

Pn)={yel:y=(§}) (modn)}.
We recall that p: I' = GLx (F[ts][d"!]) is a representation of the first kind.

Lemma 5.7. Let ( = ((; : i € X) be an element of (FZC)E\VE(d). There ezists a non-zero
ideal n of A such that for all v € T'(n), ev¢ (p(v)) =1Iy.

Proof. There exist basic representations p,,,..., py,, associated to F4-algebra morphisms
Xi : A = Fy(ts)™*™ (i = 1,...,r) such that p can be constructed applying admissible
operations finitely many times (as in Definition . We fix ¢ € (Fgc)z \ Vx(d) where
d € Flty] \ {0} is such that dx;(0) € F,[ts]"*™. We denote by n the ideal generated
by Pilx=g,...,Pr|x=0 € A\ {0}, where P; € F,[X] is the minimal polynomial of n; =
Xi(0)|to=¢ (for all i), which are well defined. Then, if a € n, we have ev¢(x¢;(a)) = 0 for all
i so that eve(p(v)) = Iy for all v € T'(n). - O

We now introduce a slightly more general notion of vector-valued modular form for a
congruence subgroup of I'. Let G be a congruence subgroup of I'. The quotient space
G\ carries a natural structure of analytic curve Ys with compactification X obtained
by adding finitely many points to Yg called cusps. We can consider neighbourhoods of a
cusp of G\Q in Q in the usual way and therefore, there is a natural notion of modular-like
forms f: Q — ]Lg 1 of weight w for p, seen as a representation of G by restriction, namely,
satisfying the collection of functional equations

(5.1) f((2)) = L, (2)“p(7)f(2) VzeQ, Vyed.
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Let ¢ be a cusp of X and let us consider § € ' such that §(cc) =c. If f: Q — LY is a
map and w an integer, we set

P2(2) = fluwpd = J5(2) " p(8) " f(6(2))

(Petersson slash operator as in (4.19)). A simple computation shows that if f is modular-
like of weight w for the restriction p|g of p on G, then Q- ]L]EVXl is modular-like of

weight w for p|gs where GO := 6~1G4 (in particular, if f is modular-like for the group T,
then f = f?).

Definition 5.8. Let w be in Z. We say that a modular-like function €2 i> Lg” of weight
w for p|g is:

(1) A weak Drinfeld modular form of weight w for p|q if there exists H € Z such that
lu(z)" £2(2)] = 0

as z € ) is such that |z| = |z|g — oo, and this, for all 6 € T.
(2) A Drinfeld modular form of weight w for p|a, if ||f°(2)| is bounded as |u(z)| < ¢
for some constant ¢ < 1, for all § € I
(3) A cusp form of weight w for p|g if || f2(2)|| — 0 as z € Q is such that |z| = |z|g — o0
forall § € T
We denote by M} (G;p;Ls) (resp. My(G;p;Ls), Suw(G; p; L)) the Lg-vector spaces of
weak modular forms (resp. modular forms, cusp forms) of weight w for p. More generally,

if B is a Cyo-subalgebra of Ky, we write M, (G; p; B) for the corresponding B-module of
modular forms.

It is easy to see that the Coo-vector space M, (G;1;Cy) is equal to the Coo-vector space
of the scalar Drinfeld modular forms of weight w for G and a similar property holds for weak
modularity and cuspidality of a form. In the next proposition, W,, stands for Mq!ﬂ, My, Sw
(so the proposition is in fact equivalent to three distinct statements).

Proposition 5.9. Let f be in Wy, (p;Ls). Then, there exists d € Fyts] \ {0} such that

f € Wu(p; Ts[2]) (Lemma|2.10). Let us consider, further, { € (F2)* \ Vs (d). We have
eve(f) € Wy(T'(n); 15 Coo) V¥ where n is any ideal as in Lemma .

Hence, the evaluations of the N entries of f € M, (p;Ly) are scalar Drinfeld modular
forms of weight w for I'(n).

Proof of Proposition[5.9. By Lemma for all v € T'(n) and 2z € Q, ev¢(f)(v(2)) =
Jy(2)" eve(f)(2) and also, it is easy to see that ev¢(f) has rigid analytic entries. It remains
to show that the entries of er( f) have the decay properties of Definition which is
guaranteed if we show regularity at all cusps of G\Q2. In more detail, if f has image defined
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—

over Tx[1], we show that the map eve(-) defines maps (Coo-linear maps)

(5.2) My(pTeld 1)) — ML(D(n);15C) V",
(5.3) My(p; Tsld 1) =  My(D(n); 1; Cog) ¥,
(5.4) Sw(piTsld1]) —  Su(T(n);1;Coc) V<L,

First of all, a holomorphic function f : Q@ — C satisfying f(y(z)) = J4(2)" f(z) for all
v € I'(n) is a weak modular form of weight w for I'(n) if for all § € T, the function f%(z)
can be expanded as a series of Coo((u(Z))) in the neighborhood of the cusp §(co), where
n is a generator of n. We deduce that f°(z) is a weak modular form of weight w for the
group 6~ 'T'(n)d. Note indeed that u(Z) is a uniformiser at oo for the action of I'(n) over
Q in virtue of the fact that the group (} 1) is contained in 6~ 'I'(n)§ for all § € T.

Let f be in M,,(p; Ts;[d"1"). Then, ev¢(f) has all the entries which are n-periodic and
eve(f?) is tempered for all § € T'. This implies that ev¢(f) € MY (T'(n); 1;Coo)V*! which

proves (5.2). Now assume that f is, additionally, a modular form in M, (p; Tx[d~!]").
63

Then, all the entries b° of eve( f?) satisfy b € Coo[[u(2)]] for all § € T, which yields
Similarly, if f is in Sy (p; Ts[d™!"), we see that all the entries of ev¢(f) vanish at all the
cusps of X (n) hence confirming (5.4)) and completing the proof of the Proposition. O

5.2.2. Proof of the Finiteness Theorem. We first study the structure of the space My(p; Ly).
Lemma 5.10. We have My(p;Ly) ¢ LY*!.

Proof. Let f be an element of My(p;Ly). By Lemma there exists d € Fy[ts]\ {0} such
that the image of f is contained in Tx[2]. By Proposition for all ¢ € (IE“ZC)E \ Vs(d)
there exists a non-zero ideal n of A such that ev¢(f) € Mo(I'(n); 1;Coo)V*1. A scalar

Drinfeld modular form of weight zero is constant. Hence, for all ¢ as above, ev¢(f) € CcNx1,
Therefore, f is a constant map by Lemma [5.6| with X = Q. O

We recall from the [F,(ty;)-linear automorphisms 7 : Ky, — Ky, 7 : Ly, — Ly. Since
the image of a representation of the first kind p lies in Fy(ts)V* for some N, we have
injective Fy(ty;)-linear maps

Wa(p; Ks) 5 Wou(piKs),  Wa(p;Ls) 5 Wew(p;Ls),
where W, = M, , My, S,,. With this, we can prove the next corollary to Lemma
Corollary 5.11. If w < 0, M,(p;Ly) = {0}.

Proof. Let f be an element of M, (p;Ly) with negative w. For all k,a, 8 € N with 5 > 0,
f = g*hBr*(f) € quw+a(q,1)+5(q+l)(pdet_'g;Lg), where ¢ is the normalised Eisenstein
series in M,_1(1;Cs) and h is —1 times the normalised generator of S,41(det™;Cy,) (we
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are adopting Gekeler’s notations in [24], see also §5.3.3). We show that there exist k, «,
with 8 > 0 such that

(5.5) ¢*w+alg—1)+B(g+1) = 0.

This is very easy but we give all the details. To find such k, «, 8, we first observe that
we need ¢*w 4+ a(q — 1) + B(¢+1) =0 (mod g — 1), and this is guaranteed by w = —20
(mod ¢ — 1). We must have:

a = qil(—qu—ﬁ(ﬁl))

P
= q—l( wq” —2p) + .

Assume first that p # 2. Then, there exists § € {1,...,q — 1} such that w = 20
(mod g — 1). We can choose k large enough so that —wq® — 243, divisible by ¢ — 1, is > 0.
Therefore we can choose o € N such that, with such 8 and k, (5.5) holds.

If p =2 we can set § = 1 and k such that a = —2kui— 3 > 0. Since § > 0 we see
that f is a cusp form and Lemma now implies that f = 0; hence f = 0 because 7 is
injective. U

Proof of Theorem [5.5, The result is already proved in Lemma and Corollary if
w < 0. Now assume that w > 0 and let f be in M, (p;Ly). Again, we can suppose that

—

f € My(p; Ts[L]) for some d € Fyts] \ {0}.
We have that f € Dg *1 1y Theorem In fact, the proof of Proposition allows

Nx1

to show that, more precisely, f € DT Since f is a regular p-quasi-periodic function

=[]
(Definition , viewing the proof of Pfioposition we obtain that f = ®,g, where ®,
has been defined in and studied in Proposition and where g is in Tx[4]" [[u]] V1.
We recall that from Corollary [4.9| that det(®,) = 1 and ®,, ®,' € (€° {eNO)N*N We now
study the association f +— g so that we write gy to stress the dependence of g on f.

Let v be in F. We have

p(69)2p(2)p(§ ) ar(vz) = flvz) = v¥p(§9)f(2) = v () ®p(2)gs(2), Vz € Q.

Since p is of the first kind, p(4?) is diagonal and we can write:

p(5Y) = . m€Z/(q-1)Z, veF.

v N

Writing additionally g5 = (g1, ..., gn), we deduce that

w—n;

gi(vz) =v gi(2)
for all i = 1,..., N, so that g; € u™Tx[5]"[[u?1]] where m; is the unique representative
of n; —w modulo ¢ — 1 in {0, ..., ¢ — 2}. This implies that the subspace W,, of M,,(p;Ly)
spanned by the forms f with g having entries of v-valuation in the set {0, 1} has dimension
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not exceeding N if ¢ > 2 and 2N if ¢ = 2. On the other hand, if f € M, (p;Lyx) is such
that g; is not in W, that is, the v-valuations of its entries are > 2, then, by the fact
that &1 (€ (eNO)YN*N we deduce that the v-valuations of the entries of f are all
> 1 and therefore f € hM,,_(4+1)(pdet; Ly) (where we recall that h is the generator of
Syt1(det™; Cyo) normalised by the coefficient of u in its u-expansion, which is set to —1).
We have proved that

Mw(p; LZ) - thf(q+l) (P det;LE) © Wy
This implies

' , N ifg>2
dimy,,, (Mw(p; Lz)) < dimy,g (Mw—(q+1>(f’ det?LZ)) + {2N ifg =2

The result follows by induction over w. ]

5.2.3. Modular forms of weight one. We keep working with a representation of the first
kind p: I' = GLxn(F,(tx)) and we set, with L a field extension of Fy(ty;),

H(p;L)={le L™ : p(T,)l =1 for alla € A}.

This is equal to the L-vector space generated by the simultaneous eigenvectors of p(T,)
in Fy(ty), with a € A. Note indeed that for all a € A, T4 = Iy so that 1 is the unique
eigenvalue of p(T,) for all a. We denote by §, the dimension of H(p; L) (independent on
L).

)Let us consider f € M (p; L) where L = Ky or L = Ly. By Theorem we can
identify f = *(f1,..., fy) with an element of ON*!. We denote by f; the image of f;
modulo My, for all 4. This is an element of Ky and we set f =(f,..., fy) € Kg“. We
easily see, by taking the limit for z € Q, |z| = |z|g — oo that in fact, f € LV*!. Note
that for every a € A, fluw,Ta = p(T-a) f(2+ a) equally belongs to Dg“ (by Lemma .
Therefore f € H(p; L). This means that

My (p; L) = Sw(p; L) © W,

where the map f — f induces an embedding W,, — H(p; L) so that , is an upper bound
for the dimension of W,,. We can now prove the following result which justifies part (2) of
Theorem B in the introduction:

Theorem 5.12. We have Si(p;Lx) = {0} and the inequality dimyg,(M;(p;Lx)) < 6.

Proof. Tt suffices to show that Si(p;Ls) = {0}. Let f be a cusp form of Si(p;Ly). In
the settings of Proposition for ¢ € (]FZC)Z \ Vs (d) we get (after this proposition) that
the evaluation ev¢(f) is well defined and its entries are cusp forms of S1(I'(n)). The latter

space is zero as it was first noticed by Gekeler (see Cornelissen, in [19, Theorem (1.10)]).
Hence, for all ¢ as above, ev¢(f) = 0. By Lemma f vanishes identically. O

A more precise result in a particular case is Theorem
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5.2.4. Problems relative to the evaluation at roots of unity. Consider a representation of the
first kind p and two elements f, g € M, (p;Ly). By Lemma there exists d € Fy[ts]\ {0}
such that f,g € My (p; Txld~1]") and p(T) C GLy (Fylts][d1]).

Lemma 5.13. Suppose that ev¢(f) = eve(g) for all € € (F3)*\ Vs (d). Then either f =g
or f —g € Tg[d Y and w = 0. If p is irreducible, then f = g.

Proof. By Lemma there exists k € Tx[d~1]V*! such that f — g = x. By modularity
forall y € I" and z € Q, kK = Jy(2)"p(y)k. If Kk # 0, w = 0. Now, again in the case of &
non-zero, klLy is a subvector space of Lg *1 that is p()-invariant for all 4. If N > 1 and

p is irreducible, this is impossible. If N = 1 then p = det =™ for some m. Hence the result
follows from Corollary O

If ¢ € (F3¢)* \ Vs(d) we have a map
evg - Moy (p; TE[d_l]/\) - Mw(pg Coo),

where p; : I' — GLy(IFg¢) is the representation obtained by sending v € T' to ev¢(p(7)).
We have not yet defined M., (p¢; Cso). Note that the image of p¢ is a finite subgroup and
p¢ is not of the first kind, apart from trivial situations. In this case there is an ideal n
such that T'(n) C Ker(p). To define M,,(p¢; Co) We require that every entry of an element
[ € My(p;;Coo) is an element of M, (T'(n);1;Cy) as suggested by Proposition w In
other words, we require the elements of M, (p¢;Co) to be regular, in the classical sense,
near the cusps of I'(n) for any n such that I'(n) C Ker(p). From Lemma we deduce:

Corollary 5.14. If p is irreducible and w > 0, [, Ker(ev¢) = (0).

The maps ev¢ are rarely surjective. We illustrate this with an example, anticipating
some tools that are discussed later on. We consider p = Py, the contragredient of the basic
representation associated to x; : A — F,[t] the map a(f) — a(t) of (irreducible, see
Lemma , so we have N = 2 for the rank of the target space. In Theorem we shall
prove that Mj(p; T) is one-dimensional, generated by an Eisenstein series. Now consider
¢ € Fg¢ and an element f € Mi(pg;Coo). It is easy to see that if p is the prime ideal of
[F,[t] generated by the polynomials that vanish at ¢, then I'(p) is contained in the kernel

of p¢. By Cornelissen [19, Proposition (1.12)] we have, with f = (;%) (for few lines u will

not denote the uniformizer at infinity),

fz(z) = Z Ci,uFu(Z)u Ciu € Coo
u€eS
where S is any set of representatives of the cusps of I'(p) (we can make them in a bijective
correspondence with the quotient of the set (A/p)? \ {0} modulo the scalar multiplication
by elements of Fy) and (Fy)ues is the set of restricted Eisenstein series of weight 1 in
the terminology of [19]. In particular, (F,)ucs is a basis of M;(I'(p);1;Cs). The group
I" acts permuting the cusps. If u is a cusp and v € I', we denote by w7y the cusp image
of u by v. It is well known that for all v, F,(v(2)) = J,(2)F,,-1. On the other hand we
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Cl,u

have f(v(z)) = J,(2)pc(7)f(2). Hence we get, setting ¢, = (62 u) (the first equality is a

rearrangement of sum):

Z Fu(Z)CIW = Z Fu7*1(2>cu = Z Fu<z)pC(7)(cu)7 V’Y erl.

u€es ueS u€eS

There exist (2y)yes C €2 such that the matrix (F,(2y))y,v is non-singular. This implies that

pc(y)(cu) =cuy, VyeT, wues.

Moreover, if uy = u for some u,y then v € I'(p) C Ker(p¢) so that the datum of a
vector ¢, € C2, determines an element of My (p¢e; Coo) and there is an injective linear map
C2, — My (pc; Coo). This shows that ev is not surjective. Similarly, if |S| > 1, one can
show that the map ev, defined over M, (p%;; Tx) with  a vector of roots of unity is not
surjective, apart from obvious trivial cases. a

At this point, we would like to ask a question. The next definition prepares it.

Definition 5.15. Let n be a non-zero ideal of A, let ¢ be a Drinfeld modular form of
weight w for I'(n). We say that g comes from a modular form for the full modular group
if there exist: (1) a representation of the first kind p : I' — GLy (F¢(ty)) and ¢ € (F¢)*
such that the evaluations ev¢(p(v)) are well defined for every v € I, and (2) an element
f="4f1,.... fN) € My(p;Ls) such that g = ev¢(f;) for some i € {1,...,N}.

Question 5.16. Compute the Coo-span in M,,(I'(n);1;Cx) of the modular forms which
come from modular forms for the full modular group. For which n and w do we obtain the
whole space?

5.3. Poincaré series. We construct explicit examples of modular forms in our generalized
setting. We are mainly concerned with a class of matrix-valued Poincaré series.
We consider a representation of the first kind

I % GL(Fy(ty)),

of degree [. Let w be an integer and, with L = Ly, or L = Ky, let G : Q — L]EVXN be a
tempered matrix p-quasi-periodic matrix function of type m, following Definition We
shall keep these settings all along We set, for vy € I' and z € Q:

S (w, ms G)(2) = det(7)" 15 (2)~p(7) " G(1(2))p(*4 0).

Lemma 5.17. Let v,y € T be in the same left coset modulo H := {(§71)} C . Then we
have the equality Sy(w,m; G)(z) = Sy (w,m; G)(z). Moreover, for all § € T,

Sy (w,m; G)(8(2)) = det(8) "™ J5(2)"p(8) Sys(w, m; G) (2)p( 4@ 9).

Proof. We simplify the notation: S, (w,m;G)(z) = S,(z). We prove the first property.
Since H is the semidirect product of A by Fy, it suffices to show that: (1) for all a € A,
S1,+(2) = Sy(2) and (2) for all v € FS, S5,(z) = S,(2) if 6 = (§ ). For (1), we observe,
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by the properties of G, that
St (2) = det(Tay) ™ Jr,y () p(Ta) " G(Ta(y(2)))p( 4G 0)
= det(y)™Jy(2) " p(1) " p(Ta) " p(Ta) G (v(2))p(( 24
= S,(2).
For (2), we see, similarly, with § = (4 ) (here we use that G has type m):
Sso(2) = det(69)™ sy (2) " p(67) T G(8(7(2)))p( 20N 0)
= det(y)"J,(2) " p(y) " p(8) " det(8)™ det(8) " p(8) G (7(2))p(8) " p( 4N 9)
= 5(2).

This completes the proof of the first part of the Lemma. For the second, observe, if 7/ = ~d
with 6 € I':
—w

S,(3()) = det(y)™ 5 (5(2)) " p() " G(H(E(2)))p( 44D )
= det(8) ™ det(y/)" (=) (2) " p(r'5 1) LG (2))p( ) ) O)
= det() " Ja(=)"p(8)S (2)p( U 9) .

We consider the formal series (Poincaré series):

(5.6) Puw(G)(z) = ZSV(w,m; G)(2),
v

running over a complete set of representatives of H\I'. Note that, if well defined, this is
a matrix function. Compare this with Bruinier’s definition of Poincaré series in [11], §1.2,
1.3].

Two elements ,~" € T" are in the same left coset modulo H if and only if they have the
same second row and there exists a couple (a, 3) € A?*! with «, S relatively prime, such
that

[’y/]l = [(auﬁ) : ’y]la
where [-]; here denotes the first row. In particular, we can run the series ([5.6)), if convergent,
over a set of representatives contained in SLa(A), so that, with such a choice, the sum

becomes:
ZJ 1G(y(2)).

We have the next property.

Proposition 5.18. If the series Py, (G)(2) converges to an element of Holg, (Q — LN*N)
then it satisfies, for all z € Q and v € I':

Pu(G)(1(2)) = det(7) ™" (2)" p(y)Pu(G) (2)p( 4 )7
For each column f of Pw(G) there exists i € Z/(q — 1)Z such that
f(6(2)) = det(8) ™ Js(2)p(0) f(2), VzeQ, del.
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Proof. We assume that the series converges, giving rise to an element of Holg,, (2 — LX),
We note that for v € Fy, p(§9) is diagonal in GLy(FF;) and there are integers n; with
i=0,...,q— 2 such that ), n; = N so that we can decompose

q—2
(5.7) Pu(G) = P PIIG)
=0

where P,E}(G) Q= Kgxni for all i, and
PG (6(2)) = det(8) ™ J5(2)p(8)PE(@), VzeQ, del, i=0,...,q—2.
O

In full generality (for any quasi-periodic function G), we do not have a good criterion of
convergence for the series P,,(G). We discuss these series for two choices of G.
We will need the next Lemma in the book [32] of Gerritzen and van der Put.

Lemma 5.19. There exists a complete set of representatives v.q = (Z Z) € SLy(A) of
H\T in which each matriz is of one of the following three types:

71 )
(1) o= (¥ 2) with p € FY,
(2) Yo = (2_/,‘;1) with p € ) and v € Fy,
(3) fycd_(ab),wzthabchAsuchthatad be =1, |cd| > 1, |a] < |¢|, |b| < |d|.

We note that the first two sets are finite. Let us look at the corresponding extracted
series in the series defining P,,(G); we denote them by 2, B, € (in agreement with the
order of the types in the above set of representatives), so that 2,8 correspond to finite
sums while € is an infinite sum. We set, with [ the degree of p:

2 ) 120 NxN
(5.8) =) P Hp(0) € F)
peFy
a matrix that has a natural block decomposition induced by the way p is constructed in
terms of basic representations. Note that this is also a diagonal matrix with entries in

{—1,0}. For the first sub-sum we have, in virtue of the fact that G is of type m (second
equality) and that p is of degree [ (third equality):

(5.9 A= D Sy, (2) = > up(ty 0) G

ueFy ueFy

= > wp(ty 0 (T )G ()17 )
pery

= G(2)elp).
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For the second sub-sum we have, similarly:

(5.10) Bi= > 8, ,(2)=

ek

veF,
e > (o) "ol e (5 ) o)
= (ym Z(wm—wp(—lﬁg)c(ziﬁ)p(019) (o).

BeF,

We easily deduce that 2 + B € Holg, (2 — L¥*V). We now make explicit choices for G.

5.3.1. The case of G entire. We suppose that G € QP!m(p;KE) extends to an entire func-
tion Coo — LN*N where L is a field extension of Coo contained in Ky;. In this part we
study Py (G) with w € Z, w > 0. Let M > 0 be such that ||G(2)u(z)| is bounded for
lu(z)| < ¢ for some ¢ < 1 (it exists as G is tempered).

Lemma 5.20. There are three constants ci,ca,c3 € |CX| such that ¢; > 1 and n €
Z[%] N[0, M + 1] such that if |z|g > c1 then ||G(2)| < ealec(2)|" and if |z|g < ¢1 then
1G(2)] < cs.

