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THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR

FORMS

F. PELLARIN

Abstract. In this text we generalize the notion of Drinfeld modular form for the group
Γ := GL2(Fq[θ]) to a vector-valued setting, where the target spaces are certain modules
over positive characteristic Banach algebras over which are defined what we call the
’representations of the first kind’. Under quite reasonable restrictions, we show that the
spaces of such modular forms are finite-dimensional, endowed with certain generalizations
of Hecke operators, with differential operators à la Serre etc. The crucial point of this
work is the introduction of a ’field of uniformizers’, a field extension of the valued field
of formal Laurent series C∞((u)) where u is the usual uniformizer for Drinfeld modular
forms, in which we can study the expansions at the cusp infinity of our modular forms
and which is wildly ramified and not discretely valued. Examples of such modular forms
are given through the construction of Poincaré and Eisenstein series.

After the discussion of these fundamental properties, the paper continues with a more
detailed analysis of the special case of modular forms associated to a restricted class of
representations ρ∗Σ of Γ which has more importance in arithmetical applications. More
structure results are given in this case, and a harmonic product formula is obtained which
allows, with the help of conjectures on the structure of an Fp-algebra ofA-periodic multiple
sums, multiple Eisenstein series etc., to produce conjectural formulas for Eisenstein series.
Other properties such as integrality of coefficients of Eisenstein series, specialization at
roots of unity etc. are included as well.
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1. Introduction

The aim of this volume is to introduce new perspectives in the analytic theory of Drinfeld
modular forms for the Drinfeld modular group GL2(Fq[θ]). This theory was initiated in
the foundational works by Goss starting from his Ph. D. Thesis (see [35]) and continued
in the works of Gekeler, notably in [24]. Probably these are the main foundational papers.
The theory is in expansion since then thanks to the work of several authors. For ’analytic
theory’ we mean a collection of algebraic or analytic results coming from the study of
expansions at the cusp infinity, such as finiteness of dimensions of spaces of modular forms,
Hecke operators, differential operators, congruences.

Modular forms with values in positive characteristic fields (1) such as

C∞ := ̂Fq((θ−1))sep,

are at the center of an active domain of research with deep developments in several direc-
tions, for more general groups GLn(A) (n ≥ 2), with A ring of functions over a smooth
projective geometrically irreducible curve regular away from an infinity point, its con-
gruence subgroups, leading to an algebraic and analytic theory of modular forms and to
compactification problems as in the works of Pink and Basson, Breuer and Pink [69, 8],
Gekeler [27, 28, 29, 30], Häberli [40], Hartl and Yu [41]. The arithmetic theory of Drinfeld
modular forms, if compared with that of classical modular forms, also has a different flavor.
We mention the investigations related to Galoisian representations and the cohomological
theory of crystals by Böckle [9, 10] and aspects of P -adic continuous families of Drinfeld
modular forms by Hattori [42] and Nicole and Rosso [50, 51]. These works illustrate how
the theory ramifies deeply in a multitude of directions but the list of reference we give is
far from being representative. More references can be found in the above mentioned works.

In the present volume, we voluntarily restrict our attention to the simplest case of the
Drinfeld modular group

Γ := GL2(Fq[θ])
and we follow yet another direction of research which, as far as we can see, has not been
deeply investigated yet. We want to begin the study of analytic properties of modular
forms associated with an extension of the notion of type, initially introduced by Gekeler
in [24]. We replace it with a class of representations of Γ.

It is well known that the theory of modular forms for congruence subgroups of SL2(Z)
is deeply enriched by considering characters and multiplier systems, and Drinfeld modular
forms do not make exception to this principle. The type of a Drinfeld modular form
for the group Γ can be viewed as a one-dimensional representation of Γ. In this paper
we are interested in certain higher dimensional representations of this group that we call
’representations of the first kind’ and our basic observation is that they are naturally
contained in certain rigid analytic families at the infinity place.

The reader that wants to immediately skip to the description of the results contained
here can read §1.5 directly; just below in §1.1, we shall introduce simple explicit examples

1With Fq((θ−1))sep a separable closure of the local field Fq((θ−1)) and ·̂ denoting the completion.
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that, playing the role of Ariadne’s thread, can be helpful entering into the details of this
work.

1.1. Motivation through three examples. One of the principal initial reasons for our
endeavor comes from remarks on analytic families of modular forms first raised in the paper
[56], and later, in [61]. We shall give three explicit examples in various directions that can
help the reader to understand our viewpoint.

1.1.1. Serre’s example. Consider a prime number p > 2. We recall the fundamental exam-
ple of the p-adic family of Eisenstein series (for SL2(Z) in the settings and notations of
Serre [73, §1.6]; we will not recall all the definitions of the involved objects here). This can
be viewed as a family of formal series

k 7→ G∗k =
1

2
ζ∗(1− k) +

∑
n≥1

σ∗k−1(n)qn ∈ Qp + qZp[[q]],

in Zp[[q]] with q an indeterminate (which is often identified with the uniformizer at infinity
of the modular group), with the parameter k = (s, u) in the topological group

Xp = Zp × Z/(p− 1)Z
submitted to the condition that u is a multiple of the class of 2. We do not recall the defini-
tion of ζ∗ and σ∗k in detail here (read Serre, loc. cit.), but ζ∗ is essentially Kubota-Leopold’s
p-adic zeta function and σ∗k is the arithmetic function obtained from the arithmetic func-
tion σk when we drop the divisors that are multiple of p, so that a Xp-exponentiation can
be defined. If we choose any k as above, it can be proved that the corresponding value
G∗k is a p-adic modular form of weight k in Serre’s sense. There is an injective group map
Z → Xp; if we choose k ∈ 2N∗ (where N∗ = Z≥1) the value of G∗ at k is the image in
Qp[[q]] of a modular form of weight k for the congruence subgroup Γ0(p) of SL2(Z). Indeed

in this case ζ∗(1− k) = (1− pk−1)ζ(1− k) ∈ Q so that and we can view G∗k in Q[[q]] and

G∗k = Gk − pk−1Gk|V ,
where if f =

∑
n≥0 fnq

n, f |V :=
∑

n≥0 fnq
pn, and whereGw ∈ Q+qZ[[q]] is the q-expansion

of one of the various normalizations of the Eisenstein series of weight w ∈ (2N∗). In
synthesis, the p-adic Eisenstein family, for even integer values of the parameter, specializes
to modular forms for Γ0(p). The level p is therefore fixed, and the weight, non-constant,
varies in the topological group Xp. If p is an irregular prime it can happen that ζ∗(1−k) = 0
for some integral values of k. In this case, G∗k is a cusp form.

1.1.2. Goss’ example. Inspired by the above example of Serre, and based on earlier works
of Petrov [66, 67], Goss [39] looked for an analogue picture in the settings of Drinfeld
modular forms for Γ = GL2(A), where A := Fq[θ]. One first choses P ∈ A monic and
irreducible; an analogue of a prime number. While p-adic modular forms are, in Serre’s
approach, formal series in q, here Goss considers a new indeterminate u (2) that can be
identified with the usual parameter at infinity for the Drinfeld modular group (more details

2Not to be mixed up with Serre’s coordinate u in Xp.
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about it will be given in the present paper; the definition is recalled in full detail in (1.3)).
Then he proceeds constructing families of formal series in u that retrace some properties of
the above G∗k. Recall that in Serre’s example it was used, crucially that there is an action
of Z on formal series in q induced by Gm (indeed, there is the operator (·)|V ); here there
is a similar action of A on formal series in u (it is not given by Gm but by its Drinfeldian
companion which is Carlitz’s module; see later). If a ∈ A, we write ua ∈ A[[u]] for the
image of u under the action of a (in Serre’s settings we would have written qp = qp).

Also, there is a simple way to define exponentiation ak of a monic polynomial a ∈ A by an
element k of Goss’ topological group

XP = Zp × Z/(qdegθ(P ) − 1)Z.

This can be boiled down to construct the map XP → ÂP [[u]] (where ÂP is the P -
completion of A, see [39] for details and more generality):

k 7→ fk =
∑
a∈A

a monic

akua ∈ ÂP [[u]].

It is not difficult to show, in a way similar to Serre’s, that the special values corresponding
to k ∈ N∗ with k ≡ 1 (mod q − 1) are the u-expansions of Drinfeld cusp forms of weight k
for the full Drinfeld modular group Γ and by [39, Theorem 2], the above is a P -adic family
of Drinfeld modular forms in the sense of Serre. Again the level of the group is constant (full
level) and the weights vary. There is a substantial difference in the comparison with Serre’s
example. Goss observed that there is no non-zero constant term in these u-expansions of
forms; the elements of the family are all cusp forms. In clear, there is no occurrence of any
analogue of Kubota-Leopoldt zeta function in Goss’ construction.

1.1.3. A basic ∞-adic example. Serre’s and Goss’ examples are relative to the choice of a
finite place p of Q or P of K := Fq(θ), but in the Drinfeldian setting, it is possible to also
work with the choice of the place infinity ∞ of K. In the present volume we are mainly
concerned with this aspect of the theory. Less known is the existence of certain non-trivial
∞-adic families. Here is an explicit example. We denote by Facq an algebraic closure of Fq.

We consider a Dirichlet character

χ : (A/PA)× → (Facq )×

of level P ∈ A (monic and irreducible) that we extend to A in the usual way; now the
parameter of the ∞-adic family that we construct can be specialized to χ (so P varies).
We define the following rigid analytic function over the Drinfeld half-plane Ω := C∞\K∞ →
C∞ (where K∞ = Fq((1

θ ))):

(1.1) gχ(z) := −L(1;χ) +
∑′

a,b∈A
(az + b)−1χ(b),

where the dash indicates a sum avoiding a = 0 and where L(1;χ) is a Dirichlet L-value∑
a∈A, monic χ(a)a−1 which is also a special value of Goss’ abelian L-function. It is not
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difficult to show that given χ, gχ is a Drinfeld modular form of weight 1 for the principal
congruence subgroup Γ(P ) of Γ, thought neither is an Eisenstein series, nor a cusp form.

Is there an analytic space having the Dirichlet characters χ as points, in such a way that
we can associate to the isobaric family gχ a u-series expansion, knowing that the level now
varies as a function of χ? The answer is affirmative, and it is essentially contained in the
papers [55, 61]. The present work proposes to widely extend the theory. The characters

χ can indeed be viewed as closed points of the rigid analytic affine line A1,an
C∞ (and more

generally we will encounter higher dimensional affine spaces as parameter spaces). Not only,
but there exists an ∞-adic analogue of the Kubota-Leopold’s zeta function that allows to
interpolate the constant terms of all the gχ; a class of zeta values in Tate algebras discussed,
for example, in [2, 5, 55]. Additionally, although the functions gχ are not Eisenstein series,
the analytic function that interpolates them (a family) is a coefficient of a certain vector
Eisenstein series of weight 1 with values in Tate algebras for the full group Γ, associated to
a certain representation of Γ, and other entries of it sometimes deliver the special values
of Goss’ family. The reader will find a systematic study of these structures in this paper.
For instance, see our §7.

1.2. The field of uniformizers. To study congruences or Serre’s p-adic analytic families
of modular forms useful tool is provided by the series expansions at a cusp. For instance,
Gekeler’s seminal paper [24] uses ‘Fourier series’ of modular forms (we say ‘u-expansions’)
in an essential way. Many times, readers take for granted the existence of such expansions.

One bad news is that this viewpoint is no longer sufficient and in particular, it does not
extend to the example (1.1). It is more difficult to expand at a cusp the modular forms
that we are interested in. The good news is that there exists a field of uniformizers K
(Definition 3.33) in which we can embed all the coordinates of our Eisenstein series with
values in modular forms, or more generally, our modular forms.

Recall that a Drinfeld modular form for the group Γ in the sense of [35, 24] can be
identified with an element of the v-valued field

C∞((u)),

where v is the u-adic valuation, which is discrete. More precisely, a Drinfeld modular form
f has a u-expansion

f =
∑
i≥0

fiu
i, fi ∈ C∞.

A coordinate f of one of our vector modular forms with values in Tate algebras (including
the modular form interpolating (1.1)) can be identified, in unique way, with a formal series

(1.2) f = f0 +
∑
i>0

fiu
i,

where f0 is an element of the completion K of the fraction field of a Tate algebra for the
Gauss’ norm, and the coefficients fi are entire functions C∞ → K that we call tame series,
and that in general, are not constant functions. The field of uniformizers will be described
in §3, a rather important section of our work. We note that K is a valued field extension



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 7

of C∞((u)), but the extension of the valuation on it is no longer discrete and the extension
of valuations is wildly ramified.

We present a spectrum of aspects which is limited to the construction of the analytic
uniformization at the cusp infinity and some consequences going from the proof that vector
spaces of modular forms are of finite dimension, to the construction of explicit examples
of Eisenstein and Poincaré series and the analysis of their expansions in K. This already
offered challenges and rich pictures and we decided to confine our attention only to those
aspects which are tangible by an appropriate generalization of the viewpoint of Gekeler’s
seminal paper [24].

The volume presents the foundations to study new aspects of Drinfeld modular forms and
to do this, it presents new tools with an elementary approach. It is enriched with several
questions, problems and conjectures. Among other crucial aspects that we do not develop
here we mention the interpretation of modular forms of our settings as sections of algebraic
vector bundles and their links with the theory of harmonic cocycles à la Teitelbaum.

1.3. Description of the basic objects. Let q = pe be a power of a prime number p with
e > 0 an integer, let Fq be the finite field with q elements and characteristic p, and θ an
indeterminate over Fq. All along this text, we denote by A the Fq-algebra Fq[θ]. We set

K = Fq(θ). On K, we consider the multiplicative valuation | · | defined by |a| = qdegθ(a), a
being in K, so that |θ| = q. Let K∞ := Fq((1/θ)) be the local field which is the completion
of K for this absolute value, let Ksep

∞ be a separable algebraic closure of K∞, let C∞ be
the completion of Ksep

∞ for the unique extension of | · | to Ksep
∞ . Then, the field C∞ is at

once algebraically closed and complete for | · | with valuation group qQ and residual field
Fsepq , an algebraic closure of Fq.

The ’Drinfeld half-plane’ Ω = C∞ \K∞, with the usual rigid analytic structure in the

sense of [22, Definition 4.3.1], carries an action of Γ = GL2(A) and Γ̃ = PGL2(A) by

homographies: if γ = ( a bc d ) ∈ Γ̃, and z ∈ Ω,

γ(z) :=
az + b

cz + d
.

Denote by
J( ∗ ∗c d )(z) = cz + d

the usual factor of automorphy Γ × Ω → C×∞. Let us consider w,m ∈ Z; then, if w ≡ 2m

(mod q−1), the map (γ, z) 7→ Jγ(z)w det(γ)−m defines a factor of automorphy for Γ̃. There
is a bijection between these factors of automorphy and the couples (w,m) ∈ Z×Z/(q−1)Z
submitted to the above congruence.

We thus suppose that w ∈ Z and m ∈ Z/(q − 1)Z are such that w ≡ 2m (mod q − 1).
We recall the definition of Drinfeld modular forms (as considered by Gekeler and Goss, see
[24, Definition (5.7)]).

Definition 1.1. A Drinfeld modular form of weight w ∈ Z and type m ∈ Z/(q − 1)Z for

the group Γ is a rigid analytic function Ω
f−→ C∞ such that

f(γ(z)) = Jγ(z)w det(γ)−mf(z) ∀z ∈ Ω, ∀γ ∈ Γ̃
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and such that additionally, there exists 0 < c < 1 with the property that if z ∈ Ω is such
that |u(z)| ≤ c, where

(1.3) u(z) =
1

π̃

∑
a∈A

1

z − a
,

π̃ ∈ C∞ \K∞ being a fundamental period of Carlitz’s module (3), then there is a uniformly
convergent series expansion

(1.4) f(z) =
∑
n≥0

fnu(z)n, fn ∈ C∞.

We say that a function f in (1.4) is regular at the infinity cusp.

Note that (1.4) is not the only formulation of the regularity at the infinity cusp (4). We
can restate (1.4) equivalently by asking that the set of real numbers |f(z)| is bounded if
we choose z ∈ Ω such that |u(z)| is small.

The type in Definition 1.1 corresponds to a representation

(1.5) Γ
det−m−−−−→ GL1(Fq), m ∈ Z/(q − 1)Z.

In dimension > 1 it happens that certain representations of Γ naturally have non-trivial an-
alytic deformations, and this makes it natural to consider functions with values in positive-
dimensional Tate algebras or in similar ultrametric Banach algebras. We consider Σ ⊂ N∗
a finite subset. Let Fq(tΣ) be the field of rational fractions with coefficients in Fq in the
set of independent variables tΣ := (ti : i ∈ Σ). We choose a representation

(1.6) Γ
ρ−→ GLN

(
Fq(tΣ)

)
.

Let w ∈ Z be such that the map (γ, z) 7→ Jγ(z)wρ(γ) defines a factor of automorphy

Γ̃× Ω→ GLN

(
Fq(tΣ)

)
.

The necessary and sufficient condition for this is that

(1.7) ρ(µI2) = µ−wIN , µ ∈ F×q ,
as it comes out after a simple computation.

We consider the field
KΣ = C∞(tΣ)∧ = Ĉ∞(tΣ)

(the completion for the Gauss norm) (5) so that GLN (Fq(tΣ)) ⊂ GLN (KΣ). We denote
by ‖ · ‖ the multiplicative valuation of KΣ, extending | · | of C∞. We further extend this
to a norm on matrices with entries in KΣ in the usual way by taking the supremum of

3’Our’ analogue of 2πi, see (2.11).
4Note also that classically, a modular form for SL2(Z) (or for a subgroup of SL2(R) which is commen-

surable with it) can be also defined as a holomorphic function f : H = {z = x+
√
−1y ∈ C : x, y ∈ R, y >

0} → C satisfying a well known family of functional relations and such that, if z = x+
√
−1y with x, y ∈ R,

there exists c ∈ R such that f(x+ iy) = O(yc + y−c) (compare with Miyake’s [48, Theorem 2.1.4]).
5Observe the notation (·)∧ that will be used when the other notation will lead to a too large hat.



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 9

the multiplicative valuations of the entries. In §2.2 we discuss the notion of rigid analytic
functions with values in KΣ. Taking this notion into account:

Definition 1.2. A rigid analytic function

Ω
f−→ KN×1

Σ

such that

(1.8) f(γ(z)) = Jγ(z)wρ(γ)f(z) ∀z ∈ Ω, ∀γ ∈ Γ̃,

is called modular-like of weight w for ρ. Additionally, we say that such a function f =
t(f1, . . . , fN ) is:

(1) A weak modular form of weight w for ρ if there exists M ∈ Z such that ‖u(z)Mf(z)‖
is bounded as 0 < |u(z)| < c for some c < 1.

(2) A modular form of weight w (for ρ) if ‖f(z)‖ is bounded as 0 < |u(z)| < c for some
c < 1.

(3) A cusp form of weight w if ‖f(z)‖ → 0 as u(z)→ 0.

Let B be a C∞-sub-algebra of KΣ. We suppose that ρ as in (1.6) has image in GLN (B).
We denote by M !

w(ρ;B) (resp. Mw(ρ;B), Sw(ρ;B)) the B-modules of weak modular forms
(resp. modular forms, cusp forms) of weight w for ρ such that their images are contained
in BN×1. We have that

Sw(ρ;B) ⊂Mw(ρ;B) ⊂M !
w(ρ;B).

If B = C∞, N = 1 and ρ = det−m, these C∞-vector spaces coincide with the corresponding
spaces of ’classical’ Drinfeld modular forms of weight w, type m in the framework of
Definition 1.1.

To be relevant, Definition 1.2 must deliver certain primordial properties such as the finite
dimensionality of the modules Mw(ρ;B), or their invariance under the action of variants of
Hecke operators. We are far from being able to return satisfactory answers in such a level
of generality. However, there is a class of representations, called representations of the first
kind, introduced and discussed in §4.2, which looks suitable for our investigation because
they contain a variety of arithmetically interesting examples. An explicit example of such
representations is, with t a variable, the one which associates to a matrix γ = ( a bc d ) ∈ Γ,
the matrix

(1.9) ρχt(γ) =

(
χt(a) χt(b)
χt(c) χt(d)

)
∈ GL2(Fq[t]),

where χt is the unique Fq-algebra morphism Fq[θ] → Fq[t] sending θ to t. Another inter-
esting example is the contragredient (or dual) representation

ρ∗χt := tρ−1
χt ,

investigated in [55, 63]; in the latter case, we have already explicitly described the module
structure of Mw(ρ∗t ;T) (the values are in T2×1 where

T := Ĉ∞[t]‖·‖
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is the Tate algebra completion of C∞[t] for the Gauss valuation ‖·‖ extending the valuation
of C∞) and proved that these T-modules are endowed with endomorphisms given by a
natural generalization of Hecke operators.

1.4. How to interpret the example. The very first non-trivial example of our Eisenstein
series, first observed in [55], is the following function Ω→ T2×1 of the variable z ∈ Ω:

(1.10) E(1; ρ∗χt) =
∑′

a,b∈A
(az + b)−1

(
χt(a)

χt(b)

)
.

It is an analytic function Ω→ T2×1 following our §2.2. It is not at all difficult to see that

E(1; ρ∗χt) ∈M1(ρ∗χt ;T).

We look at the second coordinate, which can be rewritten, after an elementary manipula-
tion, as

(1.11) g := −ζA(1;χt) +
∑
a∈A

a monic

∑
b∈A

(az − b)−1χt(b),

with the negative of the ζ-value in Tate algebra

(1.12) ζA(1;χt) =
∑
a∈A

a monic

a−1χt(a) =
∏
P

(
1− χt(P )

P

)−1
∈ T×

as a constant term, where the product runs over the irreducible monic polynomials of A
(introduced in [55]). Let P ∈ A be monic and irreducible and consider one of its roots
ξ ∈ (Facq )×. The evaluation evξ of t at ξ allows to identify evξ ◦χt with χ a certain Dirichlet
character of level P . Hence, viewing (1.1), gχ can be identified the evaluation evξ of the
function g in (1.11).

We have collected the functions gχ in an analytic family g but we did not yet identify the
sum (1.11) with some kind of u-expansion as in (1.2). The strong point of Definition 1.2 is
its simplicity but in practice it does not allow to do computations with Drinfeld modular
forms. If we compare with Definition 1.1, we still need a valuation at the infinity cusp,
available at least in the case of classical Drinfeld modular forms by considering the order
in u in (1.4). This problem is already mentioned in [63].

Although rather technical in general, the construction of the valuation can be made
more transparent, in the example we are discussing, with the use of Perkins’ series (see
§6.4) (6). The simplest Perkins series is:

ψ(1;χt) :=
∑
b∈A

(z − b)−1χt(b).

6We mention that Perkins’ investigations have also important connections with the notion of quasi-
periodic functions of Gekeler (as in [25]).



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 11

It can be seen as a meromorphic function C∞ → T of the variable z and allows to rewrite
(1.11) in the following way:

(1.13) − ζA(1;χt) +
∑
a∈A

a monic

ψ(1;χt)a,

where the function ψ(1;χt)a is defined by replacing the variable z with az (in agreement
with the notation ua). Perkins proved formulas such as

(1.14) ψ(1;χt) = ω(t)−1π̃u(z)
∑
j≥0

expC

( π̃z

θj+1

)
tj , z ∈ C∞ \A.

In the right-hand side we have Carlitz’s exponential expC and the Anderson-Thakur func-
tion ω(t) (all these items will be reviewed in §2). We postpone presenting the definition
of the field of uniformizers K but this is a very first example of one of its elements. More
explicitly, ψ(1;χt) is a series

∑
i fiu

i with a unique non-zero monomial, of the form f1u
1

where

f1 =
π̃

ω(t)

∑
j≥0

expC

( π̃z

θj+1

)
tj .

Our settings are such that the additive valuation v extending that of C∞((u)), evaluated
on the left-hand side of (1.14), equals

v(u) + v(f1) = 1 + v(expC(π̃z/θ)) = 1− 1

q
,

and the leading term of the tame series f1 is proportional to expC(π̃z/θ). It can be proved
that the series expansion of g in K is:

g = f0 +
∑
i>0

fiu
i,

with f0 = −ζA(1;χt) and f1 as above. The other coefficients f2, f3, . . . are progressively
more and more difficult to compute and there is no easily recognizable pattern that can
help in that task. Yet, it is easy to verify that the coefficients are elements of π̃

ω(t)A[t] (the

constant term f0 too, but this is a non-trivial property). In general, this process allows to
compute v-valuations of the entries of our Eisenstein series and more generally, of modular
forms.

We hope that at this point the reader has a good view of our theory of tame series and
the field of uniformizers, and its various consequences. Although it is difficult to explicitly
compute series expansions of our modular forms, the existence of the field K provides an
environment in which computations are virtually possible. Thanks to this formalism we
are able, without much additional effort, to reach most of the results of the first part of
the present paper. The reader may find the preliminary material §2, 3 and 4 heavy but
this reflect the complexity of the given settings. It is perhaps possible to get rid of the
field K and work more directly, starting with Definition 1.2 but K is the natural field in
which one can study series expansions at infinity of our modular forms and also allows to
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introduce notions of rationality and integrality of the coefficients etc. for modular forms.
The difficulty of multiplying formal series in K mirrors the complexity of the behavior at
the cusp infinity of Drinfeld modular forms in our generalized setting.

We also take the opportunity to point out that, all along the present paper, a ’modular
form’ is understood to be a vector-valued modular form associated to one of these represen-
tations, while a ’scalar modular form’ is one of such forms associated to a one-dimensional
such representation.

1.5. Results of the text. The volume is organized in ten sections. These sections can
be roughly divided in three principal parts.

I. Sections 2 to 6. We present the foundations of the theory: field of uniformizers,
Hecke operators, Serre’s derivatives finiteness results.

II. Sections 7 and 8. We study modular forms for the representations ρ∗Σ. We discuss
the structure of strongly regular modular forms.

III. Sections 9 and 10. We discuss arguments related to the harmonic product for
multiple sums that we apply to a sort of analogue of stuffle product in the theory
of classical multiple zeta values, for Eisenstein series, and we present open problems.

Part III can be read quite independently of the previous ones. Reading Part II is possible
without reading all proofs in Part I. The following synthesis summarizes the content of
the paper and our results (more precise statements will be formulated along the text). We
proceed in the order suggested by Parts I to III.

Content of Part I. The key environment is the field of uniformizers K (remember §1.4) with
valuation v, additive non-discrete valuation group Z[1

p ], residual field ∪ΣKΣ, valuation ring

O and maximal ideal M, to which the entire §3 is devoted. The field K is constructed
explicitly in §3 by taking the completion of the fraction field of an integral ring of entire
functions that we call the ring of tame series. The next result is proved:

Theorem A. Let Σ ⊂ N∗ be a finite subset and ρ : Γ→ GLN (Fq(tΣ)) be a representation
of the first kind, let w ∈ Z be such that (γ, z) 7→ Jγ(z)wρ(γ) is a factor of automorphy for

Γ̃. The following properties hold.

(1) There is a natural embedding of KΣ-vector spaces M !
w(ρ;KΣ)

ιΣ−→ KN×1.
(2) The image by ιΣ of the KΣ-vector space of modular forms Mw(ρ;KΣ) can be iden-

tified with ιΣ(M !
w(ρ;KΣ)) ∩ON×1.

(3) The vector space of cusp forms Sw(ρ;KΣ) can be identified with the sub-vector space
of Mw(ρ;KΣ) which is sent to MN×1 by the embedding ιΣ.

(4) We have that C∞((u)) naturally embeds in K and v restricts to the u-adic valuation.
(5) The vector spaces Mw(ρ;KΣ), Sw(ρ;KΣ) are endowed with Hecke operators Ta as-

sociated to ideals a of A, which provide a totally multiplicative system of endo-
morphisms reducing, in the case Σ = ∅, to the classical Hecke operators acting on
classical scalar Drinfeld modular forms and cusp forms.

(6) We have KΣ-linear maps ∂
(n)
w : Mw(ρ;KΣ) → Sw+2n(ρdet−n;KΣ), defined for all

n ≥ 0 and generalizing Serre’s derivatives.
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The slogan is therefore: modular forms are weak modular forms with entries in the ring
of integers of the field of uniformizer, and cusp forms are modular forms with entries that
are in the maximal ideal. The corresponding results in the body of the text are more
precise and cover a wider spectrum of applications. The main examples of modular forms
(construction of Poincaré series etc.) and the basic results concerning the spaces Mw(ρ;KΣ)
and Sw(ρ;KΣ) are contained in §5. Parts (1), (2), (3) will be proved in Theorem 4.12 and
(4) is an obvious consequence of the above (so, when ρ = 1 is the trivial representation
(sending every element of Γ to 1 ∈ GL1), our construction specialises to the known setting,
and M = ⊕wMw(1;C∞) is the well known algebra of C∞-valued Drinfeld modular forms
for Γ (of type 0 in Gekeler’s terminology). We will introduce Poincaré series in §5.3 as a
first non-trivial class of modular forms. Part (5) is our Theorem 4.13; the proof is very
simple, thanks to the flexibility of the use of the field of uniformizers, and we can say the
same about part (6), which corresponds to our Theorem 6.8.

A non-complete field LΣ intermediate between KΣ and the fraction field of TΣ will be
needed in the next Theorem; it is defined in §2.1.4.

Theorem B. The following properties hold, for ρ a representation of the first kind.

(1) For all w ∈ Z, the LΣ-vector space Mw(ρ;LΣ) has finite dimension. The dimension
is zero if w < 0.

(2) The dimension of the space M1(ρ;LΣ) does not exceed the dimension of the LΣ-

vector space of common eigenvectors in LN×1
Σ of all the matrices ρ(γ) with γ in the

Borel subgroup of Γ.

The matrices ρ(γ) have all the eigenvalues equal to 1. Note that (1) of Theorem B
only deals with modular forms with values in LΣ. One reason for this restriction comes
from the fact that we use, in the proof, a specialisation property at roots of unity which is
unavailable in the general case of KΣ-valued functions. This result corresponds to Theorem
5.5.

Content of Part II. As we have mentioned, a scalar Drinfeld modular form for Γ as in
Definition 1.1 has a unique u-expansion (1.4) in C∞[[u]] and combining part (2) of Theorem
A and Proposition 3.31, one sees that every entry f of a given element of Mw(ρ;KΣ) has
a uniquely determined series expansion

f =
∑
i≥0

fiu
i

where for all i ≥ 0, fi is an entire function C∞ → KΣ of the variable z ∈ Ω of tame series
described in §3.2 (and additionally, f0 is constant in KΣ). This generalizes the case of
Definition 1.1, where the coefficients fi are all constant functions, in C∞. It is in general
very difficult to describe the coefficients fi but we make some attempts. For instance,
something can be done with Eisenstein series for the representations ρ∗Σ (see §7) by using
the already mentioned Perkins’ series as in §6.4; see Proposition 7.2.



14 F. PELLARIN

We fix a subset Σ ⊂ N∗ of cardinality s and we consider, for all i ∈ Σ (t(·) denotes
transposition),

ρ∗ti(γ) = t

(
a(ti) b(ti)
c(ti) d(ti)

)−1

,

and

(1.15) ρ∗Σ :=
⊗
i∈Σ

ρ∗ti .

This is indeed a representation of the first kind of degree s where N = 2|Σ|, in the sense
of our Definition 4.2. Additionally, ρ∗Σ is an irreducible representation of Γ in GLN (Fq[tΣ])
(see [57] or our Lemma 7.11). An important feature of this class of representations is that
it allows to construct certain Eisenstein series in §7. If s ≡ w (mod q − 1) and w > 0 we
have the Eisenstein series of weight w:

(1.16) E(w; ρ∗Σ)(z) :=
∑

(a,b)∈A2\{(0,0)}

(az + b)−w
⊗
i∈Σ

(
a(ti)

b(ti)

)
,

a definition that extends (1.10) to several variables tΣ, which is a non-zero holomorphic

function Ω→ TN×1
Σ , where TΣ is the completion Ĉ∞[tΣ] of the polynomial algebra C∞[tΣ]

with respect to the Gauss norm ‖ · ‖, that is, the standard Tate algebra in the variables tΣ
(hence KΣ is the completion of the fraction field of TΣ for ‖·‖). These series also generalize
the usual scalar Eisenstein series for Γ (case of Σ = ∅). We have

E(w; ρ∗Σ) ∈Mw(ρ∗Σ;TΣ) \ Sw(ρ∗Σ;TΣ).

Writing
E(w; ρ∗Σ) = t(E1, . . . , EN ) ∈ ON×1

Σ

we can prove that
E1, . . . , EN−1 ∈M, EN ∈ O \M

(we recall that O and M are respectively the valuation ring and the maximal ideal of the
field of uniformizers).

It turns out that
EN ≡ −ζA(1;σΣ) (mod M),

which is a generalization of (1.11) and (1.13), where

(1.17) ζA(n;σΣ) :=
∑
a∈A+

a−nσΣ(a) =
∏
P

(
1− σΣ(P )

Pn

)−1

∈ T×Σ , n ∈ N∗

with σΣ(a) =
∏
i∈Σ χti(a), the eulerian product running over the irreducible monic polyno-

mials of A (generalization of (1.12)), are the zeta values in Tate algebras studied in [2, 3, 5]
as well as in other papers. It can be proved [2, §2.1] that ζA(n;σΣ) extends to an entire
function of the variables tΣ.

These Eisenstein series seem to be at the crossroad of several interesting features that
we gather in the next result (but see the text for more precise results). To begin, we must
point out that in §7.2, we construct an indexation (EJ)J⊂Σ of the entries Ei of an Eisenstein
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series E = E(w; ρ∗Σ) by the subsets J of Σ. With this indexation, the first entry E1 of E
equals E∅ and the last entry EN equals EΣ. We have the next result.

Theorem C. The following properties hold for the Eisenstein series E(w; ρ∗Σ):

(1) If w = 1 and J ( Σ is such that |J | = (m−1)(q−1)+l with m > 0 and 1 ≤ l ≤ q−1
or m = 0 and l = q − 1 then we have the v-valuation v(EJ) = 1 − q−m(q − l) > 0
and v(EΣ) = 0.

(2) If w > 0, E(w; ρ∗Σ) is v-integrally definable (it has an integrality property of the coef-
ficients that is described in our Definition 7.7) for valuations v of K(tΣ) associated
with a non-zero prime ideal p of A, and this for all but finitely many p.

(3) Evaluating the first entry of E(w; ρ∗Σ) at ti = θq
ki for all i ∈ Σ with ki ∈ N yields,

up to a scalar factor, a Drinfeld quasi-modular form in the sense of [14] with an
A-expansion as in [67] and all these series occur in this process.

Part (1) can be generalized to some cases in which `q(w) < q (the sum of the digits of the
q-ary expansion of w is < q) thanks to Theorem 6.16, a result that describes the v-valuation
of Perkins series as in §6.4. The question of the computation of these v-valuations in full
generality, related to the computation of the v-valuation of all Perkins’ series is, we should
say, not easy, and still open. It is related to a similar question on v-valuations of Perkins’
series and therefore of generalizations of Goss’ polynomials. The recent work of Gekeler
[31] suggests us that this is accessible but difficult.

Part (2) generalizes the properties of integrality of the coefficients of the u-expansion of
scalar Eisenstein series as in [24, (6.3)]. Note that our result is more recondite in the case
Σ 6= ∅. Indeed a notion of integrality of the coefficients of a series

∑
i fiu

i with coefficients
fi which are tame series has to be introduced, and this is exactly what we do, and it is not
a triviality. Hence, Theorem C would not be meaningful without our investigations of §3.
As for part (3), it was motivated by, and answers, a question by Goss (in a 2013 letter to
A. Petrov, [37]). A quick description of properties related to v-adic modular forms is given
in §7.6.5.

In §7.5 we will explore the arithmetic structure of negative weight modular forms for ρΣ

and deduce, by duality with Eisenstein series, a weak form of the functional identities [2,
Theorem 1].

In general, we do not control the dimensions and we are unable to construct bases of
the spaces Mw(ρ;KΣ) except when w = 1 and ρ = ρ∗Σ. We have proved:

Theorem D. If |Σ| ≡ 1 (mod q − 1) the vector space M1(ρ∗Σ;LΣ) is one-dimensional,
generated by E(1; ρ∗Σ).

This is Theorem 7.5. Part (2) of Theorem B (see Theorem 5.12) also includes an upper
bound for the dimensions of the LΣ-vector spaces, and implies a positive answer to the
question raised by [63, Problem 1.1] thanks to Theorem D. The proofs of (2) of Theorem B
and of Theorem D are easy but use a natural isomorphism between (scalar) Drinfeld mod-
ular forms for congruence subgroups of Γ and spaces of automorphic functions (harmonic
cocycles) over the Bruhat-Tits tree of Ω, and the same specialisation properties in terms of
the variables ti used in the proof of (1). When we do this with the entries of the elements
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of M1(ρ;LΣ) span scalar Drinfeld modular forms of weight one for congruence subgroups
of Γ. The proof of this result is thus based on a crucial earlier remark of Gekeler (which
can be found in Cornelissen’s paper [19]).

From §8 on, the paper almost exclusively focuses on structure properties of modular
forms for the representations ρ∗Σ. We introduce here the notion of strongly regular modular
form (see Definition 8.4). A strongly regular modular form f = t(f1, . . . , fN ) (transpose)
is a Drinfeld modular form (in our generalized setting) which satisfies certain conditions
on the v-valuations of its entries. Theorem 8.7 allows a completely explicit structure
description for these modular forms which can be stated as follows (more precise results
can be found in the text).

Theorem E. Every strongly regular modular form associated to the representation ρ∗Σ can
be constructed combining ’elementary’ Eisenstein series E(1; ρti) and E(q; ρti) for i ∈ Σ by
using the Kronecker product, and scalar Eisenstein series. In particular, the M ⊗C∞ KΣ-
module of KΣ-valued strongly regular modular forms is free of rank N = 2s where s = |Σ|.

The advantage of working with strongly regular modular forms is that to study them
we do not need the full strength of the tools developed in Part I of this text, namely, the
field of uniformizers and the theory of quasi-periodic matrix functions. To prove Theorem
E, we only need appropriate generalizations of the arguments of [63].

The continuous Fq(tΣ)-linear automorphism τ of KΣ extending the automorphism c 7→ cq

of KΣ induces injective Fq(tΣ)-linear maps

(1.18) Mw(ρ∗Σ;KΣ)
τ−→Mqw(ρ∗Σ;KΣ)

and we have a similar property with KΣ replaced with LΣ. We show, in Theorem 8.9 that
for every w there exists k ∈ N such that τk(f) is strongly regular for every f ∈Mw(ρ∗Σ;KΣ).
This shows that Drinfeld modular forms in Mw(ρ∗Σ;KΣ) are not too distant from strongly
regular modular forms and this allows to deduce:

Theorem F. The KΣ-vector spaces Mw(ρ∗Σ;KΣ) have finite dimensions.

Note that the functions of Theorem F have values in KN×1
Σ , not just in LN×1

Σ so that
the methods of proof of Theorems B and D do not apply for Theorem F. After Theorem
E for every modular form f ∈ Mw(ρ∗Σ;KΣ) there is k such that τk(f) can be constructed
combining Eisenstein series, and the coefficients in the construction are in KΣ. In full
generality, it seems difficult to overcome the use of the field K and prove Theorem F for
any representation of the first kind.

Content of Part III. This work ends with §9 and §10 which are more speculative and
contain a description of further perspectives of research. This part can be read quite
independently of the previous ones. We present here the harmonic product for multiple
sums, the interaction with multiple sums à la Thakur, multiple Eisenstein series, and
we propose conjectures based on identities between Eisenstein series and many explicit
formulas.

In §9 we prove (see Theorem 9.4) a variant of a harmonic product formula for certain
A-periodic multiple sums and we apply it to compute several explicit formulas relating
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Eisenstein series for ρ∗Σ. Some of these formulas have been conjectured in earlier works.
In §9 we state Conjecture 10.4, where we evoke the potential existence of an Fp-algebra
of multiple Eisenstein series and an Fp-isomorphism with an Fp-algebra of multiple zeta
values in Tate algebras. Additionally, we speculate that a multiple Eisenstein series is a
modular form for ρ∗Σ in our settings if and only if the multiple zeta values in Tate algebras
corresponding to it, which also is related to its constant term, is eulerian following our
Definition 10.3. We describe in §10.2 a conjecture on certain identities involving zeta
values in Tate algebras a particular case of which has been recently proved by Hung Le
and Ngo Dac in [43] and we end the work with analogue conjectural identities involving
our Eisenstein series E(w; ρ∗Σ). These identities are so complicated that are essentially
undetectable by numerical experiments. They do not seem to have analogues in the classical
setting of C-valued vector-valued Eisenstein series for the group SL2(Z).
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2. Preliminaries

Most commonly used notation.

• N = {0, 1, . . .} the set of natural integers.
• N∗ = {1, . . .} the set of positive natural integers.
• BM×N : M -row, N -column arrays with coefficients in the set B.
• Ir: the r × r identity matrix.
• t disjoint union.
• Diag(∗, . . . , ∗) diagonal matrix.
• `q(n) sum of the digits of the base-q expansion of the positive integer n.
• Fq finite field with q = pe elements, where p is a prime number and e > 0.

• A = Fq[θ], K = Fq(θ), K∞ = Fq((1
θ )), C∞ = K̂sep

∞ .
• Γ = GL2(A).

• Γ̃ = Γ/F×q = PGL2(A).

• 1 the trivial representation sending Γ to 1 ∈ F×q = GL1(A).
• Jγ(z) the usual factor of automorphy.
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• Ω = C∞ \K∞ the Drinfeld half-plane.
• u the uniformizer at infinity of Ω.
• Sw,Mw, spaces of cusp forms and modular forms of weight w.
• Σ a finite subset of N∗.
• TΣ Tate algebra in the variables tΣ = (ti : i ∈ Σ).
• KΣ the completion of the fraction field of TΣ (see §2.1.3).
• LΣ a certain intermediate field TΣ ⊂ LΣ ⊂ KΣ (see §2.1.4).
• K field of uniformizers, with valuation v, valuation ring O, maximal ideal M, resid-

ual field ∪ΣKΣ.
• B◦〈〈e〉〉b the B-module of tame series with coefficients in B.
• ω the function of Anderson and Thakur.

Overview of the section. In this section we collect the basic objects over which we are
going to build our theory. In §2.1.3 and 2.1.4 we describe the fundamental fields KΣ,LΣ,
depending on choices of finite subsets Σ of N∗ = N\{0} (and already used in the introduc-
tion). They serve to introduce, in §2.2, a class of analytic functions with values in certain
non-archimedean countably cartesian Banach algebras, such as KΣ (LΣ is not complete but
it is a filtered union of such algebras). For example, Proposition 2.11 is a useful analogue
in our settings of Liouville’s Theorem stating that a bounded entire function is constant.
In §2.3 the reader will find the basic tools related to the exponential and the logarithm of
a Drinfeld module, and allied functions. In §2.4 we discuss other relevant functions, no-
tably certain generalizations of Anderson and Thakur omega function, and generalizations
of the entire map χt : C∞ → T that interpolates the map A 3 a 7→ a(t) ∈ Fq[t]. These
functions arise naturally when one studies quasi-periodic matrix functions in §4. In turn,
these quasi-periodic matrix functions are essential to construct and analyze expansions of
our modular forms.

2.1. Rings, fields, modules. For the general settings on valued rings and fields and local
fields, we refer to the author’s [60, §2], from which we borrow the basic notation, and the
books [16, 75].

We present here some basic tools that we need, on ultrametric Banach vector spaces
and algebras (§2.1.1), Tate and affinoid algebras (§2.1.2). In §2.1.3 and §2.1.4 we introduce
certain ultrametric fields KΣ,LΣ (the former complete the latter not), crucial to us as they
constitute the target spaces of the entries of the vectorial modular forms we discuss in this
paper. The level of generality of this presentation is quite broad (it can be useful for other
works). Later in the present volume we only consider the cases of L = C∞ or L a local
field containing Fq.

We consider a field L containing Fq, valued with multiplicative valuation

L
|·|−→ R≥0.

We also choose an additive valuation

L
v−→ R ∪ {∞}
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with the property that | · | = c−v(·), for some c > 1. We denote by OL,ML and kL
respectively the valuation ring, the maximal ideal, and the residual field OL/ML of L.

The set L, whose elements are the subfields F of L over which the restriction of | · | is
trivial, is non-empty (it contains Fq) and it is ordered by inclusion. Hence there is a unique

maximal subfield k̃L over which the restriction of the valuation is trivial. This subfield is
algebraically closed in L and the inclusion map k̃L → OL induces an inclusion k̃L → kL.

Lemma 2.1. If L is complete and if there is a ring map kL → Facq , then k̃L ∼= kL.

Proof. For all x ∈ OL there is m > 0 such that $(x) := limn→∞ x
pmn exists; it does not

depend on m. This defines a ring map kL → k̃L inverse of the above map k̃L → kL. �

We suppose that L is complete and that kL embeds in an algebraic closure of Fq and we
identify kL with the maximal subfield of L over which the valuation is trivial. If x ∈ OL
we denote by x its image in kL by the morphism of reduction modulo ML.

2.1.1. Banach L-vector spaces and algebras.

Definition 2.2. A Banach L-vector space (B, | · |B) is the datum of an L-vector space B
together with a map

| · |B : B → R≥0

such that

(1) for all x, y ∈ B, |x+ y|B ≤ max{|x|B, |y|B},
(2) for all x ∈ B and λ ∈ L, |λx|B = |λ||x|B,
(3) for any x ∈ B, |x|B = 0 if and only if x = 0,

and such that B is complete for the metric induced by | · |B.
We say that two Banach L-vector spaces (B1, | · |B1) and (B2, | · |B2) are isometrically

isomorphic if there exists an isomorphism of vector spaces ϕ : B1 → B2 such that |ϕ(x)|B2 =
|x|B1 for all x ∈ B1.

The spaces cI(L). Let I be a countable set. We denote by cI(L) the set of sequences
(xi)i∈I ∈ LI such that xi → 0 where the limit is for the Fréchet filter of I, that is, the filter
of the complements of finite subsets of I (we shall more simply write i → ∞). The set
cI(L) is an L-vector space. We set ‖(xi)i∈I‖ = supi∈I{|xi|} for (xi)i∈I ∈ cI(L). Then, the
supremum is a maximum and (cI(L), ‖ · ‖) carries a structure of Banach L-vector space.
Note that ‖cI(L)‖ = |L|, where

|L| := {r ∈ R≥0 : ∃x ∈ L such that |x| = r};
the image of ‖ · ‖ equals the image of | · | in R≥0.

Definition 2.3. A Banach L-vector space B is countably cartesian if it is isometrically
isomorphic to a space cI(L) with I countable. Let B = (bi)i∈I be a family of elements of
B. We say that B is an orthonormal basis if |bi|B = 1 for all i and if every element f ∈ B
can be expanded in a unique way in a series

(2.1) f =
∑
i∈I

fibi, fi ∈ L, fi → 0,
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so that |f |B = maxi |fi|.
Compare with [15, Chapter 2].

Definition 2.4. A Banach L-vector space (B, | · |B) with a structure of commutative L-
algebra with unit is said to be a Banach L-algebra if |1|B = 1 and | · |B is sub-multiplicative:
for all x, y ∈ B, |xy|B ≤ |x|B|y|B. We identify L with L · 1 ⊂ B. A Banach L-algebra is
countably cartesian if the underlying Banach L-vector space is so.

2.1.2. Tate algebras, affinoid algebras. All along the present work we make use of the
following basic notations. Let R be a commutative ring with unit. We choose once and
for all independent variables ti with i ∈ N∗ and we work in the R-algebra R[ti : i ∈ N∗].
If Σ is a finite subset of N∗ of cardinality |Σ| = s we denote by tΣ the family of variables
(ti : i ∈ Σ). Then, R[tΣ] denotes the R-algebra R[ti : i ∈ Σ] in the s variables tΣ, embedded
in R[ti : i ∈ N∗] in the canonical way. If Σ = {i} is a singleton, then we often simplify our
notations writing t = ti.

We consider Σ a finite subset of N∗ and a sub-multiplicative norm | · |′ on L[tΣ] which
restricts to | · | on L ⊂ L[tΣ] (L is identified with a subalgebra of L[tΣ]). We denote by

L̂[tΣ]|·|′ ,
(

or L[tΣ]∧|·|′
)

the completion of L[tΣ] for | · |′ (7). It is a Banach L-algebra in the sense of Definition 2.4.
For example, we can take | · |′ = ‖ · ‖ the Gauss valuation over L[tΣ], that is, the unique

norm of L[tΣ] which extends | · |, such that

‖tiΣ‖ = 1

for all i = (ij : j ∈ Σ) ∈ NΣ, where

t
i
Σ =

∏
j∈Σ

t
ij
j .

It is easy to see that ‖ · ‖ is multiplicative (to see this it suffices to compute images in the
residual field). In this case we write

TL,Σ := L̂[tΣ]‖·‖.

We usually drop the reference to L if it is algebraically closed or if its choice is clear in the
context, hence writing in a more compact way TΣ. This is the Tate algebra (or standard
affinoid algebra) of dimension s = |Σ|. If Σ = {i} is a singleton we prefer the simpler
notation TL or T for this algebra, with variable t. Note that if Σ′ ⊂ Σ then the canonical
embedding L[tΣ′ ] ⊂ L[tΣ] induces an embedding TL,Σ′ ⊂ TL,Σ.

The Tate algebra TL,Σ is isomorphic to the sub-L-algebra of the formal series

(2.2) f =
∑

ij≥0∀j∈Σ
i=(ij :j∈Σ)

fit
i
Σ ∈ L[[tΣ]]

7The last notation is introduced for graphical convenience, in those circumstances where the hat in the
first displayed formula is too large.
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which satisfy
lim

min{ij :j∈Σ}→∞
fi = 0.

Thus, we have, for f a formal series of TL,Σ expanded as above and non-zero, that

‖f‖ = sup
i
|fi| = max

i
|fi|

and TL,Σ is countably cartesian (Definition 2.4). It is well known that TL,Σ is a ring which
is Noetherian and it is also a unique factorisation domain, normal, of Krull dimension s
(see [22, Theorem 3.2.1] for a wider treatise, see [15]). We will also use the L-sub-algebra
EL,Σ of TL,Σ of the series f as above with the property that for all r ∈ |L×|,

lim
min{ij :j∈Σ}→∞

|fi|ri1+···+in = 0.

If L is complete and algebraically closed, this can be identified with the L-algebra of entire
functions in the variables tΣ. If Σ is a singleton {i}, we will write EL or E for this algebra,
and we will use the variable t = ti.

An affinoid L-algebra A is the datum of a topological L-algebra A together with a
surjective L-algebra morphism

(2.3) TL,Σ
ψ−→ A, Σ ⊂ N∗, Σ finite.

Every affinoid L-algebra comes equipped with a Banach L-algebra structure, with the norm

‖g‖ = inf
ψ(f)=g

‖f‖, g ∈ A.

The kernel of ψ is closed and we have the next result where we assume that L is algebraically
closed.

Lemma 2.5. Every affinoid L-algebra is countably cartesian.

Proof. We consider A an affinoid algebra, with ψ and TL,Σ as in (2.3). If L is algebraically
closed and J is an ideal of TL,Σ, by [12, §1.3 Theorem 6], there exists an orthonormal basis
(bi)i∈I of TL,Σ and a subset J ⊂ I such that (bj)j∈J is an orthonormal basis of J. Then,
(ψ(bi))i∈I\J defines an orthonormal basis of A. �

The general case is also true, where L is not necessarily algebraically closed.

Remark 2.6. Note that if A is the affinoid algebra associated to an affinoid subset of
P1,an
L (with P1,an

L the rigid analytic affine line over L), with its spectral norm, then it is
countably cartesian also as an easy consequence of the Mittag-Leffler decomposition [22,
Proposition 2.2.6].

2.1.3. The completion KL,Σ of the fraction field of TL,Σ. Let L be a valued field, complete,
containing Fq. The fraction field of TL,Σ is not complete, unless Σ = ∅. We write KL,Σ

for its completion. It is easy to see that this is also equal to the completion of L(tΣ), for
the extension of the Gauss norm. If L is a local field, so that L = F((π)) with F a finite
field containing Fq and π a uniformizer, then KΣ = kL(tΣ)((π)). The residual field kKL,Σ
of KL,Σ is kL(tΣ). If Σ′ ⊂ Σ, we have an isometric embedding KL,Σ′ ⊂ KL,Σ.



22 F. PELLARIN

Lemma 2.7. Let Σ′ be a subset of Σ. Let B = (bi)i∈I be a family of elements of OKL,Σ
such that (bi)i∈I is a basis of the kL(tΣ′)-vector space kL(tΣ). Then, every element f of
KL,Σ can be expanded, in a unique way, as a converging series

f =
∑
i∈I

fibi, fi ∈ KΣ′ , fi → 0,

and ‖f‖ = maxi∈I ‖fi‖.

In the above lemma I is countable (this follows from the fact that kL is countable).
If we choose Σ′ = ∅ we see that Lemma 2.7 implies that KL,Σ is countably cartesian as
in Definition 2.4. In other words, the Banach L-vector space KL,Σ is endowed with an
orthonormal basis providing us with an isometric isomorphism with a Banach L-space
cI(L). The proof that we present is essentially the same as Serre’s in [72, Lemma 1,
Proposition 1].

Proof of Lemma 2.7. One sees easily that ‖KL,Σ‖ = |L|, therefore it suffices to show the
lemma for f ∈ KL,Σ with ‖f‖ = 1. Let us consider α ∈ L[tΣ] with ‖α‖ = 1. We can
decompose (in a unique way) α = α0 +α1 with αi ∈ L[tΣ], α1 ∈ kL[tΣ]\{0}, and ‖α0‖ < 1.

For any multi-index k = (ki : i ∈ Σ) ∈ NΣ we have, in KL,Σ (with t
k
Σ =

∏
i∈Σ t

ki
i ):

t
k
Σα
−1 =

tkΣ
α1

(
1− α0

α1
+
α2

0

α2
1

− · · ·
)

(the series converges because ‖α0‖ < 1). For every k and j ≥ 0, the image of t
k
Σα
−j
1 in

kL(tΣ) for the reduction map can be expanded in the basis (bi)i∈I . We deduce that any

element f = β
α ∈ L(tΣ), α 6= 0, can be expanded as a convergent series:

f =
∑
i∈I

fibi, fi → 0, fi ∈ KΣ′ .

This expansion is unique because otherwise, there would exist a non-trivial relation

0 =
∑
i∈I

fibi

such that for some i ∈ I, ‖fi‖ = 1, in contradiction with the fact that (bi)i∈I is a basis of
kL(tΣ) over kL(tΣ′). This means that there is an isometric embedding L(tΣ)→ cI(KL,Σ′).
Completing, we are left with an isometric isomorphism of Banach L-vector spaces KL,Σ

∼=
cI(KL,Σ′) which terminates the proof. �

2.1.4. The non-complete fields LL,Σ. Let Σ, L, . . . as in §2.1.3. In this paper we also need
certain fields intermediate between the fraction field of TL,Σ and KL,Σ. For any d ∈
kL[tΣ] \ {0} we have the affinoid L-algebra (completion for the Gauss norm) ̂TL,Σ[d−1]
which is a Banach L-sub-algebra of KL,Σ which also is countably cartesian. We consider

LL,Σ =
⋃

d∈kL[tΣ]\{0}

̂TL,Σ[d−1].
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Lemma 2.8. LL,Σ is a subfield of KL,Σ.

Proof. The relation of divisibility in kL[tΣ] induces a filtration of LL,Σ by Banach L-sub-

algebras of the form ̂TL,Σ[d−1] so that LL,Σ is an L-sub-algebra of KL,Σ. We still need to
show that every non-zero element f of LL,Σ is invertible; we follow the same ideas of Lemma
2.7; there is no loss of generality if we suppose that ‖f‖ = 1. There exists d ∈ kL[tΣ] \ {0}
such that f ∈ TL,Σ[d−1]∧. We can write f = α1 − α0 where α1 ∈ kL[tΣ][d−1] \ {0} and
where α0 ∈ TL,Σ[d−1]∧ is such that ‖α0‖ < 1. Therefore, in KL,Σ:

1

f
=

1

α1

(
1− α0

α1

)−1

=
1

α1

∑
i≥0

(
α0

α1

)i
and the series converges in TL,Σ[d̃−1]∧ ⊂ LL,Σ, for some element d̃ ∈ kL[tΣ]. �

Note that LL,Σ contains the fraction field of TΣ and is not complete, unless Σ = ∅. The
fields LL,Σ and KL,Σ both have residual field kL(tΣ) and KL,Σ is the completion of LL,Σ
for the Gauss norm.

2.2. Analytic functions with values in non-archimedean Banach algebras. In this
subsection we suppose that L is an algebraically closed valued field with multiplicative
valuation | · |, complete with respect to this valuation, with residual field Facq . We choose
(B, | · |B) a Banach L-algebra which is countably cartesian in the sense of Definition 2.4.

Let X/L be a rigid analytic variety, that is, the datum of (X,T,OX) with X a set, a
G-topology T and a structure sheaf OX of L-algebras. In all the following, we denote by
OX/B the presheaf of B-algebras defined, for U = (Ui)i an affinoid covering of X, by

OX/B(Ui) = ̂OX(Ui)⊗L B ∼= ̂OX(Ui)⊗L cI(L),

the completion being taken for the spectral (sub-multiplicative) norm on Ui (see [15, §3.2]),
and where ∼= indicates an isometric isomorphism of Banach L-vector spaces.

An analytic function (also called holomorphic function) from X to B is by definition an
element of OX/B(X). Equivalently, an analytic function f : X → B is a function such
that for every rational subset Y ⊂ X, the restriction f |Y is the uniform limit over Y of a
sequence of elements of OX(Y )⊗L B. As an alternative notation, we choose

f ∈ Hol(X → B).

Let B = (bi : i ∈ I) be a orthonormal basis of B (countable). Every element f ∈ Hol(X →
B) can be expanded, in a unique way, as

f =
∑
i∈I

fibi

where fi|Y → 0 for the spectral norm associated to any rational subset Y of X (remember
(2.1)). For example, we can take B = KΣ or B = TΣ[d−1]∧ with d ∈ kL[tΣ] \ {0}.

Let C be a sub-L-algebra of B (not necessarily complete). We write

HolB(X → C)
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for the C-algebra of holomorphic (or analytic) functions from X to B such that the image
is contained in C, and we omit the subscript if B = C to meet with previously introduced
notation. For instance, we can take C = LΣ ⊂ KΣ = B. We denote by

OX/B/C
the presheaf of C-algebras determined by OX/B/C(Y ) = HolB(Y → C) for Y rational sub-
set of X. Since C is an L-algebra, for every U = Spm(A) affinoid subdomain, OX/B/C(U)
is an A-module and we can define, for M a finitely generated A-module, the pre-sheaf
MB/C on X by

MB/C(U) = M ⊗A OX/B/C(U).

Tate’s acyclicity theorem (see for example [22, Theorem 4.2.2]) is easily seen to extend
to this framework and we have the next result:

Lemma 2.9. The presheaf MB/C is a sheaf of C-algebras.

We omit the details of the proof because the proof of the version of Tate’s acyclicity
theorem given in the above reference can be easily adapted to our framework, thanks to
the hypothesis that B is countably cartesian. We will limit ourselves on few aspects, in the
case ofM trivial. If U = Spm(A) is an affinoid subdomain of X and (Uj)j∈J an admissible
covering of U (with J a finite set), saying that OX |U is a sheaf of L-algebras amounts to
saying that there is an exact sequence of L-algebras

0→ OX(U)
α−→
∏
j∈J
OX(Uj)

β−→
∏
j,k∈J

OX(Uj ∩ Uk)

where α is defined by the restrictions on the Uj ’s and β((fj)j∈J) = (fj |Uj∩Uk−fk|Uj∩Uk)j,k∈J .

Taking (·)⊗̂LB determines an exact sequence of B-algebras because, denoting by α and β
the resulting maps, with | · |U the spectral norm over U , supj |α(f)|Uj = maxj |α(f)|Uj =

|f |U (α is isometric) so that if (fj)j∈J is an element of
∏
j OX(Uj)⊗̂LB such that β((fj)j) =

0 then, writing fj =
∑

i∈I f
(i)
j bi with f

(i)
j → 0 as i → ∞ (expansion in the orthonor-

mal basis (bi)i∈I of B), for all i ∈ I there exists f (i) ∈ OX(U) with α(f (i)) = (f
(i)
j )j∈J

for all i, and f (i) → 0 for | · |U and therefore, f =
∑

i f
(i)bi defines an element of

OX(U)⊗̂LB such that α(f) = (fj)j . Now, the maps α and β define C-algebra maps be-
tween OX/B/C(U),

∏
j OX/B/C(Uj) etc. and the map resulting from α is injective, while the

element f ∈ OX/B(U) constructed above clearly belongs to OX/B/C(U) if fj ∈ OX/B/C(Uj)
for all j.

2.2.1. Structure of OX/B/C with X a curve. We consider B a Banach L-algebra which
is countably cartesian and we suppose that Λ is a partially ordered countable set, with
partial order ≺, such that there is a family (Bλ)λ∈Λ of Banach sub-L-algebras of B with
the following two properties:

(1) If λ ≺ λ′ then Bλ ⊂ Bλ′ ,
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(2) For all λ, λ′ ∈ Λ such that λ ≺ λ′ there exists an orthonormal basis (bi)i∈I of B
(depending on λ) and subsets J ⊂ J ′ ⊂ I with (bi)i∈J an orthonormal basis of Bλ
and (bi)i∈J ′ an orthonormal basis of Bλ′ .

We set C = ∪λBλ. This is a sub-L-algebra of B. We have the next Lemma.

Lemma 2.10. Let X be a rigid analytic curve over L. The following identity holds:

HolB(X → C) =
⋃
λ∈Λ

HolBλ(X → Bλ).

Proof. We first show the lemma when X = Spm(A) where A is an integral affinoid L-
algebra. If f : X → L is analytic with infinitely many zeroes, then it is identically zero.
Now, let f be a global section of OX/B/C . For all x ∈ X there exists λ ∈ Λ such that
f(x) ∈ Bλ. Therefore, there exists a map

X
Φ−→ Λ,

defined by associating to every x ∈ X a choice of λ ∈ Λ such that f(x) ∈ Bλ.
Since the set underlying X is uncountable (because L is uncountable, due to the fact

that it is complete) while the target set is countable, there exists an infinite subset X0 ⊂ X
and λ ∈ Λ, such that Φ(x) = λ for all x ∈ X0. Then f(X0) ⊂ Bλ. We expand f in an
orthonormal basis (bi)i∈I of B such that for some J ⊂ I, (bj)j∈J is an orthonormal basis
of Bλ:

f =
∑
j∈J

fjbj +
∑
i∈I\J

fibi

(with fj → 0 as j →∞, uniformly on X). Since for all i ∈ I \ J , fi(x) = 0 for all x ∈ X0,
fi ∈ OX(X) has infinitely zeroes and therefore vanishes identically and we deduce that
f ∈ OX/Bλ(X).

Suppose now that X is an affinoid subdomain of an affinoid curve X ′. Let f be in
HolB(X ′ → C). Then by what seen above, we can find λ, λ′ ∈ Λ such that λ ≺ λ′ and
f ∈ OX′/Bλ′ , f |X ∈ OX′/Bλ(X). Writing

f =
∑

j′∈J ′\J

fj′bj′ +
∑
j∈J

fjbj

we note that for all j ∈ J ′ \ J , fj′(x) = 0 for all x ∈ X which is infinite, and fj′ vanishes
identically on X. This means that f ∈ OX′/Bλ . The lemma follows easily working on an
admissible covering of a given rigid analytic curve. �

2.2.2. Entire functions. We look at B-valued analytic functions on polydisks, where (B, | ·
|B) is a Banach L-algebra which is countably cartesian. If X is the polydisk

DL(0, r)n = {x = (x1, . . . , xn) ∈ Ln; |x| ≤ r}
with r ∈ |L| and with the usual structure sheaf of converging series, then HolB(X → B)
equals the ring of series

∑
i≥0 fix

i where i = (i1, . . . , in) with ij ≥ 0 for all j, where

xi = xi11 · · ·xinn , and where fi ∈ B are such that |fi|Bri1+···+in → 0 as i → ∞. We deduce
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that the B-algebra HolB(An,anL → B), with An,anL the analytic n-dimensional affine space
over L, is equal to the B-algebra of the functions Ln → B defined by the formal series∑

i≥0 fix
i ∈ B[[x1, . . . , xn]] such that |fi|Bri1+···+in → 0 for all r ∈ |B|B. It is also easy to

see that a function f : Ln → B belongs to HolB(An,anL → B) if, on every bounded subset
U of L, f can be obtained as a uniform limit of polynomial functions fi ∈ B[x1, . . . , xn],
fi : U → B. These functions are called B-entire (or simply entire if the reference to
B is understood). The following property is easily checked. Let (fi)i≥0 be a sequence
of B-entire functions. If for every such r, the sequence (fi)i≥0 converges uniformly over
DL(0, r)n, then the limit function Ln → B is a B-entire function.

The next result is a simple generalization of the analogue of Liouville’s theorem which
can be found in Schikhof’s [71, Theorems 42.2 and 42.6]. See also [61, Proposition 8].

Proposition 2.11 (B-analogue of Liouville’s Theorem). Assuming that the Banach L-
algebra B is countably cartesian, any bounded B-entire function is constant.

Although the principles of the proof are completely elementary, we prefer to give all the
details. Let n be a positive integer and f : DL(0, 1)n → B a B-analytic function, so that,
with x = (x1, . . . , xn) ∈ DL(0, 1)n,

f(x) =
∑
i

fix
i, fi ∈ B,

where x = xi11 · · ·xinn if i = (i1, . . . , in) and |fi|B → 0 as i→∞. We set

|f |B,sup := sup
x∈DL(0,1)n

|f(x)|B.

We also set ‖f‖B = sup{|fi|B : i ∈ Nn} = max{|fi|B : i ∈ Nn}.

Lemma 2.12. We have |f |B,sup = ‖f‖B.

Proof. There is no loss of generality to suppose that ‖f‖B = 1. Indeed, |B|B = |L| because
B is countably cartesian. It is easy to see that |f |B,sup ≤ ‖f‖B and we only need to prove
the opposite inequality. We proceed by induction on n > 0. Let us write x = (x1, x

′)
(concatenation). We note that

|f |B,sup ≥ sup
x1∈DL(0,1)

(
sup

x′∈DL(0,1)n−1

|f(x1, x
′)|B

)
= sup

x1

|f(x1, ·)|B,sup = sup
x1

‖f(x1, ·)‖B

by the induction hypothesis. Let B′ be the L-algebra

HolB(DL(0, 1)n−1 → B)

with the norm | · |B,sup = ‖ · ‖B. It is easy to see that B′ is a Banach L-algebra which is

countably cartesian. Then, we can identify f with a B′-analytic function f̃ : DL(0, 1)→ B′,

where f̃ =
∑

i≥0 fix
i
1, fi ∈ B′, fi → 0. We see that supx1

‖f(x1, ·)‖B = ‖f̃‖B′ , the latter

norm equals ‖f‖B. Hence |f |B,sup = ‖f‖B. It remains to prove the case n = 1 of the
Lemma. For this, we follow [71, Lemma 42.1].
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Let us therefore consider an element f ∈ HolB(DL(0, 1) → B) with f(x) =
∑

i≥0 fix
i,

fi → 0. Of course |f |B,sup ≤ ‖f‖B and we can again suppose that ‖f‖B = 1. If |f0|B = 1
then 1 = |f(0)|B ≤ |f |B,sup ≤ ‖f‖B = 1 and we are done. Otherwise, let N be the smallest
integer j such that |fj |B = 1. We have N > 0. Let ε > 0 be such that ε < 1−max{|fi|B :
0 ≤ i < N}. Since |L×| is dense in R>0 there exists x ∈ L× such that 1− ε < |xN | < 1. We
claim that |f(x)|B = |xN | > 1− ε. To see this note that max{|fi|B : 0 ≤ i < N} < 1− ε so
that |f0 + · · ·+ fN−1x

N−1|B < 1− ε. On the other hand the sequence (|xi|)i≥N is strictly
decreasing so that |

∑
i≥N fix

i|B = |fNxN |B = |xN |. Hence

|f(x)|B = max

{∣∣∣f0 + · · ·+ fN−1x
N−1

∣∣∣
B
,
∣∣∣∑
i≥N

fix
i
∣∣∣
B

}
=
∣∣∣∑
i≥N

fix
i
∣∣∣
B
> 1− ε.

The claim follows by letting ε tend to 0 and the proof of the lemma is complete. �

Remark 2.13. If B is an algebraically closed field, Lemma 2.12 is contained in the argu-
ments of [15, §5.1.4].

Proof of Proposition 2.11. Let f be B-entire (in n variables). If r ∈ |L×| we can choose
α = (α1, . . . , αn) ∈ (L×)n so that |α1| = · · · = |αn| = r and apply Lemma 2.12 to the
B-entire function f(α1x1, · · · , αnxn). We deduce that

sup
x∈DL(0,r)n

|f(x)|B = max
i
|fi|Bri1+···+in .

Assume now that |f |B is bounded, say, by M > 0. Then maxi |fi|Bri1+···+in ≤ M for all
r ∈ |L×|. This means that |fi|B = 0 for all i 6= 0 and f is a constant map An,anN → B that
can be identified with its constant term f0. �

2.3. Drinfeld modules and exponential functions. For a more extensive background
on Drinfeld modules, lattices and exponential functions we refer to Goss’ book [36] and
[60, §3]. As in the introduction, we write A for Fq[θ], the Fq-algebra of polynomials in θ.
We denote by K its fraction field Fq(θ) and by K∞ = Fq((1

θ )) the local field which is its
completion at the infinity place or, which is the same, the completion for | · | the multi-
plicative valuation of K normalized by |θ| = q. Finally, we denote by C∞ the completion
of an algebraic closure Kac of K. We recall that the residual field kC∞ of C∞ is Facq , an
algebraic closure of Fq, that we can view as a subfield of C∞ (Lemma 2.1). From now on
we set

L = C∞
and we consider the C∞-algebras

TΣ := TL,Σ, LΣ := LL,Σ, KΣ := KL,Σ.