Proof. We recall that ®,, introduced at the end of is entire (Proposition (a)), p-
quasi-periodic of type 0 (same proposition (b)) and that <I>;1 is entire (Corollary i and
has its entries which are at once tame series of degrees in [0, 1[02[%] U{—oco}. Then G®,*
is also entire and A-periodic. Therefore, by Proposition (c), G<I>;1 € Llec(2)]V*N and
the degrees in ec of the entries of this matrix function, well defined, are < M while the
matrix function itself is of type m. We deduce that
G € Llec(2)|V N,

By Proposition there exist constants ¢; > 1 and ¢y with ¢1,c0 € |CX|, n € Z[%] N
[0, M + 1] such that if |z|g > c1, then ||G(2)| < c2lec(z)|". Suppose now that |z|g < ¢;.
There exists A € K such that |z —\| = |z|g < ¢;. We can write A = a+m with a € A and
m € §Fq[[3]]. Then |z —a| = [z — A+ m| < max{|z — A, |m|} < ¢ because |m| <1 < ¢;.
Now, since G(z) is p-quasi-periodic, ||G(2)|| < ||G(z—a)|| < c3 for some constant c3 € |CX |,
because the entries of G are entire functions, hence bounded in the disk D¢ (0,¢1). O

Proposition 5.21. Let w be a positive integer. If G is an entire tempered p-quasi-periodic

function of type m the series defining Py, (G) converges to an element of Holg, (Q — LN*V)

and the matriz functions Pg](G) defined in are elements of M, (pdet'™™; L)1*m:

for i wvarying in Z/(q — 1)Z. If the i-th block of €(p) is non-zero, then the columns
i [4]

of 731[5}(6}’) are non-zero. Moreover, the matriz functions RMHAIPIN(G) are elements of
St (M41)(g+1) (pdet’™ M=M=l Lyl
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Proof. Let v = (¢ Z) be in I, such that ¢ # 0 and let us consider z € 2. Then:

(5.12) A(z) = & deth)

¢  clcz+d)
We consider ¢; € |CX| such that ¢; > 1 and we consider z € © such that ¢;! < |z|g < |2] <
c1. We note that if 7 is of type (2) or (3) as in Lemma then |y(z)| < ¢1. Since G has
entire entries, we therefore get that the series defining P, (G) converges uniformly over all
the affinoid subdomains of €2 of the type {z € Q: c3 < |z|g < |2| < ca} with e3,¢4 € |CZ]
hence defining an element of Holg (22 — LY*Y). Now observe that if |z|g = |2| — oo and
7 is of type (2) or (3), then |y(z)| — 0 uniformly on the set of representatives v of H\I" and
therefore, the sum B+, as a function of the variable z, is bounded as |z|g = |z| — co. By
Lemma, @ and the expression we found for 2(, we therefore have that P, (G) is tempered,
because for |z|g large enough, ||Py(G)(2)|| = [|G(2)e(p)||. More precisely, |ec(z)|~"|G(2)]|
is bounded as |z|g = |z| — oo where 7 is given in Lemma[5.20] Thanks to Proposition
this suffices to show that P, (G) has it columns in M/, (pdet'™™; L). If ¢(p) does not vanish
identically, looking at the blocks which are not zero we deduce the properties regarding

g](G). The last assertion of the proposition is verified by noticing that ||G(z)u(2)"]| — 0
as |z|g = |z| = o0, and 0 < < M + 1. Therefore hM+1P,,(G) vanishes at infinity because
v(h) = 1. O

Corollary 5.22. If G = ®, and €(p) # 0 then there exists i such that

[i] i1 Lxns
WPI(G) € (Swsqrlpdet ™5 0)\ {0})

5.3.2. The case G = V,,,(p). With m > 1, we study P,,(G) where:

1
(5.13) G=Vn(p) = Z WP(TCL)-
acA
The functions ¥,,(p) have been introduced in By Lemma we have W,,(p) €
QP (p;Ly). If p=1:T — {1} we recover the (scalar) sums Sy, o for the lattice A = A
(see [35], §6] and [24, §3]). In particular, for any m > 1 there exists a polynomial G,, € K[X]
(called the Goss’ polynomial of order m) such that

(5.14) G = 7"Gon ().

The Goss’ polynomials G, can be computed inductively by using the generating series:

m uX
(5.15) mz>:1 Gn(u)X™ = —— oo ()

See [24], (3.6)], [26], and [53, Theorem 3.2], [31] for more recent results on these polynomials.
See also our Lemma
The next result holds:

Proposition 5.23. Let us consider w,m € N*. If G = Vy,(p), the columns of Py(G) are
in Sy(pdet™;Ly) with j varying in Z/(q — 1)Z.
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Proof. Tt suffices to show that the sum defining P, (G) is uniformly convergent on affinoid
subdomains of Q of the type C := {z € Q: ;! < |z|g < |2| < 1} with ¢; € |CX| such that
¢1 > 1. For this, we use the decomposition P,,(G) = A+ B + €. We need to show that the
series € converges uniformly over C. We note that if v = 7.4 is of type (3) as in Lemma
then if z € C we get |y(2)| < ¢1. In fact, we have y(z) — 0 by as y varies
in the chosen representative set of H\I' and «(C) C Dc_,(0,]0]!) N for all but finitely
many 7. If we denote by £ the set of such homographies, we get ||G(v(z))|| < |z|~™ for
all z € C and for all v € £. Therefore we can decompose € = &y + €; where € is a finite
sum of holomorphic functions and €y = ¢ S,(G)(z) which converges uniformly on C in
virtue of the fact that w > 0. We deduce that P,,(G) defines a holomorphic function over
Q, with values in LY*". Since moreover, ||G(z)|| — 0 as |2| = |2|g — 00, we see that the
columns of P, (G) are cusp forms. O

Giving sufficiently general conditions for the non-vanishing of P,,(G) is more difficult in
the case G = ¥,,(p). We have the next proposition:

Proposition 5.24. Assuming that m,w are two positive integers such that w > 2m, if
G =V, (p) and €(p) # 0, then Py, (G) has a non-zero column in Sy, (pdet™";Ly) for some
1.

Proof. We need to analyze the various subsums 2,8 and € of P, (G) that we know being
convergent series, by Proposition We begin by studying the subsum 2. Note that
p(T,) — In is a nilpotent matrix having zeroes in the diagonal for all a € A. The diagonal
of G = Wp,(p) is equal to In ), 4(2 —a)~™ and the hypothesis on ¢(p) implies that Ge(p)
has some non-zero coefficients on the diagonal of valuation |-| equal to |¥,,(1)|. By Lemma

[5.26] (proof postponed to §5.3.5) there exists
k1 €]1,10|[N[CZ|

and a non-negative integer wy such that if k1 < |2 < |6, then W,,(2) = [0|7™|F]*2. We
deduce that

W
(5.16) 1) =101 5|7 me <z <ol
We now study the subsum B. To do this, we assume that |z| > 1. By (5.11)) and the
definition of G"

(5.17)
B = ( NE +5)m’“’p<if é) +3'Y (1(f I(ff;’)mp(—lﬁ é)p(ﬂ)p(‘ol (1]> >e(p),

BEeF, acA pBely

%0 ‘Bl

where the sum is split in two pieces, the first sum corresponding to @ = 0, while the
dash ’ on the second sum designates the term corresponding to a = 0 omitted. If a # 0 we
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get |1 —a(z+ B)| = |al|z| > |z] = |z + B| and therefore, ||B1(2)| < |z|7% for 1 < |z|. As for
By, we see that

Bo= Y (= +8)"p( 5 )elp).

BEFq

Hence, ||Bo(z)|| < |z|™ " again for 1 < |z|. Thus,
(5.18) B[ < 2", 1<z,

It remains to handle the subsum € and we consider, for this purpose, z € {2 such that
1 < |z] and |z| & |8|”. Suppose that v = .4 = (¢}4) is of type (3) as in Lemma We
notice that |az+b| < |cz+d|. This follows easily from the conditions on a, b, ¢, d determining
the type (3) and the fact that |az +b| = max{|az|, |b|} and |cz+ ¢| = max{|cz|, |d|} because
2] ¢ o[-

Then

S5(G) =T, (2) " p(7) D_(1(2) = b) " p(Ty)p( YU ).
beA
One sees easily that
2 — )™ = Jy(2)™
R .

Note that az + b — gJy(z) = z(a — bc) + b — bd so that, if b # 0, |az + b — gJy(z)| =
max{|z||a — be|,|b — bd|} = max{|z||c|,|d|}[b] = [b]|J5(z)|. Hence b # 0 implies that
|(v(z) = b)™™| < 1. If b = 0, since |az + b| < |cz + d|, we get |y(z)|™™ < |y (2)|™.
Therefore, we deduce that ||S,(G)|| < [Jy(2)|™" for v of type (3) and we can conclude
that

(5.19) le@)Il < ™7, if 1<zl |2 & 161"

Assuming by contradiction that P, (G) vanishes identically, we have that 2 = —(B + €).

wo+m
Looking at Lemma [5.26| we observe that |z| > ||<2T#=™ if and only if |z|“2t¥ =™ > |g|~2t™,
equivalent to |0]~™[Z[|“2 > [z|™". But

wy+m w—2m

wg—l—w—m_ w2 +w—m

and the hypothesis w > 2m ensures that there exists ko €]1,]6|[N|CX| such that for all
z € Q) such that ko < |z] < |6],

2(2) 2 [@n()] = [952)] = 67| 5[ > a2 = 1B(2) + €(2)),

by (5.16)), (5.18) and (5.19) (more precisely, a non-zero column of 2 has an entry which has
Il - || equal to |¥,,(z)]). This is impossible. Hence P,,(G) does not vanish identically. O
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5.3.3. Example: Poincaré series in a class introduced by Gekeler. We consider the case
N =1, p=1, we choose G(2) = G, (u) =T "™¥,,(1) the Goss’ polynomial (in u) of order
m with m > 0. Then, we see that ¢(p) = Zuqux ©?™ =% which is non-zero if and only if

w = 2m (mod g — 1). We therefore reach the next result.

Corollary 5.25. If w = 2m (mod q — 1) and w > 2m then, with G(z) = Gp(u), the
Poincaré series Py, (G) determines a non-zero element of Sy, (det™; Cy).

Note that in [68, Remark 4.1] the condition on w = 2m (mod ¢ — 1) is stronger: w >
(g + 1)m. See also [32, pp. 304-307] and [24, §(5.11)]. However, we do not get new scalar
Poincaré forms. For instance, if w = 2m (mod ¢ — 1) and w > 2m the minimal data is
given by m = 1 and w = ¢ + 1. If we take w > 2m, m € {1,...,q}, w = 2m (mod ¢ — 1)
and G = u™, we see that

Pul(G) = Y det(y)™J; " u(v(2)) = Pum € Su(det ™™ Cop)
yEH\T

in the notations of Gekeler, [24, (5.11)]. We recall that if w = ¢+ 1 and m = 1, then
h = Pq+171.

5.3.4. Example: Poincaré series of weight three. We consider p = p5 which is of degree
s = |X|, where ¥ C N*. We suppose that s =1 (mod ¢ —1). A simple computation shows
that

—ny —no)

p(6 ?) = Diag(l/_s,--- vV
where the integer sequence (n;);>0 does not depend on s and coincides with the so-called
one-counting sequence, that is, the sequence (n;);>0 which gives the number of one’s in
the binary expansion of . The degree of p5, is s. We also consider integers w, m > 0 such
that w > 2m and we set r =2m —w +s. If s = |[¥| =1 (mod g — 1) then the smallest
parameters allowable in the above construction of a non-zero Poincaré series as above are
w = 3 and m = 1. We note that the last column of €(p), defined in , is the opposite
of the last element of the canonical basis of ]Fév *1 Hence the last column of P3(G) where
G = Uy(p%) is an element of S3(p det™!;Ly) \ {0}. Explicitly we have, with a choice of
representatives of H\I' in SLy(A):

(5.20) P5(G) =Y J4(2)*("ps)(NG((2), G(2) = (2 —a) ' p(To).

acA

,V

Note that if ¥ = () then N =1, p =1 and G = 7Tu. we have |X| =1 (mod ¢ — 1) if and
only if ¢ = 2. In this case

Ps(G) =7 Jy(2) Pu(y(2)) = 7h,
Y

that is, a non-zero multiple of Gekeler’s function h that has weight 3 in this case.
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5.3.5. Growth in annuli. This section is mainly devoted to the proof of Lemma [5.26] only
used in the proof of Proposition We suppose that B C Kyg. We study the series
WU, (p) in the annuli Co = {2 € Coo : 0 < |z < 1} and C,, = {z € C : |0]" L < |2] < |O|"}.
The representation p being fixed, we now write ¥,,, or ¥,,(z), instead of ¥,,(p). We also
write:

Us(z) = Inz™™ ifn=0,

- Z (z —a)"™p(T,) ifn>0,
acA
lal<|6]"

V2 (2) = Z (z—a) "p(T,) for all n.
acA
|al>[6]"

Note that ¥y, € Kg(2)V*Y and that ¥, = U5 + U=, Also, if Dy denotes the higher
divided derivative of order k in the variable z applied coefficientwise (the operator defined
by Di(z™) = (7)2™ ), we have

(5.21) U = (1) Dyt (1) = (1) Dyt (UF) + (=1)™ 7 Dyt (U7).
We note that if a € A is such that [a| < |0]" then [¢| < 1 and

1 11 . ayi
z—a_gl—%_z <1+Z<z>>

>0

Hence, we get

(5.22) Ui(z) =27 (ZHi(p)Z_Z), |2 > |6]"

i>0
where

H.(p)= > a'p(T.), i>0,
acA
jal<i6["

where we adopt the convention a” = 1 including when a = 0, so that Hy(p) = > lal<jop P(Ta)-
Similarly, if |a| > |0|™ then |2] < 1 and

1 11 1 2\ 2\
z—a__al—g__az<a) -7 Z<£)’
120

Jj=1

and we derive the expansion

(5.23) VE(2) = =271y Hi(p), |2 < 10",
i>1
where ‘
Hij(p)=— > ap(Tn), j=>1.
acA

|al=10]™
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We deduce that
Uy(z) =21 ZHi(,o)zi, z € Cy.
1€EZ
We suppose now that p =1 so that N = 1 (this is the only case we need in the study of
Poincaré series). We have the next technical result:

Lemma 5.26. For any m > 1 there exists k1 € R such that 1 < k1 < q two non-negative
integers wy,wy such that if 1 < |z| < k1, then |U,,(2)] = [2|'797™~%1 and if k1 < |2| < |0),
then [Wy,(2)| = |0]7™|5[*>.
Proof. Writing

Sd(i) = Z ale K

acAt(d)

Scali)= > Sp(i) e K
0<k<d
and
)= Y a7l € K,
acAt
we get H;(1) =0if ¢g— 1+, and if ¢ — 1 | 4 then H;(1) = =S, (—i) if i < 0, Hp(1) =1
if n =0and Hp(1) =0if n > 0, and H;(1) = Ca(i) — S<n(i) € Kx. If n = 0 we get
H;(1) =0 for all i < 0 and therefore we conclude with the identity:

1 .
— 2\ 5J
(5.24) i(2) = - (1 + Z Ca(4)z > 0< |z <1.
7>0
q—1|j
If we choose n =1 and z € C; (i.e. 1 <|z| < |0]) we get:
1 -1 .
< _ _ _ —1
‘1’1(2)—22_)\—2q_z— Z 27t |z > 1L

XeF, 1>q
q—1Ji

Similarly, we compute

HOEERD SN (FGESI ENNE RS}
i>1
q—1Jz

In other words, to construct the formal series which represents W1 on C; it suffices to

compute
T Z zj,
JEZ
q—11j
where W is the formal series (5.24) which represents Wy on Cy (note that the second series
is nowhere converging).
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Since (4(i) —1 = 6" (mod MEL) for all i > 0 where Mo, = $F,[[5]] is the maximal
ideal of K., we observe that the co-adic Newton polygon of ¥y over C; has three slopes.
If z € C1, we have |UF(2)| = |2/ and |¥T(z)] = |2/772|0|'~9. We therefore have that
WS (2)] = |UZ(z)| if and only if |z| = |6|2 and if 1 < |2| < |6]2 we have |¥(z)] =
|UT(2)| = |2/~ while if \9]% < |z| < |0] we have |Uy(2)| = |WZ(2)| = |2]772|0|'~%. This
yields the lemma in the case m = 1.

Using and the fact that (—1)™~1D,,_1(¥5) = U5 and (—1)™"1D,,_1(¥Z) = U2,
we deduce that if z € Cq:

w2

(5.25) (WS (2)] = [T U ()] = (0T

z
7
where —1 + ¢ + m + w; is the order of U5 (2) in 2! with w; > 0, and wy > 0 is the
order of U20(z) in z. Indeed, the reader can easily verify that 67D, 1(¥7) = 3, ag2*
where |ag| = |0|7% for all k. The computation of w; and wy and their dependence in
m is a combinatorial problem which goes beyond our scopes but fortunately, irrelevant
here. We see that the oo-adic Newton polygon has three slopes in this case too. Note

w
that |[U<(2)| = |¥=(2)| if and only if |z[1~¢—m—w1 = |g|—™|2 ’ which is equivalent to
m m y 0 q
m+wo
|z| = |0]|«1Fw2tmta=T, Now,

m + wo - w1+qg—1
witwr+m+qg—1 witwr+m+qg—1

€]0,1].

0

5.4. Eisenstein series. The process that leads to the construction of Eisenstein series is
different from that of Poincaré series and delivers, in general, vector-valued modular forms
rather than matrix-valued modular forms. We describe it in our particular setting but the
discussion that follows easily generalizes to e.g. the case of vector-valued modular forms
for the group SLy(Z) etc. Let p be a representation

I % GLy(B),
with (B,|-|g) a countably cartesian Banach C..-algebra. Suppose that there is a map
(5.26) A2 B, gt
such that for all v € T, if (a,b)y = (a’,b') in A2, then
'p(v)p(a,b) = p(d’,b).

Assume further that the image of i is bounded, that is, there is ¢; > 0 such that |u(a,b)|p <
c1 for all a,b € A. Then, for all w > 0, the series

E= Z/(az +b) Y u(a,b)

a,beA
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(where the dash ’ indicates that the term corresponding to a = b = 0 is omitted) converges
to a rigid analytic map
Q — N1

and moreover:

Lemma 5.27. We have that € € My(p™; B). If Y pc a\joy 0~ “'1(0,b) is non-zero, then &
does not vanish identically.

Proof. We consider v € I'. Then:
Eulpim) = H" Y ((@b(])) nlab)

a,be A

= L Y (@ (3)) e ey

a'beA
= Jy(2)"p" (7)Ew(p; 1)

Since |(az + b) " u(a,b)|p tends to zero, we easily conclude that £ € M, (p*; B) and the
non-vanishing condition is clear. O

Definition 5.28. We call the function £ of Lemma the Eisenstein series of weight w
associated with the data (p*, ) and we denote it by &, (p*; 1) or more simply &, (p*) when
the reference to p is understood.

Although we can always associate Poincaré series to representations of the first kind
p (it follows from Proposition that for any representation of the first kind p there
exists m € Z/(q — 1)Z and w > 0 such that a column of a Poincaré series constructed
there defines a non-zero element of M, (p)) not every representation p can be enriched by
a map u as above. The reader can check that if p is a representation of the first kind that
can be constructed by starting from basic representations by using only the elementary
operations @, ®, S™, A" (so the operation (-)* is omitted) then maps like y exist which are
not zero and Lemma can be applied to construct non-zero Eisenstein series in My, (p*)
for certain w > 0. In this paper Eisenstein series will be studied in depth for specific choices
of p only. Namely, we will study, in §7] Eisenstein series associated to the representation
p5s, with ¥ a finite subset of N*.

6. DIFFERENTIAL OPERATORS ON MODULAR FORMS, PERKINS’ SERIES

A classic feature of modular forms for the group SLy(Z) is the existence of differential
operators acting homogeneously on them (sending families of modular forms to modular
forms). For instance, one can mention the so-called Serre’s derivatives, Rankin-Cohen
brackets etc. For scalar Drinfeld modular forms associated to the characters det™", similar
structures exist and have been investigated (see [13] 14}, 53]). Here we describe the natural
extension of Serre’s derivatives over the Drinfeld modular forms for a representation of the
first kind. In order to justify the existence of such operators, we need to first show that
divided derivatives leave the fields of uniformizers invariant.
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In this section (see we will also apply our results on quasi-periodic functions and
higher derivatives to determine, in Theorems [6.12 and the v-valuations of certain
series introduced by Perkins in his Thesis [64], which turn out to be related to tame series.
Perkins noticed that these series play a singular role in series expansions of Eisenstein series
(see §7).

All along this section, we consider the divided higher derivatives:

D (2") = (n>z"_m, n,m € N.

m

We choose (B,| - |p) a Banach L-algebra which is countably cartesian in the sense of

Definition For all n > 0, D,, defines a B-linear endomorphism of O ALon B Note that
Coo

these operators satisfy Leibnitz rule
Du(fg) = Y Di(£)D;(9),
i+j=n
for f, g analytic functions. To handle divided derivatives it is convenient to introduce the

following map, where x is an indeterminate and where D denotes the family of operators
(Drn)n>0 (Taylor’s map):
TQ,z : OAé’;”/B — OA;:’:O"/BHva TQ,w(f) = ZDZ(f):Ez
i>0
Then, 7p, induces B-algebra morphisms at the level of the sections, and Leibnitz rule
is equivalent to the multiplicativity Tp . (fg) = Tp.(f)Tpx(g9). Let Y be an affinoid
subdomain of A(lc’:o"/B, 2 €Y and 79 € Cy such that z+xz9 €Y. If f € O then

T2 (f)a=z = f(z+ x0). If 2,y are two indeterminates, we therefore have
TQ,SC(TQ,y(f)) = TQ@-%—y(f)‘
This implies that the family of higher derivatives D is iterative:

Dppyn = <m,r_n‘_ n>Dm oDy = <m N n)Dn © Dy,

n

Aé’;" /B

for all m,n > 0. By an application of Lucas’ formula, if n = ng +nig+---+n.q" € N
with ng,...,n, € {0,...,¢ — 1}, we have the identity

Dn - Dno ODnlq -0 Dnrqﬁ
and the operators D,, ,i mutually commute, for i =0,...,7.

6.1. Higher derivatives on tame series. We show that tame series are closed under
higher derivations. The main result of this subsection is Proposition [6.2] but we also present
some auxiliary properties that can be of interest for the reader willing to do computations.
Let 3 be a finite subset of N* with s elements. Let m > 0 be the unique integer such that
(m—=1)(¢—1)+1<s<m(q—1). If s =0 then m = 0. Let [ be the unique integer with
s=(m—-1)(g—1)+1(sothat 1 <l <g—1andif s=m =0, then l =¢g—1). We set:

(6.1) My=ef ' el el e Fofle)?
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(note that we can define the B-module B°{(e))® for any F-algebra B). We clearly have, by
the fact that s = (m —1)(¢ — 1) + 1

m—1
1 l
(6.2) AMM;s) =s, w(M. (g—1) g 7 + e =: Wnax($).
i=1

~.

We set, for B as in B°<<e>>ls’ = B°{e)’NB(e)? (recall the graduatlon by depths (3
3.5) (e >>

and A in Definition [3.5). We have the direct sum of B-modules B°((e))’ = @s>0B°(e
We call M, the maximal tame monomial, a terminology which is motivated by the following
result which tells us that in the homogeneous module B°((e))?, M has maximal weight (the
proof is easy and left to the reader).

Lemma 6.1. For all f € K& {(e)®

o we have w(f) < Wmax(s).