In this subsection we collect several tools related to the difference algebras structures on
TΣ,LΣ and KΣ determined by the automorphism c 7→ cq of C∞ and to the uniformizability
of certain Fq(tΣ)[θ]-modules associated to Drinfeld A-modules defined over C∞ as in [5].
Not all the material illustrated here is used in the body of the paper. However, the tools
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we develop can be useful in further investigations in these themes, and the chosen level of
generality does not make proofs more complicated.

2.3.1. On the automorphism τ of TΣ,LΣ,KΣ. The automorphism c 7→ cq of C∞ (Frobe-
nius) extends in a unique way to an Fq[tΣ]-linear automorphism τ of C∞[tΣ] and therefore,
to each of the three C∞-algebras TΣ ⊂ LΣ ⊂ KΣ defined in §2.1. Recall that ‖ · ‖ denotes
the unique extension of the Gauss norm to KΣ. Recall that by Lemma 2.7, (KΣ, ‖ · ‖)
is a Banach C∞-algebra which is countably cartesian. For all f ∈ KΣ, we have that
‖τ(f)‖ = ‖f‖q.

It is also well known that the subring

Tτ=1
Σ

of the elements f ∈ TΣ such that τ(f) = f is the polynomial subring Fq[tΣ]. Let us recall
the proof. Consider the injective morphism of C∞-algebras TΣ → C∞[[tΣ]] defined by
(2.2) and notice that τ : TΣ → TΣ extends to C∞[[tΣ]] in an unique way to an Fq[[tΣ]]-
linear automorphism. By the uniqueness of the power series expansions of the elements
of C∞[[tΣ]] we immediately see that C∞[[tΣ]]τ=1 = Fq[[tΣ]]. Now, it is easily checked, by
using (2.2), that TΣ ∩ Fq[[tΣ]] = Fq[tΣ].

Furthermore:

Lemma 2.14. We have the identities of subfields of τ -invariant elements

(2.4) Fq(tΣ) = Lτ=1
Σ = Kτ=1

Σ .

Proof. It suffices to show that Kτ=1
Σ ⊂ Fq(tΣ). By Lemma 2.7 with Σ′ = ∅, every element

f ∈ KΣ can be expanded in a unique way as f =
∑

i∈I fibi, where (bi)i∈I is an Facq -basis of

Facq (tΣ) and fi ∈ C∞ for i ∈ I, with fi → 0. Let f be an element of Kτ=1
Σ . All we need to

do, is to show that if ‖f‖ = 1, then f ∈ Fq(tΣ). Indeed, if f 6= 0 we can write f = λf̃ with

λ ∈ C×∞, f̃ ∈ K×Σ such that ‖f̃‖ = 1 and ‖f‖ = |λ|. Expanding f =
∑

i∈I fibi as above, we

set I1 = {i ∈ I : |fi| = 1} and I0 = I \ I1. We write f0 =
∑

i∈I0 fibi and f1 =
∑

i∈I1 fibi
so that f = f0 + f1. Clearly, I1 is a finite set and τ induces a permutation of both I1 and
I0 denoted by σ. There exists k > 0 such that σk is the identity on I1. Since τk(f) = f
we have

τk(f1)− f1 = f0 − τk(f0).

But τk(f1) − f1 =
∑

i∈I1(f q
k

i − fi)bi so that if τk(f1) − f1 6= 0, then ‖τk(f1) − f1‖ = 1.

However, ‖f0− τk(f0)‖ < 1 which is impossible. Hence we have τk(f1) = f1 which means

in particular that f1 ∈ Fqk(tΣ)× because f q
k

i = fi for all i ∈ I0, and f0 = τk(f0). Now,

‖τk(f0)‖ = ‖f0‖qk and therefore, f0 = 0. In particular, we have proved that f = f1 ∈
Fqk(tΣ)×. But it is easily seen that Fqk(tΣ)τ=1 = Fq(tΣ) for all k > 0. �

In this text we also consider the non-commutative KΣ-algebras KΣ[τ ] and KΣ[[τ ]] (the
multiplication is defined by the commutation rule τf = τ(f)τ for f ∈ KΣ). Similarly, we
have the algebras LΣ[τ ] and LΣ[[τ ]]. We are going to study certain elementary properties
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of Fq(tΣ)-linear endomorphisms of KΣ and LΣ determined by evaluations of operators of
KΣ[τ ] and LΣ[τ ]. The evaluation L(f) of

L = a0 + a1τ + · · ·+ arτ
r ∈ KΣ[τ ]

at f ∈ KΣ is by definition the element

L(f) = a0f + a1τ(f) + · · ·+ arτ
r(f) ∈ KΣ.

Analogously, we define the evaluation of an element of LΣ[τ ] at an element of LΣ.
In order to proceed, we can appeal to the next simple lemma that is also used later

in the proof of Proposition 2.20. By Lemma 2.7 there exists an Facq -basis B = (bi)i∈I of
Facq (tΣ) determining an orthonormal basis of the Banach C∞-algebra KΣ.

Lemma 2.15. Let J̃ be a non-empty finite subset of I. There exists J finite, with J̃ ⊂ J ⊂
I with the following properties: (1) There is a matrix MJ ∈ GL|J |(Facq ) such that, writing
bJ for the column matrix (bi)i∈J ,

τ(bJ) = MJbJ .

(2) There is a vector spaces decomposition

(2.5) Facq (tΣ) = VectFacq (bJ)⊕VectFacq ((bi)i∈I\J)

which splits the action of τ .

Proof. It follows from an easy study of the orbit under the action of the group Gal(Fq(bj :

j ∈ J̃)/Fq(tΣ)). �

We can now tackle the promised basic properties of Fq(tΣ)-linear endomorphisms of KΣ

and LΣ associated to evaluations as above.

Lemma 2.16. Let L = a0 + a1τ + · · · + arτ
r ∈ KΣ[τ ] be such that a0ar 6= 0. Then the

induced Fq(tΣ)-linear evaluation map L : KΣ → KΣ is surjective. Similarly, if L ∈ LΣ[τ ],
the Fq(tΣ)-linear map L : LΣ → LΣ is surjective.

Proof. First notice that L, as an Fq(tΣ)-linear endomorphism of KΣ (or LΣ), is well defined.
By the way, we are obviously allowing some (harmless) abuses of notation, because alter-
natively, L denotes: an element of KΣ[τ ] or an element of LΣ[τ ], and at once alternatively,
an endomorphism of KΣ or an endomorphism of LΣ. Also, we only prove the properties
correspondent to the endomorphisms of KΣ leaving the rest of the proof to the reader
(providing a small hint in a special case). Without loss of generality, we can suppose that
a0 = 1. It is easy to see that there exists ρ ∈ |C×∞|, ρ > 0, such that L induces an isometric
automorphism of D◦KΣ

(0, ρ) := {f ∈ KΣ : ‖f‖ < ρ}. This can be proved with the study of

the Newton-Puiseux polygon of the operator L with respect to ‖ · ‖. Let y be in KΣ. We
can write:

y = y0 + y1

where y0 ∈ D◦KΣ
(0, ρ) := {f ∈ KΣ : ‖f‖ < ρ} and y1 ∈

⊕
j∈J̃ C∞bj with J̃ a finite subset

of I. There exists x0 ∈ D◦KΣ
(0, ρ) such that L(x0) = y0. It remains to construct x1 ∈ KΣ

such that L(x1) = y1.
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Let J,MJ be respectively the subset of I, and the matrix, both given by Lemma 2.15
and let us write b = bJ and M = MJ . By Lang’s theorem [46, Corollary p. 557] there
exists U ∈ GL|J |(Facq ) such that τ(U) = MU . We deduce

τk(b) = τk(U)U−1b, ∀k > 0.

Note that there exists a unique c ∈ C|J |×1
∞ such that y1 = tc · b. Since C∞ is algebraically

closed, there exists a ∈ C|J |×1
∞ such that L(taU) = tcU . Hence

L(ta · b) = L(taU)U−1b = tcUU−1b = y1.

Setting x1 = ta · b yields L(x1) = y1 and the proof that L : KΣ → KΣ is surjective is
complete.

For the case of the endomorphisms of LΣ we give some details in a special case only (the
reader can easily deduce the general case). We suppose that L = 1 − τ (so we partially
overlap with the proof of Lemma 2.14). Even though LΣ is not complete, it is a filtered
union of complete spaces. Let y be an element of LΣ. Then there exists d ∈ Fq[tΣ] \ {0}
such that y ∈ T̂Σ[1

d ]. We can decompose y = y0 + y1 with y0 ∈ D◦
T̂Σ[ 1

d
]
(0, 1) (complete

space) and y1 ∈
⊕

j∈J̃ C∞bj for some finite subset J̃ of I. There exists x0 ∈ D◦
T̂Σ[ 1

d
]
(0, 1)

such that τ(x0) − x0 = y0 and x1 ∈
⊕

j∈J C∞bj with τ(x1) − x1 = y1. It is easy to show

that there exists d′ ∈ Fq[tΣ]\{0} such that both TΣ[1
d ] and x1 ∈

⊕
j∈J C∞bj are contained

in TΣ[ 1
d′ ] ⊂ LΣ. �

The next result we want to study is related with computations of kernels of operators
such as L above. Suppose additionally that L = a0 + · · ·+ arτ

r ∈ C∞[τ ], again such that
a0ar 6= 0. It is well known (because C∞ is algebraically closed) that the set of the zeroes
of the evaluation map L|C∞ : C∞ → C∞ is an Fq-vector space of dimension r:

Ker(L|C∞) = VectFq(β1, . . . , βr), β1, . . . , βr ∈ C×∞.

We have stressed that L is restricted to C∞ because we can also view L as an Fq(tΣ)-linear
endomorphism of KΣ and LΣ. In this case we have:

Lemma 2.17. With L as above:

Ker(L) = Ker(L|LΣ
) = VectFq(tΣ)(β1, . . . , βr).

Proof. Without loss of generality we can suppose that a0 = 1. We first deal with the case
of the map L : KΣ → KΣ. We proceed by induction on r: the result is trivial for r = 0.
Also, by the right euclidean division [36, Proposition 1.6.2] we can factor L ∈ C∞[τ ]:

L = (1− αrτ) · · · (1− α1τ), α1, . . . , αr ∈ C×∞,

where we can choose α1 = β1−q
1 . Note that the factors do not commute in general, and the

factorization is not unique. Setting L1 = (1−αr−1τ) · · · (1−α1τ), we have L = (1−αrτ)L1.
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Note that Ker(L1) is a subvector space of Ker(L). By induction hypothesis we can choose
L1 in such a way that

Ker(L1) = VectFq(tΣ)(β1, . . . , βr−1)

Let us consider β ∈ Ker(L) \Ker(L1). Then,

L1(β) ∈ Ker(1− αrτ),

so that τ(L1(β)) = α−1
r L1(β). Using Lemma 2.14 this implies that there exists x ∈ C×∞

such that
L1(β) ∈ Fq(tΣ)x

and there exists λ ∈ Fq(tΣ)× such that L1(λβ) ∈ C∞. By Lemma 2.16, there exists β̃ ∈ C×∞
such that

L1(β − λ−1β̃) = 0.

Therefore, by the induction hypothesis, β − λ−1β̃ ∈ VectFq(tΣ)(β1, . . . , βr−1). This implies

that 0 = L(β) = L(λ−1β̃) and β̃ ∈ Ker(L|C∞) = VectFq(tΣ)(β1, . . . , βr) implying our result.
The case of the restriction of L on LΣ is similar and left to the reader. �

Combining with Lemma 2.16, we get the more precise:

Corollary 2.18. There are exact sequences of Fq(tΣ)-vector spaces

0→ Fq(tΣ)→ LΣ
1−τ−−→ LΣ → 0, 0→ Fq(tΣ)→ KΣ

1−τ−−→ KΣ → 0.

2.3.2. The exponential of a Drinfeld module. Let φ be a Drinfeld A-module of rank n
defined over C∞, let expφ : C∞ → C∞ be its exponential function and Λφ = Ker(expφ) ⊂
C∞ its lattice period which is a free module of rank n over A discrete for the metric of C∞
induced by | · |. We recall that expφ is an Fq-linear entire function C∞ → C∞ that can be
computed by means of the following everywhere convergent Weierstrass-like product

(2.6) expφ(Z) = Z
∏′

λ∈Λφ

(
1− Z

λ

)
, Z ∈ C∞

(the dash ′ indicates that the product runs over Λφ \ {0}). This product expansion also
shows that locally at 0, expφ induces an isometric Fq-linear automorphism. Indeed, if
ρφ := minλ∈Λφ\{0} |λ|, expφ induces an Fq-linear automorphism of

D◦C∞(0, ρφ) = {z ∈ C∞ : |z| < ρφ}
such that for all z ∈ D◦C∞(0, ρφ), | expφ(z)| = |z|. In fact it can be proved that expφ induces

an isomorphism of C∞-rigid analytic spaces A1,an
C∞ /Λφ ∼= A1,an

C∞ . With φ(C∞) the A-module
induced by φ, there is an exact sequence of A-modules

0→ Λφ → C∞
expφ−−−→ φ(C∞)→ 0

(expφ is uniquely determined by the condition of being an entire A-module morphism with
first derivative exp′φ = 1). We fix a finite subset Σ ⊂ N∗ and a Drinfeld module φ defined

over C∞. There is a unique structure of A ⊗Fq Fq(tΣ)-module φ(KΣ) over KΣ which is
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defined by extending the operators φa (of multiplication by a ∈ A in the A-module φ(C∞))
Fq(tΣ)-linearly to KΣ along the extension of the map (x 7→ xq) : C∞ → C∞ to the map
τ : KΣ → KΣ. Explicitly, if φa = (a)0 + (a1)τ + · · ·+ (a)rτ

r with (a)0, . . . , (a)r ∈ C∞ and
x ∈ KΣ, the action of a on x is defined by the evaluation of φa at x (compare with [5]).
Similarly, we can define the A⊗Fq Fq(tΣ)-module φ(LΣ).

By using the tools developed in §2.3.1 we can easily prove:

Proposition 2.19. For all a ∈ A \ {0} the Fq-linear map φa : C∞ → C∞ determines a
short exact sequence of Fq(tΣ)-vector spaces:

0→ expφ

(1

a
Λφ

)
⊗Fq Fq(tΣ)→ KΣ

φa−→ KΣ → 0,

where the second arrow is the inclusion, and a similar exact sequence holds with KΣ replaced
by LΣ.

Proof. Clearly expφ(a−1Λφ) ⊗Fq Fq(tΣ) is an Fq(tΣ)-subvector space of dimension r :=
degθ(a)n of Ker(φa) where n is the rank of φ. Setting L = φa, the computation of the
kernel then follows from Lemma 2.16, while the surjectivity of φ follows from Lemma
2.17. �

The case Σ = {i}, i ∈ N∗ is considered in [33, Theorem 7.1.1, Proposition 8.2.1].
Since KΣ is complete we have an Fq(tΣ)-linear map expφ : KΣ → KΣ, continuous and

open, which induces a morphism of A⊗Fq Fq(tΣ)-modules

KΣ

expφ−−−→ φ(KΣ)

such that Λφ ⊗Fq Fq(tΣ) ⊂ Ker(expφ). We note that also the map LΣ

expφ−−−→ φ(LΣ) is
well defined, in spite of the fact that LΣ is not complete. Indeed, if x ∈ LΣ, there exists

d ∈ Fq[tΣ]\{0} such that x ∈ T̂Σ[1
d ] and this space is complete. It is easy to show that expφ

induces an isometric Fq(tΣ)-linear automorphism of D◦KΣ
(0, ρφ) = {f ∈ KΣ : ‖f‖ < ρφ},

and a similar property holds with KΣ replaced with LΣ. Moreover, we have:

Proposition 2.20. Let φ be a Drinfeld A-module with exponential expφ. The map expφ
induces an exact sequence of A⊗Fq Fq(tΣ)-modules:

(2.7) 0→ Λφ ⊗Fq Fq(tΣ)→ KΣ

expφ−−−→ φ(KΣ)→ 0.

To prove this result we can use the next lemma. Let J̃ ⊂ I be a finite subset and let J

be any finite subset of I as in Lemma 2.15 so that J̃ ⊂ J ⊂ I.

Lemma 2.21. The exponential map expφ induces a surjective Fq-linear endomorphism of

⊕j∈JC∞bj with kernel Λφ ⊗Fq Fq(tΣ)|J |×1.

Proof. Since J is fixed in the proof, let us write more simply b = bJ and M = MJ where
MJ is the matrix given by Lemma 2.15. Also, if X is any matrix with entries in KΣ, we
set X(i) = τ i(X) (coefficient-wise application of τ i). Note that since b(1) = Mb, we have

b(i) = M (i−1) · · ·M (1)M · b for all i ≥ 0. In the proof of Lemma 2.15 we have constructed
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a matrix U ∈ GL|J |(Facq ) such that τ(U) = MU . Hence, U (i) = M (i−1) · · ·M (1)MU for all
i ≥ 0. We deduce

b(i) = U (i)U−1b, i ≥ 0 and (U−1b)(1) = U−1b.

Hence U−1b ∈ Fq(tΣ)|J | by (2.4).

Let us compute, for a ∈ C|J |×1
∞ (column vector), (ta · b)(i), i ≥ 0. We immediately see:

(ta · b)(i) = (ta · U)(i)U−1b. Transposing we get:

t(ta · b)(i) = tb · tU · (tU · a)(i),

hence, if f = ta · b ∈ ⊕j∈JC∞bj ,

expφ(f) = expφ(ta · b) = tb · t(U−1) expφ(tU · a) ∈ ⊕j∈JC∞bj .

Since the map expφ : C|J |×1
∞ → C|J |×1

∞ is surjective, expφ : ⊕j∈JC∞bj → ⊕j∈JC∞bj is

surjective. Now consider an element f = ta · b ∈ ⊕j∈JC∞bj such that expφ(f) = 0. By the

above computation, this is equivalent to expφ(tU · a) = 0, so that

a ∈ t(U−1) · Λ|J |×1
φ .

But ta·b ∈ Λ
1×|J |
φ U−1 ·b and we have seen that U−1 ·b ∈ Fq(tΣ)|J |×1. The lemma follows. �

Proof of Proposition 2.20. We first show that expφ is surjective. Let us consider g ∈ KΣ.

There exists J ⊂ I finite with b = (bj)j∈J = bJ with (b)(1) = M · b as in Lemma 2.15, and
additionally, we can decompose

g = g0 + g1

with ‖g0‖ < ρφ and g1 ∈ ⊕j∈JC∞bj . By Lemma 2.21 there exists f1 ∈ ⊕j∈JC∞bj such
that expφ(f1) = g1 and since expφ induces an isometry over D◦KΣ

(0, ρφ), there also exists

f0 ∈ D◦KΣ
(0, ρφ) such that expφ(f0) = g0. Setting f = f0 + f1 we deduce expφ(f) = g.

It remains to compute the kernel of expφ over KΣ. Let f ∈ KΣ be such that expφ(f) =
0. Again, we can write f = f0 + f1 with ‖f0‖ < ρφ and f1 ∈ ⊕j∈JC∞bj . We write
f0 = f0

0 ⊕ f1
0 where f0

0 belongs to the Banach C∞-sub-vector space of KΣ generated by
(bi)i∈I\J and f1

0 ∈ ⊕j∈JC∞bj . By the hypothesis on J we see that expφ(f0
0 ) =

∑
i∈I\J cibi

while expφ(f1
0 + f1) ∈ ⊕j∈JC∞bj . Hence, again by the fact that expφ induces an isometry

over D◦KΣ
(0, ρφ), we can suppose that f0 = 0. We can conclude by using Lemma 2.21. �

Let δ be an element of Fq(tΣ)×. From the proof of Proposition 2.20 one deduces that
the exponential function expφ of a Drinfeld A-module φ also induces an Fq[tΣ][δ]-linear
surjective endomorphism of TΣ[δ]∧ ⊂ KΣ, and we deduce the next result (compare with
Proposition 2.18 and [3]):

Corollary 2.22. For any δ ∈ Fq(tΣ) the map expφ induces an exact sequence of A[tΣ][δ]-
modules:

(2.8) 0→ Λφ ⊗Fq Fq[tΣ][δ]→ T̂Σ[δ]
expφ−−−→ φ(T̂Σ[δ])→ 0.
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Hence, we also have an exact sequence of Fq(tΣ)[θ]-modules:

(2.9) 0→ Λφ ⊗Fq Fq(tΣ)→ LΣ

expφ−−−→ φ(LΣ)→ 0.

The proof of the next Lemma, that will be used later, is easy and left to the reader.

Lemma 2.23. Let φ be a Drinfeld module over C∞ and expφ be its exponential function.
Let f : KΣ → KΣ be a KΣ-entire function. Then the composition expφ ◦f is a KΣ-entire
function. Additionally, if f(LΣ) is contained in LΣ, then the image of expφ ◦f is contained
in LΣ. Finally, if f(z) = λz with λ ∈ KΣ, then expφ ◦f is a Fq(tΣ)[θ]-module morphism
KΣ → φ(KΣ).

Remark 2.24. In the following, we essentially only use the Drinfeld A-module φ = C,
Carlitz’s module, defined by the condition that Cθ = θ+τ . However, our work has a natural
extension to modular forms for the group GLn(A) with n > 2, where it is important to
consider the general case. This motivates the chosen level of generalization so far.

2.4. Some functions associated with the Carlitz module. The functions mentioned
in the title of the present subsection, and that will be described here, are required as basic
tools to describe the analogues of Fourier series for our modular forms. One of the simplest
examples of Drinfeld A-modules is the Carlitz module C. In this subsection, after a quick
review, in §2.4.1, of well known properties of C and the associated exponential function
expC : KΣ → KΣ (for a more complete treatise, read, for example, Goss’ [36, Chapter 3]
and [60, §4]), we introduce in §2.4.2 a matrix generalization of the so-called omega function
of Anderson and Thakur (omega matrices). There is a large amount of references discussing
the omega function of Anderson and Thakur, which is a central object in function field
arithmetic. Among them we suggest, due to a good compatibility of notations, the paper
[3, §2]. It is likely that the first appearance of ω in the literature is in the seminal paper [1]
by Anderson and Thakur. In 2.4.3 we introduce a matrix generalization of Perkins’ map
χt : C∞ → TΣ [65], another remarkable object in function fields arithmetic. These tools
will be heavily used in §3.

2.4.1. Basic notions on Carlitz’s module. We recall that the Carlitz module C(KΣ) over
KΣ is the Fq(tΣ)-algebra morphism

A⊗Fq Fq(tΣ)
C−→ EndFq(tΣ)(KΣ)

defined by C(θ) = Cθ = θ + τ , the multiplication by θ. Just like any Drinfeld module
φ, C can also be viewed as a functor from the category of C∞(tΣ)[θ][τ ]-modules to the
category of Fq(tΣ)[θ]-modules (with appropriate morphisms) so that we can define the
modules C(TΣ), C(LΣ), C(A), . . . as well. To describe the associated Carlitz exponential,
we introduce, following [36, §31 and 3.2], the analogue of the sequence of numbers qn! in
the following way:

dn =
∏
a

a,
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where the product runs over the monic polynomials a of A of degree n. It can be proved
(see [36, Proposition 3.1.6]) that

(2.10) dn =
(
θq
n − θ

)
· · ·
(
θq
n − θqn−1

)
∈ A \ {0}, n ≥ 0.

The map expC : KΣ → KΣ defined by

expC(z) =
∑
i≥0

d−1
i τ i(z)

is the exponential function associated to the Carlitz module, which is a continuous, open
Fq(tΣ)-linear endomorphism KΣ → KΣ to which we can apply Proposition 2.20 and Corol-
lary 2.22. In particular, the kernel of expC (over LΣ or KΣ) is equal to π̃Fq(tΣ)[θ] where

(2.11) π̃ = θ(−θ)
1
q−1

∞∏
i=1

(
1− θ1−qi

)−1
,

which belongs to K∞((−θ)
1
q−1 ) \ K∞ (we make a choice of a (q − 1)-th root of −θ, and

we note that (−θ)
1
q−1 = expC(π̃θ−1)). It is rare that, for a given Drinfeld A-module φ,

we can provide such explicit descriptions of the main characterizing objects expφ,Λφ etc.

From this product expansion one immediately sees that |π̃| = |(−θ)
1
q−1 | = |θ|

q
q−1 . It can

be proved that π̃ is transcendental over K; there are several ways that lead to this result,
using the above product expansion. See [54, 60] for an overview.

We sometimes also use the notation expC for the Carlitz exponential operator which is
formal series

∑
n≥0 d

−1
n τn ∈ K[[τ ]] ⊂ KΣ[[τ ]], unique such that the first term for n = 0 is

1 = τ0 (normalized), satisfying, for the product rule of KΣ[[τ ]], Cθ expC = expC θ.
The inverse of the Carlitz exponential operator expC ∈ KΣ[[τ ]] for the composition is

the Carlitz logarithm defined by the locally convergent series

logC(z) =
∑
i≥0

l−1
i τ i(z),

where ln is equal to (−1)n times the monic least common multiple of all polynomials of A
of degree n. It can be proved (see again [36, Proposition 3.1.6]) that

(2.12) ln =
(
θ − θq

)
· · ·
(
θ − θqn

)
.

More precisely, logC induces an isometric Fq(tΣ)-linear automorphism

D◦F (0, |π̃|) logC−−−→ D◦F (0, |π̃|),

where F = LΣ or F = KΣ, and similar properties occur with F = TΣ[δ] with δ ∈ Fq(tΣ) etc.
We also identify, sometimes, logC with the Carlitz logarithm operator

∑
n≥0 l

−1
n τn ∈ K[[τ ]].
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2.4.2. Omega matrices. We need certain invertible matrices with entries in LΣ similar to
Anderson-Thakur omega function. Let

A
χ−→ Fq(tΣ)n×n

be an injective Fq-algebra morphism. We set

ϑ := χ(θ) ∈ Fq(tΣ)n×n.

Let d ∈ Fq[tΣ]\{0} be such that dϑ ∈ Fq[tΣ]n×n. Then, the image of χ lies in Fq[tΣ][1
d ]n×n.

We set

ωχ :=
∑
i≥0

expC

(
π̃

θi+1

)
ϑi = expC

(
π̃(θIn − ϑ)−1

)
∈ T̂Σ[d−1]

n×n
⊂ Ln×nΣ ,

where the map expC is applied coefficientwise and Fq(tΣ)-linearly, on the entries of the
matrix π̃(θIn−ϑ)−1 ∈ Kn×n

Σ (in the same way as in [3, §2.2]). We have, for all a ∈ A, with
Ca ∈ K[τ ]n×n the multiplication by a over C(KΣ)n×n:
(2.13)

Ca(ωχ) = expC

(
π̃a(θIn − ϑ)−1

)
= expC

(
π̃(aIn − χ(a))(θIn − ϑ)−1

)
+ χ(a)ωχ = χ(a)ωχ,

because aIn−χ(a) = (θIn−ϑ)H with H ∈ A[ϑ]n×n, so that π̃(aIn−χ(a)) ∈ Ker(expC)n×n.

Lemma 2.25. We have ωχ ∈ GLn(TΣ[1
d ]∧) and ωχ is solution of the linear τ -difference

system

τ(X) = (ϑ− θIn)X.

Moreover, every solution X in Kn×1
Σ of this difference system is of the form X = ωχm,

with m ∈ Fq(tΣ)n×1.

Proof. Observe that

ωχ = expC

(
π̃(θIn − ϑ)−1

)
= expC

(
π̃θ−1(In − ϑθ−1)−1

)
= expC(π̃θ−1)In +R

where R ∈ Kn×n
Σ is such that ‖R‖ < |θ|

1
q−1 = |π̃θ−1| = | expC(π̃θ−1)|. This proves

that ωχ ∈ GLn(TΣ[1
d ]∧). The fact that ωχ is a matrix solution of the system indicated

above follows directly from (2.13) with a = θ. Finally, if X is a column solution of the
system above, we have that ω−1

χ X has entries in the constant subfield of KΣ which is
Fq(tΣ) = Fq(tΣ), and this proves the last assertion. �

We denote by EΣ[1
d ]∧ the C∞-algebra generated by all the series

(2.14)
∑
i≥0

fid
−i, fi ∈ EΣ,

with the property that ‖fi‖ri → 0 for all r ∈ |C∞|. Observe that EΣ[1
d ]∧ is not complete

for ‖ · ‖, unless Σ = ∅; for example, E is not complete. The completion of EΣ[1
d ] is easily

seen to be equal to TΣ[1
d ]∧ (the completion of E for the Gauss norm is T). We therefore

adopt this notation that should not lead to confusion. We have the next:
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Corollary 2.26. We have the identity

ωχ = (−θ)
1
q−1

∏
i≥0

(
In − ϑθ−q

i
)−1

,

up to the choice of an appropriate root (−θ)
1
q−1 . Hence, ω−1

χ ∈ GLn(TΣ[1
d ]∧)∩(EΣ[1

d ]∧)n×n.

Note that the factors of the infinite product commute each other.

Proof of Corollary 2.26. First of all note that

F := (−θ)
1
q−1

∏
i≥0

(
In − ϑθ−q

i
)−1
∈ (TΣ[d−1]∧)n×n

is a matrix solution X of the difference system τ(X) = (ϑ− θIn)X, in GLn(KΣ). Lemma
2.25 applies and there exists a matrix V ∈ GLn(Fq(tΣ)) such that F = V ωχ. Now we

proceed to prove that V = In. We recall that (−θ)
1
q−1 = expC( π̃θ ) for a unique choice of

(−θ)
1
q−1 . We have seen, in the proof of Lemma 2.25, that ωχ = expC(π̃θ−1)In + R where

R ∈ Kn×n
Σ is such that ‖R‖ < |θ|

1
q−1 . We also have F = expC(π̃θ−1)In +R′, R′ ∈ KΣ such

that ‖R′‖ < q
1
q−1 . Hence V = In. Additionally, note that π̃(θIn − ϑ)−1 ∈ (TΣ[1

d ]∧)n×n

so that, by Corollary 2.22, ωχ has entries in TΣ[1
d ]∧. Also, F in this case is an element of

GLn(TΣ[1
d ]∧). Writing ϑ = d−1ν with ν ∈ Fq[tΣ]n×n, we see that F =

∑
i≥0 ciν

id−i with

ci ∈ C∞ such that |ci|ri → 0 for all r ∈ |C∞|. But then ciν
i ∈ C∞[tΣ]n×n with ‖ciνi‖ri → 0

and therefore, the entries of ω−1
χ belong to EΣ[1

d ]∧. �

2.4.3. A class of entire functions: Perkins’ maps. We recall that we have set ϑ = χ(θ) ∈
Fq(tΣ)n×n and that d ∈ Fq[tΣ] \ {0} is such that dϑ ∈ Fq[tΣ]. For z ∈ C∞, we set (8):

(2.15) χ̃(z) := expC

(
π̃z(θIn − ϑ)−1

)
ω−1
χ ,

where ωχ ∈ GLn(TΣ[1
d ]∧) has been introduced in §2.4.2. By Lemma 2.23, this is an entire

function in HolTΣ[ 1
d

]∧(C∞ → TΣ[1
d ]∧)n×n. We now use the material developed in this

section to show the following (compare with [61, Lemmas 15, 17]).

Proposition 2.27. The function χ̃ satisfies the following properties:

(1) It has image in (EΣ[1
d ]∧)n×n.

(2) It satisfies χ̃(a) = χ(a) for all a ∈ A.
(3) It satisfies the τ -difference system τ(X) = X + expC(π̃z)ω−1

χ .

Proof. (1) Since

expC

(
π̃z(θIn − ϑ)−1

)
=
∑
i≥0

d−1
i (π̃z)q

i
(θq

i
In − ϑ)−1, z ∈ C∞

8Note that the factors commute.
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and ‖d−1
i (θq

i
In − ϑ)−1‖ = |θ|(i−1)qi for all i ≥ 0, the image of the map χ̃ is contained in

(EΣ[1
d ]∧)n×n (we recall from Corollary 2.26 that ω−1

χ has entries in EΣ[1
d ]∧). (2) Observe

that if a ∈ A,

χ̃(a) = expC

(
π̃a(θIn − ϑ)−1

)
ω−1
χ

= Ca(ωχ)ω−1
χ

= χ(a).

(3) We set F = expC
(
π̃z(θIn − ϑ)−1

)
. Then,

τ(F ) = −θF + expC

(
π̃z(θIn − ϑ+ ϑ)(θIn − ϑ)−1

)
= −θF + expC

(
π̃(z(θIn − ϑ)−1)ϑ

)
+ expC(π̃z)In

= F · (ϑ− θIn) + expC(π̃z)In.

�

From now on, we will denote both maps, A
χ−→ Fq(tΣ)n×n and C∞

χ̃−→ Kn×n
Σ , with χ to

simplify our notations.

2.4.4. An example with n = 1. We consider, to illustrate a well known example (the reader
familiar with the theory of the function ω can skip this subsection), the above picture in
the case when χ = χt, where χt is the unique Fq-algebra map

A
χt−→ Fq[t]

defined by θ 7→ t (therefore, n = 1). In this case ωχ is the function of Anderson and Thakur
ω. It is likely that this function appeared for the first time in the literature in the paper
of Anderson and Thakur [1, Proof of Lemma 2.5.4 p. 177]. We have:

ω(t) = expC

(
π̃

θ − t

)
.

Corollary 2.26 allows to recover the well known factorization formula

(2.16) ω(t) = (−θ)
1
q−1

∏
i≥0

(
1− t

θqi

)−1

∈ T×,

for a fixed choice of the (q−1)-th root, and the inverse of ω is an entire function in E := EΣ

with Σ a singleton. The element ω can also be viewed as a function of the variable t ∈ C∞,
because the infinite product converges for all

t ∈ C∞ \ {θq
k
; k ≥ 0}

and defines a meromorphic function over the above set, with simple poles at θq
k
, k ≥ 0.

The element ω is a (θ − t)-torsion point in the Carlitz A[t]-module C(T). In particular, ω
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is a generator of the free sub-Fq[t]-module of rank one of T, kernel of the evaluation of the
operator

Cθ−t = τ + θ − t ∈ K[t][τ ],

so that ω is a solution of the linear homogeneous τ -difference equation of order 1 (see also
[52, Proposition 3.3.6]):

(2.17) τ(ω)(t) = (t− θ)ω(t).

All these properties easily follow from Corollary 2.26.
For the function χt : C∞ → T the results of §2.4.3 specialize in the foundations of

Perkins’ theory in [65]. We note that explicitly,

χt(z) :=
expC

(
π̃z
θ−t

)
ω(t)

, z ∈ C∞.

We deduce that χt defines an entire function C∞ → E which satisfies χt(a) = a(t) for all
a ∈ A, and the τ -difference equation

(2.18) τ(χt(z)) = χt(z) +
expC(π̃z)

τ(ω)
.

To mention an additional property of the entire function χt, it can be proved that the

function z 7→ χt(z)
z ∈ E is non-constant, entire, without zeroes.