We have the next rather straightforward result, where wpax has been defined in
(recall that if f € B{(e)® then fll is the projection of f on B{(e)? of (3.11 . and where
we suppose that K(7) C B:

Proposition 6.2. The following properties hold. (1) The operators (D;)i>o induce B-
linear endomorphisms of B>((e), BUe)®, B (] (2) If f = S 1) € Ble)® is of
depth < L we have, for alln > 1:

L>i>04(n)

(8) For all m > 0 and for all f € B°{e)® of depth < s, D,(f) € B°{e)’ is of depth
< s—4Ly(n) and of weight < wmax(s —€q(n)). (4) We have the commutation rules

0ifqgtn

Sketch of proof. If M € B{(e))®

b is a tame monomial of depth s (as in §3.2.1)), then D,,(M)
is a tame polynomial, and

) € D BN, (m)-itg-1)-

>0

To see this consider more generally, for ¢ € U with U a finite subset of N* of cardinality s,
[F4-linear functions f; € Hol(Co, — B), so that we can write

fi=> fiw?”, fig€B, i€l
7=>0
By Leibnitz rule we have for n > 0:

Dn(nfi)z S [I2u0)

icU i1+-+is=n keU
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By Fg-linearity we have that Dy(f;) = f; if k =0, Dy(f;) = f; 4 if k = ¢’ with j € N, and
0 otherwise. Hence, setting f; o := f;, we can write:

(6.4) Dy, (H fi> = > I frae

ieU i1+ +is=n keU
ire{0}ug";vk

if the subset of indices is non-empty, and 0 otherwise, by the usual conventions on empty
sums. Coming back to our elements of B{(e)?, since for all 4, e; is F,-linear, we deduce
that for all n > 0, D, sends tame monomials on tame polynomials and therefore the
operators D; induce B-linear endomorphisms of B{(e))® as expected and the property cor-
responding to B°((e))? follows easily. Now, it is easy to see that the operators D; extend to
B-linear endomorphisms of B[u~!][[u]] so that we can also deduce the expected property
for B{(e)’[[u]] and this suffices to justify (1). For (2), let n be in N* and let us consider
the set of decompositions of length » > 1

,
n:Zniqi, reN, n; e N
i=1

Then, the g-ary expansion of n (the unique one which has the coefficients n; € {0,...,¢—1})
minimises the length r = ¢,(n). The reader can complete the verifications of the remaining
properties of the proposition. ]

Remark 6.3. The behavior of v with respect to the action of the operator 7 is multiplica-
tive. On the other hand, it is difficult to make the interaction between v and the collection
of operators D explicit which introduces a difficulty in handling our modular forms.

6.2. Divided higher derivatives of p-quasi-periodic functions. We discuss here the
problem of the computation of higher divided derivatives of the entries of the matrix
functions ®, and V¥,,(p) for m > 1. We added this section to allow readers to perform
explicit computations of higher derivatives of our modular forms. Indeed, the latter are all
p-quasi-periodic and Proposition tells us that in order to explicitly compute higher
derivatives of p-quasi-periodic functions, it suffices to explicitly compute higher derivatives
of u and ®,,.

For this purpose it is convenient to choose a different normalisation for the higher divided
derivatives. We set

D, = (—m)"D,
for all n > 0 and we write D = (D;);>0. The formalism of the function 7p, extends
to D and matrix functions. Additionally, we record the next straightforward corollary of

Proposition [6.2}

Corollary 6.4. The operators of the family D determine K-linear endomorphisms of the
K -vector spaces

K(ts)* ()’ K(to)(e)’, K(ts)(e)llull, K(ts)* ()’ llulllu™].
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We set, for f an analytic function Q — K&*V,

To.(f) =Y Di(f)a'.

>0
This defines, with H := Holg, (Q — KY*V) a K& *N-algebra morphism
TD,x
H —=% Hi[z]).
We also set
(6.5) Gum(p) =7 ) (2= a)"p(Ta) = Dm-1(G1(p)), m =1,

acA
and Go(p) = 0. The generating series of these functions is
(6.6) Glp) == Gi(p)a' = 2Tp.(G1(p)).
i>0
We have the next lemma where we recall that expa(x) = Zizo d; 124" is Carlitz’s expo-
nential in z (see §2.4).
Lemma 6.5. The following formula holds:

G(p) = —————Tp o (®,).

1 —uexpg(x)

Proof. It suffices to compute Tp . (G1(p)). Since G1(p) = uP, the formula is obvious if we

prove that
u

Tp(G1(1)) =

This is well known, see Gekeler [24, (3.6)]. Nevertheless, we recall the proof here. From
1 = uu! we see that 1 = Tp . (u)Tp(u™t).

Note that _
u™l = expo(Tz) = Z d 1t (72)?
>0
so that Do(u™') = u™? and, for n > 0, D, (u~t) = 0 if n is not a power of ¢ and for i > 0,
D,i(u™) =Dy (d; 177 29") = —d; . Hence
TQ@(Uil) —u = Z dz-_lxqi

>0

1 —uexpe(z)’

and
1 1 U

T u) = - = = .
D) ut =370 di'z?  uTt—expo(z) 1 —wuexpo(x)

0

If p = 1 then the formula of Lemma [6.5|reduces to [24} (3.6)] because in this case ®, = 1.
In general, the next Lemma can be helpful in determining some properties of Tp .(®,).
We recall the matrix w, defined in (4.16]).
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Lemma 6.6. There exist U1, ...,9Y, € Fy(ts) and a matric
M € K[04,...,9,] =]V

such that
TQ,x(wpq)pw;l) = w,,(I)pw;lM.

Proof. We recall that ®, € QP{(p; €) (Proposition and w,®,w, ! € A[9]° (e)?) NN
(Corollary where the elements 9; are also introduced). ®, € QP (p; €) implies that
for all n, the columns of D, (®,) are p-quasi-periodic. By Proposition for all n >
0, Dn(w,®,w, ) belongs to (K[J1,... 9.2 Ue)?)NV XN Note that the coefficients do not
necessarily belong to A[¢1,...,3,]. This comes from the fact that D, (e;) € K for n > 0
and these coefficients are not, in general, in A. By the proof of Proposition [f.11] the columns
of Dy (®,) being p-quasi-periodic, they are linear combinations with coefficients in Ky, of
the columns of ®,. This means that for all n > 0,

wpDn(®p)w,

for some M, € Kg *N  From Corollary we deduce easily that wpq)pw;l belongs to
GLN(A[01,...,0,](e)?). Hence

My = w,Dp(®,)0, ' w, ' € KN 0 (K[, ..., 0,](e))VN = K[9y,...,9,]" V.

Hence

1_ -1
= wpq)pwp M,

TQ@(wp(I)pr;l) = wpq)pw;l Z Myx"™ = wpq)pw;IM,
n>0
with M =Y Mya™ € K[V, ..., 9, *N[[z]]. O

Corollary 6.7. There exists U1,...,9, € Fy(ts) such that

NxN
wsG(p)w, " € MM 1 (K[or,..., 9,1 (e) Tllll])
Proof. We have ﬁpc(i) € Klu][[z]] and
NxN
Toa(wppe;t) € (KWr,.... 9,1°(e)" i)
by Corollary The result follows applying Lemma [6.5 O

For example, if p = p, is basic, we have seen in Corollary 4.10[that ®, = =, = (é” XI(Z) ),

-1
with N = 2n. By (2.15) Dy (x) = Dk‘1<19 . aq’“In> w7l for k > 0, and Dj(y) = 0 if

J > 0 is not a g-power. Hence in this case the matrix M of Lemma [6.6] is:

In X(Z) —1 —1 On In
M = <On I, >+wx expc ((79—9[”) :1:) 0. 0, )

with 7(z) = 2.
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6.3. Serre’s derivatives. In this subsection we prove part (6) of our Theorem A. We
discuss variants of Serre’s higher derivatives introduced in [I4, §1.2.3]. Following this
reference, we set, for n,w € N and f € Hol(Q — KY*!):

(6.7) () = +Z (“’*” 1>Di1<E>Dm<f>,

where E is the normalised false Eisenstein series of weight 2 and type 1 of Gekeler, defined
in [24, §8]. We recall the definition here, for convenience of the reader. We can define F
by using the conditionally convergent lattice sum

(6.8) =7

acAt bEA
This defines a rigid analytic function E : 2 — C, which satisfies

B(y(2)) = Jy (2P det() ™ (BG) -7 ). v =(d) €T

(a Drinfeld quasi-modular form of weight 2, type 1 and depth 1 in the terminology of [13]).
We also recall the u-expansion, with u, = ec(az)™!:

Another property of F is that it can be computed as a logarithmic derivative E = % of
A the cusp form of weight ¢ — 1 defined in [24] §(6.4)]. See also §7.6.4L Coming back to our
I'

modular forms, note that the case n = 1 of (6.7)) yields the operator 8£w) =Dy —wEIy.
This is the analogue of Ramanujan’s derivative introduced by Gekeler in [24] (8.5)].

Theorem 6.8. Let p: I' = GLy(Fy(tx;)) be a representation of the first kind. The operator

87(111;) determines a Ks-linear map My, (p; Ks) — Swion(pdet™™;Ky) and an Ly-linear map
My(p;Ly) = Swion(pdet™; Ly).

Proof. If f € M, (p; Ky) then f can be identified with an element of Dg *1 (Theorem )
which is Bflw)—stable for all n,w. The same arguments of the proof of [I4, Theorem 4.1]
(which holds in a wider context of Drinfeld quasi-modular forms) imply that (‘3£Lw)( f) €

My 1on(pdet™; Ky). Further, it is easy to see that &(Lw)(f) has entries in My so it is a
cusp form. O

6.4. Application to Perkins’ series. In this subsection we present the series indicated
in the title, originally introduced by Perkins in his Ph. D. Thesis [64], as generating series
for certain zeta values in Tate algebras introduced by the author in [55]. These series
define elements of Oy, and the problem of computing their v-valuations (or equivalently,
weights) arises. This is quite an intricate problem that we partially solve here. One of the
difficulties is that the matrix formalism of the preceding sections does not seem suitable to
extract this kind of information.
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Let U be a finite subset of N*. We set
ou = H Xt
€U
Explicitly, op(a) = [ ;e xt: (@) € Fyty] for all a € A.
For further use, with ¥ a given finite subset of N*:

Definition 6.9. A semicharacter is a map o : A — F,[ty] defined, for a € A, by o(a) =
[Lics xt:(a)® for integers o; > 0.

We are interested in the following class of function.

Definition 6.10. Let U be a finite subset of N*. The Perkins series of order n > 1
associated to oy is the series:

Y(nsoy) = Z(z —a) "oy(a).

a€A

For any U and n as above, the series converges for z € Cy, \ A (with respect to the
norm || - || of Ky, ¥ being a finite subset of N* containing U) and z — e4(2)"(n;op)(2)
define entire functions Co, — Ey, as it is easily seen. If U = () we have oy = 1 the trivial
semi-character, and Perkins’ generating series are related to Goss’ polynomials associated
to the lattice A C Co as in [35], §6] and [24] §3]. Indeed,

(6.9) Y(n;1) = Spa = Z (z—lb)” = Gpa(S1,4),
beA

for polynomials G, 4 € K[X] (in the notations of [24].) The functions v (n;oy) with
U C ¥ occur in the entries of ¥, (px), where py; is the representation of the first kind

Py = ® Pt
i€X
where p,(2Y) = (ig’; Zg’%) (or alternatively, one can also use p = p};). Since U, (px) €
QP! (ps; Ex) by Proposition Lemma [6.5| implies:
Lemma 6.11. For allU C ¥ andn > 1 we have ¥(n;oy) € Ky. Additionally, ¢(1;0yp) =
eoyp(Liov) € Eg(e)’.

6.4.1. Perkins’ series of order n = 1. We focus now on ¢(1;0%) € E&{(e)®. The next

question is the computation of its weight. We set, for ¥ non-empty with s = |¥| =
(m—1)(¢g—1)+lwithm>1andl e {l,...,¢—1}:
(6.10) K(Z) == ¢ ™(q—1) €0,1[NZ[p~"].

For ¥ = (), we extend the definition to k() := 1. Note that x(X) defines a strictly
decreasing function || — (%), and limx|_, £(X) = 0. We prove:

Theorem 6.12. The function ¢(1;0x) € ES((e)’® has weight
(6.11) w(@(Lios) =1—-k(E)=1-¢"" +1g" = Wnax(s).
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Proof. The identities connecting x and wpax are easily verified. If ¥ = (), it is clear that
¢(1;0x%) has weight 0 (it is in this case a constant function). We suppose that ¥ is non-

have ¢(1;0%) = gs. We can write gn = > >, gg] with gg € Ex((e)?

(A
note that

[s]
(6.12) ﬁh:I}m@J — el el el Py d,
e

IS

Tame monomial Mg

with w(Ms) = wWmax(s), ® € Ex{(e)?, with w(®) < wmax(s), and where

ey () (T ) en

ToUL Ul =% i1€h imEIm
[To|==|In—1|=q—1
Hm|=l

This polynomial is non-zero as it is easily verified by tracking the contribution coming from
a subset I C ¥ such that |¥\ I| =[. Substituting ¢; by 1 if i € ¥\ I and by 0 if i € I, we
get the value 1. By Lemma [6.1}

w(g[zs} — Png) < Wiax(8).

This implies the theorem because the map s — wmax($) is a strictly increasing function
(s > 0) so that

w((1;0%)) = w(gs) = w(gs)) = Wmax(s)-

For all > C N* a finite subset, the above proof yields the next corollary:
Corollary 6.13. We have

lim  ea(2)"®y(1;0%) = Ps.

|z|g—r00

Example. If ¥ is a singleton we can work with one variable ¢ and we have the explicit
formula, due to Perkins, a simple proof of which can be found in [61] (combine (3) and
Theorem 1):

(6.13) Y(1; x) = 7Tu(2)xe(2)-

1y fact, one sees that if i # s (mod g — 1), then gg] =0.
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Let ¥ be a subset of N* of cardinality ¢. Developing the product [[; s ec (ﬁ) we get,
after elimination of the ¢g-th powers:

Hec<ejtk> . (thg_HtgH) et

kex >0 \ icx iex
. . Qg
+ E Cir+1 """ Cig+1 E H b
0<in <---<iq a=(a;:ieX)eNI=l k€D
13 not all equal || =gl +---4¢g%a

from this tame series expansion (of depth ¢) we deduce that the leading tame monomial
of the tame series [ [;cy; x¢,(2) is eo. Hence, ], c5 ec <ﬁ) —ep € Afty]°(e))’ and we get
an explicit computation of ¢(1;0y) for this choice of X, first obtained by Perkins.

6.4.2. Perkins’ series of higher order. In this part we are interested in the following ques-
tion:

Question 6.14. Compute the valuation v(¢(n;oyx)) € Z[%]zo explicitly in terms of [, m,n.

The case ¥ = (), where N = 1 was partially settled by Gekeler in [26]. The complete
solution is now available in Gekeler’s manuscript [3I]. In Theorem we give a partial
answer in the several variables case. We suppose that s = |X| # 0. We recall that by
Proposition D,, induces Ky-linear endomorphisms of Kg({(e)® and Kx((e))® for all n.
We also recall that w denotes the opposite of the valuation v (degree).

Proposition 6.15. Let i be a non-negative integer, let v > 0 be such that D, 1yqr—1(fs) #
0. Then,

. 1 1 1
Wbl + i) = osgri() — o € -0
q q q
Proof. We observe that 77(¢(i + 1;0x)) € Ks. Further, we have:

(6.14) 7 (Di(¥(L;0%))) = (~1)'7"((i + L;0%)) = Dyrp1y1(¥(Li0x)),  i,7 > 0.

We are interested in the computation of the weight of 7" (¢ (i + 1;0%)) (it is equal to ¢"
times the weight of ¢(i+ 1; ox), which is the quantity we ultimately want to compute). We
set i = Di(ec(2)p(1;0x)) € Ky ((e)?. Tn particular, fo = fis = eo(=)p(1; o) € K3 ((e)".
By Leibnitz rule, we have

(6.15) fi = ecDiLiox) + Y Dalec(2))Ds(t(Lios)).

a+B=n
a>0

i

All terms of the above sum are in Ky. Since the higher derivatives of positive order of ec(2)
are constant and all the functions ¥(1 + f;0x) for 5 > 0 tend to zero as |z| = |z|g — oo,
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the weight of the above defined term = is < 0. We apply the operator 7. We get, by
(16.14):

T

(6.16) 7" (fi) = ec(2)? D(it1)g—1(¥(1;05)) +7"(Z).
We have that 7" (Z) € R and the weight is < 0; we also set n = (i + 1)¢" — 1. Then,

Du(¢(Lios)) = Dulufs)
= uDu(fs)+ Y Da(u)Ds(fz).

a+pB=n
a>0

=T

If @« >0, Do(u) € Coofu] C K which is of weight < —2 as the reader can easily check.
Since fx, € K3 ((e))®, the weights of all its higher derivatives are in {—oo} U [0, 1[ and thus,
the weight of the term Y above defined is < —1. Let us suppose that D,,(fs) is non-zero.
Then, its weight belongs to [0, 1[ and the weight of uD,,(fs;) belongs to [—1,0[. We deduce
that, under this hypothesis of non-vanishing, the weight of D, (¢(1;0y%)) is equal to the
weight of uD,(fx), belonging to the interval [—1,0[. Coming back to the identity
and recalling that 77 (Z) has negative weight, we deduce that 77(f;) and ec(2)? ~1D,(fx)
have the same weight, belonging to the interval [¢" — 1,¢"[, and the weight of f; satisfies:

1 1 1 .
(6.17) w(fi) =1+ q7w(DqT(H1)—1(f)) 3 € [1 e 1 [, r>0, i>1
Coming back to ([6.15]), we have noticed that the term = has weight < 0. But f; has

non-negative weight by (6.17). Hence, the weight of the first term in the right-hand side
of (6.15) has the same weight as f; and the result follows. O

We recall that if s = |[¥] = (m —1)(¢ — 1)+ with m > 1 and [ € {1,...,q — 1},
then w(z(1;0x)) = lg~™ — ¢'~™ (see Theorem . We want to compute the weight of
¥(1 4 n;ox) for n > 0 and this allows to compute the v-valuation of these elements. The
following Theorem generalizes Theorem [6.12

Theorem 6.16. Let X, s,m,l as above and let n be > 0 such that £4(n) < 1. Then,
w1+ n;05)) =¢' " = (L= Le(n)g™ ™

Proof. We choose ¢ = n and r = 0 in Proposition (note that in this case n = (i +
1)¢" — 1). We show that D, (fx) # 0 and we compute its depth. To construct fx;, we have

applied the rule e;_1 = Cy(e;) to the product [[;.s ec (e—itz) which implies that

fo= R+ e

We recall that we have already seen that fg Vi equal to X(O’E)[s} and has the monic maximal

tame monomial My as a non-zero term of its tame expansion. Further, w( g ~ (q_l)}) <
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Wmax(s) for all j > 0. Hence, we can write fy, = M, + g with w(g) < wmax(s) and Dy(g)
has weight strictly less than

Winax (5 — Lg(n)) = 1 — ¢ ™™ + (1 — Ly(n))g™™.

We now claim that w(Dy(fx)) = Wmax(s — €g(n)). If this is true, we deduce, from Proposi-
tion the formula w(y(1+n;0%)) = (I —£4(n))g~™ — ¢*~™ hence completing the proof
of the Theorem. O

The claim is the object of the next Lemma, where Mj is defined in (6.1)):

Lemma 6.17. With s = |X| equal to (m —1)(¢— 1)+, m>1and 1 <1< q—1, let
n € N be such that £4(n) < 1. Then,

Dn(Ms) = /inMszq(n) + h,

7\ 74 \™ 7o\ y
Ky 1= <0m> <9qu1> <9m‘lrdr> e C,,

where n = ng + niq + -+ + n.q" is the base-q expansion of n, and with h € T°(Cx) of
weight < Wmax(s — £g(n)).

with

Proof. We write M; = FG with F = (61"-6m_1))q71 and G = el . By Leibnitz rule

m

Dp(Ms) =3 1 g=n Da(F)Ds(G). If @ > 0, then w(Da(F)Ds(G)) is strictly smaller than
Wmax (s —£4(n)). Now, we consider the term with a = 0. Note, by the formula (6.4]) applied
to the product of F4-linear maps G' = el that

Dy (G) = (Dny 0 Dpygo--- 0 Dnqu)(e’ln’L) = Knem
The result follows. g

7. EISENSTEIN SERIES FOR px,

This section contains the proofs of the various items of Theorem C in the introduction.
We present several aspects of Eisenstein series for the representation p = p5,, with N = 2°.
These functions provide important examples of the modular forms we consider (see also
[57]). We set, for w € N*:

/ \a
st = X @ (),
(a,b)cA jen \Xti
where the sum runs over the a,b € A which are not both zero. This series corresponds to

the choice
en =8 (3 6)

1€

in ((5.26) (this is the transposition of the first line of pg(ﬁ: Z)) so that by Lemma [5.27
Euw(psy) € My(py) \ {0} if s = |X| = w (mod g — 1) (see also [57, §5]). Note also that this




THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 113

series defines a holomorphic function Q — EN*!. We call £ (w; p%) the Eisenstein series of
weight w associated to ps,.

Here is the plan of this section. In §7.2] Corollary [7.4] we compute the v-valuation of
the entries of £(1; p%;). The computation uses results of §6| on Perkins’ series. The general
problem of the computation of the v-valuation of the entries of £(m; p3;) for m > 0 is likely
to be a difficult problem. Some partial results can be obtained applying Theorem [6.16] In
we use the Eisenstein series £(1; p3;) to show that the dimension of M;(p3;Ly) equals
oneif |[X| =1 (mod g—1). This is one of the very few spaces of non-scalar Drinfeld modular
forms that we are able to fully characterize. As a corollary, the series £(1; p3,) are Hecke
eigenforms. In Theorem [7.8 we describe integrality properties of the u-expansions (in
the sense of Proposition of the entries of £(m; p};). Naturally, these series expansions
are much more complicated and less explicit than those obtained by Gekeler in [24] for the
scalar Eisenstein series. In we show how certain results of Petrov [67] on A-expansions
can be generalized to show that series such as

> dlGin(ua) € Kl[ul]

a€At

with [, m > 0 such that [l = m (mod ¢—1) give rise to u-expansions of quasi-modular forms
in the sense of [13]. These series occur as special values of an entry of the Eisenstein series
E(m; p%;) hence confirming a prediction of D. Goss on a link between Petrov’s A-expansions
and Eisenstein series; see Theorem [7.15] In we present, succinctly, some applications
to v-adic modular forms.

7.1. Link between Eisenstein series and Poincaré series. The next lemma provides
a connection with Poincaré series.

Lemma 7.1. £(w;p3) = CA(w;Ug)Pl(UO)(CDp*E).

Here 771(00)(@[,*2) denotes the last column of the matrix valued Poincaré series Py, (®,z)

defined in (5.6), with G = ®,z and, as in (1.17),

Cawros) = Y2 72D,

acAt

Proof of Lemma[7.1. We consider a matrix v = (; ;) € I'. We note that the last column of
Pz (7(2)) is the last entry of the canonical basis of the vector space IF(]]V %1 Indeed, D (2)
itself is a matrix function which is lower triangular with 1 on the diagonal. Moreover, the

last column of p (7)™ = ‘pn(7) is ®iex (;CZZ((:;%

column of p§ () '@, (7(2)) and to the last column of

), which is therefore also equal to the last

P51 Ry (1(2))p5 (D).
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Therefore, the last column P&O)((I)p*z) of Py (Ppy,) is

C
§ : (Cz+d)—w®<xtz< >>’
* ok = th(d>
’Y:( c d) 1€
c,deA
relatively prime

independent on the choice of the representatives modulo the subgroup H of I'. Observe
that the index set of the sum defining the series €(w; p%), 4%\ {(0,0)}, is equal to ZAT,
where 7 is the set of couples (c,d) € A? with ¢, d relatively prime. This means that

Ewipt) = Y0 T2 S (et ) @), X0 4) = Calwr o) PO (@),

a€AT (e, d)eZ i€X

O

7.2. The v-valuation of Eisenstein series. We expand the entries of our vector-valued
Fisenstein series along the principles of Theorem and we compute their v-valuations
in certain cases.

If |¥| = s > 0 and N = 2, the ordering on ¥ induces a bijection ¥ = {0,...,s — 1}.
This in turn defines a bijection between subsets J C ¥ and integers 0 < n < N — 1. If
n=ng+m2+ - +n,12°1 is the base-2 expansion of n, the image of n is the subset
J={jeX:n;#0} CX. We can write |J|y := n. For example, |}]x, = 0. Then, we can
describe in two ways an N-tuple of objects parametrized by the subsets of {1,...,2%}:

f=0"ies = (fi)i<i<n,

by using that the latter is (f|sj5,4+1)scs (note how we distinguish the N*-indexing from the
Y-indexing). Note that the first entry is

fo= 1%

The Perkins series ¢ (w; oy) defined in (6.10]) are elements ofthe ring of integers of the
field of uniformizers Oy, if U C X. We set

Ya(w;ox) = P(w; ox)(za),

functions which also belong to Oy. Their valuations v are positive and we have, for all
ac AT,

v(Ya(w; ox)) = [alv(¥(w; o))
by Proposition We set

(7.1) Viwist) = = 3 e (0 ®)

ﬂ-w
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We denote by V(w;p%), the function of the variable z in Dg *1 obtained by rescaling
z +— az. We also set

(7.2) Zwipy)= |

Ca(w;ox)

The next Proposition generalizes [63, Proposition 3.7] to the case of p = p3,.

Proposition 7.2. If s = |¥X| =w (mod ¢ — 1) and w > 0, then:

(7.3) E(wipt) = ~Z(wip) =7 3 ps(§9)V(wipk)a:
acAt

Writing €(w; pt) = (£7)1uy=x, we have, more explicitly:

(7.4) g = ==Y or(@)a(wios), T#T,
acA+
(7.5) £ = —Calwsox) — (~1)F " g (w; o).
acAt

In particular, if J =0 # X, we have
(7.6) 0= -7 " on(a)Gu(ua(2)) € Ks[[u]].
acAt

Moreover, if ¥ = (), we have, for ¢ —1 | n:
(7.7) E(wi1) = —Ca(w) =7 Y Gu(ua(2)).

In all cases, we can identify £(w; p%,) with an element of Dg“.

We deduce, in yet another way, that £(w; p3) € My (p%; Kys). Additionally, we see that
it does not belong to Sy (p%; Ks) because of the non-vanishing of {4 (w; o) in (7.5). Note
that writing &(w; p&) = (&1, ..., En-1,EN), we have v(&;) > 0 fori=1,...,N — 1 and
v(En) = 0.

More precisely, in the case £ = (£1); = £(1; p%) with [S| =1 (mod g — 1), recalling that
the map « is defined in and combining with Theorem

Corollary 7.3. Assume that ¥ # 0. We have that v(E¥) = 0,v(EY) =1 and, for § C I C

= + =

Y, v(&) = k(I). Explicitly, if |[I| = (u— (g — 1)+ X withu>1and 1 <A <q—1,
v(E') =q"(a—N) €0, 1NZ[p™"].

Note that the above valuations do not depend on X..
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Proof of Proposition[7.9. The sum defining &(w; p%;) splits in two pieces, a sum over the
couples (a,b) € A x A with a # 0 and a sum over the couples (0,b) with b # 0. While the
second sum is easily seen to be equal to —Z(w; p3;), for the first sum we have

1 Xt; (a) _
2w @)
beA

= . pE(g(l)) M@(M}(@)

acA\{0} beA es
- Z 0[S ) St on)..
a'EA* AEF beA
= =7 ps( )V i)
a'eAt

where we made the change of variables a = Aa’ (with A\ € F;(), b = Ab’ in the summation,
and used that |X| = w (mod ¢ — 1) because Z)\qux A= — _1. Now note that

Vi(ws ) = = (1) 9(w; )

v Jcs’

The identity concerning the case J = () # X is clear, and the last identity, concerning
the scalar Eisenstein series, is well known; see, for instance, [24, (6.3)]. The last assertion
of the proposition is a direct consequence of the fact that i, (w;oy) € Oy for all a € A

and w € N* and the fact that v(¢a(w;ox)) = |a|v(e(w;ox)) — oo as a runs in AT
(Proposition [3.35]). O

Thanks to Theorem we can compute the v-valuations of the entries of £(1;p3;)
(recall that # has been introduced in (6.10)). The corresponding problem for &(w; p3,)
for general w is at the moment unsolved but the reader can apply Theorem to some
specific cases.

Corollary 7.4. If |[S| =1 (mod ¢ — 1) and £(1;p%) = (£7) jex, we have v(E7) = k(J) if
JCY and v(E¥) = 0.

7.3. Application to modular forms of weight one for p3,. In this subsection we prove
Theorem D of the introduction. We recall that N = 2°. We have:

Theorem 7.5. Assuming that |X| =1 (mod g — 1), Mi(p5;Ly) is of dimension one over
Ly, generated by the Fisenstein series £(1;ps3,).
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Proof. We note that in the case p = p5, we have the following identity for the space

H(p;Ky,) defined in §5.2.3

0
(78) HipiKs) = | |
Kyg

We claim that if f = (f1,..., fn) is a modular form for p§,, we can identify fi,..., fxv—1

with elements of My and fy with an element of Ox. Indeed we know already that f €
ON*! In particular, there exists o € KY*! such that f = a (mod 9Y*1). But note that
for all a € A, f(z+ a) = p5(T,) f(2) for all z € Q so that a = p§(T,)a for all a € A.
Identity allows to deduce the claim.

We conclude by observing that £(1; p3;) € Mi(p%; Ls)\S1(p%; Ly) and applying Theorem
knowing that in this case, 6, = 1. O

This yields a positive answer to [63, Problem 1.1]. By Theorem m E(1;p3) is an
eigenform for all the Hecke operators defined in We deduce:

Corollary 7.6. For all a € A\ {0} we have T,(E(1;p%)) = E(1; p%).

Proof. By Theorem [7.5( M (p%;; L) is one-dimensional generated by £(1; p3;) and we have

Ta(E(1;p5)) = Ma&(1; p5) for all a € A\ {0} for elements A\, € Ly. It suffices to show that

Ap =1 for every irreducible element P € A by using the Hecke operators Tp described in
-1

4.20). We set f = E(1;p%). In (4.20), g := Z|b|<|P|p((1”Z§> f(Z52) € mY*!. Indeed,

let f1,..., fn be the entries of f. We have f1,..., fn_1 € My and fy € Oy. This implies

that the first N — 1 coefficients of g are in My, and by (4.22)) the last coefficient of g is

z—i—b)

P_IO‘E(P) Z fN< 2

[ol<|P|

so it is an element of L% ((e))® with zero constant term. Hence Ap equals the lower right

-1
coefficient of p (15 ?) which is equal to 1. O

7.3.1. Digression: another class of Fisenstein series. One of the main motivations for the
introduction of the Eisenstein series £(wj p3;), for which they have been initially considered
in [55], is that the non-zero entry (which is the last one, in the prescribed ordering) tends
to —Ca(w; o) (the zeta values defined in (L.17)) as z € Q approaches the cusp infinity
or, in other words, it is congruent to —(4(w;oy) modulo My. These are not the only
Eisenstein series which enjoy this property. Another example is discussed in this remark;
further investigations will lead to a better understanding of these examples. We consider
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the F,-algebra morphism x : A — Fy[t5]**® (with s = |X|) defined by

0 1 - 0
0 0 .- 0

U=x(0)=| : : : ;
0 0 ... 1
- P - —FPs

where Fy,...,P;_1 € Fylty] are defined by [[;c5(X —t;) = X° + P X5 ...+ P
Then, for all a € A, det(x(a)) = oxn(a) (see [57, §2.1]). We consider the representation of
the first kind 3, = A®pY, of dimension N := (255) We suppose that w = s (mod ¢—1) and
w > 0. Just as in Lemma the last column of the Poincaré series Py, (®yy ) multiplied
by Ca(w; o) equals

S
* —w xta
E(w; ¢y) = Z (az +b) /\ <X((b;)
(a,0)€A\{(0,0)}
This defines an element of Hol(? — Eg *1) and a modular form in M, (p%; Ks) \

Sw(ey; Ksy). Moreover, the only entry En of £(w;¢s,) which does not vanish at infin-
ity, which is the last one, satisfies

En = —Ca(w;ox) (mod My).

In other words, —(4(w; ox) is the ’constant term’ of the last entry of £(w; ¢%,). It is evident
that &(w; ¢3) # E(w; p3).-

7.4. Rationality and integrality of coefficients. We investigate rationality and inte-
grality properties of coeflicients of Eisenstein series. Our main result in this subsection is
Theorem in the same vein as classical results of Gekeler [24], §5]. We will also obtain,
with an alternative proof, a weaker version of [2 Theorem 1] and a generalization of the
principles of [56, Theorem 8], namely, a ‘modular proof’ of Theorem

Definition 7.7. An element f € M., (p; Kx) is said to be rationally definable if there exists
a matrix M € GLy(Ky) such that the image of M f by the embedding ¢y of Theorem
m is an element of K(t5,)°((e)?((u))N*1. Tt is integrally definable if this image lies
in Alts]°(e)lu W]Vt If v : K(ty) — Z U {oo} is a valuation of K(t5) we say
that a rationally defined element f € M., (p;Ky) is v-integrally definable if, writing f; for
the i-th entry of M f with M the above mentioned matrix and expanding it as a formal
series fi = Y. fijul with fi; € K (t,)°{(e))®, which can be done in a unique way after
Proposition we have v(f; ;) > 0 for all 4, j.

Note that if N =1 and ¥ = (), this coincides, up to multiplication by a proportionality
factor, with the scalar modular forms having u-expansions in K((u)) and A[[u]], or v-
integral respectively.

We borrow from Proposition the notation £ that designates the I-th entry of £ =
E(m;ps) with I C X, |X] = m (mod ¢ — 1). Also, we recall that wy = [],c; w(t;) € Ts.
We have:
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Theorem 7.8. For all I C % we have
& € #wp! (K(ts)° ()" (w) N )
and
&n € ~Calmios) + 7w (K (k) ()" (w) N 9Ms).

Moreover, £(m; p%;) is v-integrally definable for the valuations of K(ty) associated with a
non-zero prime ideal p of A, and this for all but finitely many p.

The proof of Theorem is easy if we introduce another class of matrix-valued func-
tions. As seen in Poincaré series naturally occur as square matrix functions. On
the other hand, Eisenstein series, following our constructions in are defined as vector
functions. The following matrix function is very useful in studying Fisenstein series for the
representation of the first kind ps3;:

/ /
(7.9) Emipg) = Y po(§0)Wmlez) + Bn Y d " pi(T ),
ceA deA

where m > 0, Ex, denotes, with N = 2% s = |3, the N x N-matrix with zero coefficients,
except the bottom-right coefficient which is equal to 1, ¥,,(2) = ¥,,(p5;)(2) (as defined in
§4.1.1)) and the sums over ¢,d run in A \ {0}. We have, as it is easily seen,

E(m; p%) € Holg, (Q — EN*N),

There is a bijection between the columns of £(m; p};) and the subsets I of ¥. We use the
ordering described at the beginning of and we denote by £; the I-th column in such
a way that the first column corresponds to I = X and the last one to I = (). It is easy to
show that

Er=Emipn) @ @ I e Ma(pr® @ 12Ks),
jesS\I JeXNI

where 15 is the representation (of the first kind) v € T' — I, = (é (1)), so that the first
column €y, equals £(m; py;) (compare with ([7.3)).

Proof of Theorem [7.8, By (6.5) we see (G (p)e := Gm(p)zsez) that

E(mipy) =7 ps(§9) Gmlpk)e+E Y d" ps(Ta).
ceEA deA

=£
In virtue of Corollary [6.7| we have (recall the definitions (4.16])) that

€ € My N N A" w K () () *[[ul] VN wpy

Additionally we see that the coefficients are v-integral for v as expected in the statement
of the theorem. From this it is very easy to conclude the proof. O
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7.5. Negative weight modular forms and functional identities. From the theory
described in the present work we can deduce a weaker form of the functional zeta-identities

for the zeta values in Tate algebras of [2, Theorem 1] (the zeta values defined in ([1.17)).
We shall give a ‘modular’ proof of the following:

Theorem 7.9. Let ¥ be a finite subset of N* and w > 0 an integer such that w = |X|
(mod q — 1). If q is larger than a constant depending on || and w then

%’w

Ca(w;os) = Ay —,
>

where Ay x, is an element of K (ty)*.

This result is weaker than the original result of loc. cit. In that reference, there is no
condition on ¢ and denominators of \,, x; are explicitly computed. The interest in presenting
this in our work in this part exclusively relies in the nature of the proof. Indeed, we will
derive the formula of Theorem from a comparison between the constant term and the
positive terms of the tame series expansion of our Eisenstein series, in a way which is not
completely different from Serre’s [73].

Previously, 'modular proofs’ of such identities were only known in the two-dimensional
case [55, Theorem 8] and in the slightly, and partially, more general setting of [60, Theorem
4.9.9]. Both proofs rest in fact on a duality principle between on one side modular forms
of weight w in our settings and on the other side, weak modular forms of weight —1, for
suitable choices of representations (a representation and its contragredient). Functional
identities occur in the comparison of rational structures arising from duality. For the sake
of simplicity, we will only illustrate the case w = 1 here (this case contains the main
principles so it is the most relevant). As the zeta values are also involved in certain
variants of Taelman’s class number formula in [76], see [5], it is certainly desirable to extend
Taelman’s theory to the settings of the present paper. We are going to prove that, in order
to reach our conclusion, it suffices that

q>2(m—1)""1

if |2 =m(qg—1)+1 with m > 1 (*9).

The original proof of Theorem in [2] notably relies on certain arithmetic properties
of Gauss-Thakur sums. There are other available proofs for similar results. In [4, Theorem
5.7], a class of even more general functional identities is proved (ED, as an application of
a generalized variant of Anderson log-algebraicity theorem, to certain ‘Dirichlet-like values
in Tate algebras’. Other proofs of variants, or similar or more general results are equally
available in the literature.

12The condition on q can be improved to the price of a more complicated proof which is not suitable for
the present work. We know that the result is true for any choice of ¢, but we do not know how to make the
present proof unconditional.

13That is, relative to a ‘base ring’ A = H°(X \ {oo}, Ox) where X is a projective, smooth, geometrically
irreducible curve over Fy and oo a point of X (Fy).
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7.5.1. Duality. We begin with two lemmas. In the first lemma we consider two subfields
F C L of Ky, and a representation p : I' = GLx(F'). The lemma is applied with the choices
F =Fy(ty) and L =Ly, or L = Ky.

Lemma 7.10. Assume that p is irreducible and let f be an element in M. (p; L). If the
entries of f are linearly dependent over L, then f vanishes identically.

Proof. Straightforward, but we prefer to give full details. Let V be the L-subspace of L*V
the elements of which are the v’s such that v - f = 0. Assume that V # {0} and let us
consider v € I'. Then

0=v-f(77'(2)) = Jo-1(2)"v - p(y ") f(2).

Hence v - p(y~!) € V and this, for all v € I'. This means that p* has the invariant space
W =tV that is, for all v € T, p*(y)W C W with W # {0}. But p is irreducible if and
only if p* is irreducible. ([

In the next lemma we choose L = Ky, and F' = Fy(ty). We give explicit examples of
irreducible representations of the first kind.

Lemma 7.11. For all 3 finite subset of N* the representations
px, ps : I' = GLy(Ky)
are irreducible.
Proof. Since F,(ty,) is contained in the residual field Fg(t5) of Ky, if the statement of the
lemma were false there would exist a non-trivial subvector space {0} C U C Fa¢(ty;)V*!

such that px(y)U C U for all 4y € I'. This would be, however, in contradiction with [57,
Theorem 14]. O

In particular, the representations ps, p5, are irreducible for ¥ a finite subset of N*.
We set

£:= E(Li pb),

where £(1;p3;) is the Eisenstein series of weight 1 defined in The main result in the
present subsection is the following, where |X|,m > 1 are as above:

Proposition 7.12. If m = 1,2 or if m > 3 and q > 2(m — 1)™~ 1, there exists a non-zero
element

110 Fer st it @ (g ) (Keor@rw)”
jes J

such that

(7.11) ‘€. F=0.

Before proving it, we show how this result implies Theorem
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Proof of Theorem[7.9 By Lemma given F = (F!)rcy as in the statement of Propo-
sition we have F> non-zero. Hence we have an identity of non-zero elements of
Ry
EPFE ==Y ¢&lF
Icsy

By Theoremand (7.10)) the right-hand side is an element of K (t5,)°{(e))®((u)). Moreover,
the left-hand side is the sum of a non-zero element of —((1; 0 )ws7 'K (t5)°(e)?((x)) and
an element of K (£5)°((e)®((u)). The theorem follows. O

The reader can easily deduce, from a small variation of these arguments, and a simple
explicit computation (case m = 0), that

(6 — t)w(t)

which holds in T. In this case, the proof is very similar to that given in [55], where this
formula was first noticed.

(7.12) Ca(lsxe) =

Proof of Proposition [7.13. We shall use certain weak modular forms of weight —1 associ-
ated to py, that have been originally introduced in [55]. In the classical theory of complex-

valued vectorial modular forms there seem to be no analogue of these forms yet. By [60,
Theorem 4.9.3],

1
Fi(2) == expy._ ((’i) m) € Hol(Q — Ly)?*!

where exp,_ : Ly — Ly is the exponential function associated to the A-lattice of rank two
A = Az @ A with z € Q studied in §2.3.2] is an element of M' | (py, ;Lx). If we write

([ Fia
Fi= (J'"w)’

1
(7.13) U(./_"iJ) = _6’ 'U(.F:L‘Q) =0, €.

then the proof of loc. cit. yields that

An application of [60, Lemma 4.9.4] that we leave to the reader ensures that
Fi € T (0wt ) K (t2)° () [lul] .

We are given with m > 0 and ¥ C N* with |X| = m(¢ — 1) + 1. We now proceed to
construct a class of weak modular forms of weight —¢"™. We consider the set U(X) whose
elements are the ordered m-tuples

U=(U,....,Up) C(,...,5)

with X =U; U---UUy,, and |Uy| = -+ = |Up—1| = ¢ — 1 (hence |U,,| = q). For instance, if
X =¢, m=0and U(X) = {(Z)}.
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We choose U € U(X) and we define

Fu=QQ 7"

=1 jeU;
The condition on U and [60, Lemma 4.9.4] imply that

Fu € ML (ps;Ls) \ {0}.

The rationality property of the tame series expansion of the forms F; along with the
functional identity (2.17)) implies that

Fu e (@ (8l ) K tn) (el ()",
JEX
We have lower bounds for the v-valuations of the entries of Fy;. By (7.13)) and by the
choice of U we have, writing Fyy = (fé)lcz,
m .
(7.14) o(F) ==Y _¢" NI = —¢™!, TCX.
i=1
In the lower bound in the right, we have equality if and only if I = (), and if I = ¥ we get
v(}g) =0.
Recall that € € M (p%;Ly). For all the matrices v € T it is clear that *(p (7)) - pu(7)
is the identity matrix of size N. Hence
tg : ‘FQ € Mi—qm(l;l[‘z) = Mi—qm(l; COO) ®(Coo LE,

and '€ - Fyy € Ky ((u?™1)). By (7.14) and the comments that follow it, and by the fact that
v(EY) =1, v(ET) > 0 for i # 0, % and v(E¥) = 0 (see Corollary ,

v('€-Fy) > 1—q™.
If m = 1 we see that, setting F = Fy with U the unique element of U(1), ‘€ - F €

Mi_4(1;Ly) = (0) and the proposition is proved in this case (unconditionally on ¢).
We now suppose that m > 2. We consider

F € Vectyy) (Fu - U € Um)).
We can expand
te . F= cuu_“(q_l) + cu_lu—(u—l)(q—l) 4o teu @Dy
+ (element of ]Lz((uq_l))>, Cly...,¢u € Ly,

where

poo=p(m) =14q+---+¢"?
(we can also set y(1) := 0). Since v(F7) = 0, we can also expand

- F e K(ts)((w'™) + Ca(l08)7  wn K (ts)[[u?]).
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In particular, we have ci,...,¢, € K(ty) for any choice of F as above (note that a priori,
a coefficient of the u-expansion of such an F needs not to be in K (ty,), only the coefficients
corresponding to negative powers have this property). We set

v(m) == dimg,,) (VectK(tE) (Fu:Ue U(m)))
To show the proposition we can use the next lemma, with v := v(m).

Lemma 7.13. We have v(2) > wu(2) for all ¢ and v(m) > p(m) if m > 3 and ¢ >
2(m —1)m1L,

Proof. Tt suffices to find I C ¥ such that the set
(w(F) U e um)}

has cardinality > u. Note that ©(2) = 1. In this case, it suffices to choose I = {i} C ¥
a singleton as there certainly are at least two elements in the above set, regardless of the
choice of ¢, so that v(2) > 2.

We now assume that m > 3. Here we need a few combinatorial additional remarks. The
number of m-tuples (i1,...,%y,) with iy € N for all k¥ and i1 + - - - + iy, = 4, with ¢ given, is
(;:_11). Suppose i = ¢ + 1 (assuming that ¢ > m — 1). The number of m-tuples as above

with i < ¢ — 1 that sum to g 4+ 1 is therefore

=) (5)

(we subtract two terms to exclude m-tuples of the type ger + e, with (e,), the canonical
basis). The integer vy is a lower bound for v(m) because given any subset I C ¥ of
cardinality ¢ + 1, and given any (i1,...,%y,) as above, there are at least vy m-tuples U €
U(m) such that |U; \ I| =ij. The valuations v(Ff;) for such U are all distinct (because by
they correspond to integers that have distinct g-ary expansions). It is elementary to
verify that if ¢ > 2m then vy > %(mq_l). Now, (mq—l) > (%)m*1 so that if additionally
q > 2(m—1)""1 we get the desired lower bound v > 1y > p. Note that we have used, in a
crucial way, that the u-expansion of € - F is in Ly ((u?™!)). Having solved linear equations
corresponding to initial parts of formal series in Ly ((u)) would have lead to too many
equations and we would have needed supplementary arguments to achieve this proof. [

Applying Lemma we can construct F € M!,qm (px;Ly) non-zero with the property
that '€ - F € My_4m(1;Ly). The latter space is zero and ‘€ - F = 0. O

Remark 7.14. There is no apparent reason, in the above proof, that a modular form as in
Proposition [7.12] is unique up to scalar multiplication. We did not compute the dimension
v(m) and we do not know if the condition on g, when m > 3, is really necessary. Note that
the set U(X) can be enlarged; see It would be interesting to construct explicitly
a basis for the space of modular forms satisfying the properties illustrated in Proposition
In fact, the isomorphism could allow to bypass these constructions of modular
forms in negative weight. The principle is simple. Choose, for example, two Eisenstein
series £ and &’ for p* of weights w and w’ respectively. If £ denotes the image of £ via
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the isomorphism , so it is a modular form of weight w’ for det?&(®) . Then the inner
product f =€ - & is in My, (det?®®): Ly) and one can compute explicitly the first’
coefficients of the u-expansion. By using that this is a finite-dimensional Ly-vector space,
this in turn leads in explicit non-trivial linear dependence relations involving elements of
Ty, that explicitly contain {4(w;oy) and (a(w’;0x). The author tried several examples,
some of which are complicated already in small weight. What we did above seems to be

fairly simple, but the reader must be aware that this is not the only way to approach results
such as Theorem [7.9]

7.6. Some applications to quasi-modular and v-adic modular forms. In this sub-
section we illustrate how constructions of Drinfeld modular forms defined over {2 with
values in Co, having ‘A-expansions’ as considered by Petrov in [67] can be naturally car-
ried out as evaluations of our Eisenstein series £(m;p3;) at certain specific points. This
also leads to some properties of v-adic modular forms with v a valuation of K (ty;) that will
be sketched at the end of the present subsection to illustrate further directions of research.

Consider a finite subset ¥ C N* of cardinality s and, for ¢ € X, integers k; € N. With
k = (ki)ies € N*, set ev = ev gt the evaluation map that sends an element f of Eg *N for

integers M, N to
ev(f) = (f)t,;:qui vies € CMxN,

The family k& € N* is fixed all along the subsection.

The Eisenstein series £(m;ps,) defines a non-zero rigid analytic function Q — Eg x1
with N = 2°. Hence the evaluation ev(£(m; p3;)) can be viewed as a rigid analytic function
Q — CN*1. We recall, from [67], the series

(7.15) frm =Y a" "Gm(ua) € K[[u]],

acAt

running over the monic polynomials in A. This series converges in K[[u]] (for the u-adic
valuation) for every m > 0 and k € Z.