2.4.5. Further commentaries. We already pointed out in the introduction that in this vol-
ume, we mainly focus to KN

Σ -valued modular forms for GL2(A). However, it is natural to
compare the theory developed so far with that of scalar modular forms for GLn(A) with
n ≥ 3 by Basson, Breuer, Gekeler, Häberli, Hartl, Pink, Yu et al. already cited in the
introduction 1. A GLn(A)-generalization of our theory is likely to be meaningful but will
hopefully be the object of another work. After having read the present volume the reader
will attain a more precise intuition: the content of the present section §2.4 can be updated
to raise the level of generality of §2.3.1. In the crucial next section 3 we explain in what
sense the Carlitz module is involved in the analogues of ‘Fourier series’ of our GL2(A)-
modular forms. The link is indeed guaranteed by the omega matrices and the functions χ
we just described. Higher rank Drinfeld modular forms are involved in the corresponding
‘Fourier series’ of GLn(A)-modular forms with n ≥ 3 and indeed analogues of the elements
ωχ and the functions χ can be associated to Drinfeld modules of any rank. This is briefly
outlined, in the special case χ = χt, in the paper [59, §4]. We refrain from giving full
details here because this would bring us too far from the purposes we fixed for the present
paper.

3. Field of uniformizers

The crucial feature of the modular forms we study in the present text is that their
entries can be identified with certain formal series generalizing the Fourier series of classical
Drinfeld modular forms f : Ω → C∞ for Γ. These formal series can be seen as elements
of the field of uniformizers K (Definition 3.33) which provides a natural environment to
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do computations and to prove our results. Roughly speaking, if f : Ω → KN×1
Σ is a

modular form of weight w for a representation of the first kind ρ, then the entries of f can
be viewed as elements of an algebraically closed field of generalized formal series in the
sense of Kedlaya [44], containing the valued field KΣ((u)) with u the uniformiser defined in
(1.3). We need to be a bit more precise however, as in practice, these series span a much
smaller field and in the sequel, we need to gain a certain control on their expansions. The
main results in this section are Propositions 3.16 and 3.32 where the reader can find an
explicit description of the elements of K as formal Laurent series with coefficients which
are tame series, certain entire functions defined in §3.2. Similar constructions have also
been considered in [59]. We begin with §3.1, where we introduce some algebraic settings.

3.1. Some algebras and fields. In this subsection, we consider an integral commutative
A-algebra B with the structure induced by a morphism

A
ι−→ B.

Additionally, we suppose that B is endowed with an Fq-algebra endomorphism τ which
acts as the map c 7→ cq over ι(A) so that (B, τ) is a difference ring. We set

(3.1) Θ = ι(θ).

In the paper, we are going to restrict to the case ι injective. In this case, we identify Θ
with θ but in the first general discussions, we prefer to keep Θ and θ distinct.

We consider, further, the polynomial B-algebra

R = B[Xi; i ∈ Z]

in infinitely many variables Xi, and the ideal P generated by the polynomials

Xq
i + ΘXi −Xi−1, i ∈ Z.

Then, with X the collection (Xi : i ∈ Z) and j =
∑

i∈Z jiq
−i ∈ Z[1

p ]≥0 expanded in base q

(so that only finitely many terms occur), we set

〈X〉j =
∏
i∈Z

Xji
i ∈ R/P.

The quotient B-algebra R/P can be identified with the ring B〈X〉 whose elements F are
formal finite sums in the indeterminates Xi, i ∈ Z:

(3.2) F =
∑

j∈Z[ 1
p

]≥0

Fj〈X〉j =
∑

j∈Z[ 1
p

]≥0

Fj
∏
k∈Z

Xjk
k , Fj ∈ B,

where we have expanded the indices j =
∑

k∈Z jkq
−k in base q (the coefficients ji are almost

all zero and belong to {0, . . . , q − 1}).
An expansion (3.2) is uniquely determined. Indeed, supposing the converse, we are led

to the existence of elements

F =
∑
j

Fj〈X〉j = 0
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in B〈X〉 with the coefficients Fj not all zero. The B-module P(< q) with elements the
polynomials P in P such that for all i, degXi(P ) ≤ q − 1, is trivial, while F admits a
representative in R with the degree in Xj which is in {0, . . . , q − 1} for some j; this is
impossible.

We observe that a product over B〈X〉 is well defined in virtue of the rules Xq
i = Xi−1−

ΘXi. We have thus identified, after a mild abuse of notation, B〈X〉 with a complete system
of (canonical) representatives of elements of R modulo P and we have defined over it a
product which makes it isomorphic to the quotient R/P. A canonical representative in R
is a polynomial that has degree between −∞ and q − 1 in each indeterminate Xi, i ∈ Z.

The reader must carefully distinguish 〈X〉jqk and (〈X〉j)qk : these are distinct elements of
B〈X〉!

Examples. If B = A and ι is the identity, since the multiplication by θ of the Carlitz
A-module is given by Cθ = θ + τ , we have Xi−1 = Cθ(Xi) in the A-module C(A〈X〉). If
B = C∞ and ι is the inclusion A ⊂ C∞, the substitution Xi 7→ eC( z

θi
), where eC is defined

by

eC(z) = expC(π̃z),

yields a C∞-algebra homomorphism

C∞〈X〉 → Map (K → C∞) .

We come back to the general settings of this §3.1. We define a map

B〈X〉 v−→ Z[p−1]≤0 ∪ {∞}

in the following way. We define v(0) := ∞ and we set v(B \ {0}) = {0}. Further,

for a monomial 〈X〉j =
∏
i∈ZX

ji
i (so only finitely many factors satisfy ji > 0), we set

v(〈X〉j) = −j. Note that distinct monomials 〈X〉j correspond to distinct values in Z[1
p ]≤0

so that v is injective over {〈X〉j : j ∈ Z[1
p ]≥0}. If F is non-zero as in (3.2), then we set

v(F ) = inf{v(〈X〉j) : Fj 6= 0};

the infimum is a minimum.

Lemma 3.1. With j, k ∈ Z[1
p ]≥0 we have 〈X〉j〈X〉k = 〈X〉j+k + F where F ∈ B〈X〉

satisfies v(F ) > v(〈X〉j+k).

Remark 3.2. Note that in general,

〈X〉i〈X〉j 6= 〈X〉i+j , i, j ∈ Z[p−1]≥0.

The equality holds if there is no base-q carry over in the sum i+j. For example, the reader
can verify the formula:

(3.3) 〈X〉(q−1)( 1
q

+···+ 1
qn

)〈X〉
1
qn = 〈X〉1 −Θ

n−1∑
i=0

〈X〉(q−1)( 1
q

+···+ 1

qi
)〈X〉

1

qi+1 , ∀n ≥ 1.
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Proof of Lemma 3.1. The proof is rather long and articulate but elementary. We decided
to give all the details so that the reader can better familiarize with these structures. There
is no loss of generality if we suppose that 0 < j, k < q. Indeed we can shift the indexes,
i.e. replacing Xi 7→ Xi+l for all i for some l ∈ Z. This defines a B-linear automorphism of

B〈X〉 that rescales v of a factor q−l because it acts by sending 〈X〉j 7→ 〈X〉q−lj .
For some r ≥ 0 we can thus suppose that j = j0 + j1q

−1 + · · ·+ jrq
−r, k = k0 + k1q

−1 +
· · ·+krq−r with 0 ≤ ji, ki ≤ q−1 for all i. We shall show the following properties. (1) There
exists F ∈ B〈X〉 with v(F ) > −(j+k), such that 〈X〉j〈X〉k = 〈X〉j+k+F . (2) There exists

G ∈ B〈X〉 with v(G) > −(j + k + q−r), such that 〈X〉j〈X〉kXr = 〈X〉j+k+q−r +G. (1) is
exactly the statement of the Lemma, but we also need (2) in the proof. Note that F,G
need not to belong to B[X0, . . . , Xr], however one can show that F,G ∈ B[. . . , X0, . . . , Xr].
We proceed by induction on r ≥ 0. To see (1) for r = 0 we note that there is nothing to
prove in case j + k = j0 + k0 ≤ q − 1. Suppose now that j0 + k0 ≥ q. In any case we have
j0 + k0 ≤ 2q − 2 so that j0 + k0 − q ≤ q − 2. Hence we have the identities, in B〈X〉:

〈X〉j+k = Xj0+k0
0 = Xj0+k0−q

0 (X−1 −ΘX0) =

= Xj0+k0−q
0 X−1 −ΘXj0+k0+1−q

0 = 〈X〉j0+k0 −Θ〈X〉j0+k0+1−q︸ ︷︷ ︸
=:−F

.

To see (2) for r = 0 the reasoning is the same and the only case which needs an explanation
is when j0 + k0 + 1 ≥ q. Note that in any case, j0 + k0 + 1− q ≤ q − 1. Then:

〈X〉j+kXr = 〈X〉j+k+1 −ΘXj0+k0+2−q
0︸ ︷︷ ︸
=:−G

.

If j0 = k0 = q − 1 we have Xj0+k0+2−q
0 = Xq

0 = X−1 − ΘX0 (in B〈X〉) and the v-value is
−1 > −q = −(j0 + k0 + 2− q) = v(〈X〉j0+k0+1).

We now prove (1) for r > 0. If jr+kr ≤ q−1 we can write: 〈X〉j〈X〉k = Xjr+kr
r 〈X〉j′〈X〉k′

where j′ = j − jrq−r and k′ = k − krq−r (j′, k′ have one q-ary digit less so we can apply
recursion). By induction hypothesis we get

〈X〉j〈X〉k = Xjr+kr
r (〈X〉j′+k′ + F ′)

where F ′ ∈ B〈X〉 is such that v(F ′) > −j′ − k′. Then 〈X〉j〈X〉k = 〈X〉j+k + F where

F = Xjr+kr
r F ′. This proves (1) for the integer r because writing F ′ =

∑
j′ F

′
j′〈X〉j

′
we

have F =
∑

j′ F
′
j′〈X〉j

′+q−jr−kr thanks to Remark 3.2. Then, v(F ) = −q−jr−kr − v(F ′) >

−q−jr−kr − j′ − k′ = −j − k.
Let us now suppose that jr + kr ≥ q. Then

(3.4) 〈X〉j〈X〉k = Xjr+kr−q
r Xr−1〈X〉j

′〈X〉k′ −ΘXjr+kr+1−q
r 〈X〉j′〈X〉k′ .

By the induction hypothesis we can apply the properties (1) and (2) for the integer r−1 and

we deduce that in the first term on the right of (3.4), Xr−1〈X〉j
′〈X〉k′ = 〈X〉j′+k′+q1−r

+G′

with G′ ∈ B〈X〉 such that v(G′) > −(j′+k′+q1−r). Since Xjr+kr−q
r 〈X〉j′+k′+q−r = 〈X〉j+k

and since writing G1 = Xjr+kr−q
r G′ we immediately see (Remark 3.2) that v(G1) > −(jr +
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kr− q)q−r− (j′+k′+ q1−r) = −j−k we get Xjr+kr−q
r Xr−1〈X〉j

′〈X〉k′ = 〈X〉j+k +G1 with
v(G1) > −j−k. As for the second term on the right of (3.4) we have, always, jr+kr+1−q ≤
q−1. So we can apply Remark 3.2 again to show that there exists F1 ∈ B〈X〉 with v(F1) >

−(jr+kr+1−q)q−r with the property that Xjr+kr+1−q
r 〈X〉j′〈X〉k′ = 〈X〉j′+k′+(1−q)q−r+F1

and the whole term F2 = ΘXjr+kr+1−q
r 〈X〉j′〈X〉k′ satisfies v(F2) > −j − k − q−r so that

setting G := G1 + F2 we get what we want in this case, namely: 〈X〉j〈X〉k = 〈X〉j+k +G
with v(G) > −(j + k).

It remains to show that the property (2) holds for an integer r > 0. We handle the case
in which jr + kr + 1 ≤ q − 1 in a way identical to that of the case jr + kr ≤ q − 1 for the
property (1) so we omit the details. We suppose that jr + kr + 1 ≥ q. we can write, in
B〈X〉:

(3.5) Xr〈X〉j〈X〉k = Xjr+kr+1−q
r Xr−1〈X〉j

′〈X〉k′ −ΘXjr+kr+2−q
r 〈X〉j′〈X〉k′ .

We first focus on the first term in (3.5). By the induction hypothesis we have

Xr−1〈X〉j
′〈X〉k′ = 〈X〉j′+k′+q1−r

+G′

with v(G′) > −(j′ + k′ + q1−r). In any case jr + kr + 1 − q ≤ q − 1 so that applying

Remark 3.2, Xjr+kr+1−q
r Xr−1〈X〉j

′〈X〉k′ = 〈X〉j+k+q−r +G1 with v(G1) > −(j+ k+ q−r).
The handling of the second term in (3.5) is slightly more involved because there are two
subcases. If (2.a) at least one of the terms jr, kr is < q − 1 then jr + kr + 2 − q ≤ q − 1
and this term can be handled just as the second term in (3.4) so we omit the details. It
remains to consider the subcase (2.b) where jr = kr = q − 1. We see that

G2 := Xjr+kr+2−q
r 〈X〉j′〈X〉k′ = Xq

r 〈X〉j
′〈X〉k′ = Xr−1〈X〉j

′〈X〉k′ −ΘXr〈X〉j
′〈X〉k′ .

By the property (2) for the integer r−1 we can write Xr−1〈X〉j
′〈X〉k′ = 〈X〉j′+k′+q1−r

+G′

with v(G′) > −(j′ + k′ + q1−r). Additionally by Remark 3.2 we have Xr〈X〉j
′〈X〉k′ =

〈X〉j′+k′+q−r . Hence v(G2) = −(j′ + k′ + q1−r) > −(j + k + q−r) = v(〈X〉j+k+q−r) (the
middle inequality follows from the choice of jr, kr). Writing G := G1 − ΘG2 we have

v(G) > −(j + k + q−r), we can write Xr〈X〉j〈X〉k = 〈X〉j+k+q−r +G, and this is what we
wanted. �

As an immediate consequence we record the following important corollary.

Corollary 3.3. The map v is an additive valuation.

In other words, v(FG) = v(F ) + v(G) if F,G ∈ B〈X〉.
Since B〈X〉 is a valued ring by Corollary 3.3, it is integral and we deduce that P is a

prime ideal. The residual ring of B〈X〉 is B. Further, defining

τ(Xi) = Xq
i ≡ Xi−1 −ΘXi (mod P)

induces an endomorphism of B〈X〉.
It is easy to show that, for all F ∈ B〈X〉, v(τ(F )) = qv(F ). Indeed, for all j, (〈X〉j)q =

τ(〈X〉j). Since F ∈ B〈X〉\{0} is such that F ∈ B if and only if v(F ) = 0 (and F ∈ B〈X〉\B
if and only if v(F ) < 0) we immediately see that the subring B〈X〉τ=1 of the elements F
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such that τ(F ) = F is equal to Bτ=1. Note that even in the case of (B, τ) inversive, τ does
not extend to an automorphism of B〈X〉.

3.1.1. The maps λ, µ, ν. We present certain auxiliary maps λ : B〈X〉 \ {0} → N and
µ, ν : B〈X〉 \ B → N that are necessary to develop the arguments from §3.1.2 on. If
F ∈ B〈X〉 is non-zero, we call depth of F the total degree in the indeterminates (Xi)i∈Z of
the canonical representative in R of F . We have that F ∈ B〈X〉 \ {0} has depth 0 if and
only if F ∈ B. Let F ∈ B〈X〉 \ B be as in (3.2). We denote by µ(F ) the largest m ∈ Z
such that the variable Xm occurs in at least one non-zero monomial of F (remember that
the elements of B〈X〉 are polynomials so that µ(F ) is well defined). Similarly, we denote
by ν(F ) the smallest n ∈ Z such that the variable Xn occurs in at least one non-zero
monomial of F . Clearly, the function µ dominates the function ν over B〈X〉 \ B (in the
natural ordering of Z). More precisely, λ, µ, ν are connected by the following inequalities:

0 ≤ µ(F )− ν(F ) ≤ (q − 1)−1λ(F ), ∀F ∈ B〈X〉 \B.
The next result collects some properties of the maps λ, µ, ν in relation with the product
structure. They are applied in the proof of Proposition 3.11.

Lemma 3.4. For two monomials 〈X〉i and 〈X〉j in B〈X〉 the following properties hold:

(1) λ(〈X〉i〈X〉j) ≤ λ(〈X〉i) + λ(〈X〉j),
(2) µ(〈X〉i〈X〉j) = max{µ(〈X〉i), µ(〈X〉j)},
(3) ν(〈X〉i〈X〉j) ∈ {min{ν(〈X〉i), ν(〈X〉j)},min{ν(〈X〉i), ν(〈X〉j)} − 1}.

Proof. (1) We set λ(0) = −∞. It is easily seen that any representative in R of F ∈ B〈X〉
modulo P has its total degree which is larger than λ(F ). This suffices to justify this
property because λ(〈X〉i〈X〉j) ≤ deg(〈X〉i〈X〉j) ≤ deg(〈X〉i) + deg(〈X〉j) = λ(〈X〉i) +
λ(〈X〉j). (2) This property has been already mentioned in the proof of Lemma 3.1 and

it is straightforward. We leave the details to the reader. (3) Identifying Xi with 〈X〉q−i

for all i and allowing a harmless abuse of notation, we show by induction on r ≥ 0 that,

for any fixed j0, . . . , jr ∈ {0, . . . , 2q − 2}, ν(Xj0
0 · · ·X

jr
r ) ∈ {0,−1} and, if X−1 occurs in

some term of the expansion of the canonical representative of Xj0
0 · · ·X

jr
r , it occurs with

degree 1. If r = 0, this is clear (9). Suppose now that the property is proved for the integer

r − 1. Then we have ν(Xj1
1 · · ·X

jr
r ) ∈ {0, 1}, and if the value is 0 then X0 occurs in the

expansion of the canonical representative with degree 1 by induction hypothesis. The proof

is complete by multiplying by Xj0
0 (with j0 ∈ {0, . . . , 2q−2}) as we obtain a representative

in B[Xi : i ∈ N] that has degree < q in all the indeterminates Xi with i > 0 and whose
degree in X0 is at most 2q − 1, a property from which it is easy to conclude. �

3.1.2. The B-module B〈〈X〉〉. We analyze a difference B-module containing B〈X〉 strictly.

Definition 3.5. We define B〈〈X〉〉 to be the B-module of formal series as in (3.2), without
the condition of finiteness of the sums, and such that the following conditions hold:

9It can be proved, more generally, that if m ≥ 1 and if l is an integer such that ql ≤ m < ql+1, then
ν(Xm

0 ) ≥ −l. Moreover, λ(Xm
0 ) ≤ `q(m), the sum of the digits of m in base q.
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(1) There exists L ≥ 0 (depending on F ) such that if Fj 6= 0, then `q(j) ≤ L, with
`q(j) denoting the sum of the digits of j in base q (which means that the length of
the base-q expansions of the exponents j involved is ≤ L).

(2) If Fj 6= 0, then j < M with a constant M > 0 depending on F .

It is clear that there is an inclusion of B-modules B〈X〉 ⊂ B〈〈X〉〉. The first condition
also means that the number of factors Xj of the monomials occurring in F ∈ B〈〈X〉〉 is
bounded.

The depth map λ extends to B〈〈X〉〉 \ {0}. The second condition can be justified in the
following way. If j ∈ Z[1

p ]>0 then we can write, with r0 ≤ r1 integers,

j = jr0q
−r0 + jr0+1q

−1−r0 + · · ·+ jr1−1q
1−r1 + jr1q

−r1 , jr0jr1 6= 0, ji ∈ {0, . . . , q − 1}
so that q−r0 ≤ j < q1−r0 . Hence we have, setting M = q1−r0 , that 〈X〉j only contains
factors of the form Xi with i ≥ r0 if and only if j < M . In the above definition, condition
(2) is therefore equivalent to the existence, for a series F as in (3.2), of an integer r0 such
that if Xi occurs in a monomial 〈X〉j with Fj 6= 0, then i ≥ r0. The map ν extends to
B〈〈X〉〉 \ {0}.

Let F ∈ B〈〈X〉〉 \ {0} be an element with expansion (3.2). We denote by Supp(F ) the
subset

Supp(F ) = {j ∈ Z[p−1] : Fj 6= 0}.
We also set:

v(F ) := inf{−j : j ∈ Supp(F )} ∈ R, v(0) :=∞.

Lemma 3.6. If F ∈ B〈〈X〉〉 \ {0}, v(F ) is a minimum, in Z[1
p ]≤0.

Proof. Directly from Definition 3.5 we see that Supp(F ) can be covered by finitely many
non-empty subsets S of Z[1

p ] of the form

(3.6) S =
{
j0q
−i0 + · · ·+ jlq

−il : i1, . . . , il ∈ N
}
, l ≤ λ(F ), j0, . . . , jl ∈ {1, . . . , l}.

The lemma follows from the fact that any such subset has the property that every non-
empty subset has a maximum. �

Corollary 3.7. Let F be an element of B〈〈X〉〉. The expansion (3.2) is unique.

Proof. Otherwise, there would exist an expansion 0 =
∑

j cj〈X〉j with cj ∈ B not all zero

and we would have ∞ = −j for some j ∈ Z[1
p ] which is impossible. �

Let F be an element of B〈〈X〉〉 \ {0}. By Lemma 3.6 there is a unique expression

(3.7) F = F−v(F )〈X〉−v(F ) + F ′

where F−v(F ) ∈ B \{0} and F ′ ∈ B〈〈X〉〉 is such that v(F ′) > v(F ). The uniqueness follows
from Corollary 3.7.

This allows to obtain the following.

Corollary 3.8. The ring B〈〈X〉〉 is complete for the v-metric.
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Proof. Consider a Cauchy sequence (Fn)n≥0 inB〈〈X〉〉. This is equivalent to v(Fn+1−Fn)→
∞ as n tends to infinity. Suppose by contradiction that Fn+1 −Fn 6= 0 for infinitely many
integers n. For these integers, by the fact that Fn+1−Fn ∈ B〈〈X〉〉, we have v(Fn+1−Fn) ≤ 0
in contradiction with the fact that the sequence is Cauchy. This means that the sequence
(Fn)n≥0 is ultimately constant and therefore, convergent to an element of B〈〈X〉〉. �

The function ν is particularly useful to construct new elements of B〈〈X〉〉 out of a given
sequence of elements in B〈〈X〉〉, by ‘finite sums out of a possibly infinite family of terms.’

Lemma 3.9. Let (Gi)i≥0 be a sequence of elements of B〈〈X〉〉. Assume that ν(Gi) → ∞
and that there exists L ≥ 0 such that λ(Gi) ≤ L for all i. Then the infinite sum∑

i≥0

Gi

defines, canonically, an element G ∈ B〈〈X〉〉 with λ(G) ≤ L.

Proof. Let j be an element of Z[1
p ]. Since ν(Gi) → ∞, j ∈ Supp(Gi) for finitely many

indices and we can define

G =
∑
j

Fj〈X〉j ,

where Fj =
∑

i≥0Gi,j , having written Gi =
∑

j Gi,j〈X〉j (finite sum). The condition on

λ(G) is obvious. �

Remark 3.10. Note that the series defining G in Lemma 3.9 may be divergent for the
topology induced by v. The process of summation defining G is that of finite sums. As an
example, let F be in B〈〈X〉〉 defined by (3.2). Let us choose a bijection f : N → Z[1

p ]≥0.

Set Gi := Ff(i)〈X〉f(i). Then Lemma 3.9 applies and F = G with G the element defined
by Lemma 3.9 while the series (3.2) may diverge for the v-valuation. This process of
summation is rather common when one studies wildly ramified extensions of local fields
and draws a connection with the so-called Hahn series. To illustrate this we recall the
famous example by Chevalley constituted by the polynomial Xp − X − t−1 ∈ Fp((t))[X]
that has as a root, the formal series

x =
∑
i≥1

t−1/pi ,

a series that diverges in the complete field ̂Fp((t))ac. For more in this direction, read Ked-
laya’s paper [44] and the bibliographical references therein. See also Part (4) of Proposition
3.11.

3.1.3. Difference algebra structure on B〈〈X〉〉. We show the next result:

Proposition 3.11. The following properties hold.

(1) The B-module B〈〈X〉〉 is endowed with the structure of a difference B-algebra with
endomorphism τ , extending that of the difference algebra (B〈X〉, τ).
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(2) The B-algebra structure of B〈〈X〉〉 is compatible with the map v : B〈〈X〉〉 \ {0} →
Z[1

p ]≥0 that therefore defines a valuation extending that on B〈X〉. Additionally, for

all F ∈ B〈〈X〉〉, v(τ(F )) = qv(F ).
(3) If (B, τ) is inversive, then (B〈〈X〉〉, τ) is inversive.
(4) If (B, τ) is inversive and F ∈ B〈〈X〉〉 has no constant term in its expansion (3.2)

then there exists G ∈ B〈〈X〉〉 such that τ(G)−G = F .

Proof. (1) We show that there is a ring product on B〈〈X〉〉 that extends the product of

B〈X〉. We use that 〈X〉j = Xj0
0 〈X〉j

′
if j = j0 + j′ with 0 ≤ j0 ≤ q − 1 and j′ ∈ Z[1

p ]

is such that 0 ≤ j′ < 1. We consider F,G ∈ B〈〈X〉〉 and we proceed by induction on
λ(F ) + λ(G) ≥ 0 to prove that FG is a well defined element of B〈〈X〉〉 is we construct the
product by using the product of B〈X〉 and furthermore, λ(FG) ≤ λ(F ) + λ(G), ν(FG) ≥
min{ν(F ), ν(G)} − 1, and if ν(FG) = min{ν(F ), ν(G)} − 1 then the degree of FG in
Xmin{ν(F ),ν(G)}−1 is equal to one. There is nothing to prove if λ(F ) + λ(G) = 0. Let us
now suppose that λ(F ) + λ(G) > 0. There is no loss of generality if we suppose that

F = Xj0
0 F1 and G = Xk0

0 G1 with 0 ≤ j0, k0 ≤ q − 1, j0 + k0 > 0 and ν(F1), ν(G1) ≥ 1.
Clearly, λ(F1) + λ(G1) < λ(F ) + λ(G). Hence the product F1G1 is well defined in B〈〈X〉〉;
let us denote it by H1. By Part (3) of Lemma 3.4, ν(H1) ∈ N. If ν(H1) > 0 we are

done, because the product Xj0+k0
0 H1 is trivially well defined. If ν(H1) = 0 then we know

that the canonical representative of H1 has degree 1 in X0. In this case we can write

H1 = X0H2 +H3 where ν(H2), ν(H3) > 0. The products Xj0+k0
0 H2, X

j0+k0
0 H3 are trivially

well defined and Xj0+k0
0 X0H2 = Xj0+k0+1

0 H2 = (X−1−ΘX0)Xj0+k0+1−q
0 H2 is well defined

(note that j0 + k0 + 1 ≤ 2q− 1) and B〈〈X〉〉 carries a structure of B-algebra, extending the
structure of B〈X〉. That this is additionally a difference algebra with the extension of τ is
clear.

(2) The valuation v of B〈X〉 extends to a valuation of B〈〈X〉〉. This follows from (3.7).
Indeed, clearly, if F,G ∈ B〈〈X〉〉, then v(FG) = v(F ) + v(G). A little additional thought
allows to also justify that v(τ(F )) = qv(F ) for all F ∈ B〈〈X〉〉.

(3) Assuming now that (B, τ) is inversive, we observe that

Yn :=
∑
i≥n

(Θ(−1))i−nXi+1 ∈ B〈〈X〉〉

for all n ∈ Z, with Θ(−1) = τ−1(ι(θ)) in B (this element exists by hypothesis), satisfies

Y
(1)
n = Xn. Indeed,

Y (1)
n =

∑
i≥n

Θi−nXq
i+1

=
∑
i≥n

Θi−n(Xi −ΘXi+1)

= Xn.
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Therefore, inductively, if we set:

(3.8) Yn,r :=
∑

i1>···>ir>n
(Θ(−1))i1−i2−1(Θ(−2))i2−i3−1 · · · (Θ(−r))ir−n−1Xi1 ∈ B〈〈X〉〉,

then Y
(r)
n,r = Xn for all r ≥ 0 and n ∈ Z. Note that λ(Yn,r) = 1, ν(Yn,r) = n + r for all

n, r and that Yn,r = Xn+r + Y ′n,r with Y ′n,r ∈ B〈〈X〉〉 such that v(Y ′n,r) > −q−n−r. To go a

step further and prove that B〈〈X〉〉 is inversive, let us choose j ∈ Z[1
p ]>0 with q-expansion∑

k jkq
−k and write

〈Y 〉jr :=
∏
k∈Z

Y jk
k,r.

This is a well defined element of B〈〈X〉〉 and we have λ(〈Y 〉jr) = λ(〈X〉j) for all r. Moreover,

(3.9) ν(〈Y 〉jr) ≥ ν(〈X〉j) + r + 1− λ(〈X〉j).
These properties follow easily from Lemma 3.4 and (3.8). We have that

(〈Y 〉jr)(r) = 〈X〉j , ∀j, r.
Assuming that B is inversive, we are going to prove by induction over λ ≥ 0 the next
property. If F =

∑
j∈Z[ 1

p
]≥0

Fj〈X〉j ∈ B〈〈X〉〉 is such that λ = λ(F ) and n = ν(F ),

then, for any r ≥ 0, there exists Gr ∈ B〈〈X〉〉 such that τ r(Gr) = F with λ(G) = λ,
ν(G) ≥ n+ r + 1− λ.

The property is clear for λ = 0. In fact, (3.8) justifies it also for λ = 1 but we do not
need it. Suppose that λ > 0. Since r is fixed we write G = Gr for simplicity. Without loss
of generality we can suppose that n = ν(F ) = 0 and

F = Xj0
0 F1

with j0 ∈ {0, . . . , q−1} and F1 ∈ B〈〈X〉〉 is such that λ1 := λ(F1) < λ, ν(F1) ≥ 1. Note that
λ1+j0 = λ. Indeed, the canonical representative of F1 does not depend onX0. By induction
hypothesis there exists G1 ∈ B〈〈X〉〉 such that τ r(G1,r) = F1 satisfying λ(G1,r) = λ1,

ν(G1,r) ≥ r + 2 − λ1. Recall that Xj0
0 = 〈X〉j0 and 〈Y 〉j0r satisfies (〈Y 〉j0r )q

r
= Xj0

0 ,

λ(〈Y 〉j0r ) = j0, ν(〈Y 〉j0r ) ≥ r + 1 − j0 (by (3.9)). Setting G := 〈Y 〉j0r G1,r we thus get
τ r(G) = F with λ(G) = λ(F ). From Part (3) of Lemma 3.4 and (3.7) we deduce

ν(G) ≥ min{ν(G1), ν(〈Y 〉j0r )} − 1 ≥ min{r + 1− λ1, r − j0} ≥ r + 1− λ1 − j0 = r + 1− λ.
Hence, if B is inversive, B〈X〉 is inversive.

(4) It remains to show that if B is inversive then, any equation τ(X)−X = F is solvable
in B〈〈X〉〉 if F ∈ B〈〈X〉〉 has no constant term (note that B needs not to be closed for
Artin-Schreier equations). In order to do so, we use the previous Part (3) and its proof.
We have seen that for all r ≥ 0 there exists an element τ−r(F ) = Gr ∈ B〈〈X〉〉 such that
τ r(τ−r(F )) = F , with λ(τ−r(F )) = λ(F ) and ν(τ−r(F )) ≥ ν(F ) + r + 1 − λ. Hence
ν(τ−r(F ))→∞ as r →∞ and the hypotheses of Lemma 3.9 are satisfied, so that

G :=
∑
r≥0

τ−r(F )
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is a well defined element of B〈〈X〉〉 satisfying τ(G)−G = F . �

Remark 3.12. By using the above proposition and its proof it is easy to deduce the
following properties. If L is an inversive field extension of K then L〈〈X〉〉 is inversive, as
well as its fraction field. If additionally L contains all roots of equations τ(X) − X = F
(e.g. L = KΣ), then L〈〈X〉〉 contains all roots of equations τ(X)−X = F with F ∈ L〈〈X〉〉.

3.1.4. Depth homogeneity. We denote by B〈〈X〉〉s the B-submodule of B〈〈X〉〉 whose ele-
ments are the formal series F as in (3.2) such that if Fj 6= 0, then 〈X〉j has depth equal to
s, i.e. `q(j) = s. It is easy to see that

(3.10) B〈〈X〉〉 =
⊕
s≥0

B〈〈X〉〉s

as a B-module. If F ∈ B〈〈X〉〉, we can expand in finite sum and in a unique way

(3.11) F =
∑
s≥0

F [s],

where F [s] ∈ B〈〈X〉〉s.
The next Lemma, not used in the present text, is an aside observation. The proof of

which is left to the reader.

Lemma 3.13. For any s ≥ 0, τ induces an endomorphism of the B-module B〈〈X〉〉s.

Remark 3.14. The B-algebra B〈〈X〉〉 is not graded by the depths. Instead, we have that

B〈〈X〉〉sB〈〈X〉〉s′ ⊂
⊕
j≥0

B〈〈X〉〉s+s′−j(q−1),

where we set B〈〈X〉〉s = {0} if s < 0. This property is easy to show and we omit the proof.

3.1.5. The case of B a difference field. We keep working under the hypotheses of the previ-
ous sections and, although several properties also hold in broader generality, we additionally
suppose in this subsection that B = L is a field together with an embedding A → L and
an endomorphism τ : L → L extending the Fq-endomorphism c 7→ cq in A. We introduce
the subvector space of L〈〈X〉〉:

L◦〈〈X〉〉 := VectL
(
F ∈ L〈〈X〉〉 : ν(F ) ≥ 1

)
⊕ L.

Only the variables X1, X2, . . . occur in the series defining L◦〈〈X〉〉. We have

v(L◦〈〈X〉〉 \ {0}) = Z[p−1]∩]− 1, 0].

In particular, L◦〈〈X〉〉 has no ring structure compatible with v. It has the family (〈X〉j :
j ∈ Z[p−1]∩]− 1, 0]) as an L-basis. Note that L◦〈〈X〉〉 need not to be τ -closed, that is, such
that for all f ∈ L◦〈〈X〉〉, τ(f) ∈ L◦〈〈X〉〉. If we suppose that L is inversive, then it follows
easily from Part (4) of Proposition 3.11 that τ−1 defines an Lτ=1-linear endomorphism of
L◦〈〈X〉〉.

We set
X := X0.
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Lemma 3.15. For any F ∈ L〈〈X〉〉 there exist n and f0, . . . , fn ∈ L◦〈〈X〉〉 such that
F = f0 + f1X + · · ·+ fnX

n, and this expression is unique.

Proof. We begin by illustrating a simple claim on polynomials in several variables that
holds in broader generality. Let F be an element of L〈X〉 \ B such that µ(F ) ≤ 0. By
iterate substitution of X−k 7→ Xq

1−k + ΘX1−k with k > 0, defining a map from the set
of representatives of R = L[Xi : i ∈ Z] modulo P, we deduce that there is a unique
representative in R of F which belongs to the subring L[X] (in particular, the degree in
X needs not to be between 0 and q − 1). This representative is uniquely determined. Let
us consider F ∈ L〈〈X〉〉 \ {0} with expansion (3.2). If ν(F ) > 0 there is nothing to prove.
Assume now that ν(F ) ≤ 0. Then we can rearrange the terms in (3.2) in such a way that
there are j1, . . . , jh ∈ N and G1, . . . , Gh ∈ L◦〈〈X〉〉 with

F =
h∑
k=1

〈X〉jkGk.

This expansion is uniquely determined. The above claim now suffices to complete the
proof. �

Hence we have

L〈〈X〉〉 =
⊕
i≥0

L◦〈〈X〉〉Xi.

We can write, loosely:

L〈〈X〉〉 = L◦〈〈X〉〉[X].

We now consider ̂Frac(L〈〈X〉〉)v, the completion for the valuation v of the fraction field
of L〈〈X〉〉 (the latter is clearly a domain).

Proposition 3.16. Every element f of ̂Frac(L〈〈X〉〉)v can be expanded in a unique way as
a sum

f =
∑
i≥i0

fiX
−i, fi ∈ L◦〈〈X〉〉.

Remark 3.17. Note that in the above expansion the depths of the coefficients fi may be
unbounded in their dependence on i.

We can write L◦〈〈X〉〉((X−1)) for the L-vector space of the formal series f =
∑

i≥i0 fiX
−i

as above, with fi ∈ L◦〈〈X〉〉 for all i, with the warning that this is not a field for the usual
Cauchy product rule of formal series, since, as pointed out previously, L◦〈〈X〉〉 is not a ring
but just an L-vector space. The proposition tells us that this set in fact carries a structure

of complete field, and equals ̂Frac(L〈〈X〉〉)v, but the product rule is not the Cauchy’s one.
To prove the proposition we will need the next two Lemmas. The first one describes the
valued ring structure of L◦〈〈X〉〉((X−1)).

Lemma 3.18. The set L◦〈〈X〉〉((X−1)) has a structure of commutative ring with unit, over
which the valuation v extends in a unique way from L◦〈〈X〉〉, and which is complete for it.
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Proof. Recall from Corollary 3.8 that L〈〈X〉〉 is complete. It is not difficult to deduce
that L◦〈〈X〉〉 is also complete. Since L◦〈〈X〉〉 is an L-vector space, in order to show that
L◦〈〈X〉〉((X−1)) is a ring, all we need to do is to show that the product of L〈〈X〉〉 extends
to a product structure on L◦〈〈X〉〉((X−1)). Let f =

∑
i≥i0 fiX

−i and g =
∑

j≥j0 gjX
−j be

two elements of L◦〈〈X〉〉((X−1)). We note that hk :=
∑

i+j=k figj ∈ L〈〈X〉〉 has valuation

in ]− 2, 0] ∪ {∞} and we can write hk = αkX + βk, with αk, βk ∈ L◦〈〈X〉〉. We define

h = fg =
∑

k≥k0:=i0+j0

X−khk =
∑
k≥k0

αkX
1−k +

∑
k≥k0

βkX
−k ∈ L◦〈〈X〉〉((X−1)).

From this, we obtain the required ring structure. If f =
∑

i≥i0 fiX
−1 ∈ L◦〈〈X〉〉((X−i))

is such that fi0 ∈ L◦〈〈X〉〉 \ {0}, then we set v(f) := v(fi0) + i0 ∈]i0 − 1, i0] and it is
plain that v defines a valuation over the ring L◦〈〈X〉〉((X−1)) and that every such series of
L◦〈〈X〉〉((X−1)) converges for this valuation.

Note that f =
∑

i fiX
−i ∈ L◦〈〈X〉〉((X−1)) is such that v(f) > N where N is charac-

terised by the following condition: the smallest i0 such that fi0 6= 0 is such that i0 ≥ N+1.
This is meaningful, indeed, if fi0 ∈ L◦〈〈X〉〉 \ {0}, v(fi0X

−i) ∈]i0 − 1, i0]. Thus, if (Fk)k
is a Cauchy sequence of L◦〈〈X〉〉((X−1)), the sequence (F0 − Fk)k = (

∑k
i=1(Fi−1 − Fi))k

converges to an element of L◦〈〈X〉〉((X−1)) which is then complete. �

3.1.6. The rings L•〈〈X〉〉. We introduce the ring:

L•〈〈X〉〉 := L〈〈X〉〉
[
(〈X〉j)−1 : j ∈ Z[p−1]≥0

]
= L〈〈X〉〉[X−1

i : i ∈ Z],

which contains L〈〈X〉〉. Every element f of L•〈〈X〉〉 has a well defined valuation v(f) in
Z[1

p ]. To see this we note that for every g ∈ L•〈〈X〉〉, there exists j ∈ Z[1
p ]≥0 such that

〈X〉jg ∈ L〈〈X〉〉 and this provides the unique extension of the valuation map over L•〈〈X〉〉.

Lemma 3.19. We have L•〈〈X〉〉 ⊂ L◦〈〈X〉〉((X−1)).

Proof. If n > 0 we can identify X−1
−n with an element in X−q

n
(1 + X−1A[[X−1]]) and

therefore X−n has a multiplicative inverse X−1
−n ∈ L◦〈〈X〉〉((X−1)) for all n > 0. Now, we

show that Xi has a multiplicative inverse X−1
i ∈ L◦〈〈X〉〉((X−1)) for all i ≥ 0. To see this,

we need the following useful identity in L〈〈X〉〉, the proof of which is left to the reader:

(3.12) Xqi

i = X0 −
(

ΘX1 + ΘqXq
2 + · · ·+ Θqi−1

Xqi−1

i

)
, n ≥ 0.

Thanks to the identity (3.12) we can write, in the fraction field of L〈〈X〉〉:

(3.13)
1

Xi
=
Xqi−1
i

Xqi

i

= =
Xqi−1
i

X0

(
1− 1

X0

(
ΘX1 + ΘqXq

2 + · · ·+ Θqi−1Xqi−1

i

)) .
Observe that the element of L•〈〈X〉〉:

(3.14) h = X−1
0

(
ΘX1 + ΘqXq

2 + · · ·+ Θqi−1
Xqi−1

i

)
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has valuation 1− q−1 > 0. Indeed, one can show that ΘX1 + ΘqXq
2 + · · ·+ Θqi−1

Xqi−1

i =

(Θ + Θq + · · ·+ Θqi−1
)X1 +κi where v(κi) > −q−1. We have v(hj)→∞ as j →∞ so that

we obtain a converging series expansion

(3.15) X−1
i =

Xqi−1
i

X0

∑
j≥0

hj ∈ L◦〈〈X〉〉((X−1))

(the reader can observe that it is not completely straightforward to determine explic-
itly the coefficient of X−j for given j, in this series expansion.) More generally, 1

〈X〉j ∈
L◦〈〈X〉〉((X−1)) for all j, and the lemma follows remembering that L〈〈X〉〉 = L◦〈〈X〉〉[X]. �

Proof of Proposition 3.16. It suffices to show that we can embed Frac(L〈〈X〉〉) in (L•〈〈X〉〉)∧v
(completion for v). Taking completions, we get the proposition. To see this property, we
only need to show that if f ∈ L〈〈X〉〉 is not proportional by an element of L× to 〈X〉j
for some j ∈ Z[1

p ]≥0, then there exists g ∈ (L•〈〈X〉〉)∧v such that fg = 1. Now, write

f = α〈X〉j − h for some j, where α ∈ L× and where h ∈ L〈〈X〉〉 is such that v(h) > −j.
Then, the series

∑
i≥0( h

α〈X〉j )i converges in (L•〈〈X〉〉)∧v and we can set

(3.16) g =
1

α〈X〉j
∑
i≥0

(
h

α〈X〉j

)i
∈ L̂•〈〈X〉〉v.

By Lemma 3.19, (Frac(L〈〈X〉〉))∧v ⊂ L◦〈〈X〉〉((X−1)) which is complete. On the other hand,
any series

∑
i≥i0 fiX

−i with the coefficients fi in L◦〈〈X〉〉 converges (for v) and the partial

sums are elements of L•〈〈X〉〉[X−1] ⊂ (Frac(L〈〈X〉〉))∧v from which we can conclude that
(Frac(L〈〈X〉〉))∧v = L◦〈〈X〉〉((X−1)) and also, we note that in this way, L◦〈〈X〉〉((X−1))
carries the structure of a complete valued field (although performing explicitly the product
of two formal series in it, or computing the inverse of a non-zero series in it, is in general
a difficult matter). �

Note that the field L◦〈〈X〉〉((X−1)) has valuation ring

L⊕
⊕
i>0

L◦〈〈X〉〉X−i

and maximal ideal ⊕
i>0

L◦〈〈X〉〉X−i.

The residual field is L.

3.1.7. Link with Hahn series. This subsection is not needed in the rest of the paper but it
illustrates useful properties of our rings and fields, and comparison with known theories.
We suppose here that, in addition to the hypotheses of §3.1.5, B = L is an inversive field
containing A such that τ(x) = xq for x ∈ A. By Proposition 3.11, L〈〈X〉〉 is inversive. We
give some complements on the structure of L〈〈X〉〉. We provide here an alternative way to
represent the elements of L◦〈〈X〉〉.
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Let X be an indeterminate over L. We consider the following set of generalized formal
series, or Hahn series, in the sense of Kedlaya, [44]

(3.17) L◦{{X}} =

f =
∑

i∈Z[p−1]∩[0,1[

fiX
i : fi ∈ L and there exists

c ≥ 0 such that fi 6= 0 implies `p(i) ≤ c

 ,

where `p(·) denotes the sum of the digits in the base-p expansion of an integer. Equivalently,
L◦{{X}} can be described as the set of all the generalized formal series in the indeterminate
t = X−1 which are supported by the sets Sa,b,c of [44, §3] with a = 1, b = 0 and c ≥ 0.

Lemma 3.20. Identifying the indeterminate X of (3.17) with the element X = X0 ∈
L〈〈X〉〉 gives rise to a canonical isomorphism of L-vector spaces L◦{{X}} ∼= L◦〈〈X〉〉.

Proof. First of all, note that, for S ⊂ Z[1
p ]≥0 non-empty, `p(S) ⊂ N is finite if and only

if `q(S) ⊂ N is finite. We deduce that every element f ∈ L◦{{X}} can be expanded, in a

unique way, as a finite sum of generalized series f =
∑l0

l=0 fl where

fl =
∑

j1,...,jl∈N
fi,jX

j1q−i1+···+jlq−il , fi,j ∈ L,

where i = (i1, . . . , il) ∈ (N \ {0})l and j = (j1, . . . , jl) ∈ {0, . . . , q− 1}l (the term with l = 0
corresponds to the constant term). We have a well defined L-linear map φ : L◦{{X}} 7→
L◦〈〈X〉〉 defined by Xj1q−i1+···+jlq−il 7→ Y j1

0,i1
· · ·Y jl

0,il
where the elements Yn,r are as in (3.8).

We note that Y j1
0,i1
· · ·Y jl

0,il
= Xj1

i1
· · ·Xjl

il
+ F = 〈X〉j1q−i1+···+jlq−il + F , where F ∈ L◦〈〈X〉〉

satisfies v(F ) > −(j1q
−i1 + · · · + jlq

−il). Hence the above mentioned linear map is an
isomorphism. �

The above isomorphism φ is canonical in the sense that it is an isometry if we give
L◦{{X}} the norm induced by the degree in X, and additionally, if f ∈ L◦{{X}} is such
that τ(f) ∈ L◦{{X}}, then τ(φ(f)) = φ(τ(f)). If L is inversive, it is easy to see that
τ−1 : L → L extends in a unique way to an Lτ=1-endomorphism of L◦{{X}} and we can
identify L◦{{X}} and L◦〈〈X〉〉 as L[τ ]-modules.

Corollary 3.21. If L ⊂ C∞ has no non-trivial Artin-Schreier extensions then the com-
pletion of the fraction field of L〈〈X〉〉 for the valuation v has no non-trivial Artin-Schreier
extensions.

Proof. We consider an Artin-Schreier equation Xp − X = f with f in the completion
̂Frac(L〈〈X〉〉)v of the fraction field of L〈〈X〉〉. If f lies in the maximal ideal, the result is

obvious. Indeed the formal series f+fp+fp
2
+ · · · converges in ̂Frac(L〈〈X〉〉)v to a solution

g of Xp − X = f . Hence, without loss of generality, we can suppose that f belongs to
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the complement of the maximal ideal in the completion of the fraction field of L〈〈X〉〉. We
can decompose, in a unique way, f = f0 + f1 with v(f0) > 0 (i.e. in the maximal ideal of

̂Frac(L〈〈X〉〉)v) and f1 ∈ L〈〈X〉〉 such that v(f1) ≤ 0. By the above discussion, there is a
solution g0 in the maximal ideal, of the equation Xp −X = f0.

By Proposition 3.16, the complement of the maximal ideal equals L〈〈X〉〉. It remains to
solve the equation Xp−X = f1 with f1 ∈ L〈〈X〉〉. By a simple variant of Remark 3.12, for

all f̃ ∈ L〈〈X〉〉 there is g̃ ∈ L〈〈X〉〉 such that g̃q − g̃ = f̃ . Setting f̃ = f1 + fp1 + · · ·+ fp
e−1

1

(with q = pe, e > 0) we thus get that g̃p−g̃−f1 is solution of X+Xp+· · ·+Xpe−1
= 0 hence

belonging to the algebraic closure of Fq in L. There exists λ ∈ L such that g̃p− g̃ = f1 +λ.
Let µ ∈ L be such that µp − µ = λ that exists because L has no non-trivial Artin-Schreier
extensions. Then g1 = g̃ − µ ∈ L〈〈X〉〉 satisfies gp1 − g1 = f1 and g = g0 + g1 is a solution
of Xp −X = f . Clearly, all the solutions are in g + Fp. �

Remark 3.22. The reader should compare Proposition 3.16 with [44, Lemma 7]. By
Theorem 6 ibid., if L is algebraically closed, the field⋃

n≥1

̂Frac(L〈〈X〉〉)v((X
− 1
n ))

contains an algebraic closure of L((X−1)).

3.2. Tame series. The rings L〈〈X〉〉 of the previous section, or the completions of their
fraction fields, are not enough to study the behavior at ∞ of our modular forms. To do
this we need a refined notion and we introduce tame series.

Unless otherwise specified, we shall fix, throughout this subsection, a τ -difference sub-A-
algebra B of KΣ, for some Σ. We identify θ with ι(θ) (so that Θ = θ in (3.1)). We denote
by B〈〈X〉〉b the subset of B〈〈X〉〉 formed by the series as in (3.2), satisfying supj ‖Fj‖ <∞
((·)b stands for ’bounded’). It is easy to show that it is complete for the v-topology, see
the proof of Corollary 3.8. We leave to the reader the proof of the following:

Lemma 3.23. B〈〈X〉〉b is a difference sub-B-algebra of B〈〈X〉〉 containing B〈X〉.

We consider the map B〈X〉 J−→ Hol(C∞ → KΣ) defined by J(Xi) = ei, where

ei := eC

( z
θi

)
= expC

(
π̃z

θi

)
for all i ∈ Z. It is easy to see that J is a B-algebra morphism and defines an algebra map
from B〈〈X〉〉b to the maps from C∞ to KΣ; this follows from the fact that, for all z ∈ C∞,

|ei(z)| = | π̃zθi | for all i sufficiently large (depending on z). We set

e = (ei : i ∈ Z).

We denote by B〈〈e〉〉b the image J(B〈〈X〉〉b) of J in the KΣ-valued maps. We call it the
B-algebra of tame series. Explicitly, if we set

〈e〉j = J(〈X〉j) =
∏
i∈Z

ejii , j =
∑
i∈Z

jiq
−i ∈ Z[p−1]≥0, jk ∈ {0, . . . , q − 1},
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we can make the next:

Definition 3.24. A tame series with coefficients in B is a map C∞ → KΣ which is defined
by an everywhere converging series f of the type

(3.18) f(z) =
∑

j∈Z[p−1]≥0

fj〈e〉j , fj ∈ B,

satisfying the following properties.

(1) There exists an integer L ≥ 0 such that if fj 6= 0, then `q(j) ≤ L.
(2) There exists M > 0 such that, for all j ∈ Z[p−1]≥0, fj ∈ B satisfies ‖fj‖ ≤M .
(3) There exists N ∈ N such that if j ∈ Z[1

p ]≥0 is such that fj 6= 0, then j < N .

Proposition 3.25. The map J extends to a B-algebra morphism

B〈〈X〉〉b J−→ Hol(C∞ → KΣ)

and this is a morphism of τ -difference rings.

Proof. Let us consider a series f as in (3.18). Observe that for all j ∈ Z[1
p ]≥0, the function

z 7→ 〈e〉j is KΣ-entire. It suffices to show that, for all R ∈ |C∞|, the series defining f
converges uniformly over the disk DC∞(0, R). One immediately sees that f(z) is a tame
series if and only if f(θ−1z) is a tame series. Hence, we are reduced to prove the above
property in the case R = 1. Now, observe that the set {j ∈ Z[p−1]≥0 : fj 6= 0 and j ≥ 1} is
finite (because of the conditions (1) and (3) of Definition 3.24). Hence, we can decompose

(3.19) f =
∑
j≥1

fj〈e〉+
∑

0≤j<1

fj〈e〉.

The first sum is finite and therefore defines an entire function. Note now that if j =∑
k jkq

−k < 1 then we can write

〈e〉j = ei1(z)j1 · · · eil(z)
jl

where i = (i1, . . . , il) ∈ (N∗)l. Then, for |z| ≤ 1, by the fact that expC is locally an
isometry,

|〈e〉j | = |ei1(z)j1 · · · eil(z)
jl | ≤ |π̃|`q(j)|θ|−(i1j1+···+iljl).

Hence

‖fj〈e〉j‖ ≤M |π̃|L|θ|−(i1j1+···+iljl) → 0

where L,M are as in (1) and (2) of Definition 3.24, the limit being considered for the
Fréchet filter over the set of couples (i, j) with j = (j1, . . . , jl). This means that in the
above decomposition (3.19), the second series defines a KΣ-entire function and the series
defining f converges to a KΣ-entire function. �
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3.2.1. Asymptotic behavior of tame series. It is the asymptotic behavior of tame series that
allows to endow their rings with a weight map, and a valuation. For j ∈ Z[1

p ]≥0 we call

〈e〉j a monic tame monomial. Its depth is the integer λ(〈e〉j) = `q(j) and its weight is j.
To fix ideas, the weight of e0 = eC(z) is one and the weight of 1 or of a non-zero constant
is 0. Distinct tame monomials have distinct weights. The condition of finite depth, jointly
with the fact that for any tame series (3.18) ei does not occur in the series expansion
for i ≤ i0 for some i0 (equivalent to Conditions (1) and (3) in Definition 3.24) ensures
that the supremum of the weights of the monomials composing a non-zero tame series is a
maximum.

In the following, we call leading tame monomial of a tame series f 6= 0 the unique tame
monomial of maximal weight. The weight w(f) of f is by definition equal to the weight of
the leading tame monomial. The weight −∞ is assigned to the zero tame series. We now
discuss the question on whether, assigning to a non-zero tame series f the weight w(f), we
have defined a degree map

B〈〈e〉〉b w−→ Z[p−1]≥0 ∪ {−∞},

that is, the opposite of a valuation. Of course, this is related to the uniqueness of the tame
expansion of a function such as in (3.18), entire after Proposition 3.25; we are going to
focus on these questions now. We recall that eC(z) := expC(π̃z) = e0(z).

Lemma 3.26. We consider a monic tame monomial f(z) = 〈e〉j = ei1(z)j1 · · · eil(z)jl with
i1 > · · · > il and j1, . . . , jl ∈ {0, . . . , q−1}. Let z ∈ C∞ be such that |z| 6∈ |θ|Z. If |z| > |θ|il,
we have |f(z)| = |eC(z)|j .

Proof. Let z ∈ C∞ be such that |θ|n−1 < |z| < |θ|n, for n ∈ Z. Let us suppose that n ≥ 1.
From the Weierstrass product expansion of the function eA(z) = π̃−1 expC(π̃z):

(3.20) eA(z) = z
∏′

a∈A

(
1− z

a

)
,

we see that

|eA(z)| = |z|
∏
a6=0

∣∣∣1− z

a

∣∣∣ = |z|
∏

0<|a|<|z|

∣∣∣z
a

∣∣∣ = |z|qn
∏

0<|a|≤|θ|n−1

|a|−1.

Therefore

|eC(z)| = |π̃||z|qn
∏

0<|a|<|θ|n−1

|a|−1,

|eC(zθ−i)|qi = |π̃|qi
∣∣∣ z
θi

∣∣∣qn ∏
0<|a|<|θ|n−1−i

|a|−qi .
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One computes easily
∏

0<|a|≤qn−1 a−1 = ln
Dn

with Dn and ln defined in (2.10) and (2.12)

and | lnDn | = |θ|
q q
n−1
q−1
−nqn

from which we deduce∣∣∣eC( z
θi

)qi∣∣∣
|eC(z)|

= |π̃|qi−1|θi|−qn
∣∣∣∣∣ l
qi

n−iDn

Dqi

n−iln

∣∣∣∣∣ = 1.

To resume, if i is a non-negative integer and n > i (note that | z
θi
| 6∈ |θ|Z), then

|ei(z)| =
∣∣∣eC ( z

θi

)∣∣∣ = |eC(z)|
1

qi .

This suffices to complete the proof of the Lemma. �

Proposition 3.27. Let us consider a non-zero tame series f as in (3.18) and let 〈e〉j0 be
its leading tame monomial. Then, for all z ∈ C∞ such that |z| 6∈ |θ|Z and with |z| large
enough depending on f , ‖f(z)‖ = ‖fj0‖|eC(z)|j0.

Proof. Let z ∈ C∞ be such that |θ|n−1 < |z| < |θ|n, for n ∈ Z. Let us suppose that
n ≤ i. Then, |z| < |θ|i and |z/θi| < 1. In this case the product expansion (3.20) yields
|eC
(
z
θi

)
| =

∣∣π̃ z
θi

∣∣.
We consider an arbitrary tame monomial 〈e〉j , and z as above. Writing j = j1q

−i1 +
· · ·+ jlq

−il with il > · · · > i1 and ji ∈ {0, . . . , q − 1}, we can set

j≤n =
∑

m such that
n≤im

jmq
−im , j>n =

∑
m such that

n>im

jmq
−im ∈ Z[p−1]≥0

so that

j = j≤n + j>n

without carrying over in the base-q sum. Then,

〈e〉j = 〈e〉j≤n〈e〉j>n .

By Lemma 3.26 we have |〈e〉j>n | = |eC(z)|j>n . On the other hand, writing j≤n = jk+1q
−ik+1+

· · ·+ jlq
−il (hence j<n = j1q

−i1 + · · ·+ jkq
−ik), we see that

|〈e〉j≤n | = (π̃z)`q(j≤n)

|θ|δn
≤ |π̃|

`q(j)

|θ|δn
|z|`q(j),

where δn := ik+1jk+1 + · · ·+ iljl. Then, we see that

|〈e〉j | ≤ |eC(z)|j |θ|−δn |π̃z|L.

Let us choose w̃ ∈ Z[1
p ], positive. Then, for |z| ≥ R0 with R0 ∈ |C∞| suitably chosen,

depending only on w̃ and L (L as in (1) of Definition 3.24), we have that |π̃z|L ≤ |eC(z)|w̃,
so that

|〈e〉j | ≤ |eC(z)|j+w̃|θ|−δn .
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Now, let us consider a non-zero tame series f that we can write in the following way

f = fj0〈e〉j0 +
∑
j 6=j0

fj〈e〉j

with fj0 6= 0. There exists w̃ ∈ Z[1
p ]≥0 such that if j 6= j0 is such that fj 6= 0, then

j < j + w̃ < j0. Hence:

‖fj〈e〉j‖ ≤ C1|eC(z)|j+w̃|θ|−δn , |z| ≥ R0,

where C1 is an upper bound for the absolute values ‖fj‖. Since δn →∞, we have that∥∥∥∥∥∥
∑
j 6=j0

fj〈e〉j
∥∥∥∥∥∥ ≤ C2|eC(z)|w′ , |z| ≥ R0,

for w′ ∈ Z[1
p ]≥0, 0 ≤ w′ < j0 and R0 depending on f . Hence,∥∥f(z)− fj0〈e〉j0

∥∥ ≤ C3|eC(z)|w′

and if |z| ≥ R1 depending on C3 and w′, we get

‖f(z)‖ = ‖fj0‖ · |〈e〉j0 | = ‖fj0‖ · |eC(z)|j0

(C2, C3 are constants depending on f). �

Remark 3.28. We define, for z ∈ C∞,

|z|= = inf{|z − l| : l ∈ K∞} = min{|z − l| : l ∈ K∞}
(see [60, §5]). The statement of Proposition 3.27 holds under the weaker condition that
|z|= is large enough. We leave the details to the reader.

We have the following important consequence of Proposition 3.27.

Corollary 3.29. If f is an entire function which belongs to B〈〈e〉〉b, then its tame series
expansion is unique.

Proof. It suffices to show that a tame series as in (3.18) cannot vanish identically, if not
trivially. But otherwise, such a series would then have a unique leading tame monomial,
which would contradict the property of Proposition 3.27. �

Thanks to Corollary 3.29 and Proposition 3.11 (that stipulates that B〈〈X〉〉b is a ring),
J is injective, B〈〈e〉〉b has a structure of B-algebra, the map w ◦ J is the opposite of the
valuation v and the depth λ(f) of a tame series f defined as the depth of g ∈ B〈〈X〉〉b such
that J(g) = f becomes a well defined invariant of the entire function it represents. Note
that B〈〈e〉〉b is also complete for the v-metric; the proof is identical to that of Corollary
3.8). The map J is continuous.

Remark 3.30. The opposite of the weight is an additive valuation on tame series that
we denote by v. While a tame series as in (3.18) in general diverges for the v-valuation,
it converges for the inf-valuation associated to any disk DC∞(0, R), R ∈ |C×∞| by the fact
that it is an entire function.
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3.2.2. The field of uniformizers. Several constructions of §3.1 can be reproduced in con-
nection with the B-algebra B〈〈e〉〉b, with very little changes. We set B◦〈〈e〉〉b = J(B◦〈〈X〉〉b).
Explicitly, B◦〈〈e〉〉b is the B-module of the series satisfying the items (1) to (3) of Defini-
tion 3.24 with the additional property that only the functions e1, e2, . . . occur, just as for
the indeterminates X1, X2, . . . in the definition of L◦〈〈X〉〉 at the beginning of §3.1.5. The
reader can check, writing

e := e0 = eC ,

the next result:

Lemma 3.31. Every element f ∈ B〈〈e〉〉b can be expanded, in a unique way, as

f =
r∑
i=0

fie
i, fi ∈ B◦〈〈e〉〉b.

If B = L is a field, We set

KL := ̂Frac(L〈〈e〉〉b)v
(v-adic completion); we call this the field of uniformizers over L. The next proposition
provides a simple way to represent the elements of KL.

Proposition 3.32 (u-expansions). Every element f of KL can be expanded in a unique
way as a sum

f =
∑
i≥i0

fie
−i, fi ∈ L◦〈〈e〉〉b.

Proof. The proof closely follows that of Proposition 3.16. The additional point is that we
must take care of condition (2) in Definition 3.24, which is not relevant in Proposition
3.16. But apart from this detail, the proof runs along the same ideas. It suffices to
give a deeper look at the proofs in §3.1.6. If we take an element such as h in (3.14)
then the series expansion (3.15) belongs to L◦〈〈X〉〉b((X−1)). Indeed, if we write x =

ΘX1 + ΘqXq
2 + · · ·+ Θqi−1

Xqi−1

i ∈ L◦〈〈X〉〉b, it is rather straightforward, although tedious,

to show by induction that for all n ≥ 1, we can expand in a unique way xn ∈ L◦〈〈X〉〉b[X]
with degree ≤ max{0, logq(n)− 1} in X. From this we deduce that for all i ≥ 0, X−1

i can

be expanded in a unique way in L◦〈〈X〉〉b((X−1)) (we know from the proof of Lemma 3.19
that this is already possible in L◦〈〈X〉〉((X−1))). If we set

L•〈〈X〉〉b := L〈〈X〉〉b
[
(〈X〉j)−1 : j ∈ Z[p−1]≥0

]
= L〈〈X〉〉[X−1

i : i ∈ Z],

we get L•〈〈X〉〉b ⊂ L◦〈〈X〉〉b((X−1)) following the scheme of proof of Lemma 3.19. The
other relevant point is justifying that if h ∈ L〈〈X〉〉b, then the series in (3.16) converges in
L•〈〈X〉〉b((X−1)). Suppose that we have h ∈ L〈〈X〉〉b with v(h) > j, j ∈ Z[1

q ]≥0. We have
h
〈X〉j ∈ L

•〈〈X〉〉b. We can expand h
〈X〉j in L◦〈〈X〉〉b((X−1)) and therefore, if f is any element

of L◦〈〈X〉〉b((X−1)) \ {0}, thanks to (3.16) f is invertible in L◦〈〈X〉〉b((X−1)). This justifies
that the completion of the fraction field of L◦〈〈X〉〉b is L◦〈〈X〉〉b((X−1)). To recover the
corresponding properties of tame series, it suffices to apply the injective map J . �



60 F. PELLARIN

We also need to introduce the valuation ring OL and the maximal ideal ML of KL. The
residual field is L. We have, as L-vector spaces:

ML =
̂⊕

i>0

L◦〈〈e〉〉be−i, OL = L⊕ML.

We write, for simplicity, KΣ for KKΣ
.

Definition 3.33. The field of uniformizers is the complete v-valued field

K =
⋃̂
Σ

KΣ.

We denote by O,M the valuation ring and the maximal ideal of v.

Remark 3.34. It is easy to see that f ∈ K if and only if we can expand f in series∑
i≥i0 fie

−i with fi ∈ K◦Σi〈〈e〉〉
b with, for all i, Σi finite subset of N. This can be easily

deduced from the property that, if f is non-zero, then we can write in a unique way in the
form

f = f1〈e〉we−i + f1, f1 ∈ K×Σ , w ∈ Z[p−1]≥0, i ∈ Z, f1 ∈ K,

(an identity of the same type as (3.7)) where Σ is a finite subset of N and the weight w(f1)
is strictly smaller than w − i.

In the present paper all the elements of K that we are going to extract from modular
forms are not of such a general form. They can be identified with rigid analytic functions
Ω→ KΣ for some Σ finite subset of N (meromorphic over C∞). For example, elements of
K∅ can be identified with formal series

∑
i≥i0 fie

−i with fi ∈ C◦∞〈〈e〉〉b (the latter are entire

functions C∞ → C∞). The u-expansions of scalar Drinfeld modular forms (1.4) are also
of this type (remember that u = e−1). In this case the fi’s are all constant C∞-valued
functions. If Σ = {1} is a singleton, elements of KΣ can be identified with formal series∑

i≥i0 fie
−i with fi ∈ K◦Σ〈〈e〉〉b.

3.2.3. Some endomorphisms. Hecke operators acting on spaces of our modular forms (see
§4.3) are defined through certain affine endomorphisms of K that we discuss here. We
consider a difference field extension L ⊃ C∞ contained in KΣ. Typical examples are LΣ

and KΣ with Σ ⊂ N∗ finite. The rings

L〈〈X〉〉, L◦〈〈X〉〉((X−1)), L〈〈e〉〉b((e−1)), L◦〈〈e〉〉b((e−1)), . . .

also have L-linear endomorphisms coming from affine endomorphisms

X 7→ αX + β.

We therefore study homotheties and translations in these rings. The main result of the this
subsection is Proposition 3.35 below. In fact, we are going to only study here a restricted
class of endomorphisms of L〈〈e〉〉b and L◦〈〈e〉〉b((e−1)) but in the course of our proofs we
make a partial use of endomorphisms of the other rings as well.
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We begin with homotheties. Let y be an indeterminate over L and let us choose α ∈
L((y−1)). Let us write

(3.21) α =
∑
i≥i0

αiy
−i, αi ∈ L, αi0 ∈ L×.

Then we have an L-linear map ϕα : L〈〈X〉〉 → L〈〈X〉〉 defined by setting

ϕα(〈X〉j) :=
∑
i≥i0

αi〈X〉jq
−i
,

for all j ∈ Z[1
p ]≥0. This map is well defined by Lemma 3.9. Indeed note that for all

i, λ(〈X〉jq−i) = λ(〈X〉j). For all j, k ∈ Z[1
p ]≥0 it is easily verified that ϕα(〈X〉j〈X〉k) =

ϕα(〈X〉j)ϕα(〈X〉k), and ϕα is an L-algebra endomorphism of L〈〈X〉〉. Having supposed that
the leading term in (3.21) is invertible we recognize that ϕα is in fact an automorphism of
inverse ϕα−1 . We have thus defined a group homomorphism (injective)

L((y−1))×
ϕ:α 7→ϕα−−−−−→ AutL(L〈〈X〉〉).

The above group homomorphism also targets the group AutL(L◦〈〈X〉〉((X−1))) and we
have, for all f ∈ L◦〈〈X〉〉((X−1)):

v(ϕα(f)) = qdegy(α)v(f).

To see this we recall from Corollary 3.8 that L〈〈X〉〉 is complete for v, so that in particular
ϕα is v-continuous. It is clear that for α ∈ L((y−1))×, ϕα defines a continuous L-algebra

automorphism of L〈〈X〉〉 such that v(ϕα(f)) = qdegy(α)v(f) for all f ∈ L〈〈X〉〉 (use (3.7)).
We can therefore conclude by using Proposition 3.16 (ϕα extends to the completion of the
fraction field of L〈〈X〉〉 in a unique way), and the compatibility with respect to v is clear.

Now, we focus on L〈〈e〉〉b and L◦〈〈e〉〉b((e−1)). Consider again α as in (3.21) with αi ∈ L,
αi0 ∈ L×, and additionally suppose that the set {‖αi‖ : i ∈ Z} is bounded. Then, via the
continuous injective map J we already discussed, such that Xi 7→ ei for all i, ϕα induces a
v-continuous endomorphism of L〈〈e〉〉b satisfying v(ϕα(f)) = qdegy(α)v(f) for all f ∈ L〈〈e〉〉b.
It needs not to be an automorphism this time. This is due to the fact that the above subset
of α’s with bounded coefficients in L((y−1))× is not a subgroup.

With α as above, ϕα also extends to an endomorphism of L◦〈〈e〉〉b((e−1)) compatible with
v because L◦〈〈e〉〉b((e−1)) is the completion of the fraction field of L〈〈e〉〉b by Proposition
3.32.

As for the analogues of translations, we shall be briefer. We consider

β =
∑
i≥i0

βiy
−i ∈ L((y−1)),

again with the property that the set of positive real numbers {‖βi‖ : i ∈ Z} is bounded.
One sees easily that the correspondence

ej 7→ ej +
∑
i≥i0

βiej(θ
−i)
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defines a continuous automorphism

ψβ : L〈〈e〉〉b → L〈〈e〉〉b

that also extends to a continuous algebra automorphism of L◦〈〈e〉〉b((e−1)) that is an isom-
etry.

All the properties of tame series that we have discussed so far, and that will be used in
the rest of the present paper, are collected for commodity in the next Proposition.

Proposition 3.35. Let L be a field extension of C∞ contained in KΣ that is a τ -difference
field and let f be in K×L .