We show the following result, where we use the notion of Drinfeld quasi-modular form
introduced in [I3], Definition 2.1}, answering a question that D. Goss addressed to A. Petrov
[37] on the general nature of the A-series defined in (7.15).

The Cyo-algebra

M := Cu|E, g, h],

where g, h are the already discussed normalized modular forms, respectively in M, _1(1; C)
and Myy1(det™;Cy) (Gekeler’s notations) and E is the false Eisenstein series ,
has dimension 3 (this is not difficult to see) and is Z x Z/(q — 1)Z-graded by weights
and types, and filtered by depths, where weights and types of E, g, h are respectively
(2,1),(¢—1,0),(¢+ 1,1), and the depth is just the degree in E. We recall that a polyno-
mial f of M that is homogeneous of weight w, type m, and has depth <[ is by definition a
Drinfeld quasi-modular form of same weight, type, and depth. For example, F is a quasi-
modular form of weight 2, type 1 and depth < 1 which is not a modular form, and the
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Co-algebra M of Drinfeld modular forms can be identified with the sub-algebra of M of
the quasi-modular forms that have depth < 0.
We suppose that s = |X| and the integer m > 0 are chosen so that s =m (mod ¢ — 1).

We also set
[:=) ¢" €N,
1EX
so that [ = s (mod ¢ — 1).

Theorem 7.15. The first entry of ev(E(m;ps,)) equals —7™ fiymm and is a non-zero
quasi-modular form of weight I +m type m and depth <.

7.6.1. Preliminaries, Hypothesis H. We choose a representation of the first kind p : I' —
GLn(Fy(ty)) satisfying the next:

Hypothesis H. We suppose that p is constructed starting from the basic representations
pr, with i € X applying the usual elementary operations @, ®, S, AP, (-)*.

Assuming the Hypothesis H amounts to make an initial restriction on the basic rep-
resentations used to define p. This condition can be relaxed but is convenient for our
exposition.

We note that the matrix functions Z,, ®, introduced in §4.2.1] and §4.2.2) belong to

GLy (ES(e)?) for N > 1 so that

O, :=ev(®,), E,:=ev(E,)

define entire functions Co, — CY*V,

Lemma 7.16. Assuming the Hypothesis H we have 5,,, ép € GLN(Cuo[2]).

Proof. We begin by proving the property for &)p. The Hypothesis H implies that every
entry of ®, ‘comes from Perkins’ series’ in that they are of the type

S - a)'6(a)
acA

where © : A — Fy[ty] is a map such that there exists a polynomial P € F,[X;,..., X;]
(for some r) and semi-characters o1,...,0, : A = Fy[ts] (see Definition such that
©(a) = P(oi(a),...,o.(a)) for all @ € A. Hence, to prove the lemma, it suffices to show
that, with f = egy(1;0x) (¢ is a Perkins series, see Definition . We have

fi=ev(f) € Cuolz).
To justify this we note that after [61, Theorem 2],
G Hz‘ez eXPco (%)

fz) = [Liex w(ti)

+eog(2)
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where g : Co, — Ex is an entire function which vanishes identically after evaluation ev at
ty = Qq&. Recall that

_ TZ
v, (2) = wit) " expe (727 )

where exp. is the exponential map associated to Carlitz’s module as discussed in §2.3.2
for all 7 € ¥ and for all z € C. It is therefore easily seen that

kg
ev(xn () = 27
Hence the claimed property of ffollows, and together with it, that of &)p.
To show that Z, € GLy(Cu[2]) it suffices to verify it for p = p;;, with i € ¥ so we

assume now X = {i} and k =k > 0. In this case however, ¢, = Z, = (] Z‘ik ), and thanks
to the Hypothesis H,

(7.16) Z, =ev (p(Tg)) € GLy(F,[2]).
O—z
The proof of the lemma is complete. O
We can now prove:
Lemma 7.17. Under the Hypothesis H we have Cfp = gp.

Proof. By Proposition (c) we have =, = ®,(Iy + N1) with N a function belonging to
eoEx[eg]V V. evaluating we get

ép = ‘i)p(IN +N2)

for N € egCooleo]V V. By Lemma we see that Iy +Ny € GLy(Cx[z]) and this shows
that Mo = On because the functions z — 2z and z — eg(z) are algebraically independent
over Co (easy to check). O

We now choose an integer n > 0 and we study ev(G,,(p)) where G,,,(p) has been defined
in . We recall that G1(p) = 71 W1(p) = ud,. It is easy to see (we leave the verification
to the reader) that for all p satisfying the Hypothesis H, ®, can be expanded into an N x N
matrix of entire functions of the variables z and ty, (|X| 4+ 1 variables). It follows that for
allm>1,

Din1(Ep) = Din-1(®p) = ev(Dm-1(®y)),

so we have:
(7.17) ev (Gm(p)) — D (u§p>

7.6.2. Matriz functions and proof of Theorem [7.18 From now on we suppose that p = p5,
and that |X| = m (mod ¢ — 1) with m > 0. Recalling the matrix functions &€ of from
(7.17)) we obtain the series expansion:

(7.18)
7 Mev (8(m; p%)) = Z, ev <pg(8 ?))Dm_l (uép*E)C +7 "Esev (Z/ d_mp*Z(T,d)>,

ceA deA
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where (-). indicates that we have applied the substitution z — cz. We rewrite the identity
(7.18]) at the level of the first columns in a more convenient way. Our next task is to show
the subsequent identities (7.19) and (7.21]). We note that the first column of

/
Eg)  d "p5(T-a)

deA

equals

0
Z
where Z = (4(m; ox) is the (-value (1.17)), and we get

ev(Z)=Cam-D=>_ Y d
d>0 acAt(d)

(sum over the polynomials of A which are monic of degree n), a special value of the Goss
zeta function associated to A, see [36] §8.6]. The Goss’ zeta values

k)=, > o
d>0 a€ A+ (d)

are well defined elements of K, for all £ € Z. We recall that we have the following
properties: (a) if k > 0 is such that ¢ — 1 | k, then C4(k) € K*7*, (b) Ca(k) € Afor k <0,
and (c) Ca(k) =0 if and only if £ < 0, ¢ — 1 | k (see Goss’ book [36] for an introduction
to the theory of these functions). In particular Z is zero if and only if > m and [ = m
(mod ¢ — 1).

We resume the computation as follows (the index 1 indicates that we are extracting the
first column):

(7.19) T (Ez > d—mpg<T_d>) =~ :
1

deA
%_mCA(m — l)

We now compute Dm_l(uépg). For this, set, with I C X,
=

so that I = Iy, (note that I C J implies I; <ljand if IUJ =3, l; +1; =1). In place of

(7.16|) we have the explicit formula
1 0
[ ® (—zqki 1)7

1€

[11?
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1 0

and, by Leibnitz rule,
Di(Z) =Y Q) Dir( i 1)
kex

k € ¥) C N such that ), i, = j. Since

where the sum runs over the families (
0 depending on whether i = ¢*,0 or another value distinct from the

Di(zqk) = —%qk,zq
previous ones, we see that

Di(Es)= > QI zqm)®®( V)

1J=% icJ
l1=j
By Dy—1-1,(u) = Gpy—i, (u) we deduce the formula
(7.20) D1 (6B ) = 3 Gots@ @ (e V) @@ (o vy ):
IUJ=% ieJ hel
li<m

Note that, with ¢ € A,

@(22) o @ (1)) -

e (5 9) (o)) ®(,§) (") (ameo)) =
(&)o@ ()

Considering we get (remember that the index (-); means that we are extracting
the first column):
’ <0))D =, =
ev PE(o 1)) Dm—1 UZpt, .
1
—*h 0)) :
1

() (@eegl

ILJ=% \ceA
lr<m
Note that
Z ClJGmflj (uc) = _fmfljJrlJ,mfl[
ceA\{0}
(see “ if | =ly =m (mod g — 1), and it equals zero otherwise (because [ =7 + ;)
But |X| =1 (mod ¢ —1). Hence, writing F for f,—,4+1, m—i, for simplicity:
(7.21)
1 0
T2l <® (Lm)® @ (et >>
€

/ ~
( § ev (PE(SQ))Dm%(u:pE)C)
cEA 1 IUJ=X% ieJ
l;<m
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Proof of Theorem We study the first column of 7= ev(&E(m;p%)). Gathering to-

gether ([7.19) and ( we find

(7.22)
0
E:=cv (E(m;Pg))l =" ju;z Fy (@ <*z1‘1ki ) ® @ ((*%)O_Qkh )> ; O
lr<m ZE ) Calm —1)

Observe, from the modularity of £ := £(m; p5;), the following identity, where (v); now
denotes the first entry of an element v € RV*! for some ring R, and where v = (% %) € I':

(£62)), = K™ (pEMEE)), = det(1) ()™ @) (Xt () —x1, () ) €(2).
1€EX
This is obtained by noticing that det(vy) ™1l ®;ex (x4, (d), —xu; (¢)) is the first row of pi(7),
and |X| =m (mod ¢—1). Evaluating at ¢; = 99" for all i € X this becomes det(7) ™" @jex

(qui, —chi). Observe that, for any = € CX, with the dot - being the standard scalar

product,
&, ) <® (L)o@ (L5 )> = 5@ (@) = KLy,
€S icJ hel
where L (z) == — 5.
Moreover,
0
R~y || = (o) alm D).
S 0
Ca(m = 1)

Using (7.22) yields the identity for f := (8~ )1 (first entry):

(7.23)  f(y(2)) = det ()™ Jy( ®(d‘“ )

D))
0
- > I <® (o) @ @ (oo )) - 0 -

uJ=x. ieJ hel
lr<m CA(m - l)
= det(v)"™J, (z)™H Z 7Ly (2)' = Ca(m — 1)Ly (2)!

1072

<m

This implies that f is a Drinfeld quasi-modular form of weight [ +m type m and depth <
in the sense of [13, Definition 2.1], which is equivalent to our definition of quasi-modular
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form in virtue of loc. cit., Theorem 1. With v the identity we have L, = 0 and f = —7™F)
and the proof of our theorem is complete. O

If I < m, the quasi-modular form has depth [ because of the non-vanishing of (4(m —1).
If I > m the depth is < [ and these results can be compared with with Petrov’s work [67].
In his Theorem 1.3 Petrov shows that [ > m, | =m (mod ¢ — 1) and if

m S pivP (l)

where v, is the p-adic valuation of Z, then f,, »,, is the u-expansion of a Drinfeld cusp form
in S;1;n(det™; Cs), a Drinfeld cusp form of weight [ +m and type m in the terminology
of [24] and therefore a quasi-modular form of depth zero.

The reader can easily deduce the following result which is however slightly weaker than
Petrov’s (note that prr) = graWpop(ta®)  with vy denoting the order of divisibility by ¢
and ¢, denoting the sum of the digits in the g-ary expansion).

Corollary 7.18. If I > m with | = m (mod ¢ — 1) and m < ¢*O) then fiym.m is the
u-ezpansion of a modular form in Sp(det™™; Cso).

Proof. Indeed with this hypothesis on the order of divisibility by ¢ in the sums in (7.23)
there is no I such that Iy < m, unless I = (). Moreover, (4(m — 1) = 0 (trivial zero) and
the depth of f is zero. O

7.6.3. An example of Hecke eigenform. Consider ¥ such that s = [X| =1 (mod ¢—1) and
set m = 1. Both Corollary and Petrov’s [67, Theorem 3.1] imply that f := fi11
is the u-expansion of an element of Sy, (det™!;Cy) \ {0}. Tt is proportional to an entry
of ev(E(1;p5)). It is easy to see that this cusp form is not doubly cuspidal (that is, with
multiplicity > 2 at oo). It is also well known that f is the u-expansion of an Hecke
eigenform. We can deduce this property from the fact that & := £(1;p%;) is a Hecke
eigenform. We come back to @ . We have, for all P € AT irreducible,

(100), =ontre0), 27 5 (6(51),

bl <|P|

and this equals (£); by Corollary Evaluating at t; = 09" for all i € ¥ implies the
identity

1)+ P Y f (BN = P

o] <|P|

which tells us that f is a Hecke eigenform for all the Hecke operators Tp, with eigenvalue
P € A" irreducible (the operators Tp are those of [24], we use the normalisation of [24] to
allow an easier comparison with existing results).
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7.6.4. Examples of quasi-modular forms. The content of this subsection is also related to
the sequence of extremal quasi-modular forms (z)r>0 introduced in [14], where the initial

explicit elements are g = —E, x1 = —Fg — h, in the notations of [24], and where we recall
that E' is the normalized false Eisenstein series of weight 2 (6.8). From Theorem we
deduce that £(¢"; p})i—g = —7 fyni1,4n for all n > 0 and x,, = —fgni1qn. 0 =0, we

deduce Gekeler’s series expansion [24, p. 686]:

(7.24) E= )" au,.

Taking £(1; pf);_pen for n > 1 we get, up to a proportionality factor, Petrov’s sequence of
Hecke eigenforms
F, = Z a?" ug,

acAt

of weight ¢" + 1 and type 1, notably the initial values F; = h and F» = hg? (see [67, §3.2]
and the proof of Theorem 3.6 ibid.).

7.6.5. v-adic modular forms from FEisenstein series. In this short subsection we quickly
introduce further desirable directions of investigation, with few details to preserve the flow
of the main topics of the present work. Consider an element

f € K(ty) + uK (ts)°(e)[[ul].

We say that f is an entry of a rational Drinfeld modular form if there exist w € Z,
p: T — GLy(K (ty)) a representation of the first kind, F' € M,,(p; Ky) and a linear map
A KY — Ky such that f = A(F). We denote by X the set of all entries of rational
Drinfeld modular forms.
Write
f="Ffo+>_ fuul
>0
with fo € K(ty) and f; € K(t52)°{e)? for i > 0. This expansion exists and is unique (see
Proposition [3.32). Let v : K(t5) = Z U {co} be an additive valuation. We say that f is
v-integral if f; € O2((e)?, where O, is the subring of K (ty;) of elements with non-negative
p-valuation, i. e. f € Oy + uOS({(e)’[[u]]. Over the ring O, 4+ uOS {(e)’[[u]] of v-integral
series we have the infimum v-valuation (relative to the series expansion f =3, fiu®) and

we denote by X, the metric space of all entries of rational Drinfeld modular forms which
are v-integral (compare with Definition [7.7)).

Definition 7.19. A v-adic Drinfeld modular form is an element of the completed space
Xo-

Following the ideas of Goss in [39] the reader can verify the following explicit example.
Consider ¥ = ¥/ U {1} with s = |¥’| and set v to be the yy, (p)-adic valuation of K (t)
with p = (P) a prime ideal of A of degree d (and P monic). We choose m > 0. We consider
a sequence of positive integers (k;);>0 with k; = r + a;(¢? — 1), with r € {0,...,¢% — 2}
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with k; — 0o as ¢ — oo and with «; converging p-adically. We also suppose that for all 4,
ki + s =m (mod g — 1). Then, as i — oo, the sequence of series

D X (@) o (a)Gn(ua) € K (ts)([u]],

acAt

Ptla
all v-integral, defines a v-adic Drinfeld modular form which is non-zero. Of course, it is
related to an Eisenstein series £(m; p3,), for a suitable ¥, after an appropriate evaluation.

A remark. It is an interesting problem to determine an appropriate complete topological
group of weights for v-adic modular forms in the sense of our Definition [7.I9] We note
indeed that the union

U My(p;Ky), w>0, X CN* pof the first kind,
w,3,p

3} being finite, generates an algebra over UyxKy with multiplication ®. It is not difficult
to show that this algebra is graded over the monoid (Z,+) @ ({p : of the first kind}, ®).
To define his co-adic and v-adic zeta and L-functions, Goss introduced several complete
topological spaces containing Z, see [36, Chapter 8]. For instance, the complete topological
group S projective limit of the groups Z/((¢* —1)p™)Z as n — oo with d = degy(P) and q =
p°, isomorphic to Z/ (g% —1)Z x Z,, contains the weights of the p-adic modular forms of [35],
with p the ideal of A generated by P irreducible. The same question arises when one wants
to define a topological space over which interpolate the L-series of [50], see [38]. At the
time being, there is no complete topological group containing ({p : of the first kind}, ®)
behaving as nicely as S, allowing to give rise to a nice space of weights for our v-adic
modular forms. A similar question has been addressed in connection with multiple zeta
values in Tate algebras, see [34, Remark 3.1.2].

8. MODULAR FORMS FOR THE REPRESENTATIONS p5,

In this section we consider modular forms associated to representations of the first kind,
with values in vector spaces over Ky rather than vector spaces over Ly as we did in the
previous sections. To classify them we cannot use the techniques of specialization at roots
of unity of We are therefore led to introduce other techniques which, however,
are harder to apply in the general setting of all the representations of the first kind. At
least, they lead to proofs of Theorems E, F in the introduction. We will focus on the
representations

p=pydet™
only, as they seem to have a larger spectrum of applications. We are going to determine the
complete structure of the spaces Mfﬂ(p; Ky) in Theorem An important tool introduced
in this section (see is the notion of strongly reqular modular form. The v-valuations
of the entries of a strongly regular modular form are submitted to certain sharp lower
bounds making them into a module over the scalar modular forms, the structure of which
can be easily computed, see Theorem If |¥] < g — 1, the notions of modular form and
strongly regular modular form agree (Corollary [8.12). If || > g, this is no longer true but
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in Theorem we show that twisting an element of M,,(p%;Ky;) by a large enough power
of the operator 7 defined in the corresponding section (the exponent depending on X)
yields a strongly regular modular form. Besides these properties, the precise structure of
the Ky-vector spaces M, (p%; Ky) for a general choice of ¥ subset of N* remains presently
unknown.

8.1. Structure of weak modular forms. We consider a finite non-empty subset ¥ C N*.
The structure of the Ky-vector space M, (p;Ks) is quite simple to describe.
We recall that, after Corollary for all m, with W € {S, M}, B € {Ly,Ks},

W (det™; B) = Wy, (det™; Coo) ®c.. B.

In particular, M, (det";Ky) is finite-dimensional. The main result of this subsection is
the following.

Theorem 8.1. Assuming that p = p5, det™, we have:
M, (p;Ks) = My, 1 (p:Ks) @ E(L; p5,) + My, (p: Ks) @ E(q: p},)-

Note that £(q; xt,,) = T7(E(1;xt,)) where 7 is defined in (1.18]). We choose k € 3. We
set X' =X\ {k}. We denote by p3, the Kronecker factor of the representation p},. Hence:

(8.1) Py = Pxy ® Py, -

We can suppose, without loss of generality, that & = min(X). The natural ordering of
¥ C N* is considered in the Kronecker product (it is non-commutative).

Proof of Theorem 8.1, We recall that:
!/
AEDY (az+b)_1<Xt(a)).

abeA xt(b)
We denote by £ the transposition (row function) of £(1; py). It satisfies:
E(V(2) = Jy(2)E(=)pe() " v €T,

We also consider the matrix function
&
¢ = Hol(Q — K32
(vgey) € ot 2%,

satisfying

_ (N(2) 0 -1

et = (" 5 (L) E@me) ™ yer

Note that 7(€) = 'E(q; pf). Let h = —u + o(u) be as in §5.3.3l By [63, Theorem 3.9]:

det(€) = —7Ca(g; xt)h(2),
which is also equal to
71T R(2)
(09 —1)(6 — t)w(t)




THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 135

by the formula , after application of 7. The function h does not vanish on 2 and
v(h) = 1. Since the function det(€) can vanish identically for certain values of ¢ with
[t| > 1, the matrix function €(z)~! belongs to Hol(Q — T?*2) but not to Hol(2 — E2*2),
and satisfies

€)™ = e (PG 0L). ver

In any case, 72(w) 1 €(2) ! defines a function of Hol(2 — E2*2). We are going to generalize
some aspects of the proof of [63] Theorem 3.9]. We set
E =7%(w(t) e
and E;, the same function in the variable ¢; instead of ¢. Note that the function

(8.2) F:=Iy ® Ey, € Hol(Q — Ef,@?N),

with N =25, ¢ = s —1, and N’ = 2%, satisfies:
J(2)71 0
F(r()) = (Ly © pr, ) F(z) (1w (D) W) ver
0 Jy(2)
Let G be an element of M, (p;Kyx). Then by definition, for all v € T and z € Q, we have

G(v(2)) = J(2)" det(v) ™" ps:(7)G(2)-

Now setting G = ‘G and, denoting with H the row function GF, with values in K%XN , We
have, for v € I":

H(y(2)) =
= Jy(2)" det(y) "G (2)pg (V) (1n @ pr, (7)) (e @ By (2) 1) x
1

(e (U5 06)
— det) "G () 9 1) @ B ()7 (1w (PR 50)
= det) "G @ B () s o) (v e (P 0))
I, (z)w1 0

= det(y) ™ H(2)(p5/ () ® 12) <1N’ ®< 0 Jy ()™ q))

In the above computation, we have observed the distributive property of the mixed product
(A® B)(C ® D) = (AC) ® (BD) (for matrices A, B,C, D). This identity that we have
found,

H () = det) "H o5 ) o 1) (1we (P 50)) ver

can be interpreted in the following way. The column holomorphic function H := ‘H, with
values in KNXl can be written as H = Hi ® Ho with both H; and Hs columns of size

1 ®
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N’ = 2% where the symbol ® is defined, if a = *(a1,...,an’) and b = t(by,...,by/), by
a®b= (a1, by,a2,ba,...,anr,bys). Then, both Hi, Ho are separately weak modular forms
for p3, det™™, with values in Ky, and the weights are respectively w — 1 and w — q. O

We have, with p as above:

Theorem 8.2. The following equality of Kx;-vector spaces holds, for any w € Z, m €
Z/(q— 1)Z and finite ¥ C N*:

(8:3) M, (p;Ks) = @ <®5(1§PZ)>® ®5(Q§PZ) ML7|1|7q|J|<det7m;KE)-

IuJ=% \el jedJ

We denote by M'(det®; Ky) the Z x Z/(q — 1)Z-graded B-algebra of scalar weak K-
valued Drinfeld modular forms for T' of any weight and type, and we set M’ (p3; det®; Ky) =
Duw,mM,,(p det™™; Ky), which is a graded module over M'(1;Ksy).

Also, we denote by M'(pt; Ks) = @uezM,, (pt; Ky) the sub-module of M'(det®; Ky) of
weak modular forms for p% and M'(1;Ky) = @, M, (1;Kyx). We have the next corollary:

Corollary 8.3. (a) The Ky-vector space M'(p% det®; Ky is a graded free M'(det®; Kyx)-
module of rank N = 2°. (b) The Kx-vector space M'(p%;Ky) is a graded free M*(1;Ky)-
module of rank N.

Observe that further, the N = 2% generators of these modules are explicitly described in
Theorem [8.2] and are the elements

QEMp;) ® Q) E(a; p7) € Mipjaq(p%; Tx), TUJ =Y.

icl jeJ
Proof of Theorem [8.3. We deduce from Theorem by induction on ||, that a weaker
version of (8.3) holds, with »_ in place of . It remains to show that the sum is a direct
sum. For this, it suffices to show that the N' = 2° functions ®;er€(1; pf)) ® Qe 5 €(a; p7,),

for I U J = X, which define elements of DJEV %1 are linearly independent over the field
Kx((u)). Note indeed that MI!U—III—QIJI (det™; Ky) < Ky ((u)) because all the elements of
the space on the left are A-periodic and tempered.