(1) There exists a unique series expansion

f =
∑
j≥j0

fje
−j fj ∈ L◦〈〈e〉〉b

and v(f) equals v(fj0) + j0 if fj0 6= 0.
(2) If α, β are elements of L((y−1)) such that the ‖ · ‖-norms of the coefficients of their

y−1-expansions are bounded, then ϕα(f), ψβ(f) ∈ K×L such that

v(ϕα(f)) = qdegy(α)v(f), v(ψβ(f)) = v(f).

(3) For all k ∈ N, τk(f) ∈ K×L is such that v(τk(f)) = qkv(f).

3.2.4. Final remarks on tame series. There are entire functions C∞ → C∞ which are not
tame series. One of them is the identity map z 7→ z. Indeed, one sees easily that for all
w ∈ Q,

(3.22) lim
|z|=→∞

|z|
|eC(z)|w

∈ {0,∞}.

Therefore, (z 7→ z) 6∈ C∞〈〈e〉〉b as otherwise, we could assign a well defined weight in Z[1
p ]

to it.
To define B〈〈e〉〉b, we have used formal series with bounded coefficients in B (in Definition

3.24). This seems to be a heavy complication in the theory, but it is necessary. One of the
reasons for this choice is that the isomorphism J of Proposition 3.25 is hardly definable
over a larger sub-algebra of B〈〈X〉〉. We illustrate the problem for B = C∞.

We set

G =
∑
i≥0

θ
i
qXi+1 = ϕα(X0) ∈ C◦∞〈〈X〉〉,
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where α is as in (3.21). Then, we have the identities in C∞〈〈X〉〉 (we have used a compu-
tation similar to what follows to show that C∞〈〈X〉〉 is inversive for τ):

Gq =

∑
i≥0

θ
i
qXi+1

q

=
∑
i≥0

θiXq
i+1

=
∑
i≥0

θi(Cθ(Xi+1)− θXi+1)

=
∑
i≥0

θi(Xi − θXi+1)

!
=

∑
i≥0

θiXi −
∑
i≥0

θi+1Xi+1

= X0.

Note the exclamation point over the next to the last equality. In parallel, let us set

g =
∑
i≥0

θ
i
q ei+1.

This is not an element of C∞〈〈e〉〉b because the sequence (|θ
i
q |)i is not bounded. We claim

that g defines an entire function. Indeed, for all R ∈ |C∞| and all z ∈ D(0, R), we have, for

any i large enough, |ei+1(z)| = |π̃||z||θ|−i−1 so that |θ
i
q ei+1(z)| ≤ |π̃||θ|

i
q
−i−1

R → 0 which
implies the uniform convergence of the series defining g over any disk D(0, R).

Now, gq 6= e. One way to see this is by observing that e = π̃z + hq, with h an entire
function. If gq = e, the identity map z 7→ z would be equal to the q-th power of an entire
function, which is impossible. To compute gq − e we cannot use the argument we applied

to show the identity Gq = X0; this argument breaks at the level of the equality
!

= because
the series of functions

∑
i≥0 θ

iei+1 is divergent outside 0 although the series
∑

i≥0 θ
iXi+1

defines an element of C∞〈〈X〉〉.
To compute gq we proceed in the following way. We set

φ = eC

( π̃z

θ − t

)
=
∑
i≥0

tiei+1 ∈ Fq[t]◦〈〈e〉〉b,

where eC is defined Fq[t]-linearly as in §2.3.2. It is easy to see that limt→θ(θ − t)φ = π̃z.
But

eC(z) = Cθ−t(φ) = (θ − t)φ+ τ(φ)

so that e = eC(z) = π̃z + limt→θ τ(φ) = π̃z +
∑

i≥0 θ
ieqi+1 = π̃z + gq. We thus obtain:

gq − e = π̃z.
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From this identity we deduce (1) that g 6∈ C∞〈〈e〉〉b (because z is not tame) and (2) the
map J does not extend to a C∞-algebra map over C∞〈〈e〉〉b[G].

On another hand, the sequence (Xqn
n )n≥0 ⊂ L◦〈〈X〉〉 diverges for the v-valuation and

therefore, also the sequence (eq
n

n )≥0 of elements of the ring of tame series. But the latter
converges to the zero map for the sup-norm associated to the disk DC∞(0, ρ) for all ρ ∈
|C×∞|, as the reader can easily verify.

3.2.5. Examples of tame series. To conclude this section, we give examples of tame series
of the kind which will be used in the present paper. Following §2.4.3, we consider, in the
notations introduced there, a function

χ ∈ HolTΣ[d−1]∧

(
C∞ → (EΣ[d−1]∧)n×n

)
analytically extending an Fq-algebra morphismA→ Fq(tΣ)n×n (see Proposition 2.27, where
χ̃ = χ). We now use the properties of tame series to show the following result.

Proposition 3.36. The function χ can be identified with an element of Kn×n and is
the unique entire function f : C∞ → Kn×n

Σ such that f(a) = χ(a) for all a ∈ A with

‖ expC(π̃z)
− 1
q f(z)‖ → 0 as expC(π̃z)→ 0.

Proof. We have already seen in Proposition 2.27 that the entire function χ interpolates the
map χ : A→ Fq(tΣ)n×n. We now prove the growth estimate. But note that

χ(z) = expC

(
π̃(θIn −Θ)−1z

)
ω−1
χ = ω−1

χ

∑
i≥0

ei+1Θ−i ∈
(
TΣ[d−1]∧

◦〈〈e〉〉b
)n×n

.

We deduce that w(χ) = w(e1) = 1
q . Hence, by Proposition 3.27, we have that the function

‖ expC(π̃z)
− 1
q f(z)‖ is bounded as expC(π̃z)→ 0.

It remains to show uniqueness. Consider f ∈ HolKΣ
(C∞ → Kn×n

Σ ) such that f(a) = χ(a)

for all a ∈ A. Then the function g = f − χ is in HolKΣ
(C∞ → Kn×n

Σ ) and vanishes on

A ⊂ C∞. Therefore g(z)
expC(π̃z) is entire and limexpC(π̃z)→0

∥∥∥ g(z)
expC(π̃z)

∥∥∥ = 0. By Proposition

2.11, g vanishes identically. �

4. Quasi-periodic functions, representations of the first kind

One of the basic observations in the theory of modular forms for the full modular group
SL2(Z) is that they are Z-periodic, so that they have a Fourier series development, also
called q-expansion. There is a very similar property for scalar Drinfeld modular forms
for the full modular group Γ = GL2(A) which are A-periodic, and indeed we have in this
case u-expansions, which is the appropriate structure to study their behaviour at the cusp
infinity as well as a large part of their theory.

For the vector-valued modular forms in our Definition 1.2 (studied from §4.2.5 on), we
note that they behave like quasi-periodic functions under the translations z 7→ z + a with
a ∈ A (Definition 4.1). The first task is to study this behavior for a special class of
representations of Γ called representations of the first kind introduced below (Definition
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4.5). In this section we study quasi-periodic functions, which can also be understood as a
kind of generalization of Goss polynomials. The terminology chosen comes from Gekeler’s
paper [25] (10). The central result obtained here is Theorem 4.12, which asserts that every
modular form in the sense of Definition 1.2 can be expanded as a formal series in the field
of uniformizers K. We also give an application of these structures in Theorem 4.13, where
we show that the spaces of our modular forms and cusp forms are endowed with Hecke
endomorphisms, generalizing [63, Proposition 5.12], which deals with the very special case
of N = 2 and ρ = ρ∗t (with an ad hoc proof unfortunately very hard to generalize to our
more general settings).

4.1. Quasi-periodic functions. Let k be any field, and R a commutative k-algebra. We
denote by B(R) the Borel subgroup {( ∗ ∗0 ∗ )} ⊂ GL2(R) and by U(R) the unit upper-
triangular subgroup {( 1 ∗

0 1 )} ⊂ GL2(R). Let Y be an indeterminate and E/k(Y ) be a field
extension. Suppose we are given

(4.1) GL2(k)
µ−→ GLN (E)

ν←− U(k[Y ])

two representations such that µ|U(k) = ν|U(k) and such that for all λ ∈ k× and a ∈ k[Y ],

(4.2) µ( λ 0
0 1 )ν( 1 a

0 1 )µ( λ
−1 0
0 1 ) = ν( 1 λa

0 1 ).

Then, there is a unique representation ρ : GL2(k[Y ]) → GLN (E) which restricts to µ, ν
respectively on GL2(k) and U(k[Y ]).

Indeed, see [49, 74], we have that GL2(k[Y ]) is the amalgamated product of GL2(k) and
B(k[Y ]) along the common subgroup B(k):

GL2(k[Y ]) = GL2(k) ∗B(k) B(k[Y ]).

By Bruhat’s decomposition

GL2(k) = B(k)( 0 1
1 0 )U(k) tB(k)

this implies that every element γ ∈ GL2(k[Y ]) can be written in a unique way

γ = A1B1 · · ·AlBl
for some l, where Ai ∈ B(k)( 0 1

1 0 )U(k) and Bi ∈ B(k[Y ]). Therefore, the identities

( λ 0
0 1 )( 1 a

0 1 )( λ
−1 0
0 1 ) = ( 1 λa

0 1 )

are the gluing condition for µ, ν giving rise to a unique representation ρ of Γ.

10See his §2. Gekeler uses what he calls quasi-periodic functions to construct an analogue of the De
Rham isomorphism associated to a Drinfeld module (between a ‘De Rham module’ of classes of biderivations
and a ‘Betti module’). More precisely, he constructs (in his §4) certain Poincaré series to show that the
map is surjective (while injectivity follows essentially from the fact the the logarithm series does not extend
to an entire function). These Poincaré series have inspired the construction of Perkins’ series and are
similar to the quasi-periodic functions we study in the present paper. It is possible to use them to prove
an appropriate version of the De Rham isomorphism for the Carlitz functor evaluated on certain difference
algebras.
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We now take k = Fq and Y = θ and we recall that Γ = GL2(A) with A = Fq[θ]. We also
recall that Ω denotes the rigid analytic space whose underlying set is C∞ \K∞ as defined,
for instance, in [24] (see also [60, §5, 6]). We set, for a ∈ A,

(4.3) Ta = ( 1 a
0 1 ), S = ( 0 −1

1 0 )

(in Γ). Given a representation

(4.4) Γ
ρ−→ GLN (B)

with (B, | · |B) a countably cartesian Banach C∞-algebra, we first analyze its restriction to
U(A) and the corresponding part in Definition 1.2. This brings us to the next definition.

Definition 4.1. (a) Let ρ be a representation as in (4.4). An analytic function

Ω
f−→ BN×1

such that

(4.5) f(z + a) = ρ(Ta)f(z) ∀a ∈ A,
is called a ρ-quasi-periodic function, or more simply, a quasi-periodic function. We say that
f is tempered if there exists M ∈ Z such that

lim
|z|=|z|=→∞

f(z)u(z)M = 0

where u is defined in (1.3). We further say that f is regular if there exists a constant c > 0
(depending on f) such that the set {|f(z)|B : |z|= ≥ c} is bounded (remember that | · |=
has been introduced in Remark 3.28).
(b) Let

f : Ω→ BN×N

be an analytic matrix function such that its columns are ρ-quasi-periodic in the sense of
the point (a) above, so that

f(z + a) = ρ(Ta)f(z) ∀a ∈ A.
We say that f is of type l ∈ Z/(q − 1)Z if for all ν ∈ F×q , we have

f(νz) = ν−lρ( ν 0
0 1 )f(z)ρ( ν 0

0 1 )−1.

(c) We denote by QP !
l(ρ;B) the B-module of tempered ρ-quasi-periodic functions

Ω→ BN×N

of type l, and by QP l(ρ;B) the sub-module of quasi-periodic regular functions.

If n = 1 and ρ = 1 (with 1 the trivial map which sends every element of Γ to 1 ∈ F×q ),
then a quasi-periodic function is a holomorphic function f : Ω → B such that f(z + a) =
f(z) for all a ∈ A. Explicit examples are eC(z) = expC(π̃z) and

u(z) =
1

π̃

∑
a∈A

1

z − a
=

1

eC(z)
.
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Both functions are obviously tempered. The function eC(z) is of type −1 and the function
u(z) is regular, of type 1. We record the next Proposition.

Proposition 4.2. Let f : Ω→ B be rigid analytic, such that f(z+a) = f(z) for all a ∈ A.
Then, the following properties hold:

(a) There is a unique series expansion

(4.6) f =
∑
n∈Z

fnu(z)n, fn ∈ B,

convergent if z ∈ Ω is such that |z|= > c for some c ∈ |C×∞|.
(b) If |f(z)|B is bounded for |u(z)| < c for some c ∈ |C×∞|, then fn = 0 for all n < 0.
(c) If f extends to an entire function over C∞, and there exists M ∈ Z such that

|u(z)Mf(z)|B → 0

as |u(z)| → 0, then f ∈ B[u(z)−1].

Sketch of proof. This result is basically well known but there is a lack of complete reference
in the literature. Let us give some details.
(a) The proof of [60, Proposition 6.1] can be adapted to our setting. We recall from ibid.
that for an integer n we define

Bn = D◦C∞(0, |θ|n) \
⋃

a∈A(n)

D◦C∞(a, 1), Cn = D◦C∞(0, |ln|) \D◦C∞(0, 1),

(recall that D◦C∞(a, r) is the ’open’ disk of center a and radius r in C∞) which are filtered
unions of affinoid subsets of C∞ (A(n) denotes the Fq-vector space of all the elements of
A which are of degree < n in θ). One can verify that, for all n,

OCn/B(Cn) =
{∑
k∈Z

fku
k : fk ∈ B for all k, f−k → 0 as k →∞, fkl(1−ε)kn → 0

as k →∞, for all ε > 0
}
.

This follows from the explicit use of an orthonormal basis of OCn(Cn) and yields an explicit
description of the sheaf OCn/B. Similarly, the sub-sheaf of OBn/B whose global sections
g are such that g(z + a) = g(z) for all a ∈ A(n) equals the pull back E∗nOCn/B where
En(z) = lnEn(z), En being the n-th Carlitz polynomial (see [60, §4.2]). This follows from
an application of Proposition 6.2 of ibid. After these observations, the proof of Proposition
6.1 can be slightly modified to yield the existence of the expansion (4.6). Uniqueness follows
easily from the connectedness of Ω.

Before considering the point (b) of our proposition, we define, after (4.6):

F (u) :=
∑
n∈Z

fnu
n, F−(u) :=

∑
n≤0

fnu
n, F+(u) :=

∑
n>0

fnu
n.

We have that F converges for all

u ∈ ḊC∞(0, c) := {z ∈ C∞ : 0 < |z| ≤ c}
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where c ∈ |C×∞|, c < 1 and f(z) = F (u(z)). The series F−(u) converges for all 0 < |u| ≤ c
and c < 1. In other words, |fk|Bc−k → 0, which implies that the sequence f−k tends to
zero as k →∞. In particular, F−(u) converges for every u 6= 0.

(b) Applying (a), limu→0 F (u) exists and |F (u)|B is bounded on ḊC∞(0, c). We write
fn =

∑
i∈I fn,ibi with fn,i ∈ C∞, where (bi)i∈I is an orthonormal basis of B. We note that

|fn,i|max{rn1 , rn2 } → 0 as i→∞,

for all r1, r2 ∈ |C×∞| such that r1 < r2 ≤ c. Therefore we have unconditional series

convergence with u in ḊC∞(0, c) for an appropriate choice of c and we can write:

F (u) =
∑
n∈Z

(∑
i∈I

fn,ibi

)
un =

∑
i∈I

(∑
n∈Z

fn,iu
n

)
bi.

We get that for all i ∈ I, the limit for u → 0 of
∑

n fn,iu
n exists. By [7, §3, Theorem

(Riemann I)], fn,i = 0 for all i, n < 0 and F − F+ ∈ B.
(c) Let f : C∞ → B be entire, such that f(z + a) = f(z) for all a ∈ A. Then, by (a) of
this proposition,

f(z) = F (u) =
∑
k∈Z

fku
k, with fk ∈ B, ∀k ∈ Z.

By the above remarks, setting f−(z) = F−(u(z)) if z 6∈ A and 0 otherwise, f− defines a B-
entire function. hence f+(z) = F+(u(z)) = f(z)− f−(z) is B-entire and at once, bounded
at infinity. By Proposition 2.11, it is constant, hence identically zero; We conclude that
f(z) = f−(z) = F−(u(z)). Now, assume that there exists M such that |uMF−(z)|B is
bounded in B as u→ 0 (i.e. as |z|= = |z| → ∞). Then, by (b), we have that G := uMF−

is such that G = G+ (in the above notations). This suffices to conclude. �

Proposition 4.2 implies thatQP !
l(1;B) can be embedded inB[[u]][u−1]N×N and for all l ∈

Z/(q− 1)Z and a representation ρ as in (4.4), QP !
l(ρ;B) is a module over QP !

0(1;B)N×N ,
and a similar property holds for the regular quasi-periodic functions. Of course, we can
specify the target space; the meaning of QP !

l(ρ;LΣ) etc. is therefore understood.

4.1.1. The series Ψm(ρ). There are three types of quasi-periodic matrix functions that are
needed in the present work. They are denoted by Ψm(ρ),Ξρ and Φρ. Here we study the
first type Ψm(ρ). We consider a representation ρ : Γ→ GLN (B). We additionally suppose
that:

(4.7) |a−1ρ(Ta)|B → 0, as |a| → ∞ with a ∈ A.

Lemma 4.3. Let m be a positive integer. The function Ψm(ρ) defined, for all z ∈ C∞ \A,
by

Ψm(ρ)(z) =
∑
a∈A

(z − a)−mρ(Ta),

determines a non-zero element of QPm(ρ;B).
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Proof. It is easy to show that Ψm(ρ) converges uniformly for z ∈ C∞ \ (ta∈AD(a, r)) with
r ∈ |C×∞|, 0 < r < 1. This implies that Ψm(ρ) defines a holomorphic function Ω→ BN×N ,
and this function is non-zero because it has, in any disk DC∞(0, r) with r ∈ |C×∞|, a
meromorphic extension which has poles of order m at every a ∈ D(0, r)∩A. Moreover, we
have, for all z ∈ C∞ \A and b ∈ A, writing Ψ for Ψm(ρ):

Ψ(z − b) =
∑
a∈A

(z − a− b)−mρ(Ta)

=
∑
a∈A

(z − a− b)−mρ(Ta+b)ρ(T−b)

= Ψ(z)ρ(T−b) = ρ(T−b)Ψ(z).

so that

(4.8) Ψ(z + a) = Ψ(z)ρ(Ta) = ρ(Ta)Ψ(z), ∀a ∈ A.

Since

Ta =

(
λ 0
0 1

)
Tλ−1a

(
λ−1 0

0 1

)
, ∀a ∈ A, λ ∈ F×q ,

for all λ ∈ F×q :

Ψ(λz) =
∑
a∈A

(λz − a)−mρ(Ta)

= λ−mρ

(
λ 0
0 1

)
Ψ(z)ρ

(
λ−1 0

0 1

)
,

and the type is m. It remains to show that Ψ is regular. We need to show that there exists
c > 0 such that if z ∈ C∞ satisfies |z|= ≥ c, then ‖Ψ(z)‖ ≤M for some M independent on
z. But note that if |z|= ≥ c > 0 then |z−a| ≥ c for all a ∈ A and therefore, |z−a|−m ≤ c−m.
Hence ‖Ψ(z)‖ ≤ c−m (because ‖ρ(Ta)‖ ≤ 1 for all a, due to the fact that the representation
is of the first kind). Hence Ψ ∈ QPm(ρ;B). �

4.2. Representations of the first kind. We now introduce a class of representations of
Γ for which we can construct explicitly entire non-zero quasi-periodic functions in several
ways, and these functions turn out to have tame series expansion, or at least, expansion in
the field of uniformizers. First of all, we introduce a useful definition.

Definition 4.4. We say that a representation ρ : Γ → GLN (Fq(tΣ)) is of degree l ∈
Z/(q − 1)Z if for all µ ∈ F×q , ρ(µI2) = µ−lIN . We write l = deg(ρ).

We recall that after (1.7), Jγ(z)wρ(γ) is a factor of automorphy for Γ̃ if and only if ρ is
of degree w. For example, det−m is of degree 2m (the double of the type). The identity
map over Γ is of degree −1. All the representations that we consider in this text have a
well defined degree.
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Definition 4.5. Let χ : A → Fq(tΣ)n×n be an injective Fq-algebra morphism, let d ∈
Fq[tΣ] \ {0} be such that dχ(θ) ∈ Fq[tΣ]n×n. Then the map

ρχ : Γ→ GL2n

(
Fq[tΣ][d−1]

)
⊂ GL2n(Fq(tΣ))

defined, with γ = ( a bc d ) ∈ Γ, by

ρχ(γ) :=

(
χ(a) χ(b)
χ(c) χ(d)

)
,

is a representation of degree −1, called the basic representation associated to χ. Note also
that

det(ρχ(γ)) = det(χ(ad− bc)) = det(γ)n.

If ρ is a representation, we write

ρ∗ := tρ−1

for its contragredient (also called dual) representation. If ρ is of degree l, ρ∗ is of degree −l.
Let ρ : Γ→ GLN (tΣ) be a representation. We say that ρ is a representation of the first kind
if ρ can be obtained from basic representations by finitely many iterated applications of
the following elementary operations: (·)∗, direct sums ⊕, Kronecker products ⊗, symmetric
powers Sm, exterior powers ∧m, in such a way that ρ has a well defined degree. For further
use, we will call these operations admissible operations.

Note that if ρ and ψ are two representations such that ρ has degree l and ψ has degree
m, then:

ρ⊕ ψ has degree l (if l = m)

ρ⊗ ψ l +m,

Sr(ρ) rl,

∧rρ rl,

ρ∗ −l,

where in the right, (·)∗,⊕,⊗, Sr and ∧r denote respectively the contragredient, direct sum,
Kronecker product, r-th symmetric power and the r-th exterior power, of representations.

To define a representation of the first kind, in view of the compatibility conditions (4.1)
and (4.2), all we need is: finitely many injective Fq-algebra maps

(4.9) χi : A→ Fq(tΣ)ni , i = 1, . . . , r

and a sequence of admissible operations. It is therefore obvious that the set of represen-
tations of the first kind is countable. On another side, for any N > 1, it is easy to see
that the set of equivalence classes of representations of Γ in GLN (Fq(tΣ)) is uncountable.
This can be deduced from (4.1) and (4.2) and the fact that A = Fq[θ] obviously finitely
generated as an Fq-algebra, is an infinitely dimensional vector space over Fq. Therefore,
there are representations of Γ on GLN (Fq(tΣ)) which are not of the first kind. To see
explicit examples, see Remark 4.17.
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4.2.1. The functions Ξρ. For any representation of the first kind ρ, we can canonically
associate a quasi-periodic function Ξρ with entries in the field of uniformizers K. This allows

to show that, for L ⊂ KΣ a field extension of C∞, the KΣ((u))N×N -module QP !
m(ρ;KΣ)

is free of rank one. Additionally, Ξρ has entries in (EΣ[1
d ]∧)◦〈〈e〉〉b. Let us first assume that

ρ = ρχ is a basic representation. We denote by χ the function χ̃ of Proposition 2.27. We
know from Proposition 3.36 that it belongs to Kn×n.

By using Proposition 2.27 and the identity χ(z+a) = χ(z)+χ(a) for z ∈ C∞ and a ∈ A,
we see that the function

(4.10) Ξρ(z) :=

(
In χ(z)
0 In

)
,

belongs to QP !
0(ρ;EΣ[1

d ]∧) (with dχ(θ) ∈ Fq[tΣ]\{0}). In fact, we have more. Indeed, since
χ(z+a) = χ(z)+χ(a) = χ(z+a) = χ(a)+χ(z), we have Ξρ(z) = ρ(Ta)Ξρ(z) = Ξρ(z)ρ(Ta)
for all a ∈ A.

If now ρ is a representation of the first kind, by definition it can be constructed from basic
representations ρ1, . . . , ρm by finitely many iterated applications of direct sums, Kronecker
products, exterior and symmetric powers, contragredient, and following the same process,
we can combine the functions Ξρ1 , . . . ,Ξρm to construct a quasi-periodic matrix function

Ξρ ∈ QP !
0(ρ; ÊΣ[1

d ])∩KN×N for some d. More precisely, we set, for ρ, ψ two representations
of the first kind:

Ξρ⊕ψ = Ξρ ⊕ Ξψ,(4.11)

Ξρ⊗ψ = Ξρ ⊗ Ξψ,

ΞSr(ρ) = Sr(Ξρ),

Ξ∧rρ = ∧rΞρ,
Ξρ∗ = (Ξρ)

∗.

We thus get:

(4.12) Ξρ(z + a) = ρ(Ta)Ξρ(z) = Ξρ(z)ρ(Ta), a ∈ A.
To simplify our notations we write, in the following,

(4.13) E := EΣ[d−1]∧,

where EΣ[d−1]∧ has been introduced in (2.14).

Proposition 4.6. If ρ is a representation of the first kind then we have the following
properties:

(1) Ξρ ∈ QP !
0(ρ;E) ∩ (KΣ〈〈e〉〉b)N×N ,

(2) Ξρ ∈ GLN (KΣ〈〈e〉〉b) and Ξpρ = IN and

(3) ⊕mQP !
m(ρ;KΣ) ⊂ KN×NΣ is both a left and a right KΣ((u))N×N -module, free of

rank one.

Proof. The fact that Ξρ is quasi-periodic is clear from (4.12). Moreover, it is easy to
see that Ξρ is of type 0. It suffices to check this for basic representations. For this
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note that, for ν ∈ F×q , and for any Fq-algebra morphism χ : A → Fq(tΣ), ( In χ(νz)
0 In

) =

( In νχ(z)
0 In

) = ( νIn 0
0 In

)( In χ(z)
0 In

)( ν
−1In 0

0 In
). But since ρ = ρχ, we have ρ( a bc d ) = ( aIn bIn

cIn dIn
) for

all ( a bc d ) ∈ GL2(Fq), and therefore,

(4.14) Ξρ(νz) = ρ

(
ν 0
0 1

)
Ξρ(z)ρ

(
ν 0
0 1

)−1

.

Additionally, since the entries of the function χ are tame series in virtue of Proposition
3.36, Ξρ is tempered thanks to Proposition 3.27. Now, note that det(Ξρ) = 1 due to the

fact that this equality holds true for ρ a basic representation. Hence Ξ−1
ρ ∈ (KΣ〈〈e〉〉b)N×N

which confirms (1). For (2), note that Ξρ ∈ GLN (KΣ〈〈e〉〉b) (with determinant one) and
Ξpρ = IN for ρ a basic representation, just by construction. The general case follows easily.
Finally for (3), note that by (4.12), for all a ∈ A,

Ξρ(z + a)−1 = Ξρ(z)
−1ρ(Ta)

−1 = ρ(Ta)
−1Ξρ(z)

−1.

Let Φ be an element of QP !
m(ρ;KΣ) for some m. Then U1 := Ξ−1

ρ Φ and U2 := ΦΞ−1
ρ

are both A-periodic and tempered. By Proposition 4.2 we see that U1, U2 belong to
KΣ((u))N×N . Hence Φ = ΞρU1 = U2Ξρ ∈ KN×NΣ . A simple computation indicates that
U1, U2 are both of type m. �

Along with (4.11) we also define, with ρχ : Γ→ GL2n(Fq(tΣ)) a basic representation and
ωχ as in (2.4.2):

ωρχ =
(
ωχ 0n
0n In

)
(4.15)

ωρ⊕ψ = ωρ ⊕ ωψ,(4.16)

ωρ⊗ψ = ωρ ⊗ ωψ,
ωSr(ρ) = Sr(ωρ),

ω∧rρ = ∧rωρ,
ωρ∗ = (ωρ)

∗.

This allows to associate, in a unique way, to every representation of the first kind ρ of
dimension N , an element ωρ ∈ GLN (LΣ). We have:

Lemma 4.7. If ρ is a representation of the first kind there exist ϑ1, . . . , ϑr ∈ Fq(tΣ) such

that ωρΞρω
−1
ρ ∈ (A[ϑ1, . . . , ϑr]〈〈e〉〉b)N×N .

Proof. This follows, with ρ = ρχ basic, from
(
ωχ 0n
0n In

)(
In χ(z)
0n In

)(
ω−1
χ 0n
0n In

)
=
(
In ωχχ(z)
0n In

)
,

and the property that, with ϑ = χ(θ), ωχχ(z) = expC

(
π̃z(θIn − ϑ)−1

)
=
∑

i≥0 ϑ
iei+1 ∈

(Fq[ϑ]〈〈e〉〉b)n×n and (2.15). �



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 73

4.2.2. The functions Φρ. The third important class of matrix-valued functions is the fol-
lowing one, that we are going to study now:

(4.17) Φρ = eAΨ1(ρ),

where we recall that Ψ1(ρ) =
∑

a∈A(z − a)−1ρ(Ta), depending on the choice of a represen-
tation of the first kind ρ. For the next proposition, we recall the notation (4.13).

Proposition 4.8. The following properties hold:

(a) The function Φρ extends to an entire function C∞ → EN×N .

(b) We have that Φρ ∈ QP !
0(ρ;E).

(c) There exist, uniquely determined depending on ρ, two matrices

U1, U2 ∈ (E[eC(z)])N×N

of type 0 such that

Ui − IN ∈ eC(z)(E[eC(z)])N×N , i = 1, 2

are p-nilpotent, and such that

Φρ = U1Ξρ = ΞρU2.

(d) We have Φρ ∈ (E◦〈〈e〉〉b)N×N and this is the unique element f of (E◦〈〈e〉〉b)N×N such
that f(a) = ρ(Ta) for all a ∈ A.

Note that if ρ = 1 is the trivial representation, with N = 1, then we have Ξρ = 1 and
Φρ = 1, because Ψ1(ρ) =

∑
b∈A

1
z−b .

Proof of Proposition 4.8. (a). In any disk D(0, r) with r ∈ |C×∞|, the product

eA(z)Ψ1(ρ)(z)

extends to a holomorphic matrix-valued function because of the Weierstrass factorization

eA(z) = z
∏′

a∈A

(
1− z

a

)
(dash indicating the omission of a = 0). This immediately implies that Φρ has entire
entries, and the target space is easily determined.
(b). Since ρ is a representation of the first kind, Ξρ can be constructed applying finitely
many operations as in (4.11) to finitely many functions Ξρi associated to basic represen-
tations ρi, which take the elements Ta with a ∈ A to unipotent matrices (in fact, upper
triangular with one on the diagonals). Therefore Ξ−1

ρ defines an entire function C∞ →
EN×N . Hence, U1(z) := Φρ(z)Ξρ(z)

−1 has entries which are holomorphic Ω→ EN×N , and
U1(z + a) = U1(z) for all a ∈ A, by (4.8). Moreover, since Ξρ is tempered and ‖Ψ1(ρ)(z)‖
tends to zero as |z|= = |z| → ∞, there exists L ∈ Z such that u(z)LU1(z)→ 0 as |z|= →∞.
By (b) of Proposition 4.2, U1 can be identified with an element of E[[u]][u−1]N×N and we
easily check that Φρ ∈ QP !

0(ρ;E).

(c). By (2) of Proposition 4.6 we see that Ξρ ∈ GLN (E〈〈e〉〉b) therefore by the arguments of
the point (b), we additionally observe that U1 = Φρ(z)Ξ

−1
ρ ∈ E[[u]][u−1]n×n extends to an
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entire matrix function which, in virtue of (c) of Proposition 4.2, belongs to E[eC(z)]N×N .
Note that for all a ∈ A \ {0}, U1(a) = Φρ(a)Ξρ(a)−1 = Φρ(a)ρ(T−a). Now, Φρ(a) =
limz→a eA(z)Ψ1(ρ)(z) = limz→a eA(z)(z − a)−1ρ(Ta) = ρ(Ta) because e′A = 1. Hence,
U1(a) = IN and the various properties claimed for U1 follow. Similar arguments hold for
U2.
(d). From (c) above, Φρ ∈ (E〈〈e〉〉b)N×N . We denote by w ∈ Z[1

p ]≥0 the supremum of the

weights of all the entries of Φρ. Then Ψ1(ρ) ∈ u(E〈〈e〉〉b)N×N and since we have the obvious

limit lim|z|==|z|→∞ ‖Ψ1(ρ)(z)‖ = 0 we note that w < 1 so that Φρ ∈ (E◦〈〈e〉〉b)N×N . An

element f ∈ K◦Σ〈〈e〉〉b satisfies ‖u(z)f(z)‖ → 0 as |z|= = |z| → ∞. By Proposition 2.11, for

any map g : A → KΣ there exists at most one element f ∈ E◦〈〈e〉〉b such that f(a) = g(a)
for all a ∈ A. Consequently, if f is an element of (E◦〈〈e〉〉b)N×N such that f(a) = ρ(Ta) for
all a ∈ A, then, Φρ = f . �

We have the next corollary, where ρ is a representation of the first kind.

Corollary 4.9. The tame series expansion of Φρ is provided by the unique representative

in the E-module (E◦〈〈e〉〉b)N×N of the matrix Ξρ in the quotient of (E〈〈e〉〉b)N×N by the
principal ideal generated by e0IN . Moreover, we have det(Φρ) = 1, Φρ − IN is p-nilpotent

and Φ−1
ρ ∈ (E◦〈〈e〉〉b)N×N . If ωρ is the matrix introduced in (4.16), then ωρΦρω

−1
ρ ∈

(A[ϑ1, . . . , ϑr]
◦〈〈e〉〉b)N×N for elements ϑ1, . . . , ϑr ∈ Fq(tΣ).

Proof. The first property follows directly from Proposition 4.8 (c), (d). To show the second
property we first note that the matrices ρ(Ta), a ∈ A, can be simultaneously (upper)
triangularised over an algebraic closure Fq(tΣ)ac of Fq(tΣ), and the diagonal entries are
all equal to one because T pa = I2 for all a. Hence, Ψ1(ρ) is conjugated over Fq(tΣ)ac to
an upper triangular matrix having eA(z)−1 as diagonal entries. This implies that Φρ is
conjugated over Fq(tΣ)ac to an upper triangular matrix having 1 in the diagonal. Hence,

det(Φρ) = 1, (Φρ − IN )p = 0 and Φ−1
ρ ∈ (E◦〈〈e〉〉b)N×N . The last property follows easily

from Lemma 4.7. �

4.2.3. Explicit example. In this part we illustrate an explicit example that governs the
quasi-periodic functions associated to basic representations. This covers the representations
considered in [60, §9]. Let χ : A → Fq(tΣ)n×n be an Fq-algebra morphism and denote by

ρ the basic representation ρχ : Γ → GLN (Fq(tΣ)) defined by ρ( a bc d ) = (
χ(a) χ(b)
χ(c) χ(d)

), with

N = 2n. For a matrix f ∈ KN×NΣ , v(f) denotes the infimum of the v-valuations of the
entries of f (where v is the valuation defined after Proposition 3.32). We have:

Corollary 4.10. We have Φρ = Ξρ, v(Φρ) = −1
q and v(Φρ − ω−1

χ e1) > −1
q .