Let a,b be two elements of Ky,. We write a ~ b if v(a) = v(b) (note that if a = 0 and
a ~ b then b = 0) and we extend the definition to vectors and matrices whose entries are in
R by saying that (a; ;) =~ (b; ;) if for all 4, j, v(a; ;) = v(b; ;). Then by Proposition we
have E(1;p},) ~ (1) and E(q; p},) = (ulq) Hence, up to permutation of rows and columns,
we have the ~-equivalence of N x N-matrices in Dg XN,

. . wt w\®
N = (@5(1;%)) ® | Q&g ) ~ <1 1) :
icl jeJ s

The anti-diagonal of the matrix on the right is equal to (1,u)®* (up to reordering). This

corresponds to a unique monomial which minimizes the v-valuation in the series expansion
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of the determinant of N. We deduce that det(N) = u%, where (as)s>1 is the sequence
defined, inductively, by a; = 1 and
as = 2as_1 +2°7 "

for s > 1. The matrix A is therefore non-singular, and the functions ®;c;€(1;pf) ®
®jes €(g; pi;) for I'UJ =X are linearly independent over Kx((u)), from which the resul
follows. 0

8.2. Strongly regular modular forms. We keep considering a finite non-empty subset
¥ C N* of cardinality s, the representation p = p% det™, k := max(X). We discuss quite
a restricted but useful class of modular forms which have a particularly simple behaviour
at infinity.

Definition 8.4. A tempered p5-quasi-periodic holomorphic function
G:Q— Ky~

is called strongly regular at infinity if

—1 0 Xs
(uo 1> G(z) € OV,

Note, with Diag denoting a diagonal matrix, that

u ™t 0 @2
( > = Diag(u 2, utu"t1)

0 1
u ™t 0 @3
( 0 1> = Diag(U_S’U_Q,U/_Q,U_l,u_z,u_lgu_la1)'
Writing
-1 &s
(8.4) <u0 (1)> = Diag(u™, ..., u™"™,u™"),

and letting s tend to infinity, an integer sequence (n;);>o is defined and coincides with the
one’s-counting sequence (compare with the sequence (a;); in the proof of Theorem [8.2f we
used it also in . We need the next Lemma, where we use the sequence introduced
in and the notation ® introduced in the course of the proof of Theorem [8.1

Lemma 8.5. We have (’I’Li)izo = (ngi)izo ® (n2i+1 + 1)1’20-

Proof. Straightforward computation of the carry over in binary addition when we add one
to an integer. ]

The above serves to make the next definition.

Definition 8.6. A weak modular form G € Mq'u(P*z det™™; Ky) is said strongly regular (of
weight w) if it is strongly regular at infinity after definition Taking (8.4) into account
and writing G = ¥(G1,...,Gn), this is equivalent to v(Gy_;) > n; for i =0,..., N — 1.
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The Ky-vector subspaces of the spaces M, (p; Ky) of strongly regular modular forms
have quite a simple structure which can be described essentially by adapting the proof of
Theorem The main result is Theorem below. Also, regarding the Definition 8.4
of strongly regular functions, if we want to use the indexation of the components of G,
g = (gJ)IL,J:E (so that the first entry Gl — G1 has a u-expansion) we then get that the
above condition is equivalent to

(8.5) G'u Ml € Oy, VI, J such that TUJ = 3.

We denote by M;L(pg det™™; Kyx,) the Ky-sub-vector space of M, (p% det™™; Ks) generated
by the strongly regular modular forms of weight w for p3, det™ (with values in Ky).

Ezxamples. Any scalar Drinfeld modular form is strongly regular. In fact, we have

M (det ™™ Kyx) = My,(det ™™ Ky;) = My, (det ™™;Coo) @, Ky
for all w,m by Corollary From Proposition we immediately see that £(1;p}) €
MI(,OI;IL) and E(q; p;) € My(p;; L) (recall that we write L = Ly, when ¥ is a singleton,
with variable t); these functions are strongly regular. In particular, after Theorem and
Corollary the generators of the module M'(p% det®; Ky,) described in the statements
are all strongly regular modular forms.

8.2.1. Structure of strongly regular modular forms. We shall prove the next result where
B can be taken to be equal to Ly or Kx::

Theorem 8.7. The following equality of B-vector spaces holds, for any w € Z, m €
Z/(q —1)Z, finite ¥ C N*:

(8.6) M} (phdet™ ™ B)= P <®5(1;p2)>® QR E(a;05) | Mu—i—gj(det™; B).

IuJj=% \el jeJ

The direct sum MT(p% det®; B) := emeMﬂL(p*E det™™; B) is a graded module over the
graded algebra M (det®; B) of scalar Drinfeld modular forms Q — Ky, for any power of the
determinant character. Similarly, we have, recalling that M (1; B) is the graded algebra
of (scalar) Drinfeld modular forms for I" (it is equal to the graded algebra B[g, A]) and
MT(p%; B) the M(1; B)-module of strongly regular modular forms for p%, we immediately
deduce, with the same settings and s = |X|:

Corollary 8.8. (a) The M (det®; B)-module MT(p% det®; B) is free of rank N = 2°. (b)
The graded M(1; B)-module MT(p%; B) is free of rank N = 2°. (c) Both modules are
generated by the N modular forms (®ic1€(1; p3,)) ® (®jes€(q; 7)), for I, J C X such that
IruJg=%.

The fact that the rank is N is not a surprise in view of the papers of Marks and Mason
[47] and of Bantay and Gannon [6], in the settings of complex vector-valued modular
forms. These authors prove that vector spaces of vector valued modular forms for SLa(Z)
associated to an indecomposable finite dimensional complex representation of this group
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(and satisfying some additional conditions we do not want to discuss here) all are free
of dimension, the dimension of the representation. However, note that the vector-valued
modular forms that we study in the present work are not simple variants of the above
complex valued ones.

Proof of Theorem [8.7. Tt is easily seen that the left-hand side of is contained in the
right-hand side and we have to prove the reverse inclusion. Corollary ensures the
equality of the corresponding B-vector spaces of weak modular forms (“when f is replaced

with !”). This means that if G € M;[,(pg det™; B), then

G € M,,(pxdet™™; B) = P (@5(1;/)Z)>® QR E(@ini) | My_s_gj(det™™; B).

IuJ=%X \iel jeJ

All we need to prove is that the coefficients occurring in the various spaces of scalar weak

modular forms M, ¢;(det™™; B) are in fact Drinfeld modular forms (regular at infinity).

To see this it suffices to show that
G € My—1(psydet™; B) ® E(1; pf,) + Muw—q(psy det™™; B) ® E(g; i, ),

where k is an integer such that £ < min(¥’) with ¥ = ¥’ U {k}. A simple induction will
then allow to complete the proof.
Lemma [8.5] implies that for all s > 1, writing

-1og\®
(uo 1) = Diag(Us),

then
(8.7) Us=u"'U, 10U, ;.
Now, we set G = G1 ® G2 with G = 'G an element of Mﬂ:,(p*z det™™; B), hence we also
write G; = 'G;. We know by the proof of Theorem that
H=H,oH;=GF
(with F as in (8.2))) is such that
Hy ="Hy € M, ,(psy det™™; B), and Hy="Hs € M,, ,(p, det™™; B).
It remains to prove that H; and Hs are both strongly regular. We have to show that
H;(z) Diag(Uy_y) € OFN, j=1,2.

By hypothesis, we know that the entries of G(z) Diag(Us) are in Oy,. Explicitly, the entries
of u(2)71G1(z) Diag(Us_1) and of Ga(z)Diag(Us_1) are in Ox. We recall the relation
a =~ b, for elements of K, and its extension to matrices. We note that Hy, Hy are given,
explicitly, by the formulas:

~ —Gi7(e2) + Gat(er)

Giea — G
H, — H, — 1€2 2€1

wCalg xe)h - walg xe )b
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where £ = (e, €2) (]EI) By the well-known u-expansion h € —u + uCx[[u¢™]] (which tells
us that v(h) =1 and h ~ u), we thus have

uH| ~ —Gi7(e2) + Gat(e1), uHy =~ Gies — Gaey.
We first study H;. We have:
HDiag(Us_1) ~ u '(=Gi7(ez) + Gar(ey)) Diag(Us_1)
—u~'G1 Diag(Us_1)7(e2) + Go Diag(Us_1)u " 7(eq).

Now, by hypothesis ©~'G1 Diag(Us_1) € D%XN/, while v(7(ez)) = 0, from which we deduce
that «~'G1 Diag(U,_1)7(e2) € DIEXN/. On the other hand, we have that 7(e;) ~ u?. hence,
we have that G Diag(Us_1)u"17(e1) = G2 Diag(Us_1)ud~! € E)JTIEXN/ C DIZXN/. Therefore
all entries of Hq Diag(Us—1) are in Oy, and H; is strongly regular.

Let us now deal with Hs. Similarly, we have that

H, Diag(US—l) ~ uil(GIGQ - G2€1) Diag(US—l)
~ u Gy Diag(Us—1)ea — G Diag(US_l)uflel.

Since v(ez) = 0, we have that the term u~'Gj Diag(Us_1)es has all the entries in Ox.
Moreover, e; =~ u so that all the entries of G Diag(Us_1)u~'e; are in Ox by the hypothesis
on Go. Hence, Hy Diag(Us_1) € DIEXN " and M, is strongly regular. This completes the
proof of the Theorem. O

8.3. More structure properties. In contrast with that of strongly regular modular
forms, the structure of the vector spaces M, (p3; det™™; Ky) is more difficult to describe.
In this subsection, we report on some properties in this direction. Let » > 0 be the unique
integer such that r(¢ — 1) +1 < s := [¥] < (r+ 1)(¢ — 1). We recall that the map
7" My(p; Ks) = Mgry(p; Ks) is defined in 1D We also write, sometimes, f*) instead
of 7F(f), with f a modular form. Note that the definition also makes sense if k < 0.
However, in this case, the resulting function over {2 needs not to be analytic. We want to
show:

Theorem 8.9. Let f € M, (p5, det™™;Kyx). Then, 7"(f) € MJ}qr (p%, det™™; Ky).

To prove this result we need preliminary tools to handle the representations pyx; and ps,.
We order, for v € T', the columns of px(y) from @) to ¥ along the total order described
in §7.2] and we order the rows from ¥ to ) along the opposite of this order. In parallel,
we also label rows and columns with integers 1,..., N = 2 in the usual way (this will
serve to transpose matrices), so we have two orderings. Let M = (M ;)1 jcx € BV*N be
a matrix with entries in some ring B, with rows and columns indexed as above (the first
index always indicates rows). Since the order opposite of the inclusion order on the subsets
of ¥ is obtained by computing complementaries I — I¢ := X\ I, we have the following
transposition rule:

(8.8) tM = (MJCJC)chz c BNXN.

MThe reader will not mix these functions with the functions e; of
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Note that the transposition is relative to the ordering by integers in {1,..., N}. In relation
to the ordering by subsets of 3, this is anti-transposition (that is, transposition with respect
to the anti-diagonal). Now we write with a € A:

ps(To) = (pr,y(Ta))r,ucs € Folts)V Y,

and similarly, we write p3(7o) = (p7 ;(Ta))1,cs. For U C X, we recall the map (semi-
character) oy : A — Fy[ty;] defined by

ou(a) = [ xu:(a).
€U
An elementary computation, the fact that the inverse of py, (T,) is pt,(T-q), and an appli-
cation of (88.8]), lead to:

Lemma 8.10. For I,J C X, we have:

[ 0iIUuJCT . B 0if JNT 4
pI,J(Ta) - {UIOJ(G) ZfIU J=3" pI,J(Ta) - {(—1)|(JUI)C|O'(JU])c((I) ZmeI — @ .

Note that px(T,) is symmetric with respect to the anti-diagonal (in the ordering by
{1,..., N}; this is the diagonal in the ordering by subsets I, J C ¥ because we can swap
I,J). Note also that the entries in the diagonal (in the ordering over {1,...,N}) are all
equal to 1 because these are the entries indexed by I, J with I U J = 3. The coefficient of
px (1) in the upper-right corner is equal to ox(a) = [[,cx Xt (a). We deduce the explicit
expression of the coefficients of ®pr = (®r,s)1,s (defined in §@) in term of Perkins’
series. In particular, since the function x in is strictly decreasing (with respect to
inclusion), we deduce from Theorem the following property. If I, J C X with INJ = ()
and I U J # 3 (not corresponding to a diagonal coefficient), then

(8.9) v(®r ) > k(1) — 1.
We set p = p3, det™". The above properties can be used to prove:

Lemma 8.11. Let f = (f); be a p-quasi-periodic function in Ox. Then, if I C %,
v(f1) = k(D).

Proof. By Proposition [4.11} we have
f= q)pg

where g = (¢7); € Kg[[u]]V*!. Since the entries of ®, are in Kg{(e)® (v-valuations in
] —1,0] U {oco}) we see, inductively, that ¢! € uKg[[u]] if I € = (while g* € Kx[[u]]) and
allows to conclude. O

This generalizes Corollary[7.4, Theorem [8.9now follows easily. Thanks to the alternative
condition for strong regularity (8.5) and Lemma the property of the Theorem is
verified taking into account that if I C ¥ then ¢"x(I) > |I|, which is easily seen.
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Note that if s = 1 (case in which we denote by ¢ the unique variable), every Drinfeld
modular form for pj is strongly regular, which is a restatement of Theorem 3.9 of [63]. We
have

M, (p% det ™™ Ks) © My (ps det ™5 Ks) C My, (p% det ~™; Kx),
and the inclusions are in general strict. Moreover, as an immediate consequence of Theorem

8.9 we have:

Corollary 8.12. If s = |X| < q, then MJJ(pE det™; Kyx) = My (p5; det™™; Kx). For any
s, My(ps, det™™;Kyy) is of finite dimension over Ky.

In particular, one can easily check that, in the above hypotheses,
(8.10) E(s;p%) = (=1)* Q) E(1; 7).

IS

In fact, the formula (8.10) can be proved also for s = ¢ by using the methods of
This implies and generalizes [21, Theorem 4.4] (see the identity at the level of the first
coefficients).

We also deduce the next result which asserts, in particular, that there are no non-zero
Ky-valued modular forms of negative weight:

Corollary 8.13. We have M,,(p5 det™;Ky;) = {0} for w <0, for w =0 and m # 0, or
forw =20 and X # 0.

Proof. Note that MJL(p*Z det™"; Kyx) = {0} if w < 0. Hence we obtain the first assertion,
combining with Theorem The other properties are easy. ([

Corollary is also a consequence of the main result of the next subsection.
8.3.1. Another consequence of Theorem[8.9. We shall show:

Theorem 8.14. For all ¥ C N* finite and m € Z/(q — 1)Z we have that
My (ps, det ™ Ks) = My (ps; det ~™; Ly) @rg, Ks.

We point out that we do not know if the dimensions, of M, (p;Ks) over Ky, and of
My (p;Ly) over Ly, agree. The proof of Theorem rests also on a notion of analytic
part of non-analytic modular form. The main result regarding this notion is Proposition
Recall that h = —u-+o(u) is Gekeler’s cusp form in S,1(det™!; Coo) as in [24] (5.11),
(9.3)]. We need the following technical refinement of Proposition where, for k& > 0,

ﬁ(; ) denotes the image of fs by 7% in &y, and ﬁ(gk) denotes the 7-difference field generated
by the elements f*) with f € &s. This field can be embedded in the perfect closure ﬁgerf
of Rs. Note that h1/7" = h(=%) is a well defined element of Co((u))Pe.

Proposition 8.15. (1) For k > 0 the field Ry, is a ﬁ(;)-fuector space of dimension ¢ with
basis (1,h, ..., hqk_l). (2) Every element f of ﬁ(z_k) can be expanded, in a unique way, as

F=3"fnTUE g e Ky(e).

1>10
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Proof. (1) We note that

¢ -1
k
Ks[[u]] = € Ks[[u )Ju’
i=0
We claim that
¢ -1
fe = P &l
i=0
Indeed otherwise, there would exist a non-trivial linear dependence relation
q" -1
(8.11) Z aieg =0, «; € R(;).
i=0

We know from Corollary that the higher divided derivatives D stabilize the field Ry..

In particular, ﬁgﬂ ) is contained in the subfield of constants of each one of the operators D;,

with i =1,...,¢" — 1. In (8.11), consider the integer i € {0,...,¢* — 1} maximal with the

property that «; % 0. Since

(%z)qk1+~~+qkﬂ'
di, -+ - dp;,

J

we have that Di(eé) = 0if j < i and D;(e}) = (—=1)°. Applying D; on both sides we get
a; = 0 in contradiction with our assumptions.
Note that h is a uniformizer of C[[u]]. By the u-expansion

h € —u+uCuoo[[u?™]] € My
[24, (9.3)] there is an h-expansion:
U= —h+Zcihi, G EeA
i>1

and a canonical isomorphism Kg[[h]] = Kg[[u]] (consider a compositional inverse). We
identify these two rings. Then

gk -1
fe= P an
=0

(2) From the identities eg + fBe; = e;_1, equivalent to

1 1 /1 _
(8.12) el = m(ef_l - ei), 1EZL

we deduce, with KPef the perfect closure of K, that

() € (K (ty) e) NEZ(e))eg]. 5 € Zi™ 0
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so that ﬁ(E_l) = Ry [u%], which implies, identifying Ky [[u!/?"]] and Ky[[2*/4"] (u!/7" and

hl/4" are two uniformizers)
(k) _ T 1 e
Ry " = fsud] = fs[hd] = @ fsh, k>0,

Combining with Proposition [3.32] we see that

R = K ((e) () [ur] = K ((e) ()[R o] = K {(e)*((hF)).
]

Let f be an element of ﬁg %1 'We can expand in a unique way (depending on the choice
of the modular form h)

(8.13) f= Z filt, fie (REHNMHL

With p: ' — Kg %1 a representation of the first kind and w an integer, we have:

Proposition 8.16. Assume that f is an element of M} (p; B) with B = Ly or B = Ky.
Then, for all i, f; equals 91 for some analytic function g; :  — ]KJEVX1 and

i k .
fl w lq+1)(pdet ?B)m(ﬁ;))NX1> Z:Ow"aqk_l'

Proof. In the statement we understand that for all 7 there exists ﬁ € M/, (p; B)™®), uniquely
determined, such that it can be identified, in (&x)V*!, with f; (and we identify the two
objects). Consider a weak modular form f of weight w. We consider the decomposition
determined by Proposition Denote by Mero(2 — BN*1) the B-vector space of
meromorphic functions Q — BV*! (in the obvious sense, extending our notion of analytic
functions Q — BN*1). Then

k1

(8.14) Mero(©2 — BV*1) = @ Mero(€2 — BNV ®)pi,
i=0

Since f is meromorphic, we have an expansion

q"-1
(8.15) f=Y_fh', fi €Mero(Q — BVH)®),

If v € T, applying the Petersson slash operator (4.19) we obtain, by using the modularity

of h:
k1

qk-1 q
Z (fi|w7i(q+1),pdeti’7)hl = f‘w,p’y =f= Z fih'".
=0

=0
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By the uniqueness of the decomposition (8.14)), we deduce that

We now proceed to show that all the functions fi(fk) are analytic. Let zg be an element of

Q. All we need to show is that for all 4, ﬁ is locally analytic at zg. Being ord,, : Mero(2 —
B) — 7Z the map that associates to a meromorphic function its order at zy we note that,
by the fact that ordZO(h) =0, locally at zo,

Zgz ZO)) gi € BNXI'
>0
Now, again locally at zg,
qF—1
FE) = 3 (h(z) = h(20))" D Gir g (B(2) = h(20))7
i=0 §>0
q"—1 .
= 9i(2)(h(z) — h(20))"
i=0
= ' fi(2),
=0

where g; := 350 giyjqr ((2) — h(z))7" is lopally analytic at zp and the last step follows,
after expansion of the powers (h(z) — h(z9))", by uniqueness in (8.15). This means that
fi is locally analytic at all z5 € Q. Being modular-like, it is p-quasiperiodic. Combining
the proofs of Propositions [4.2] and [L.11] we see that it is also tempered. By uniqueness, we

can identify fz with its tame expansion f; € (ﬁ(k))N *Land f; € M (q+1)(P det’; B), each
function being the k-th twist of an analytic function over 2. O

With B as above we have:
Corollary 8.17. Consider [ € M(!]kw(p; B). Then
—k
e = £
is in M, (p; B).

Proof. By Proposition we have that fy € Ml!uqk (p; B) and f is the k-th twist of an
analytic function. Hence, writing ¢ := [f]x,

(=k)
Ilwpy = (g(’“)!qu,p> =g, ver.
0

Given f € Mékw(p; B) we call [f]x € M. (p;B) the analytic part of f(-*). The latter
needs not to be analytic. Note that if f = 7¥(g) with ¢ analytic, then [f] = ¢.
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Proof of Theorem [8.14) Clearly M, (p% det =™;Ly) @1, Ky C My (p% det 7; Ky) so we
need to prove the opposite inclusion; this is a consequence of the fact that for all w’,
M:L, (p%;Ky) is of finite dimension over Ky, by Corollary

We set once again p = p5,det™™ (for our choice of ¥ and m). By Theorem there
exists k > 0 such that

™ (Mu(piKs) ) € MY, (5 Ks)

and by Corollary the space on the right is finitely dimensional over Ky, and generated
by modular forms that take values in Ly, and are defined over Ly, with a basis (g1,...,9r)
constituted by modular forms that are also elements of

My (1) 0 (L2 4)" (@)

This property on the tame series expansion follows easily from the properties of the func-
tions F; mentioned and used in the proof of Proposition and in

Let f be an element of M, (p; Ks). Since 7%(f) € Mgkw(p; Ks;) we can write, in a unique
way,

T
—k
f:E aigf ), at, ..., o € Ky,
i=1

By Corollary

r , b Nx1

£ =3 oaloilk € M (piLs) 91, Ky 0 (LE(e)"(w) 1, K

i=1
Note that [g;]x € M. (p;Ls) for all 4, but we do not have, in general [g;], € M, (p;Ls). We
still need to show that f € M, (p;Ls) ®L,, Ky, that is, that f is a linear combination of
regular Ly-valued modular forms. We already know that there exist hy,...,h, € M,L!U(p; Ly)
such that f € Vectg(h1,...,h,). We can even choose hy, ..., h, linearly independent over
Ly with r = rg minimal with the property that the given element f is in their Ky-span.
Also, there is no loss of generality if we suppose that p := min{v(h;) : i < r} is maximal,
where v(h;) stands for the infimum of the v-valuations of the entries of the weak modular
form h;. A last reduction that we can assume, without loosing generality, is that the set
7 of indices i such that v(h;) = p is non-empty and minimal; note that it cannot be a

singleton. We select one such minimal family (hi, ..., h,) of Ly-linearly independent weak
modular forms.
Assume by contradiction that y < 0. We know that there exist aq,...,a, € Ky, not all

zero, such that v(>"; a;h;) > 0 (because f belongs to the span). By Proposition we
can expand in a unique way h; =} h; jut with h; ; € (Lg{(e)?)V*L. Then,

(8.16) Zaihm =0, 7<0, Zaih@o S KZX\:DG.
% %

We claim that given elements cy, ..., ¢, € (L% ((e)?)V*! that are Ky-linearly dependent,
then they also are Ly-linearly dependent. To see the latter property, note that a Ky-linear
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dependence relation connecting the 7 elements c1, ..., ¢, of (L3((e))®)V*! is equivalent to

a relation
T
So Y agei—0
=1 jeZ[1/p]>o
for aq,...,0p, € Ky and ¢ ; € LJEV x1 (with Gauss’ norm of entries that are uniformly
bounded over Z[%]zo)- Since the elements (e)/ are linearly independent over Ky, the above
is equivalent to

s
D auc; =0, j€Z[1/plso.
=1

If ay,...,q, are not all zero, then there exist af,...,al. € Ly, not all zero, such that
>, ofici = 0 hence proving the claim.