Proof. By definition, Ξρ = ( In χ
0 In

) and χ(z) = eC(z(θIn − ϑ)−1)ω−1
χ (with ϑ = χ(θ)) has

entries in K◦Σ〈〈e〉〉b so we have already Φρ = Ξρ by Corollary 4.9. Moreover, the tame series
expansion of eC(z(θIn − ϑ)−1) is eC(z(θIn − ϑ)−1) = e1In+terms of smaller weight, which
implies the remaining properties. �
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Note that the proof of the above corollary does not use the injectivity of the maps χ in
Definition 4.5.

4.2.4. Application to column quasi-periodic functions. We consider, in this subsection, a

representation of the first kind Γ
ρ−→ GLN (Fq(tΣ)). Recall the notation KΣ = KKΣ

where,
for a subfield L of KΣ, KL has been defined after Proposition 3.32. We recall that the
v-valuation ring is denoted by OΣ, the maximal ideal is denoted by MΣ.

Proposition 4.11. If f : Ω → KN×1
Σ is ρ-quasi-periodic and tempered, we can identify

it with an element of KN×1
Σ . If additionally f is regular, then we can identify it with an

element of ON×1
Σ . In the latter case, we can expand in a unique way

(4.18) f = f0 +
∑
i>0

fiu
i, f0 ∈ KN×1

Σ , fi ∈ (K◦Σ〈〈e〉〉b)N×1, i > 0,

and the coefficients fi are KΣ-linear combinations of the columns of Φρ. In equivalent
terms, we can expand, in unique way,

f = Φρ

∑
i≥0

f ′iu
i, f ′i ∈ KN×1

Σ .

Proof. The second type of expansion is clearly equivalent to the first. In the proof of part (c)
of Proposition 4.8, we have seen that Φρ can be identified with an element of GLN (KΣ〈〈e〉〉b).
Hence, the function Φ−1

ρ f : Ω→ KN×1
Σ has entries which are all A-periodic and tempered.

By part (b) of Proposition 4.2, the entries are thus elements of KΣ((e−1
0 )) = KΣ((u)) and

the entries of f = ΦρΦ
−1
ρ f are therefore in K◦Σ〈〈e〉〉b((e

−1
0 )) which is equal, by Proposition

3.32, to KΣ. This proves the first part of the proposition.
Since Φρ is a matrix function which is quasi-periodic we have f = Φρg where g ∈

KΣ((u))N×1. Corollary 4.9 implies that Φρ ∈ GLN (K◦Σ〈〈e〉〉b). Namely, det(Φρ) = 1 and

Φ−1
ρ ∈ (K◦Σ〈〈e〉〉b)N×N . Observe that g = Φ−1

ρ f . Since the entries of Φ−1
ρ are in K◦Σ〈〈e〉〉b,

for |z|= ≥ c1 for some constant c1 ∈ |C×∞|, we have ‖Φ−1
ρ f‖ ≤ c2|eA(z)|w by Proposition

3.27, where w ∈ Z[1
p ] ∩ [0, 1[, for some c2 > 0. This means that ‖uwg‖ ≤ c2 as |z|= is

large. Let α > 0 be such that pαw ∈ Z. Then ‖upαwgpα‖ is bounded at infinity and

up
αwgp

α ∈ KΣ[[u]]N×1. Therefore, uwg ∈ KΣ[[u
1
pα ]]N×1 by Proposition 4.8 (b) and we

deduce that, necessarily, g ∈ KΣ[[u]]N×1. Writing g =
∑

i≥0 giu
i with gi ∈ KN×1

Σ , by the

fact that f = Φρg ∈ ON×1
Σ and since fi := Φρgi belongs to (K◦Σ〈〈e〉〉b)N×1 by Corollary 4.9,

we get the expansion in KN×1
Σ

f =
∑
i≥0

fiu
i,

from which we also see that f0 ∈ KN×1
Σ . �
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4.2.5. First results on modular forms. We recall Definition 1.1 and the spaces Sw(ρ;B) ⊂
Mw(ρ;B) ⊂ M !

w(ρ;B). We denote by M!
w(ρ;B) the B-module of modular-like forms of

weight w for ρ (without the temperedness condition). In the following we also use the term
‘modular-like’ sometimes loosely, to designate the spacesM!!

w(ρ;KΣ) of meromorphic func-

tions Ω
f−→ KN×1

Σ (in the obvious sense) satisfying (1.8). ClearlyM!!
w(ρ;KΣ) ⊃M!

w(ρ;KΣ).
Taking into account Definition 1.2, we deduce parts (1), (2), (3) of Theorem A in the

introduction, where the hypothesis that ρ is of the first kind is essential:

Theorem 4.12. For all w ∈ Z, there is a natural embedding

M !
w(ρ;KΣ)

ιΣ−→ KN×1
Σ

such that

Mw(ρ;KΣ) = ι−1
Σ

(
ιΣ(M !

w(ρ;KΣ)) ∩ON×1
Σ

)
and

Sw(ρ;KΣ) = ι−1
Σ

(
ιΣ(M !

w(ρ;KΣ)) ∩MN×1
Σ

)
.

Proof. Since a weak modular form is also a tempered quasi-periodic (column) function and
a modular form is a regular quasi-periodic function, the first part of the result follows
directly from Proposition 4.11. To prove the two other parts of the statement, namely the
characterisation of the image of Mw(ρ;KΣ) and Sw(ρ;KΣ), we combine Proposition 3.32
with Proposition 3.27, which allows to derive, from the fact that f is bounded at infinity
(resp. has zero limit at infinity) that valuations of the entries of f are non-negative (resp.
positive). �

4.3. Hecke operators. We show here part (5) of Theorem A in the introduction. As an
immediate consequence of the above investigations, we will now define Hecke operators
acting on the spaces Mw(ρ;KΣ),Mw(ρ;LΣ), Sw(ρ;KΣ) and Sw(ρ;LΣ), with w ∈ Z, when

Γ
ρ−→ GLN (Fq(tΣ)) is a representation of the first kind. Although not explicitly considered

in the general purposes of it, Miyake’s book [48] essentially contains everything we need
to set up the basis of the present discussion. Following [48, §2.7 and §4.5] we consider the
Hecke algebra RA(Γ,∆) where ∆ = ( ∗ ∗0 ∗ )∩A2×2 ∩GL2(K) is the semigroup generated by
the elements of G = GL2(K) with entries in A and with the lower left coefficient equal to
zero. Explicitly, RA(Γ,∆) is the free A-module generated by the double cosets ΓδΓ with
δ in ∆, endowed with the structure of A-algebra induced by ibid. (2.7.2), after reduction
modulo p of the integral coefficients. It is easy to see, using [48, Theorem 2.7.8], that
RA(Γ,∆) is commutative. For a ∈ A, we set T (a) = Γ( 1 0

0 a )Γ ∈ RA(Γ,∆). The proof of
ibid. Lemma 4.5.7 can be easily modified to show that, if P ∈ A is irreducible, then

T (P )T (Pn) = T (Pn+1) + qdegθ(P )T (P, P )T (Pn−1), n ≥ 1,

where T (P, P ) = Γ( P 0
0 P )Γ (compare with ibid. (4.5.15)). But K has characteristic p | q

so that T (P )T (Pn) = T (Pn+1). Similarly, the proof of Lemma 4.5.8 in Miyake’s book
implies that if a, b ∈ A are relatively prime, then T (a)T (b) = T (ab) in RA(Γ,∆). The
map A 7→ T (a) is therefore totally multiplicative. Also, given any right action of ∆ on a
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B-module M, R(Γ,∆) acts on MΓ = {m ∈ M : m|γ = m,∀γ ∈ Γ}, as described in [48,
Lemma 2.7.2], where we denoted by m|γ an action of γ on m.

We consider ρ : Γ→ GLN (Fq(tΣ)) a representation of the first kind. Then, ρ determines
in a unique way to a semi-ring map

∆→ Fq(tΣ)N×N

(this even if we drop the injectivity of some Fq-algebra map in Definition 4.5 and, to a
representation G = GL2(K) → GLN (Fq(tΣ)N×N ) if we have injectivity of the Fq-algebra
maps). There exists d ∈ Fq[tΣ] \ {0} such that ρ(∆) ⊂ Fq[tΣ][d−1]N×N . Let w be an
integer and B a C∞-algebra contained in KΣ such that it contains TΣ[d−1]∧. We set
MB := HolKΣ

(Ω→ BN×1).
Let f be in MB. The Petersson slash operator f |w,ργ on f is defined, for any γ ∈

GL2(K), by

(4.19) (f |w,ργ)(z) := Jγ(z)−wρ(γ)−1f(γ(z)).

It is easily seen that this gives rise to an action of G over Mw(ρ;B), the B-module of the
modular-like functions of weight w for ρ of Definition 1.2. For instance, the reader can
easily check that

(f |w,ργ)|w,ρδ = f |w,ργδ
for any γ, δ ∈ GL2(K). By the above discussion, we have a well defined RA(Γ,∆)-module
structure on Mw(ρ;B). If ΓδΓ is a double coset in RA(Γ,∆) we can expand in a finite
sum ΓδΓ =

∑
i Γδi with δi ∈ ∆ for all i as described in [48, Lemma 2.7.3] and the action

is given by

(ΓδΓ, f) 7→
∑
i

f |w,ρδi.

We also denote by Ta(f) the image of the action of T (a) on f , with a ∈ A. Then,
Ta(Tb(f)) = Tab(f) for all a, b ∈ A. For example, since for P ∈ A irreducible,

T (P ) = Γ

(
P 0
0 1

)
t

⊔
b∈A
|b|<|P |

Γ

(
1 b
0 P

)

(see very similar computations in [48, Lemma 4.5.6]), we have, for f ∈Mw(ρ;B):

(4.20) TP (f)(z) = ρ

(
P 0
0 1

)−1

f(Pz) + P−w
∑
|b|<|P |

ρ

(
1 b
0 P

)−1

f

(
z + b

P

)
, z ∈ Ω.

Comparing with [24, (7.1)] we have here a different normalisation for these operators. In
the case of ρ = 1 so that N = 1, denoting by TP the weight w operator of ibid., we have
TP = P−wTP .

The following result holds:

Theorem 4.13. Assuming that ρ is of the first kind, we have that for all a ∈ A and
w ∈ Z, Ta defines a B-linear endomorphism of M !

w(ρ;B) which induces endomorphisms of
Mw(ρ;B) and Sw(ρ;B).
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Proof. Thanks to the above observations it suffices to prove the result for a = P irreducible.
Theorem 4.12 implies that TP operates, via the slash operator of weight w associated with
ρ, on KN×1

Σ and furthermore, it leaves ON×1
Σ and MN×1

Σ invariant. �

This generalizes [63, Proposition 5.12] (which deals with the very special case of N = 2
and ρ = ρ∗t , with an ad hoc proof hard to generalize to our settings).

Example. Assume that ρ = ρ∗Σ = tρ−1
Σ for a finite subset Σ of N∗ and consider f =

t(f1, . . . , fN ) ∈Mw(ρ;B). Then the first entry (TP (f))1 in (4.20) is

(4.21) (TP (f))1 = σΣ(P )f1(Pz) + P−w
∑
|b|<|P |

f1

(
z + b

P

)
.

The last entry is slightly more involved. We have:

(4.22) (TP (f))N = fN (Pz) + P−w
∑
|b|<|P |

(⊗
i∈Σ

(
χti(b), χti(P )

))
· f
(
z + b

P

)
.

Note that the whole column vectors f( z+bP ) occur in the right-hand side.

4.4. Remarks on representations. We collect here miscellaneous remarks on the set-
tings we choose for this work.

Remark 4.14. For basic representations ρ1, . . . , ρk, any representation of the first kind

ρ : Γ→ GLN (Fq(tΣ))

constructed combining them with the admissible operations ⊕,⊗,∧r, Sr extend to monoid
homomorphisms A2×2 → Fq(tΣ)N×N . This is used in 4.3.

The operation (·)∗ does not satisfy this property. However, the comatrix representation

Co(ρ) := det(ρ)⊗ ρ∗

also extends to a monoid homomorphism and is isomorphic to ρ.
Indeed, in general, if ρ is any representation of Γ, we have that det(ρ) = det deg(ρ), so

that

(4.23) ρ ∼= det deg(ρ)ρ∗ = Co,

(the symbol ∼= indicates that the representations ρ and det deg(ρ)ρ∗ are isomorphic). For
all γ ∈ Γ, writing γ∗ := tγ−1 and recalling that S is defined in (4.3),

ρ∗(γ) = ρ(γ∗)

= ρ
(

det(γ)−1
(
SγS−1

))
= det(γ)deg(ρ)ρ(S)ρ(γ)ρ(S)−1.

The discussed property is false for GLn with n ≥ 3.
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Note that, for any representation ρ of Γ, there are canonical isomorphisms of vector
spaces or modules

Ww(ρ∗;B) ∼= Ww(det deg(ρ)ρ;B), W ∈ {S,M,M !,M!,M!!}.
The isomorphism is f 7→ ρ(S)−1f in virtue of (4.23).

Remark 4.15. We discuss the choices we made in Definition 4.5. Firstly, we could have
decided to set, for representations of the first kind, our target spaces to be vector spaces
over Facq (tΣ), but we noticed that this is an unnecessary complication, at least at the stage
of the present work, as the most interesting examples are related to representations in
GLN (Fq(tΣ)). Secondly, and this is perhaps more important to point out, we could have
removed the condition of injectivity of χ to define basic representations in Definition 4.5.
Several properties we prove for representations of the first kind extend to the larger class
of representations satisfying all the conditions in Definition 4.5 but the injectivity of all
the algebra maps χi in (4.9), used to build them. Many properties still hold. For instance,
the maps Ψm(ρ) of §4.1.1, or Φρ are defined for any representation ρ : Γ→ GLN (Fq(tΣ)).
The reader can also verify that the maps Ξρ of §4.2.1 (which are essential to show that
modular forms associated to representations of the first kind have series expansions in the
field of uniformizers, see Theorem 4.12) can be constructed also for such representations
that are constructed just as in Definition 4.5, starting from Fq-algebra maps χi in (4.9)
which are not all injective. But the injectivity condition is important to obtain several
other properties. One example is the construction of Hecke operators in §4.3. Another
example is the harmonic product formula of §9; see the injectivity in the Data 9.1, which
looks essential. Also, if ρ : Γ → GL2(Fq(tΣ)) is an arbitrary representation, even when
it is possible to construct Poincaré series as in §5.3 it is hard to show that the functions
constructed are non-zero, and in general it does not seem to be possible to construct
Eisenstein series in the way we do in §5.4.

Remark 4.16. We briefly explain the chosen terminology: representations of the first
kind. The reader can notice that Definition 4.5 benefits of quite a long list of good proper-
ties making it an excellent starting point in the study of our higher dimensional Drinfeld
modular forms. However, a slight generalization can be equally interesting, that can be
called representations of the second kind. These representations of the second kind will
be only marginally discussed in this paper, but they are not difficult to define. Definition
4.5 can be modified allowing the Fq-algebra map χ defined over A to have, as a target
space, Kn×n

Σ for some finite subset Σ ⊂ N∗ and n ∈ N∗, instead of just Fq(tΣ)n×n. So, a
representation of the second type is one coming from an algebra map χ as above, which
is not of the first kind. These representations are also very interesting in that associated
non-trivial modular forms in the spirit of the present paper do exist and carry important
properties, but they will be the object of another discussion (in general, tame series are
not enough to describe their behavior at infinity). To end this remark we point out that it
is rather difficult to us to make a comparison with the way one usually classifies complex
vector valued modular forms for SL2(Z). There is a well known moderate growth condition
in vertical strips that allows to expand entries of modular forms in expressions involving
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powers of log q and Puiseux formal expansions, and also a condition of semisimplicity on
ρ( 1 1

0 1 ) that, if added, neutralizes the logarithmic components (typical of vector modular
forms coming from e.g. quasi-modular forms), that somehow resemble to our expansions
in the field of uniformizer (although without phenomenon of wild ramification). This may
suggest that these conditions are the analogues of representations of the first and of the
second kind respectively. But a notable difference is that we work with analytic families
of representations that have no known analogues in the complex theory.

Remark 4.17. Given any representation

ρ : Γ→ GLN (Fq(tΣ))

(not necessarily of the first kind), the function

Φρ(z) = eA(z)
∑
a∈A

(z − a)−1ρ(Ta)

is well defined with entire entries. However, the hypothesis that ρ is of the first kind is
crucial in order to obtain that all the entries of Φρ are tame series. This comes from the
existence of the exponential function expC , which is not just Fq-linear, but also a morphism
of A-modules. The functions Ξρ can be associated to representations of the first kind only,
and occur in the proof of Proposition 4.11 via Proposition 4.8.

We now construct representations

ρ : Γ→ GLN (Fq(tΣ))

to which we can associate a quasi periodic function Φρ having entire functions entries, but
we also prove that these entries are not all in the field of uniformizers. As a consequence,
these representations ρ are explicit examples of representations which are not of the first
kind.

To construct such representations ρ we start with a representation of the first kind
ρ̃ : Γ→ GLN (Fq(tΣ)) and we modify it. Having (4.1) and (4.2) in view, we set ρ to be the
unique representation Γ→ GLN (Fq(tΣ)) such that (a)

ρ|GL2(Fq) = ρ̃|GL2(Fq)

(b) ρ(Tθi) = ρ̃(Tθi) for all i ∈ N such that i 6∈ S, where S is a non-empty finite subset of
N∗. We can additionally suppose that (c)

G :=
∑
i∈S

(z − a)−1
(
ρ(Tθi)− ρ̃(Tθi)

)
is a non-constant matrix function. It is elementary to show that representations like this
exist; they even exist when the target space of ρ is FNq and ρ is not of the first kind! We
observe that

Φρ = Φρ̃ +G.

Assume by contradiction that Φρ can be identified with a matrix with entries in the field
of uniformizers. Since also Φρ̃ does, by the fact that ρ̃ is a representation of the first kind,
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G is a matrix with entries in the field of uniformizers. But one entry g of G is a non-
constant rational function in the variable z. This contradicts (3.22) which, as the reader
can verify, implies that KΣ(z) and K are linearly disjoint over KΣ. In particular, ρ is not
a representation of the first kind.

5. Structure results for modular forms

We consider, in this section, a representation

Γ
ρ−→ GLN (Fq(tΣ)).

We recall that M !
w(ρ;LΣ), Mw(ρ;LΣ), Sw(ρ;LΣ) denote respectively, the LΣ-vector spaces

of weak modular forms, modular forms, and cusp forms in HolKΣ
(Ω→ LN×1

Σ ) of weight w

for ρ (in the sense of Definition 1.2), so that Sw(ρ;LΣ) ⊂ Mw(ρ;LΣ) ⊂ M !
w(ρ;LΣ). The

operator τ induces Fq(tΣ)-linear injective maps

Mw(ρ;LΣ)
τ−→Mqw(ρ;LΣ),

and similarly for M !
w(ρ;LΣ), Sw(ρ;LΣ) etc. Of course, this depends on the choice of Σ. To

simplify, we will sometimes also write Mw(ρ) for Mw(ρ;LΣ) etc. when the reference to the
field LΣ is clear. The next sub-section also allows to justify this abuse of notation.

5.1. Changing the coefficient field. We have defined the LΣ-vector space of modular
forms Ww(ρ;LΣ) and the KΣ-vector space of modular forms Ww(ρ;KΣ) (with W a symbol
such that W ∈ {M !,M, S}). Let Σ′ be finite such that Σ ⊂ Σ′ ⊂ N∗. Then, we also have
the spaces Ww(ρ;LΣ′) and Ww(ρ;KΣ′). The next result allows to compare these spaces
for Σ′ ⊃ Σ. It is important in that it confirms that there are bases of these spaces which
depend on the representation only. The notation Ww stands for M !

w,Mw, Sw in all the
following.

Proposition 5.1. We have that (1)

Ww(ρ;KΣ′) = Ww(ρ;KΣ)⊗̂KΣ
KΣ′

where ⊗̂KΣ
means that every element f of Ww(ρ;KΣ′) can be expanded as a series f =∑

i aifi where ai ∈ KΣ′, fi ∈Ww(ρ;KΣ) for all i, and aifi → 0 for the supremum norm of
every affinoid subdomain of Ω. (2) If dimKΣ

(Mw(ρ;KΣ)) <∞ then

Ww(ρ;KΣ′) = Ww(ρ;KΣ)⊗KΣ
KΣ′ .

Moreover (3) if dimLΣ
(Mw(ρ;LΣ)) <∞, then

Mw(ρ;LΣ′) = Mw(ρ;LΣ)⊗LΣ
LΣ′ , Sw(ρ;LΣ′) = Sw(ρ;LΣ)⊗LΣ

LΣ′ .

Proof. Let (bi)i∈I be a basis of Facq (tΣ′) over Facq (tΣ). By Lemma 2.7, (bi)i∈I is an orthonor-
mal basis. In other words, every element κ ∈ KΣ′ can be expanded, in a unique way, as
a series κ =

∑
i κibi with κi ∈ KΣ such that κi → 0. Let us choose a basis (cj)j∈J of
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Facq (tΣ) over Facq so that (bicj)i,j is an orthonormal basis of KΣ′ over C∞. Now consider
f ∈Ww(ρ;KΣ′). We can expand

f(z) =
∑
i,j

fi,j(z)bicj

where fi,j ∈ HolC∞(Ω→ C∞)N×1 for all i, j, with the property that fi,j → 0 with respect
to the supremum norm relative to any choice of an affinoid subdomain of Ω. Observe that

f(γ(z)) = Jγ(z)w
∑
i

ρ(γ)
∑
j

fi,j(z)cj

 bi,

because f is modular-like. Since ρ(γ)
∑

j fi,j(z)cj ∈ KN×1
Σ for z ∈ Ω and (bi)i is an

orthonormal basis of KΣ′ over KΣ, we deduce that for all i ∈ I, setting fi =
∑

j fi,j(z)cj ,

fi(γ(z)) = Jγ(z)wρ(γ)fi(z),

and one sees that fi ∈ Ww(ρ;KΣ). Since f =
∑

i fibi with the above convergence con-

ditions, we get f ∈ Ww(ρ;KΣ)⊗̂KΣ
KΣ′ which proves (1). Now observe, for (2), that the

above sum reduces to a finite sum if dimKΣ
(Mw(ρ;KΣ)) <∞. The proof of part (3) of the

proposition is similar but we restrict to Ww = Mw, Sw. First notice that by Lemma 2.10
which can be applied to B = LΣ′ (it satisfies the conditions at the beginning of §2.2.1), if
f ∈Ww(ρ;LΣ′) then there exists d′ ∈ Fq[tΣ′ ]\{0} such that f ∈Ww(ρ;TΣ′ [

1
d′ ]
∧) by Lemma

2.10. We can even choose d, d′ with d ∈ Fq[tΣ′ ] \ {0} such that d | d′ and such that the
image of ρ is contained in GLN (Fq[tΣ][1

d ]). The proof of the first part of the proposition can

be modified to obtain that f can be expanded as a series f =
∑

k akfk where ak ∈ TΣ′ [
1
d′ ]
∧

and fi ∈ Ww(ρ;TΣ[1
d ]), and aifi → 0 for the supremum norm associated to any affinoid

subset of Ω. If now dimLΣ
Mw(ρ;LΣ) <∞, we deduce the result. �

Remark 5.2. We have excluded Ww = M !
w because in general, dimLΣ

M !
w(ρ;LΣ) = ∞.

However there are some canonical subspaces that are often finite dimensional. For instance,
if v0 ∈ R it can be proved (but we omit the details) as a consequence of our Theorem 5.5
that the spaces

M !
v0,w(ρ;LΣ) :=

{
f = t(f1, . . . , fN ) ∈M !

w(ρ;LΣ) : v(f1), . . . , v(fN ) ≥ v0

}
are finite-dimensional. Then, results similar to the above hold, with similar proofs.

Remark 5.3. In full generality, we do not know if Ww(ρ;KΣ) = Ww(ρ;LΣ)⊗̂LΣ
KΣ and we

do not know how to compare the dimension over LΣ and KΣ. Note that the proof above
imply the following: when d | d′ and if ρ(Γ) is in GLN (Fq[tΣ][d−1]), then Mw(ρ;TΣ′ [

1
d′ ]
∧) =

Mw(ρ;TΣ[1
d ]∧)⊗TΣ[ 1

d
]∧ TΣ′ [

1
d′ ]
∧. In particular, we have

Mw(ρ;TΣ[d−1]∧)⊗TΣ[d−1]∧ LΣ = Mw(ρ;LΣ),

and similarly for the spaces of cusp forms and the tempered forms.
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The next direct consequence of Proposition 5.1 will be used in §8. Compare with [55,
Lemma 13].

Corollary 5.4. With B = KΣ,LΣ,TΣ[1
d ] we have, for all w ∈ Z and m ∈ Z/(q − 1)Z,

Mw(det−m;B) = Mw(det−m;C∞)⊗C∞ B.

In other words, scalar B-valued modular forms are B-linear combinations of Drinfeld
modular forms à la Goss-Gekeler (with same weights and types).

5.2. Finiteness results. In this subsection we suppose that the representation ρ : Γ →
GLN (Fq(tΣ)) is of the first kind. We also recall that KΣ is the completion of the fraction

field of KΣ〈〈e〉〉b for the valuation v, and that OΣ, MΣ are respectively the valuation ring
and the maximal ideal of v. We have the following results which correspond to part (1) of
Theorem B in the introduction:

Theorem 5.5 (Finiteness Theorem). The LΣ-vector space Mw(ρ;LΣ) has finite dimension
rρ(w) and we have rρ(w) ≤ (1 + b w

q+1c)N if q > 2 and rρ(w) ≤ 2(1 + b w
q+1c)N if q = 2.

In particular, if w < 0, then rρ(w) = 0 and Mw(ρ;LΣ) = {0} but this property will be
actually proved separately to obtain the general result. The proof of this theorem makes
use of an important feature of our Drinfeld modular forms when they take values in LΣ;
the possibility of evaluating the variables ti (i ∈ Σ) at roots of unity. There is not such a
property for KΣ-valued modular forms. In §5.2.2 we prove Theorem 5.5 by using that the
spaces of modular forms of negative weight are trivial. This is a consequence of the fact
that classical negative weight (scalar) Drinfeld modular forms for congruence subgroups of
Γ are zero. The upper bound for the dimensions in Theorem 5.5 can be slightly refined,
but our methods do not allow an explicit computation.

5.2.1. Evaluating at roots of unity. The representation of the first kind ρ is constructed
starting from a finite set of basic representations ρi associated with injective Fq-algebra
morphisms χi : A → Fq(tΣ) (i = 1, . . . , r). If d1, . . . , dr ∈ Fq[tΣ] \ {0} are such that
the entries of diχi(θ) are in Fq[tΣ] then the image of ρ is in GLN (Fq[tΣ][ 1

d1
, . . . , 1

dr
]) ⊂

GLN (Fq[tΣ][1
d ]) for some d ∈ Fq[tΣ] \ {0}. We thus get, after Proposition 4.8, that

Ξρ,Φρ ∈ Hol
(
C∞ → ÊΣ[d−1]

N×N)
.

Let Σ = U t V be a finite subset of N∗ written as a disjoint union of subsets U, V , with
U non-empty. The set

VU (d) = {ζ ∈ (Facq )U : d(ζ) = 0}
is Zariski-dense in (Facq )U . Let ζ = (ζi : i ∈ U) be an element of (Facq )U \ VU (d).

The evaluation map

evζ : T̂Σ[d−1]→ ̂TV [evζ(d)−1]

is the TV -algebra morphism uniquely determined by the correspondence ti 7→ ζi for i ∈ U .
If there is no possibility of confusion, we write f(ζ) in place of evζ(f). We extend this map
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to matrices with entries in TΣ[d−1]∧. It is easy to see that if X is an analytic space over
C∞ and f ∈ Hol(X → TΣ[d−1]∧), then evζ(f) ∈ Hol(X → TV [d(ζ)−1]∧). Moreover:

Lemma 5.6. Let X be a rigid analytic space over C∞. If f ∈ Hol(X → TΣ[1
d ]∧) and if

for all ζ ∈ (Facq )U \ VU (d), evζ(f) ∈ Hol(X → TV [ 1
d(ζ) ]∧) is constant, then f is constant.

Proof. It is enough to prove the result for X = Spm(A) affinoid. By Lemma 2.5 we can
choose an orthonormal basis (ai)i∈I of the Banach C∞-algebra A. We can even assume,
without loss of generality, that ai0 is the constant function equal to one for an index
i0 ∈ I. Then, for all i 6= i0, ai is non-constant over X. We can expand every element f of
Hol(X → TΣ[1

d ]∧) as f =
∑

i∈I fiai with fi ∈ TΣ[1
d ]∧, where the series converges for the

supremum norm of X. Hence,

evζ(f) =
∑
i∈I

evζ(fi)ai,

and evζ(fi) = 0 for all i 6= i0. Since this happens for all ζ ∈ (Facq )U \ VU (d) which is

Zariski-dense, we obtain fi = 0 for all i 6= i0 and f is constant over X. �

Let n be a non-zero ideal of A. We denote by Γ(n) the associated principal congruence
subgroup of Γ:

Γ(n) = {γ ∈ Γ : γ ≡ ( 1 0
0 1 ) (mod n)}.

We recall that ρ : Γ→ GLN (Fq[tΣ][d−1]) is a representation of the first kind.

Lemma 5.7. Let ζ = (ζi : i ∈ Σ) be an element of (Facq )Σ \VΣ(d). There exists a non-zero

ideal n of A such that for all γ ∈ Γ(n), evζ

(
ρ(γ)

)
= IN .

Proof. There exist basic representations ρχ1 , . . . , ρχr , associated to Fq-algebra morphisms
χi : A → Fq(tΣ)ni×ni (i = 1, . . . , r) such that ρ can be constructed applying admissible
operations finitely many times (as in Definition 4.5). We fix ζ ∈ (Facq )Σ \ VΣ(d) where

d ∈ F[tΣ] \ {0} is such that dχi(θ) ∈ Fq[tΣ]ni×ni . We denote by n the ideal generated
by P1|X=θ, . . . , Pr|X=θ ∈ A \ {0}, where Pi ∈ Fq[X] is the minimal polynomial of ηi =
χi(θ)|tΣ=ζ (for all i), which are well defined. Then, if a ∈ n, we have evζ(χti(a)) = 0 for all

i so that evζ(ρ(γ)) = IN for all γ ∈ Γ(n). �

We now introduce a slightly more general notion of vector-valued modular form for a
congruence subgroup of Γ. Let G be a congruence subgroup of Γ. The quotient space
G\Ω carries a natural structure of analytic curve YG with compactification XG obtained
by adding finitely many points to YG called cusps. We can consider neighbourhoods of a
cusp of G\Ω in Ω in the usual way and therefore, there is a natural notion of modular-like

forms f : Ω→ LN×1
Σ of weight w for ρ, seen as a representation of G by restriction, namely,

satisfying the collection of functional equations

(5.1) f(γ(z)) = Jγ(z)wρ(γ)f(z) ∀z ∈ Ω, ∀γ ∈ G.
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Let c be a cusp of XG and let us consider δ ∈ Γ such that δ(∞) = c. If f : Ω→ LN×1
Σ is a

map and w an integer, we set

f δ(z) := f |w,ρδ = Jδ(z)
−wρ(δ)−1f(δ(z))

(Petersson slash operator as in (4.19)). A simple computation shows that if f is modular-

like of weight w for the restriction ρ|G of ρ on G, then f δ : Ω → LN×1
Σ is modular-like of

weight w for ρ|Gδ where Gδ := δ−1Gδ (in particular, if f is modular-like for the group Γ,
then f = f δ).

Definition 5.8. Let w be in Z. We say that a modular-like function Ω
f−→ LN×1

Σ of weight
w for ρ|G is:

(1) A weak Drinfeld modular form of weight w for ρ|G if there exists H ∈ Z such that

‖u(z)Hf δ(z)‖ → 0

as z ∈ Ω is such that |z| = |z|= →∞, and this, for all δ ∈ Γ.
(2) A Drinfeld modular form of weight w for ρ|G, if ‖f δ(z)‖ is bounded as |u(z)| < c

for some constant c < 1, for all δ ∈ Γ.
(3) A cusp form of weight w for ρ|G if ‖f δ(z)‖ → 0 as z ∈ Ω is such that |z| = |z|= →∞

for all δ ∈ Γ.

We denote by M !
w(G; ρ;LΣ) (resp. Mw(G; ρ;LΣ), Sw(G; ρ;LΣ)) the LΣ-vector spaces of

weak modular forms (resp. modular forms, cusp forms) of weight w for ρ. More generally,
if B is a C∞-subalgebra of KΣ, we write Mw(G; ρ;B) for the corresponding B-module of
modular forms.

It is easy to see that the C∞-vector space Mw(G; 1;C∞) is equal to the C∞-vector space
of the scalar Drinfeld modular forms of weight w for G and a similar property holds for weak
modularity and cuspidality of a form. In the next proposition, Ww stands for M !

w,Mw, Sw
(so the proposition is in fact equivalent to three distinct statements).

Proposition 5.9. Let f be in Ww(ρ;LΣ). Then, there exists d ∈ Fq[tΣ] \ {0} such that

f ∈ Ww(ρ; T̂Σ[1
d ]) (Lemma 2.10). Let us consider, further, ζ ∈ (Facq )Σ \ VΣ(d). We have

evζ(f) ∈Ww(Γ(n); 1;C∞)N×1 where n is any ideal as in Lemma 5.7.

Hence, the evaluations of the N entries of f ∈ Mw(ρ;LΣ) are scalar Drinfeld modular
forms of weight w for Γ(n).

Proof of Proposition 5.9. By Lemma 5.7, for all γ ∈ Γ(n) and z ∈ Ω, evζ(f)(γ(z)) =

Jγ(z)w evζ(f)(z) and also, it is easy to see that evζ(f) has rigid analytic entries. It remains

to show that the entries of evζ(f) have the decay properties of Definition 5.8 which is

guaranteed if we show regularity at all cusps of G\Ω. In more detail, if f has image defined
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over T̂Σ[1
d ], we show that the map evζ(·) defines maps (C∞-linear maps)

M !
w(ρ; T̂Σ[d−1]) → M !

w(Γ(n); 1;C∞)N×1,(5.2)

Mw(ρ; T̂Σ[d−1]) → Mw(Γ(n); 1;C∞)N×1,(5.3)

Sw(ρ; T̂Σ[d−1]) → Sw(Γ(n); 1;C∞)N×1.(5.4)

First of all, a holomorphic function f : Ω → C∞ satisfying f(γ(z)) = Jγ(z)wf(z) for all

γ ∈ Γ(n) is a weak modular form of weight w for Γ(n) if for all δ ∈ Γ, the function f δ(z)
can be expanded as a series of C∞((u( zn))) in the neighborhood of the cusp δ(∞), where

n is a generator of n. We deduce that f δ(z) is a weak modular form of weight w for the
group δ−1Γ(n)δ. Note indeed that u( zn) is a uniformiser at ∞ for the action of Γ(n) over

Ω in virtue of the fact that the group ( 1 n
0 1 ) is contained in δ−1Γ(n)δ for all δ ∈ Γ.