Returning to the proof of our Theorem, let us suppose that j = jg < 0 is the smallest
integer such that in , the linear dependence relation is non-trivial, among not all zero
elements h; j,. There exist of,...,a; € Ly, not all zero, such that Yy, a’h; j, = 0 so that

v ( Z aghi) > L.
1€T
If ig € Z is such that o # 0 (it exists), we can set hy := > ;7 ajh; and hj = h; if i # dp.
Then (hY,...,h.) is a basis of Vectg (h1, ..., h,) hence containing f so that by maximality
of p, min{wv(h}) : i <r} = p. Now, by construction, {i : v(h}) = p} C Z contradicting the
minimality of Z. Hence p > 0 and the proof of the theorem is complete in this case. The
handling of the case j = jo =0 in is slightly different but similar in spirit (note that
the v-valuation of a tame series is in | — 1, 0]). We leave it to the reader. O

9. HARMONIC PRODUCT AND EISENSTEIN SERIES

In this section we study another aspect of the Eisenstein series of 7] associated to
representations of the form py. with 3 a finite subset of N* that connects to the multiple
zeta wvalues as introduced and discussed by Thakur in [77]. The first entries of these
Eisenstein series are proportional, by Proposition [7.2] to combinations of series such as

(9.1) Z O'E(CL)Gm(ua) € A[EEH[UH

a€A+

where oy is the semi-character a — [[;c5, x#;(a) and Gy, the m-th Goss polynomial asso-
ciated to the lattice TA C Coo. In [58] B4] an Fp-algebra structure is described, over the
set of multiple zeta series in the Tate algebras Ty, (in fact, these are functions in Ey, C Ty;)
generalizing Thakur’s multiple zeta values (see for example [77, 1 [79]). We will see, in this
section, that this algebra structure determines a multiplication rule for the series [9.1] and
can be viewed as a source of explicit relations connecting Fisenstein series.

The results of the present section cover various aspects of an harmonic product formula
(Theorem and complements) generalizing [58, Theorems 2.3, 3.1]. We present now the
basic tools.
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We recall that, as usual in this text, ¥ denotes a finite subset of N* of cardinality s (the
empty set is allowed). Let L/F, be a field extension.

Data 9.1. Let us suppose we are given with:
(1) Injective Fy-linear maps 6; : A — L, for i € 3.
(2) For a;j € N (i € ¥ and j = 1,...,7), maps 0; : A — L defined by oj(a) :=
[Lics, 6i(a)®i. We call semi-characters such maps A — L (]E[)
(3) Injective Fy-linear map v : A — L (we adopt the notation v, for the evaluation of
vina € A).

We consider a semi-character o = [],cx. 6;" with linear maps d; as above, i € ¥ (empty
products are allowed). The map 1 sending A to 1 € L is the trivial semi-character.

Together with the objects that we have introduced so far, we consider, for integers
n; € N* with ¢ = 1,...,7r composition arrays, that is, tables of the form:

(0.2) Cim (j& B g:).

When r = 1, we may sometimes write (n; o) instead of (7). If C = (1, L
to C = (n1,...,n,). The degree of C is (Z) where 0 = 01 ---0, and n =), n;. The weight
is n and the type is 0. If 0 = 1 we say that the type is trivial. For a composition array as

in (9.2), we introduce the twisted power sum
sqey= Y ole)ore)

n1 PR Ty
dy>>dp>0 Va1 Var

at,...,ar€AT
degy(a;)=d;,Vi=1,...,r

) we simplify it

These twisted power sums generalize the classical power sums of Thakur in [77], as well as
the twisted power sums of [62]. We shall show the following generalization of [58, Theorem
3.1]:

Theorem 9.2. Let 0,9 be two semi-characters and m,n two positive integers. For any
a, 3 semi-characters and i, j € N* there is an element fo g ; € Fp such that, for all d >0,

s(2)5() 5= X, ms(s )

af=ocv
i+j=m+n

In the theorem, the sum is on the couples of semi-characters («, 8) such that af = o,
and over the decompositions n +m = ¢ + j, so there are only finitely many terms in it. In
order to proceed further, we need additional data of conditions:

Data 9.3. Let us assume that:
(1) L is endowed with a valuation v : L — QU{oo} and it is complete for this valuation
(2) v(6;;(a)) € {0,00} for all i, j and a € A

15Note that they generalize the semi-characters that we have discussed so far.
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(3) 7,1 — 0 as a runs in A (for the valuation v).

Assuming the Data it is easy to see that the series

(9-3) fa(€) =2 Sa(C)

d>0

converges in L for any composition array C as in . Let n be a positive integer, and let
o : A — L be a semi-character such that v is trivial over its image. We denote by F,] the
[F,-sub-vector space of L generated by the elements fa(7} 0 77 ) with r > 0, [[, 05 = o,
>, ni = n (withn; > 0 for all i). We also set F} := F, and Fg := (0) if ¢ # 1. We consider
the sum F := Zn o Fn- The above result can be used, in a lengthy but straightforward

way very similar to that of [58], to prove the next result.

Theorem 9.4. For all m,n > 0 and 0,1 semi-characters, We have that F7, .7-"¢ C f;ﬁn,
and the Fy-vector space F is an IFy-algebra.

9.1. Existence of the harmonic product. In this section we prove Theorem We
will use the methods of [58] §3.1.2 and §3.1.3] which deeply borrow from Thakur in [79].
The following result can be found in [58].

Proposition 9.5. Let X be a finite subset of N*. Consider U,V such that UUV = X. Let
L/F, be a field extension and let us suppose that x; (i € ¥) are elements of L and let z be
an element of L\ F,. Then, the following formula holds:

Z [Licv(zi +p) Hjev(l'j +v) _ Z Z [ier(or + M)'

(z+ 1)z +v) - (z + )

v EF\A IuJj=x neF,

|J|=1 (mod ¢g—1)

JCU or JCV

With appropriate choices of the set 3, of the subsets U, V', of the elements x; and z and
applying a power of an endomorphism of L which is Fy(z; : ¢ € ¥)-linear and which sends
z to z9, and specialization of some z; to z, we deduce:

Corollary 9.6. Considering a finite set > C N*, an ordered partition > = UUV , a positive
integer N and two integers a, 3 such that N =a+ 8, for all 1 <k < N and I C X, there
exists cr i, € Fp, such that

Z HieU(xi + 1) Hjev(xj +v) _ Z cr Z H,E[ ; —|—,LL .

(z+p)2(z+v)P (2 + p)*

M,VEFZ\A k=1,...N neFq

IcxY
In the above formula, A denotes the diagonal subset. We can now prove Theorem [9.2]
We recall that we have denoted by A™(d) the set of monic polynomials of degree d in A.
We also denote by A*(< d) the set of monic polynomials of A which have degree < d. For
n € At(d) and m € AT (< d), we write

Sonn = {(n+ pm,n + vm); v € Fo, £ v} C (A+(d) X A+(d)) \ A,

)
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where A is the diagonal of AT (d) x A™(d). Similarly, we define for n € A*(d) and m €
At (< d):

Sy = {(n+ pm,m); p € Fg} € AT(d) x AT(< d).

From [58, Lemmas 3.10 and 3.11] and following the original ideas of Thakur in [79], we
deduce that the sets Sy, , determine a partition of A*(d) x A*(d) \ A and the sets S}, ,,
determine a partition of A*(d) x A*(< d). Moreover, Sy, , = S/

- if and only if Sy, , =
St -

Now, let us choose d > 0. We write 09 = [[;cx; & with 0; an injective Fy-linear map
A — L for all i € ¥ (there can be multiple occurrences of such maps), and o = [[;cs 6,
Y = [Liey 0s with ULV = X. We have, with U a set of representatives of the above-

mentioned partition:

A0) ) B 20

(ab)cAt(@)xAt@\a TV

o(a)p(db
_ Z Z (W().

B
(m,n)EM (d,b)eSnL,n fygé’yb

We focus on the sub-sum corresponding to the choice of a set S,,,. We want now to
compute:

o(a)y(b
s o) _

B
(a,b)ESm,n a
o(n+ pm)yp(n + vm)

B
(werna  TtamTntom

— Z [Licw 6i(n + pm) [1;ev di(n +vm)
B (/yn + M'Vm)a(’)/n + V’ym)ﬁ

(1v)EFA\A
= M Z [Tiev (zii(:z)) + M) HjEV <% + 1/) |
i (nv)EF2\A (% + M)a <% n V)ﬁ

Note that we have used the Fy-linearity of ¢; for all i € ¥ so that §;(n+pm) = 6;(n)+pd;(m)
and the hypothesis of injectivity, to divide by d;(m) which needs to be non-zero. Similarly,
we have used the [Fy-linearity of the map a +— =, and the fact that v, + Ay, does not
vanish, because n, m, in the above computation, have distinct degrees. Applying Corollary

with z; = (?;((gz)) fori € ¥ and z = ;’—:@ which does not belong to [F,, we obtain the
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identity:

B
(a,b)ESm,n 73’7[7

Mier (5t +
= o(mumr Y e Y (5 “>:

k
Ics weF (7—” + )
k=1,..N 7 Ym T H

Hz‘el di(n + pm) HjeJ d; (m)
Z €Lk Z % Nk :
IUJ=% peF, Tntpm Tm
k=1,..N

The latter is a sum over Sy, ,. In view of our previous observations, this concludes the
proof of our Theorem. The deduction of Theorem from Theorem is standard and
we omit it. If we choose 6; = x¢, for i € ¥ and v, = ec(az), and we follow closely the
above proof of Theorem in conjonction with [58, Theorem 3.1], we deduce the following
explicit result that will be used later, with ox = [[,cs. x¢;, and 74 = ec(az) for a € A\ {0}.

Theorem 9.7. The following formula holds, for all ¥ C N* and U UV = X
ou oy ox\

oy Oov oy oy or o0J
fA<1 1>+fA<1 1) > fA<1 1)-
Iuj=x.
|[J|=1 (mod ¢—1)
JCU or JCV
In the next three short subsections we give the three main sets of Data [9.1] that are

considered in this paper (we will mainly consider the second one, described in §9.1.2)).

9.1.1. Multiple zeta values. We choose the Data in t/he\following way. We consider
variables ty, = {t; : i € ¥} and the field L = Ky := K(ly),_ obtained by completing
K (ty;) with respect to the Gauss’ valuation v extending the valuation v, of K. We consider
further the injective F,-algebra morphisms d;(a) := x4, (a) for all ¢ € ¥ to build our semi-
characters. As we did previously, we write, for U a finite subset of N*, oy7(a) := [ ;¢ x¢, (a).
More generally, we can also consider elements in the monoid of degrees of [34, §2.1] in place
of U; this amounts in considering semi-characters ¢ defined by

(9.5) o(a) = [ xus (@)™

1€
with ¥ C N* finite and n; > 0. Finally, we choose v the identity map, so that for all
a €A, v =a € L. Then we also have the Data and we are in the settings of [58].
In the notations of ibid., we have (4(C) = fa(C) for any C as in and we can speak
about degree, weight and type of (4(C). One proves (see [34, Corollary 3.3]) that the
K [ty]-algebra they generate is graded by the degrees. Note also that for any such element
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there exists a finite subset ¥ of N* such that it belongs to Ey; C Ky, . If we consider the
particular case of composition arrays C as in such that the semi-characters o; are all
equal to the trivial semi-character 1 (trivial type), then it is easy to see that the series
CA(C) € K are the multiple zeta values of Thakur (the reader can find more in the papers
[1, [79] and the survey [80] also provides a wider set of references).

9.1.2. A-periodic multiple sums. These are closely related to first entries of Eisenstein series
for p%. We choose, for the Data

Yo = ec(az), a€ A\{0}.

This choice leads us to work with the same semi-characters as in and in the field
L = K(t5,)((u)) which is complete for the valuation v = v, giving the order at u = 0 of a
formal power series of u. We are also in the settings of Data[0.3] In this case, for C as in
, we set ©4(C) = fa(C) and we can continue to speak about degree, weight and type
of such a sum. Explicitly:

palC)= > oula)--op(a)ullupr € L

dy>w>dy>0

a,...,ar€AT

degg(a;)=d;,

Vi=1,...,r

(with u, = expo(Taz)™!). These series define formal series of K (t5)[[u]] and each of them
is also converging for v in a non-empty disk of Co, of radius < ¢ for some ¢ € |C|N]0, 1],
containing 0. From Theorem [9.4 we deduce:

Corollary 9.8. The Fy-vector space spanned by 1 and the series p4(C) with C as in
is an Fp-algebra. The multiplication rule is compatible with the filtration induced by the
semigroup of the elements (w, o) with w € Z and o semi-characters as in §9.1.1.

Again with C as in (9.2]), we consider a variant of the above sums based on Goss’
polynomials:

(96) d’A(C) = Z 01 ((11) T Ur(ar)Gnl (ua1) G, (ua'r)7

lai|>->|ar|>0

with the sum running over elements a1, ...,a, € AT. These sums are more closely related
to the first entries of our Eisenstein series. We have the next result.

Corollary 9.9. The K -vector space spanned by 1 and the series ¢p4(C) with C as in
is a K-algebra and equals the K -vector space spanned by the series ¢ 4(C).

Proof. We claim that the family (G, (X))m>o is a K-basis of XK [X]. First of all, these
polynomials are linearly independent over K because the functions z — G, (u(z)), mero-
morphic over C.,, have poles of distinct orders at the elements a € A C Cy. To show
that these polynomials span X K[X] it suffices to prove that for & > 0, u* belongs to the
K-span V of the polynomials Gy, (u) with m > 0. This is clear for £ = 1. Now assuming
that ©*~! belongs to V, by the fact that u* = uu®~1, it suffices to show that uG,,(u) € V
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for all m, but this easily follows from [24, Proposition (3.4) (ii)] and induction on m hence
proving the claim. The result now follows from Corollary O]

9.1.3. Remark on product rule. The product rule of Corollary [9.9 does not seem to be com-
patible with a filtration involving the composition arrays in a simple way, unlike Corollary
[0.8] Note however the following formula, which is homogeneous in the orders of the Goss’

polynomials:
m;n:k (R0 = ((T) - 1) Gr(X), k>0,

To prove this formula we use and Lemma and

ux
1) = z =
G(1) = aTp(Gr(w)) = T o s
Hence we obtain the following Riccati-like differential equation from which the above iden-
tities can be derived:

0
1) = —( 1 ) ~G(1).

GOy = (G)) - G)
9.1.4. Multiple sums in Ry. This is the third important type of multiple sums that is
determined by making the following choice of Data[9.1] but it will be only studied in §10.]]
We consider L = £ the field of uniformizers with the valuation v = v. As in §9.1.2] we use
Yo = ec(az) for a € A\ {0}. Instead of the semi-characters of §9.1.1} we use, for i € N*¥,
0; : A — L defined by

5 eXPo (%)

l(a) - Xti(az) - W(t) 5

seen as a tame series in L°((e))®. These maps are clearly F,-linear and injective, and they
give rise to semi-characters
Fu(a) = [ xe(a2)
iceU
with U a finite subset of N* @) With them we can construct the formal series

(9.7) ca(mum)= X e Gola)un
lai]|>>|ar|>0

where the semi-characters o; are of the above form, where nq,...,n, are positive integers,
and with the sum running over elements aq,...,a, € A". This time however, we do
not have a consistent set of Data but not for this reason, this case is less interesting.
Condition (2) does not hold in general. We cannot guarantee the convergence of the series
in for the v-valuation. However, when these series converge for the v-valuation (this
can happen), they give rise to well defined elements of L.

We have:

160r more generally, an element of the monoid of degrees as in 3
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Corollary 9.10. There is a multiplication rule on the series that are convergent for
the v-valuation. Choosing a correspondence Xy, <+ 0; identifies, if all the terms are well
defined, the multiplication rule with that of Corollary[9.8 and that of §9.1.1.

Ezxample. We have the following formulas expressing the same harmonic product rule in

the three different settings of §9.1.1] [0.1.2) and [0.1.4. We use § the semi-character defined
by d(a) = xt(az) (]EI):

(98) Calxa)éala —1) = Calasxa) + a1 ).
pa(lixe)pale —1) = palaxe) + m("f 1 )

a3 0)Pala—1) = Fal:9) + @a(1,4)-
It is not difficult to verify that all the multiple series involved in the third formula converge
for the v-valuation. To prove the identities one observes that the first identity follows
from identities on multiple power sums (see [34, §7.2]), then uses that the product rules

of §0.1.1], [0.1.2] [0.1.4) are the same upon choice of the appropriate correspondence between
the semi-characters.

Remark 9.11. In the settings of We mention that Khac Nhuan Le [45] gave a direct
and completely explicit proof of Theorem The method he uses is a generalization of
Chen’s method in [I8]. It would be nice to see if his method extends to our general setting
of Data [0.11

9.2. Explicit formulas. The harmonic product can be applied to obtain identities for
certain modular forms, notably Eisenstein series. We give three examples. In an
identity for Eisenstein series of weight ¢ + 1 for p’{lz}, in an identity for Eisenstein
series of weight 2 for p3, with |¥| =2 (mod ¢ — 1) and in §9.2.3 we present a question on
Serre’s derivatives of Eisenstein series of weight 1 and their possible relation with Poincaré
series of weight 3.

We are going to use Lemma by means of the following consequence: if an element
of My (p%;Ky) has vanishing first entry, then it vanishes identically. This can be applied
to prove for s < ¢q. To see this we choose k € ¥ and we write ¥’ := ¥\ {k}, with
3} non-empty finite subset of N* of cardinality s < q. The harmonic product formula of
Theorem [0.7] yields inductively

()OA(S - 17 O-EI)QIOA(]W th) = SOA(Sv O-Z)‘
This formula can also be written more explicitly in the following way:

H Z Xt (@)uq | = Z ox(a)u;.
1€X \a€A+t acAt

17Note that for coherence with other references, we render in different ways the multiple series of ‘depth’
r = 1 or with trivial semi-character (scalar). In particular, we sometimes write, for the arguments of
multiple sums, (n;o) instead of (7), and (na,...,n,) instead of (,;, 1 . ).
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This implies (8.10)); we leave the details to the reader.

9.2.1. An identity for Eisenstein series of weight ¢+ 1. We use ¥ = {1,2} and we suppose
that ¢ > 2. We denote by ¢ the (scalar) normalized Eisenstein series of weight ¢ — 1 for 1
(following Gekeler’s notations in [24]).

Proposition 9.12. The following identity holds when q > 2:

E(q+1;0%5) = —E(L; 1) @ E(q; p1,) — Egs 1) ®E(L; p,) — (09— 0) g€ (1, p; ) @ E(L, p},)-
To prove it, we use the next Lemma in the settings of Theorem [9.7}
Lemma 9.13. The following formula holds:
(9.9) ¢alg+1,05) =
= AL xt)Pa(d, Xe2) + 0a(2 xt2) AL, Xe2) — pa(q = Dpa(l, xen)pa(l, Xea)-

Proof. We have the following formulas where we also observe, with ¥ = {1, 2}, the formula
pa(Lixe)pa(lixe) = pa(2;05):

pa(l,xe)eald, xe.) = va (qgf1> +¢a <022 ¢ i 1) +¢a (X;’ qX_hl)
AL xe)pale, xu) = ¢a <q?1> +¢a (022 7 i 1) T4 (thl qX_t21>
ealg—1)pa(2,08) = ¢a (qaf1> +2p4 (022 q i 1) A <X§2 qX_“l) -
—pa <X2tl qX—t21> .
The formula follows easily; it also holds for ¢ = 2. O

Proof of Proposition[9.13. We note that since ¢ > 2, £(2,p%) = £(1,pf,) ® E(1,pf,) by
(8.10). The first coordinates of the modular forms

Ela+ %), ELipy, ) @E(GAY,,), Elapy,, ) ®EML, ), 982 p5)
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are proportional to the following A-expansions (where we recall once again that G (X)
denotes the n-th Goss polynomial [24], §(3.4)]):

X = ZUZ(Q)Gq+1(ua)7

acAt
Vo= Z Xt: (@)ua Z Xts (D)uy | = 0a(l, Xt1)9a(g: X)),
acA+t beAt
Vo = | D xw(@ua | [ D xu0uf | =vala xi)eala xi),
acAt beA+
Z o= |1-(07-0) > ul > os(a)ug | =1 = (07— 0)palq—1)pa(2,0%).

acAt acAt

Note that Y1,)2 € F/7;. A simple computation yields Gg41(X) = Xatl 4 (97— 9)~1 X2,
Hence

X =(07-0)""pa(20%) + valqg+1;0%).

By using Lemma with fa4 = @4, the first entry of the modular form given by the
difference of both sides of the identity of our statements vanishes identically so this modular
form vanishes identically by Lemmas and O

9.2.2. An identity for FEisenstein series of weight 2. We prove here a more complicated
identity involving Fisenstein series of weights 1 and 2 in the case of ¢ odd. We suppose
that |¥| =2 (mod ¢ — 1) and we write s = [X| = a(¢ — 1) + 2, o € N. We have:

Proposition 9.14. If q is odd the following formula holds:
> E(L; pp) @ E(L; pyy) = 26(2; p5).
Uuv=x

[U|I=1 (mod ¢g—1)
[VI=1 (mod ¢—1)

Proof. This is a simple combination of Lemmas and and the next Lemmal[0.75] [
Lemma 9.15. The following formula holds:

(9.10) UUZV:Z Pa <U1U ) va (alv ) = 2pa <022> '

[U|=1 (mod g—1)
[VI=1 (mod ¢g—1)
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Proof. We set m = a(q—1)+2and n=a(q— 1)+ 1, for « > 0. We claim that

(9.11) _ (%;d . (’Z) =2 (mod p),
0<k<m
(9.12) 3 (Z) =0 (mod p).

k=1 (mod g—1)
0<k<n

To see this we consider more generally N € N and we write N = a(q — 1) +1 with a > 0
and 0 <1 <q—2. Let A\, u be in F, with A 4+ 1 # 0. Then,

ANV, = N
1_(>\+M)l_()\+ﬂ)N_Z(T))\TMNT—Z)\T,MV(T) > <T>
r=0 r'=0 r=r’ (mod g—1
OS(TSNQ )
=:8,

where v(7’) is the unique integer in {0,...,q — 2} such that [ — ' = v(r') (mod g — 1).
Setting further 4 = 1, we have the polynomial

q—2
P(X) = BuX" — (X + 1)) € Fp[X],
r’'=0

which vanishes identically over the set F,\ {—1} with ¢—1 elements, and has degree < ¢—2.
This implies that it is identically zero; in other words, §,» = (rl,) forr =0,...,q—2. Taking
N =m = a(q— 1)+ 2 we have [ = 2 and computing the coefficient of X in P, we deduce
9.11). Taking N = n = a(q — 1) + 1 and computing the constant term of P, we deduce
9.12|). This shows the claim. We can complete the proof of formula We use Theorem
9.7, which tells us that if ULV =3 with |U| =|V| =1 (mod ¢ — 1),

oy ov ox )\ _
oy Oy oy oy or o0J
(T V(T ) 2 w17
=%

|JI=1 (mod g—1)
JCU or JCV

We sum these identities over all such partitions ¥ = U U V. First of all, the number of

such partitions is equal to
(0%

2 (k(q —‘21’) + 1)

k=0
which is congruent to 2 modulo p by (9.11)). Let

f:PE)?* =L
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be any map with values in a field L of characteristic p, where P(X) is the set of subsets of
Y. Then,

3 S HLD) - fOV) - f(VU) | =

vuv=x IuJj=x
[U|I=1 (mod g—1) \ |J|=1 (mod ¢—1)
JCU or JCV

= > > FULT) =

vuv=x uJj=x
[U|=1 (mod ¢g—1) |J|=1 (mod g—1)
JCU or JCV

= Z f(I’J) Z 1,

IuJj=x vuv=y
[J|=1 (mod ¢—1) [UI=1 (mod ¢g—1)
UDJ or V2J

which vanishes by (9.12)). Observing that we can choose f(I,J) = fa(% %) terminates
the proof. O

As a complement of Proposition [9.14] we propose the following question, to be compared
with Cornelissen, [19, Proposition (1.15)]. We assume that |¥| =2 (mod ¢ — 1).

Question 9.16. Do the forms £(1;pf;) ® E(1;p},), for ULV =3 and U] = |V| =1
(mod g — 1) generate the module M>(p%;Ky)?

9.2.3. Serre’s derivatives of Fisenstein series. The last type of explicit formulas we want
to discuss in this volume is related to Serre’s derivatives of Eisenstein series. We are going
to see that they are closely related to the harmonic product. We return to the operators

8§Lw)(f) introduced in §6.31 We suppose that ¥ C N* is such that s = |X| =1 (mod ¢ — 1)
and we study the u-expansion of the first entry (the one which is indexed by ) of

oW (E(1; p%)) € Sa(pk det ™' Ky).

By Proposition the first entry of £(1; p%) is equal to —7pa(1;0x). We compute, by
setting ¥ = X LU {0}:

1
N (pallson) =
= Z ox(a)au? — Z auyg Z ox(b)up
acAt acAt beAt
= —lpallixu)pa(l;ox) — 9a(2 0m)l=0-
This implies that the image of 8{1) at ¢ 4(1; 0x) is the evaluation of a linear combinations of

multiple sums as in §9.1.2] and we transcribe Serre’s derivatives in terms of specializations
of the harmonic relations of
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Lemma 9.17. We have the formula:

1) oy oyj
9.13 a\ Los)) =
(9.13) D(pa(Lion) > w70
uJj=x’
|JI=1 (mod gq—1)
JCs

dto=0
Proof. This follows directly from Theorem [9.7] O

Viewing Lemma it is natural to ask for non-vanishing properties of Serre’s deriva-
tives of our Eisenstein series. In many cases indeed, we can prove that these are non-zero.
For instance, we have the next lemma:

Lemma 9.18. Ifg >2, m>1andpfm—1, and if ¥ is a finite subset of N* of cardinality
mlg— 1)+ L. then o' (£(1: ) #0.

Sketch of proof. In view of Lemmas [7.10] [7.11] and [0.17], it suffices to show that the right-
hand side of (9.13)) does not vanish identically if our hypotheses are verified. Note that for

I'UJ =% asin the sum in (9.13),

o4 <Uf Ui’) =4S 040+ Nugsr + (elements in w2 K (t) [[u]),
AEF,

and note that for all A\, uugyy = w9t (mod (u?t?)). This follows from
upyy = ul(1+ (O +Nui™ ™ NeF,

a consequence of the formula (eg)g = Cy(ep). Therefore

or o
©A < 11 1‘]> = 41! /\ZF: or(@4+X) (mod (u?t?)).
€lq

If I occurs in the sum, || =1 (mod ¢ — 1), 0 € I and I is not a singleton. The next step
is to move outside the formalism of power sums and to study algebraic relations between
elementary symmetric polynomials (modulo p). There is an explicit formula that can be
proved by elementary combinatorial way (but we omit the details of the proof) which is:

(9.14) Q=) o010 +A) = Ze](q aity), [ =ilg-1)+1, i>0, ¢>2
AER,

where ey (t;) is the k-th elementary symmetric polynomial in the variables t;. It is precisely
here that we suppose ¢ > 2. There is a similar formula in the case ¢ = 2 but since it is
not identical we disregard this case to avoid a too lengthy proof (but things proceed is a
sensibly close way).
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By the formula ({9.14]) the homogeneous term of Q; of highest total degree in sy is equal
to —e(i—1)(g—1)+1(t;). Now we consider:

Ry = Z Z or(0+X)

ILJ=% AcF,
|J[=1(g—1)
JCS

[I|—-1
q—1 1

- Z Z €jq-1)+1(t1)

= — Z Z €j(g—1)+1(tr)-

3=0 [I=(G+1)(g-1)+1
IUJ=5
0l

We have 8@(@ A(1;0x)) # 0 if and only if Ry # 0. There is a linear dependence relation
(in any polynomial ring of characteristic zero):

Z em—1)(g—1)+1(tr) = (Mg — 1) + Demm_1)g—1)+1(tsr)-
[T|=m(¢—1)+1
0l

Clearly, if p ¥ m — 1, the linear form in elementary symmetric polynomials in the left-
hand side does not vanish and therefore the homogeneous part of highest total degree
in Ry is non-zero hence proving that Ry itself is non-zero. This completes the proof:

0 (pa(1;0%)) £ 0. O

We avoided the case |X| =1 in the above lemma because, on the opposite side:
Lemma 9.19. If s = |3| < ¢— 1, then 8&3)(5(3;1)*2)) =0.

Proof. The result follows from the case s = 1 because of (8.10) and Leibnitz rule for 0y
(relative to ®). In the remaining case of one variable ¢t = t; observe that if 7 = F; is as in
§7.5.1{ (we recall that this is an element of M"(py,;Ls)), then AFM) € Mi(det ™ py,; Ly)\
{0} thanks to (7.13)). By (4.23)) we see that

hpy, (S)FY € Mi(p},;Ls) \ {0}.

Since M;(py,;Lyx) is one-dimensional generated by &£(1;p},) we deduce that, for some
Aelg,

E(15p%,) = Mpy, (S) FO.
But then,
OV (E(1: 7)) = A0 () () F ) = 0.

The identity 3§q+1)(h) = 0 is well known, see [24] Proposition (8.8)]. O
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We propose the next question with s = |3| =1 (mod g—1), s > 1, where we recall that
P3(G) is the Poincaré series defined in ((5.20)):

Question 9.20. In the case || =1 (mod g—1) and |X| > 1 when are the form (951)(5(1; ox))
and the last column of P3(G) proportional with a proportionality factor in Ls?

In the above question, G is as in Proposition [5.24] with m = 1. The question is suggested

by the fact that 8§q_1)(g) = h [24, Theorem (9.1)], and in the case ¥ = () and ¢ = 2, this
responds positively to one (and only one) particular case. But if |[X| = 1, from our results

one sees that the question has negative answer. Indeed P3(G) # 0 and 8%1)(5 (1;0%,)) = 0.

9.3. A conjecture on multiple sums. We write Z; = @, ,2,, for the graded F,-
algebra of the multiple zeta values in Tate algebras where Z,, , is the [F)-subvector space
of Fplt; : i € N*][[}]] generated by the corresponding multiple sums of §9.1.1] Hence, this
space is endowed with the Gauss norm ||-|| extending |-| and is generated by the sums f4(C)
of in the settings of and the semi-characters ¢ involved in the compositions
arrays are maps from A to Fy[t; : i € N*] defined by

(9.15) o(a) = HXti(a)"", acA,

1€N
with n; € N and n; = 0 for all but finitely many ¢ € N*. Here we prefer to write (4(C)
instead of f4(C).

Similarly, we write Z, for the Fj-algebra F = Znﬂ Fn,o where F, ; is this time the
[F,-subvector space of Fp[0][t; : ¢ € N*][[u]] (with the v-valuation) generated by the sums
©4(C) of (9.1.2). Theorem|[9.4]implies that Z; and Z,, are F,-algebras. However, we do not
know if Z, is graded by the degrees like Z;. The algebra Z, is the algebra of A-periodic
multiple sums. We propose:

Conjecture 9.21. The correspondence (4(C) <+ pa(C) induces an isomorphism of F,-
algebras Z; = Z,.

Conjecture implies that Z, is graded by the degrees. Moreover, all the identities for
multiple zeta values in Z¢ correspond to identities for multiple A-periodic sums, many of
which can be proved directly (e.g. Lemmas and . For example, note that in the
proof of Proposition X and Z are not homogeneous. By Conjecture [9.21] any linear
dependence relation between X', V1, Vs and Z must come from two homogeneous ones, one
in gfl and another one in F5=, both defined over F),. We see that these relations exist
and are indeed derived from and the identity pa(2;0%) = wa(1; x4, )ea(1; Xty)-

10. PERSPECTIVES ON ALGEBRAIC PROPERTIES OF EISENSTEIN SERIES

We give here further conjectures which allow to produce examples of relations which
can be in certain cases verified by explicit computations. This section provides perspec-
tives suggested by experimental investigations we did for modular forms associated to the
representations p3.. Conjecture using the notion of multiple Fisenstein series, and
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Conjectures [10.6] [10.7] and [9.21] together provide a collection of identities between our
Eisenstein series. Although yet hypothetical, some special cases of these identities can be
verified by explicit computation. Therefore these conjectures can be viewed as challenging
problems to pursue researches in this domain.

10.1. Multiple Eisenstein series. In [I§], Chen introduces a function field variant of
Eisenstein and double Eisenstein series as initially defined by Gangl, Kaneko and Zagier
n [23]. We propose here a generalization of her viewpoint. We begin with a description
of the required settings, introducing a vector-valued generalization of multiple Eisenstein
series. We state Conjecture suggesting correspondences between multiple zeta values
and multiple Eisenstein series.

We consider pq, ..., pr representations of the first kind which are constructed starting
from basic representations by using the operations @, ®,A%, S? as well as the ‘comatrix
operation’ Co, defined through the comatrix map. All these representations extend to
monoid maps defined over A2%2, with its standard matrix product. Before going on we
need some notation: we need to work with composition arrays having the first line composed
by representations of the first kind.

We consider positive integers nq,...,n, and composition arrays (with (-)* contragredi-
ent)
o (pl pr>’ o _ (/f{ pﬁ)_
nl DY nr nl DY nr
We also set, for j € {0,...,r}
oo (P (P e
so that CAST — C and we set CASO = (). We now define:
)= > (9o on(TY) Valha T (0)a
la1|>->]ar|>0
with the sum running over elements a1, ..., a, € AT. The dot - is the usual matrix product,

and the index (-), with a € A designates the the matrix function (with entries in Ry for
appropriate 3 C N*) obtained after substitution 2 — az. The matrices (‘J (1)) do not belong
to I' but all the terms of the series are well defined thanks to the hypothesis on p1, ..., p,.
This series converges to a rigid analytic map 2 — Kg *N for appropriate ¥ ¢ N* and
N >0 and to an element of MY <.

In the case p; = py, with, for ¢« =1,...,r, U; finite subsets of N*, the case that interests
us the most in the present paper, we have:

2@, == 3T ()@@ (59) Vi s )a @V ot o
ai,...,ar€EAT
la1]>--->ar|

where [-]; denotes the first column of a matrix and V' (n; p;) is defined in (7.1)).
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We also set
ZC) =) (80) X @ ea ol (To) @ @i (T, ),

ai,...,ar€AT
|a1|>->|ar|>0

a series which converges in F,(t5)((071))V* (we follow the same conventions used in the
definition of ®(C*)). In the case p; = py, for all i, it is easy to see that

0

zel =] o |em

AN
where ¥ = U;U; and N is the product of the dimensions of the representations p;, in

agreement with ([7.2)).

Definition 10.1. The multiple Fisenstein series associated with the composition array C
is the series

EA(C*) = [q»(@*) +B(C_ )@ Z(C,_ )+ + Z(é*)] e P
We say that EA(CA*) is of degree (ﬁ%:%’i).

It is easy to verify that, if the representations p; are all equal to 1 (case in which N =1
and ¥ = ) and r = 1,2, this coincides with [I8, Definition 3.2]. The function Ej(z)
defined in ibid. coincides with our £4(k) = €4 (i) (for & > 0) and similarly, E,/ #(z) of
ibid. coincides with our £4(r',s') = €a(} ). The case of depth r = 1 can be resumed
in the next formula which follows easily from and Proposition where m > 0 and
¥ C N* a finite subset such that || =m (mod ¢ — 1):

(10.1) Ex (”Wf) = [213 <f§) + z(fﬁﬂ = —&(m; pks).

It is also easy to verify the next lemma, where pJ, ..., py are representations of the form p*Uj
with U; C ¥ for some finite subset ¥ of N*, and where o1, ..., 0, denote the projections
of p1,...,pr on their upper-right coefficients (these are semi-characters). We recall the

multiple sums ¢4 defined in .
Lemma 10.2. Writing

o Pt b1 1 c_(on o 1 .- 1
nl DR n"’ ml .. ms ’ nl ... n’r‘ m1 DR ms ’
forr > 0,8 >0, the first entry &1 of € = EA(CA*) satisfies, with n =, n;,
& = F(FossMga (g g b A )R M (3 I Tl ) Calme)

"+%ml¢A(%} . g: %1><A(m27_..,ms)+¢14<%% - ZZ)CA(mh""mS))



164 F. PELLARIN

and the last entry Eny € Oy, of € = EA(CA*) satisfies
En —Ca(C) € M.

10.1.1. FEulerian multiple zeta values. We consider semi-characters o1, ..., 0, defined as in
1) and positive integers ni,...,n,. We write 0 = [[,0; = Hj X?j for the type and
n = Y. n; for the weight of the multiple zeta value (4(7! > 77). In this subsection we

return to the settings of §9.1.1] to make the following definition.

Definition 10.3. Let Z be a K-linear combination of multiple zeta values of degree (Z)
We say that Z is Fulerian if

%’I’L

Hj W(tj )Vi '

This agrees with the notion of eulerian multiple zeta value of Thakur as in [77, Definition
5.10.8] because in the case of trivial type the product involving the Anderson-Thakur
function is equal to one. See [I7] for deep properties of Eulerian multiple zeta values in
the case of trivial type. Examples of Eulerian combinations of multiple zeta values in our
settings are given by the elements (4(n;oy) with || =n (mod ¢ —1). By using [34] (39)]
xt 1 - 1
1g-1-- qr’l(q—l))

Z € K(ty)

we see that the elements (4( are eulerian for all > 0.

10.1.2. A conjecture for multiple Eisenstein series. We denote by Wﬁ* the [F,-vector space
of multiple Eisenstein series of degree (’; ), with n > 0 where p* is a product of represen-
tations of the type pf; . Writing p* = ®; (p}fj)®”ﬂ', we set o = Hj XZJ We consider C,C* as
in Lemma We address the following:

Conjecture 10.4. The following properties hold:

(1) We have inclusions WE oWy c Wﬁ;_?,ff*.

(2) The correspondence 4(C) — EA((?*) defines an isomorphism 1 of Fy-vector spaces
between the space Z7 of multiple zeta values of degree (Z) and Wﬁ* which s com-
patible with the multiplication rules in such a way that the sum W = Zn,p* Wﬁ* 18
graded, and endowed with a structure of IFy-algebra with multiplication ®, isomor-
phic to the algebra ,, , Z7 .

(3) An element f € Z7 is eulerian if and only if n(f) is a modular form in M, (p*;Lx).

The next result describes a depth two identity which illustrates the pertinence of the
above conjecture in a special case, interesting because lying outside the case of Eisenstein
series. The reader will notice that the proof given is quite ad hoc and not easily gener-
alizable. While the first item of the conjecture is likely to be at reach by an appropriate
generalization of the harmonic product of the equivalence between eulerianity of con-
stant terms and modularity of vector functions may require deeper arithmetic/geometric
tools.

Proposition 10.5. The following identity holds:
ELipf) @ E(q—Li1) + E(g; pf) = SA(”f qil).
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Proof. We claim that

(10.2) E(L;pf) = 7T< ;fj((a) )> a (CA(lo;m)>’

where 0 is the semi-character a — x:(az) and ¢4 has been introduced in This
follows easily from ((10.1]), Perkins’ identity (6.13)) and Proposition In a similar way,
we can easily prove the identity

<PA( ) 7a 0 0
(10.3) E(g; p7) =71 ( a(’ ) ) + @—@w(t)(@(q— 1)> - <CA(q;><t))'

To see this, note that 7(£(1; p7)) = £(¢; p7) and use (2.18)); all the series involved in these
formulas are convergent for the v-valuation. We deduce from ((10.2) and ([10.3]) that

E(Lipf) ®E(q—1;1) +E(q; p7) =
o~ @A(1q11) - SDA(Xlt) B ( 0 )
T a(nn)) T () T a(nn))

This identity is reached applying the second and the third identities in and the formula
(7.12)). But a direct computation shows that

pr 1\ _ |z (i 1 & (Pt 1 pp 1
gA(l q—1>_{@<1 q—1>+¢<1>®z<q—1>+z(l q—lﬂl

equals the right-hand side of the above identity. O

We deduce that & A(plt* qil) is in My(pf;L). One further proves that it is non-zero and
is not a cusp form. In fact we have that

&4( ! q11> (CA( 1Oq 1)) e m¥,

with smg the maximal ideal of the valuation v, and ¥ a smgleton so that n(Ca (X q11 ) =
Ealy . 1) and we see, by [34, Lemma 6.12] that Ca(Y', )is Eulerlan One proves easily

that Ca( Y = )= aq —1¢a(% ). However, the cusp form SA( il) 9q —LE4(°F) does not
vanish identically by Corollary- Hence the item (3) of ConJecture _ 10.4| does not extend
to K-linear combinations of multiple Eisenstein series.

10.2. A conjecture for zeta values in Tate algebras. We now focus on zeta values in
Tate algebras ([1.17)). Recall from the introduction that ¢ = p® with e > 0. Hence 7 = p°
where g is the IF-linear automorphism of C,, given by ¢ + ¢ for ¢ € C,, which can be
extended [, (ty;)-linearly to Ky, for any finite set ¥. We introduce the following F,-algebra

L:=TFp | "™ (Ca(l, xt,)) ;,LGEN;] UIF i e N[0T 7).
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We set (4(0) := 1. The [Fp-algebra I is thus generated by all the p-twists (negative or
positive) of the functions (4(1,xy) for i € ¥. It is very important to allow negative
values for m, and for this reason this Fj,-algebra carries a structure of inversive p-difference
algebra. We address the following

Conjecture 10.6. For alln € N* and ¥ C N* such that |X| = n (mod ¢ — 1) we have a
UNLqUe eTpansion

(10.4) Ca(nsos) = > Calk)ne, mi € L.
0<k<n
k=0 (mod ¢—1)

Recall that in our conventions, (4(k) = Ca(k;1) are the usual Carlitz zeta values. We
are going to give some examples of relations along the predictions of this conjecture. Note
that the factors 7, need not to lie in Fp[t; : i € N*]((3)). However, there exists [ € N such
that p!(ng) € Fplt; : i € N*]((3)) for all k = 0 (mod ¢ — 1) in the range 0 < k < n and
all the terms involved are products of zeta values. Since p!(Ca(k;ox)) = Ca(kp';ox), the
identity is equivalent to an algebraic identity of zeta values as in defined over
[F,. We recall from Thakur conjectures in [79} §5.3] that the only F,-relations among his
multiple zeta values in K, are those which come from the harmonic product.

Conjecture 10.7. The only Fy-algebraic relations in 1 are those coming from the harmonic
product.

After Conjecture @ all the algebraic relations defined over F,, between the elements
Ca(n;ox) with n = |X| (mod g — 1) can be derived from the harmonic product and for
each zeta value (4(n;oy) it should be possible to derive explicit formulas like in by
using the harmonic product of Theorem (or in [58]). However, carrying this program
might be very difficult in practice due to the combinatorial computations involved. The
challenge is to introduce other techniques to tackle it. This was accomplished by Hung Le
and Ngo Dac in [43], where they proved a particular case of this conjecture hence proving
a conjectural formula of the author of the present text. Their result is reviewed in the

following §10.2.1

10.2.1. Some evidences. We focus on the case n = 1 in Conjecture so that we can now

suppose that |X| = m(q — 1) + 1 with m > 0. We know from [2, 5] that
-1)"7B
105 Gion =TT mio medg 1), (9151,

wy;

where By, € Alty] @) is a monic polynomial in 6 of degree m — 1 when m > 1 and
wy = [Liesw(t;) € Ts. If m = 0, the conjecture is clearly verified thanks to the formula
(7.12)). If m =1 then By, = 1 by [5, Corollary 7.3] so that

Ca(log)=7"" (H CA(LXtJ) el

1€

188 stands for 'Bernoulli’.
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confirming Conjecture [10.6] also in this case.
To describe the case m = 2 (so that |X| = 2¢ — 1) we shall introduce the notation

ey = (H CA(LXtJ) ;

icU

for U C 3. Then it is possible to show the following explicit formula:

-1 —2
CA(17UE) = Z £§f1 )Egh )’
>X=U1uUsy
|Ur|=g—1
|Uz|=q

where LI denotes disjoint union. Now, recall that the right-hand side is equal to %, with

By=— > ]I (ti—ﬁ),

UaCY i€Usz
|Uz2|=q

while the left-hand side is easily seen to be equal to ?%, with

(with e, denoting here the n-th elementary symmetric polynomial), and it is easy to see

that By, = BY, (all the terms defined over FP[G%], but not all over F,[6], cancel. More
generally we have the next result (see [43, Theorem 1.3])

Theorem 10.8 (Hung Le and Ngo Dac). For all m > 0 and for all ¢ > m the following
formula holds:

(10.6) Callios) = > G o™,
UiU---UUpm =%
q UL+ +q" " Um|=1

Although Conjecture predicts that such formulas can all be derived from the har-
monic product the method of Hung Le and Ngo Dac does not use it, and introduces new
tools which do not reduce it to a mere computational verification, the latter being most
likely out of reach.

9The formula 1) has been conjectured by the author of the present paper and incorporated in an
earlier version of it. The work [43] has been anticipated by the verification of the cases m = 1,2,3,4 by
Ngo Dac in [20].
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10.2.2. More about Theorem [10.8 It is not hard to show that Hung Le and Ngo Dac’s
Theorem is equivalent to the following corollaries

Corollary 10.9. Assuming that m > 2 and that ¢ > m, we have the formula

al,05) = Z S T Ca o)Ly ey Y.

r=0 Uuvuy'=
|V]=g—r— 1
|Ul=rq
The interest of Corollaryis that it can be considered in parallel with similar (but not
analogue) classical formulas by Euler. We recall that the well-known Riccati’s differential
equation f/ = —1 — f? satisfied by the cotangent function f(x) = cot(x) implies, via the
formula —ZF cot(rz) = ;50 C(20)2*

1 n—1
<n + 2) ¢(2n) =) ((20)¢(2n —2i), n>1.
=1

Note that the coefficients in the quadratic expression on the right-hand side are all equal
to 1.

Theorem implies nice formulas for the polynomials By, € Alty] (when |X| > g.
Indeed, observe that for all m > 1,

(10.7) (= O)w) " = (t—&qm%l> o (t-0)w

Hence,

m(g(l%)) ) _an(t—ﬁtf”l)u-(t—efz)’ .

W

1
Setting b*, = (t - eqm*) (t - 9%) (again for m > 1) and B, (ts) = [Les b (), we
thus have:

Corollary 10.10. The following formula holds, when q¢ > m.
By, = (-1)"* Z Bi(ty,) - Bn(tu,,)-

UiU---UUm =X
q UL+ 4q~ " |Um|=1

Similarly, Corollary is equivalent to:
Corollary 10.11. The following formula holds, for |X| =m(q—1) 4+ 1 with ¢ > m > 2.

m—2
r=0 vuvuy'=x ieuuy’
|U|=qr
[V]=g—r—1

|~ |=(m—r—1)(¢g—1)+1

20 hey were stated as Conjectures in the earlier versions of the present manuscript.
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10.3. A modular analogue. We end this work with a conjectural formula which can be
derived from Theorem We set, with U C N* a finite subset and j € Z:

&) =7 | Qe ).
€U

for U C X. Note that this needs not to represent an analytic function 2 — Lg *Lfor N > 1
if 7 <O0.

Conjecture 10.12. For allm >0, |X| = s =m(q—1)+1 and for all ¢ > m, the following
formula holds:

(10.8) E(1;p%) = > Ve e ™.
UrU--UUm =%
g UL |4 4q " |Um|=1

We note that ([10.8) expresses the analytic function £(1;p3,) as a linear combination
of non-analytic functions if s > 2¢ — 1. Clearly, Theorem [L0.8 and Conjecture [9.21] or

Conjecture imply Conjecture [10.12 (and the latter implies Theorem [10.8). The cases
B-10)

s = 1, q are obviously verified, see . The case s = 2¢q — 1 is at the moment unsolved.
The author was only able to verify, numerically, for few values of ¢ a prime number, that
the u-expansions of the ()-coordinates of both sides in agree up to a certain order.
But this is not enough to conclude.

ADDENDUM

The reader may notice that some results in [34] depend on results written here, and
some results of loc. cit. are cited in our However, there is no loop in the chains of
deductions.
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