Let f be in M !
w(ρ;TΣ[d−1]∧). Then, evζ(f) has all the entries which are n-periodic and

evζ(f
δ) is tempered for all δ ∈ Γ. This implies that evζ(f) ∈ M !

w(Γ(n); 1;C∞)N×1 which

proves (5.2). Now assume that f is, additionally, a modular form in Mw(ρ;TΣ[d−1]∧).
Then, all the entries bδ of evζ(f

δ) satisfy bδ ∈ C∞[[u( zn)]] for all δ ∈ Γ, which yields (5.3).

Similarly, if f is in Sw(ρ;TΣ[d−1]∧), we see that all the entries of evζ(f) vanish at all the

cusps of X(n) hence confirming (5.4) and completing the proof of the Proposition. �

5.2.2. Proof of the Finiteness Theorem. We first study the structure of the spaceM0(ρ;LΣ).

Lemma 5.10. We have M0(ρ;LΣ) ⊂ LN×1
Σ .

Proof. Let f be an element of M0(ρ;LΣ). By Lemma 2.10 there exists d ∈ Fq[tΣ]\{0} such

that the image of f is contained in T̂Σ[1
d ]. By Proposition 5.9, for all ζ ∈ (Facq )Σ \ VΣ(d)

there exists a non-zero ideal n of A such that evζ(f) ∈ M0(Γ(n); 1;C∞)N×1. A scalar

Drinfeld modular form of weight zero is constant. Hence, for all ζ as above, evζ(f) ∈ CN×1
∞ .

Therefore, f is a constant map by Lemma 5.6 with X = Ω. �

We recall from §2.3 the Fq(tΣ)-linear automorphisms τ : KΣ → KΣ, τ : LΣ → LΣ. Since
the image of a representation of the first kind ρ lies in Fq(tΣ)N×N for some N , we have
injective Fq(tΣ)-linear maps

Ww(ρ;KΣ)
τ−→Wqw(ρ;KΣ), Ww(ρ;LΣ)

τ−→Wqw(ρ;LΣ),

where Ww = M !
w,Mw, Sw. With this, we can prove the next corollary to Lemma 5.10.

Corollary 5.11. If w < 0, Mw(ρ;LΣ) = {0}.

Proof. Let f be an element of Mw(ρ;LΣ) with negative w. For all k, α, β ∈ N with β > 0,

f̃ := gαhβτk(f) ∈ Sqkw+α(q−1)+β(q+1)(ρdet−β;LΣ), where g is the normalised Eisenstein

series in Mq−1(1;C∞) and h is −1 times the normalised generator of Sq+1(det−1;C∞) (we
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are adopting Gekeler’s notations in [24], see also §5.3.3). We show that there exist k, α, β
with β > 0 such that

(5.5) qkw + α(q − 1) + β(q + 1) = 0.

This is very easy but we give all the details. To find such k, α, β, we first observe that
we need qkw + α(q − 1) + β(q + 1) ≡ 0 (mod q − 1), and this is guaranteed by w ≡ −2β
(mod q − 1). We must have:

α =
1

q − 1
(−wqk − β(q + 1))

=
1

q − 1
(−wqk − 2β) + β.

Assume first that p 6= 2. Then, there exists β ∈ {1, . . . , q − 1} such that w ≡ −2β
(mod q − 1). We can choose k large enough so that −wqk − 2β, divisible by q − 1, is ≥ 0.
Therefore we can choose α ∈ N such that, with such β and k, (5.5) holds.

If p = 2 we can set β = 1 and k such that α = −2kw − 3 ≥ 0. Since β > 0 we see

that f̃ is a cusp form and Lemma 5.10 now implies that f̃ = 0; hence f = 0 because τ is
injective. �

Proof of Theorem 5.5. The result is already proved in Lemma 5.10 and Corollary 5.11 if
w ≤ 0. Now assume that w > 0 and let f be in Mw(ρ;LΣ). Again, we can suppose that

f ∈Mw(ρ; T̂Σ[1
d ]) for some d ∈ Fq[tΣ] \ {0}.

We have that f ∈ ON×1
Σ by Theorem 4.12. In fact, the proof of Proposition 4.11 allows

to show that, more precisely, f ∈ ON×1
TΣ[ 1

d
]∧

. Since f is a regular ρ-quasi-periodic function

(Definition 4.1), viewing the proof of Proposition 4.11, we obtain that f = Φρg, where Φρ

has been defined in §4.2.1 and studied in Proposition 4.8, and where g is in TΣ[1
d ]∧[[u]]N×1.

We recall that from Corollary 4.9 that det(Φρ) = 1 and Φρ,Φ
−1
ρ ∈ (E◦〈〈e〉〉b)N×N . We now

study the association f 7→ g so that we write gf to stress the dependence of g on f .
Let ν be in F×q . We have

ρ( ν 0
0 1 )Φρ(z)ρ( ν 0

0 1 )−1gf (νz) = f(νz) = νwρ( ν 0
0 1 )f(z) = νwρ( ν 0

0 1 )Φρ(z)gf (z), ∀z ∈ Ω.

Since ρ is of the first kind, ρ( ν 0
0 1 ) is diagonal and we can write:

ρ( ν 0
0 1 ) =

ν
−n1

. . .

ν−nN

 , ni ∈ Z/(q − 1)Z, ν ∈ F×q .

Writing additionally gf = t(g1, . . . , gN ), we deduce that

gi(νz) = νw−nigi(z)

for all i = 1, . . . , N , so that gi ∈ umiTΣ[1
d ]∧[[uq−1]] where mi is the unique representative

of ni−w modulo q− 1 in {0, . . . , q− 2}. This implies that the subspace Ww of Mw(ρ;LΣ)
spanned by the forms f with gf having entries of v-valuation in the set {0, 1} has dimension
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not exceeding N if q > 2 and 2N if q = 2. On the other hand, if f ∈ Mw(ρ;LΣ) is such
that gf is not in Ww, that is, the v-valuations of its entries are ≥ 2, then, by the fact

that Φ−1
ρ ∈ (E◦〈〈e〉〉b)N×N , we deduce that the v-valuations of the entries of f are all

≥ 1 and therefore f ∈ hMw−(q+1)(ρdet;LΣ) (where we recall that h is the generator of

Sq+1(det−1;C∞) normalised by the coefficient of u in its u-expansion, which is set to −1).
We have proved that

Mw(ρ;LΣ) = hMw−(q+1)(ρdet;LΣ)⊕Ww.

This implies

dimLΣ

(
Mw(ρ;LΣ)

)
≤ dimLΣ

(
Mw−(q+1)(ρdet;LΣ)

)
+

{
N if q > 2
2N if q = 2

The result follows by induction over w. �

5.2.3. Modular forms of weight one. We keep working with a representation of the first
kind ρ : Γ→ GLN (Fq(tΣ)) and we set, with L a field extension of Fq(tΣ),

H(ρ;L) = {l ∈ LN×1 : ρ(Ta)l = l for all a ∈ A}.

This is equal to the L-vector space generated by the simultaneous eigenvectors of ρ(Ta)
in Fq(tΣ), with a ∈ A. Note indeed that for all a ∈ A, T pa = I2 so that 1 is the unique
eigenvalue of ρ(Ta) for all a. We denote by δρ the dimension of H(ρ;L) (independent on
L).

Let us consider f ∈ Mw(ρ;L) where L = KΣ or L = LΣ. By Theorem 4.12 we can

identify f = t(f1, . . . , fN ) with an element of ON×1
Σ . We denote by f i the image of fi

modulo MΣ for all i. This is an element of KΣ and we set f = t(f1, . . . , fN ) ∈ KN×1
Σ . We

easily see, by taking the limit for z ∈ Ω, |z| = |z|= → ∞ that in fact, f ∈ LN×1. Note

that for every a ∈ A, f |w,ρTa = ρ(T−a)f(z+a) equally belongs to ON×1
Σ (by Lemma 3.35).

Therefore f ∈ H(ρ;L). This means that

Mw(ρ;L) = Sw(ρ;L)⊕Ww,

where the map f 7→ f induces an embedding Ww → H(ρ;L) so that δρ is an upper bound
for the dimension of Ww. We can now prove the following result which justifies part (2) of
Theorem B in the introduction:

Theorem 5.12. We have S1(ρ;LΣ) = {0} and the inequality dimLΣ
(M1(ρ;LΣ)) ≤ δρ.

Proof. It suffices to show that S1(ρ;LΣ) = {0}. Let f be a cusp form of S1(ρ;LΣ). In
the settings of Proposition 5.9, for ζ ∈ (Facq )Σ \ VΣ(d) we get (after this proposition) that
the evaluation evζ(f) is well defined and its entries are cusp forms of S1(Γ(n)). The latter

space is zero as it was first noticed by Gekeler (see Cornelissen, in [19, Theorem (1.10)]).
Hence, for all ζ as above, evζ(f) = 0. By Lemma 5.6, f vanishes identically. �

A more precise result in a particular case is Theorem 7.5.
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5.2.4. Problems relative to the evaluation at roots of unity. Consider a representation of the
first kind ρ and two elements f, g ∈Mw(ρ;LΣ). By Lemma 2.10 there exists d ∈ Fq[tΣ]\{0}
such that f, g ∈Mw(ρ;TΣ[d−1]∧) and ρ(Γ) ⊂ GLN (Fq[tΣ][d−1]).

Lemma 5.13. Suppose that evζ(f) = evζ(g) for all ζ ∈ (Facq )Σ \VΣ(d). Then either f = g

or f − g ∈ TΣ[d−1]∧ and w = 0. If ρ is irreducible, then f = g.

Proof. By Lemma 5.6 there exists κ ∈ TΣ[d−1]N×1 such that f − g = κ. By modularity
for all γ ∈ Γ and z ∈ Ω, κ = Jγ(z)wρ(γ)κ. If κ 6= 0, w = 0. Now, again in the case of κ

non-zero, κLΣ is a subvector space of LN×1
Σ that is ρ(γ)-invariant for all γ. If N > 1 and

ρ is irreducible, this is impossible. If N = 1 then ρ = det−m for some m. Hence the result
follows from Corollary 5.4. �

If ζ ∈ (Facq )Σ \ VΣ(d) we have a map

evζ : Mw(ρ;TΣ[d−1]∧)→Mw(ρζ ;C∞),

where ρζ : Γ → GLN (Facq ) is the representation obtained by sending γ ∈ Γ to evζ(ρ(γ)).

We have not yet defined Mw(ρζ ;C∞). Note that the image of ρζ is a finite subgroup and

ρζ is not of the first kind, apart from trivial situations. In this case there is an ideal n

such that Γ(n) ⊂ Ker(ρ). To define Mw(ρζ ;C∞) we require that every entry of an element

f ∈ Mw(ρζ ;C∞) is an element of Mw(Γ(n); 1;C∞) as suggested by Proposition 5.9. In

other words, we require the elements of Mw(ρζ ;C∞) to be regular, in the classical sense,

near the cusps of Γ(n) for any n such that Γ(n) ⊂ Ker(ρ). From Lemma 5.13 we deduce:

Corollary 5.14. If ρ is irreducible and w > 0,
⋂
ζ Ker(evζ) = (0).

The maps evζ are rarely surjective. We illustrate this with an example, anticipating

some tools that are discussed later on. We consider ρ = ρ∗χt the contragredient of the basic
representation associated to χt : A→ Fq[t] the map a(θ) 7→ a(t) of §2.4.4 (irreducible, see
Lemma 7.11), so we have N = 2 for the rank of the target space. In Theorem 7.5 we shall
prove that M1(ρ;T) is one-dimensional, generated by an Eisenstein series. Now consider
ζ ∈ Facq and an element f ∈ M1(ρζ ;C∞). It is easy to see that if p is the prime ideal of
Fq[t] generated by the polynomials that vanish at ζ, then Γ(p) is contained in the kernel

of ρζ . By Cornelissen [19, Proposition (1.12)] we have, with f =
(
f1

f2

)
(for few lines u will

not denote the uniformizer at infinity),

fi(z) =
∑
u∈S

ci,uFu(z), ci,u ∈ C∞

where S is any set of representatives of the cusps of Γ(p) (we can make them in a bijective
correspondence with the quotient of the set (A/p)2 \ {0} modulo the scalar multiplication
by elements of F×q ) and (Fu)u∈S is the set of restricted Eisenstein series of weight 1 in
the terminology of [19]. In particular, (Fu)u∈S is a basis of M1(Γ(p); 1;C∞). The group
Γ acts permuting the cusps. If u is a cusp and γ ∈ Γ, we denote by uγ the cusp image
of u by γ. It is well known that for all γ, Fu(γ(z)) = Jγ(z)Fuγ−1 . On the other hand we
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have f(γ(z)) = Jγ(z)ρζ(γ)f(z). Hence we get, setting cu =
(
c1,u
c2,u

)
(the first equality is a

rearrangement of sum):∑
u∈S

Fu(z)cuγ =
∑
u∈S

Fuγ−1(z)cu =
∑
u∈S

Fu(z)ρζ(γ)(cu), ∀γ ∈ Γ.

There exist (zv)v∈S ⊂ Ω such that the matrix (Fu(zv))u,v is non-singular. This implies that

ρζ(γ)(cu) = cuγ , ∀γ ∈ Γ, u ∈ S.

Moreover, if uγ = u for some u, γ then γ ∈ Γ(p) ⊂ Ker(ρζ) so that the datum of a
vector cu ∈ C2

∞ determines an element of Mw(ρζ ;C∞) and there is an injective linear map
C2
∞ → Mw(ρζ ;C∞). This shows that evζ is not surjective. Similarly, if |Σ| > 1, one can

show that the map evζ defined over Mw(ρ∗Σ;TΣ) with ζ a vector of roots of unity is not

surjective, apart from obvious trivial cases.
At this point, we would like to ask a question. The next definition prepares it.

Definition 5.15. Let n be a non-zero ideal of A, let g be a Drinfeld modular form of
weight w for Γ(n). We say that g comes from a modular form for the full modular group
if there exist: (1) a representation of the first kind ρ : Γ → GLN (Fq(tΣ)) and ζ ∈ (Facq )Σ

such that the evaluations evζ(ρ(γ)) are well defined for every γ ∈ Γ, and (2) an element
f = t(f1, . . . , fN ) ∈Mw(ρ;LΣ) such that g = evζ(fi) for some i ∈ {1, . . . , N}.

Question 5.16. Compute the C∞-span in Mw(Γ(n); 1;C∞) of the modular forms which
come from modular forms for the full modular group. For which n and w do we obtain the
whole space?

5.3. Poincaré series. We construct explicit examples of modular forms in our generalized
setting. We are mainly concerned with a class of matrix-valued Poincaré series.

We consider a representation of the first kind

Γ
ρ−→ GLN (Fq(tΣ)),

of degree l. Let w be an integer and, with L = LΣ or L = KΣ, let G : Ω → LN×NΣ be a
tempered matrix ρ-quasi-periodic matrix function of type m, following Definition 4.1. We
shall keep these settings all along §5.3. We set, for γ ∈ Γ and z ∈ Ω:

Sγ(w,m;G)(z) = det(γ)mJγ(z)−wρ(γ)−1G(γ(z))ρ( det(γ) 0
0 1

).

Lemma 5.17. Let γ, γ′ ∈ Γ be in the same left coset modulo H := {( ∗ ∗0 1 )} ⊂ Γ. Then we
have the equality Sγ(w,m;G)(z) = Sγ′(w,m;G)(z). Moreover, for all δ ∈ Γ,

Sγ(w,m;G)(δ(z)) = det(δ)−mJδ(z)
wρ(δ)Sγδ(w,m;G)(z)ρ( det(δ)−1 0

0 1
).

Proof. We simplify the notation: Sγ(w,m;G)(z) = Sγ(z). We prove the first property.
Since H is the semidirect product of A by F×q , it suffices to show that: (1) for all a ∈ A,

STaγ(z) = Sγ(z) and (2) for all ν ∈ F×q , Sδγ(z) = Sγ(z) if δ = ( ν 0
0 1 ). For (1), we observe,
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by the properties of G, that

STaγ(z) = det(Taγ)mJTaγ(z)−wρ(Taγ)−1G(Ta(γ(z)))ρ( det(Taγ) 0
0 1

)

= det(γ)mJγ(z)−wρ(γ)−1ρ(Ta)
−1ρ(Ta)G(γ(z))ρ( det(γ) 0

0 1
)

= Sγ(z).

For (2), we see, similarly, with δ = ( ν 0
0 1 ) (here we use that G has type m):

Sδγ(z) = det(δγ)mJδγ(z)−wρ(δγ)−1G(δ(γ(z)))ρ( det(δγ) 0
0 1

)

= det(γ)mJγ(z)−wρ(γ)−1ρ(δ)−1 det(δ)m det(δ)−mρ(δ)G(γ(z))ρ(δ)−1ρ( det(δγ) 0
0 1

)

= Sγ(z).

This completes the proof of the first part of the Lemma. For the second, observe, if γ′ = γδ
with δ ∈ Γ:

Sγ(δ(z)) = det(γ)mJγ(δ(z))−wρ(γ)−1G(γ(δ(z)))ρ( det(γ) 0
0 1

)

= det(δ)−m det(γ′)mJδ(z)
wJγ′(z)

−wρ(γ′δ−1)−1G(γ′(z))ρ( det(γ′) 0
0 1

)ρ( det(δ) 0
0 1

)−1

= det(δ)−mJδ(z)
wρ(δ)Sγ′(z)ρ( det(δ) 0

0 1
)−1.

�

We consider the formal series (Poincaré series):

(5.6) Pw(G)(z) :=
∑
γ

Sγ(w,m;G)(z),

running over a complete set of representatives of H\Γ. Note that, if well defined, this is
a matrix function. Compare this with Bruinier’s definition of Poincaré series in [11, §1.2,
1.3].

Two elements γ, γ′ ∈ Γ are in the same left coset modulo H if and only if they have the
same second row and there exists a couple (α, β) ∈ A2×1 with α, β relatively prime, such
that

[γ′]1 = [(α, β) · γ]1,

where [·]1 here denotes the first row. In particular, we can run the series (5.6), if convergent,
over a set of representatives contained in SL2(A), so that, with such a choice, the sum
becomes:

Pw(G)(z) =
∑
γ

Jγ(z)−wρ(γ)−1G(γ(z)).

We have the next property.

Proposition 5.18. If the series Pw(G)(z) converges to an element of HolKΣ
(Ω→ LN×N )

then it satisfies, for all z ∈ Ω and γ ∈ Γ:

Pw(G)(γ(z)) = det(γ)−mJγ(z)wρ(γ)Pw(G)(z)ρ( det(γ) 0
0 1

)−1.

For each column f of Pw(G) there exists i ∈ Z/(q − 1)Z such that

f(δ(z)) = det(δ)i−mJδ(z)
wρ(δ)f(z), ∀z ∈ Ω, δ ∈ Γ.
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Proof. We assume that the series converges, giving rise to an element of HolKΣ
(Ω→ LN×N ).

We note that for ν ∈ F×q , ρ( ν 0
0 1 ) is diagonal in GLN (Fq) and there are integers ni with

i = 0, . . . , q − 2 such that
∑

i ni = N so that we can decompose

(5.7) Pw(G) =

q−2⊕
i=0

P [i]
w (G),

where P [i]
w (G) : Ω→ KN×ni

Σ for all i, and

P [i]
w (G)(δ(z)) = det(δ)i−mJδ(z)

wρ(δ)P [i]
w (G), ∀z ∈ Ω, δ ∈ Γ, i = 0, . . . , q − 2.

�

In full generality (for any quasi-periodic function G), we do not have a good criterion of
convergence for the series Pw(G). We discuss these series for two choices of G.

We will need the next Lemma in the book [32] of Gerritzen and van der Put.

Lemma 5.19. There exists a complete set of representatives γc,d =
( ∗ ∗
c d

)
∈ SL2(A) of

H\Γ in which each matrix is of one of the following three types:

(1) γ0,µ =
(
µ−1 0

0 µ

)
with µ ∈ F×q ,

(2) γµ,ν =
(

0 −µ−1

µ ν

)
with µ ∈ F×q and ν ∈ Fq,

(3) γc,d =
(
a b
c d

)
, with a, b, c, d ∈ A such that ad− bc = 1, |cd| > 1, |a| < |c|, |b| < |d|.

We note that the first two sets are finite. Let us look at the corresponding extracted
series in the series (5.6) defining Pw(G); we denote them by A,B,C (in agreement with the
order of the types in the above set of representatives), so that A,B correspond to finite
sums while C is an infinite sum. We set, with l the degree of ρ:

(5.8) ε(ρ) :=
∑
µ∈F×q

µ2m−w+lρ
(
µ2 0
0 1

)
∈ FN×Nq ,

a matrix that has a natural block decomposition induced by the way ρ is constructed in
terms of basic representations. Note that this is also a diagonal matrix with entries in
{−1, 0}. For the first sub-sum we have, in virtue of the fact that G is of type m (second
equality) and that ρ is of degree l (third equality):

A :=
∑
µ∈F×q

Sγ0,µ(z) =
∑
µ∈F×q

µ−wρ
(
µ−1 0

0 µ

)−1
G(µ−2z)(5.9)

=
∑
µ∈F×q

µ−wρ
(
µ−1 0

0 µ

)−1
µ2mρ

(
µ−2 0

0 1

)
G(z)ρ

(
µ−2 0

0 1

)−1

= G(z)ε(ρ).
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For the second sub-sum we have, similarly:

B :=
∑
µ∈F×q
ν∈Fq

Sγµ,ν (z) =(5.10)

=
∑
µ∈F×q

µ2m−w+l
∑
ν∈Fq

(
z +

ν

µ

)−w
ρ
(
ν
µ
−1

1 0

)
G

(
−1

z + ν
µ

)
ρ
(
µ2 0
0 1

)
(5.11)

= (−1)m

∑
β∈Fq

(z + β)−wρ
(
−β 1
1 0

)
G

(
1

z + β

)
ρ
(
−1 0
0 1

) ε(ρ).

We easily deduce that A + B ∈ HolKΣ
(Ω→ LN×N ). We now make explicit choices for G.

5.3.1. The case of G entire. We suppose that G ∈ QP !
m(ρ;KΣ) extends to an entire func-

tion C∞ → LN×N , where L is a field extension of C∞ contained in KΣ. In this part we
study Pw(G) with w ∈ Z, w > 0. Let M ≥ 0 be such that ‖G(z)u(z)M‖ is bounded for
|u(z)| < c for some c < 1 (it exists as G is tempered).

Lemma 5.20. There are three constants c1, c2, c3 ∈ |C×∞| such that c1 ≥ 1 and η ∈
Z[1

p ] ∩ [0,M + 1[ such that if |z|= ≥ c1 then ‖G(z)‖ ≤ c2|eC(z)|η and if |z|= ≤ c1 then

‖G(z)‖ ≤ c3.

Proof. We recall that Φρ, introduced at the end of §4.1, is entire (Proposition 4.8 (a)), ρ-
quasi-periodic of type 0 (same proposition (b)) and that Φ−1

ρ is entire (Corollary 4.9) and

has its entries which are at once tame series of degrees in [0, 1[∩Z[1
p ]∪ {−∞}. Then GΦ−1

ρ

is also entire and A-periodic. Therefore, by Proposition 4.2 (c), GΦ−1
ρ ∈ L[eC(z)]N×N and

the degrees in eC of the entries of this matrix function, well defined, are ≤ M while the
matrix function itself is of type m. We deduce that

G ∈ L[eC(z)]N×NΦρ.

By Proposition 3.27, there exist constants c1 ≥ 1 and c2 with c1, c2 ∈ |C×∞|, η ∈ Z[1
p ] ∩

[0,M + 1[ such that if |z|= ≥ c1, then ‖G(z)‖ ≤ c2|eC(z)|η. Suppose now that |z|= ≤ c1.
There exists λ ∈ K∞ such that |z−λ| = |z|= ≤ c1. We can write λ = a+m with a ∈ A and
m ∈ 1

θFq[[
1
θ ]]. Then |z − a| = |z − λ+m| ≤ max{|z − λ|, |m|} ≤ c1 because |m| < 1 ≤ c1.

Now, since G(z) is ρ-quasi-periodic, ‖G(z)‖ ≤ ‖G(z−a)‖ ≤ c3 for some constant c3 ∈ |C×∞|,
because the entries of G are entire functions, hence bounded in the disk DC∞(0, c1). �

Proposition 5.21. Let w be a positive integer. If G is an entire tempered ρ-quasi-periodic
function of type m the series defining Pw(G) converges to an element of HolKΣ

(Ω→ LN×N )

and the matrix functions P [i]
w (G) defined in (5.7) are elements of M !

w(ρdeti−m;L)1×ni

for i varying in Z/(q − 1)Z. If the i-th block of ε(ρ) is non-zero, then the columns

of P [i]
w (G) are non-zero. Moreover, the matrix functions hM+1P [i]

w (G) are elements of
Sw+(M+1)(q+1)(ρ deti−m−M−1;L)1×ni.
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Proof. Let γ = ( a bc d ) be in Γ, such that c 6= 0 and let us consider z ∈ Ω. Then:

(5.12) γ(z) =
a

c
− det(γ)

c(cz + d)
.

We consider c1 ∈ |C×∞| such that c1 > 1 and we consider z ∈ Ω such that c−1
1 ≤ |z|= ≤ |z| ≤

c1. We note that if γ is of type (2) or (3) as in Lemma 5.19, then |γ(z)| ≤ c1. Since G has
entire entries, we therefore get that the series defining Pw(G) converges uniformly over all
the affinoid subdomains of Ω of the type {z ∈ Ω : c3 ≤ |z|= ≤ |z| ≤ c4} with c3, c4 ∈ |C×∞|
hence defining an element of HolKΣ

(Ω→ LN×NΣ ). Now observe that if |z|= = |z| → ∞ and
γ is of type (2) or (3), then |γ(z)| → 0 uniformly on the set of representatives γ of H\Γ and
therefore, the sum B+C, as a function of the variable z, is bounded as |z|= = |z| → ∞. By
Lemma 5.20 and the expression we found for A, we therefore have that Pw(G) is tempered,
because for |z|= large enough, ‖Pw(G)(z)‖ = ‖G(z)ε(ρ)‖. More precisely, |eC(z)|−η‖G(z)‖
is bounded as |z|= = |z| → ∞ where η is given in Lemma 5.20. Thanks to Proposition 5.18,
this suffices to show that Pw(G) has it columns in M !

w(ρdeti−m;L). If ε(ρ) does not vanish
identically, looking at the blocks which are not zero we deduce the properties regarding

P [i]
w (G). The last assertion of the proposition is verified by noticing that ‖G(z)u(z)η‖ → 0

as |z|= = |z| → ∞, and 0 ≤ η < M + 1. Therefore hM+1Pw(G) vanishes at infinity because
v(h) = 1. �

Corollary 5.22. If G = Φρ and ε(ρ) 6= 0 then there exists i such that

hP [i]
w (G) ∈

(
Sw+q+1(ρdet i−1;L) \ {0}

)1×ni
.

5.3.2. The case G = Ψm(ρ). With m ≥ 1, we study Pm(G) where:

(5.13) G = Ψm(ρ) =
∑
a∈A

1

(z − a)m
ρ(Ta).

The functions Ψm(ρ) have been introduced in §4.1.1. By Lemma 4.3 we have Ψm(ρ) ∈
QPm(ρ;LΣ). If ρ = 1 : Γ → {1} we recover the (scalar) sums Sm,Λ for the lattice Λ = A
(see [35, §6] and [24, §3]). In particular, for anym ≥ 1 there exists a polynomialGm ∈ K[X]
(called the Goss’ polynomial of order m) such that

(5.14) G = π̃mGm(u).

The Goss’ polynomials Gm can be computed inductively by using the generating series:

(5.15)
∑
m≥1

Gm(u)Xm =
uX

1− u expC(X)
.

See [24, (3.6)], [26], and [53, Theorem 3.2], [31] for more recent results on these polynomials.
See also our Lemma 6.5.

The next result holds:

Proposition 5.23. Let us consider w,m ∈ N∗. If G = Ψm(ρ), the columns of Pw(G) are
in Sw(ρdet−j ;LΣ) with j varying in Z/(q − 1)Z.
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Proof. It suffices to show that the sum defining Pw(G) is uniformly convergent on affinoid
subdomains of Ω of the type C := {z ∈ Ω : c−1

1 ≤ |z|= ≤ |z| ≤ c1} with c1 ∈ |C×∞| such that
c1 > 1. For this, we use the decomposition Pw(G) = A+B+C. We need to show that the
series C converges uniformly over C. We note that if γ = γc,d is of type (3) as in Lemma
5.19, then if z ∈ C we get |γ(z)| ≤ c1. In fact, we have γ(z) → 0 by (5.12) as γ varies
in the chosen representative set of H\Γ and γ(C) ⊂ DC∞(0, |θ|−1) ∩ Ω for all but finitely
many γ. If we denote by E the set of such homographies, we get ‖G(γ(z))‖ ≤ |z|−m for
all z ∈ C and for all γ ∈ E . Therefore we can decompose C = C0 + C1 where C1 is a finite
sum of holomorphic functions and C0 =

∑
γ∈E Sγ(G)(z) which converges uniformly on C in

virtue of the fact that w > 0. We deduce that Pw(G) defines a holomorphic function over

Ω, with values in LN×NΣ . Since moreover, ‖G(z)‖ → 0 as |z| = |z|= →∞, we see that the
columns of Pw(G) are cusp forms. �

Giving sufficiently general conditions for the non-vanishing of Pw(G) is more difficult in
the case G = Ψm(ρ). We have the next proposition:

Proposition 5.24. Assuming that m,w are two positive integers such that w > 2m, if
G = Ψm(ρ) and ε(ρ) 6= 0, then Pw(G) has a non-zero column in Sw(ρ det−i;LΣ) for some
i.

Proof. We need to analyze the various subsums A,B and C of Pw(G) that we know being
convergent series, by Proposition 5.23. We begin by studying the subsum A. Note that
ρ(Ta)− IN is a nilpotent matrix having zeroes in the diagonal for all a ∈ A. The diagonal
of G = Ψm(ρ) is equal to IN

∑
a∈A(z−a)−m and the hypothesis on ε(ρ) implies that Gε(ρ)

has some non-zero coefficients on the diagonal of valuation | · | equal to |Ψm(1)|. By Lemma
5.26 (proof postponed to §5.3.5) there exists

κ1 ∈]1, |θ|[∩|C×∞|

and a non-negative integer ω2 such that if κ1 < |z| < |θ|, then Ψm(z) = |θ|−m| zθ |
ω2 . We

deduce that

(5.16) ‖A(z)‖ = |θ|−m
∣∣∣z
θ

∣∣∣ω2

, κ2 < z < |θ|.

We now study the subsum B. To do this, we assume that |z| > 1. By (5.11) and the
definition of G:

(5.17)

B =

( ∑
β∈Fq

(z + β)m−wρ
(
−β 1
−1 0

)
︸ ︷︷ ︸

B0

+
∑′

a∈A

∑
β∈Fq

(z + β)m−w

(1− a(z + β))m
ρ
(
−β 1
1 0

)
ρ(Ta)ρ

(
−1 0
0 1

)
︸ ︷︷ ︸

B1

)
ε(ρ),

where the sum is split in two pieces, the first sum corresponding to a = 0, while the
dash ′ on the second sum designates the term corresponding to a = 0 omitted. If a 6= 0 we
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get |1− a(z+ β)| = |a||z| ≥ |z| = |z+ β| and therefore, ‖B1(z)‖ ≤ |z|−w for 1 < |z|. As for
B0, we see that

B0 =
∑
β∈Fq

(z + β)m−wρ
(
−β 1
−1 0

)
ε(ρ).

Hence, ‖B0(z)‖ ≤ |z|m−w again for 1 < |z|. Thus,

(5.18) ‖B(z)‖ ≤ |z|m−w, 1 < |z|.

It remains to handle the subsum C and we consider, for this purpose, z ∈ Ω such that
1 < |z| and |z| 6∈ |θ|Z. Suppose that γ = γc,d = ( a bc d ) is of type (3) as in Lemma 5.19. We
notice that |az+b| < |cz+d|. This follows easily from the conditions on a, b, c, d determining
the type (3) and the fact that |az+b| = max{|az|, |b|} and |cz+c| = max{|cz|, |d|} because
|z| 6∈ |θ|Z.

Then

Sγ(G) = π̃−mJγ(z)−wρ(γ)
∑
b̃∈A

(γ(z)− b̃)−mρ(T
b̃
)ρ( det(γ) 0

0 1
).

One sees easily that

(γ(z)− b̃)−m =
Jγ(z)m

(az + b− b̃Jγ(z))m
.

Note that az + b − b̃Jγ(z) = z(a − b̃c) + b − b̃d so that, if b̃ 6= 0, |az + b − b̃Jγ(z)| =

max{|z||a − b̃c|, |b − b̃d|} = max{|z||c|, |d|}|̃b| = |̃b||Jγ(z)|. Hence b̃ 6= 0 implies that

|(γ(z) − b̃)−m| ≤ 1. If b̃ = 0, since |az + b| < |cz + d|, we get |γ(z)|−m ≤ |Jγ(z)|m.
Therefore, we deduce that ‖Sγ(G)‖ ≤ |Jγ(z)|m−w for γ of type (3) and we can conclude
that

(5.19) ‖C(z)‖ ≤ |z|m−w, if 1 < |z|, |z| 6∈ |θ|Z.

Assuming by contradiction that Pw(G) vanishes identically, we have that A = −(B+C).

Looking at Lemma 5.26 we observe that |z| > |θ|
ω2+m

ω2+w−m if and only if |z|ω2+w−m > |θ|ω2+m,
equivalent to |θ|−m| zθ |

ω2 > |z|m−w. But

ω2 +m

ω2 + w −m
= 1− w − 2m

ω2 + w −m

and the hypothesis w > 2m ensures that there exists κ2 ∈]1, |θ|[∩|C×∞| such that for all
z ∈ Ω such that κ2 < |z| < |θ|,

‖A(z)‖ ≥ |Ψm(z)| = |Ψ≥m(z)| = |θ|−m
∣∣∣z
θ

∣∣∣ω2

> |z|m−w ≥ ‖B(z) + C(z)‖,

by (5.16), (5.18) and (5.19) (more precisely, a non-zero column of A has an entry which has
‖ · ‖ equal to |Ψm(z)|). This is impossible. Hence Pw(G) does not vanish identically. �
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5.3.3. Example: Poincaré series in a class introduced by Gekeler. We consider the case
N = 1, ρ = 1, we choose G(z) = Gm(u) = π̃−mΨm(1) the Goss’ polynomial (in u) of order
m with m > 0. Then, we see that ε(ρ) =

∑
µ∈F×q µ

2m−w which is non-zero if and only if

w ≡ 2m (mod q − 1). We therefore reach the next result.

Corollary 5.25. If w ≡ 2m (mod q − 1) and w > 2m then, with G(z) = Gm(u), the
Poincaré series Pw(G) determines a non-zero element of Sw(det−m;C∞).

Note that in [68, Remark 4.1] the condition on w ≡ 2m (mod q − 1) is stronger: w ≥
(q + 1)m. See also [32, pp. 304-307] and [24, §(5.11)]. However, we do not get new scalar
Poincaré forms. For instance, if w ≡ 2m (mod q − 1) and w > 2m the minimal data is
given by m = 1 and w = q + 1. If we take w > 2m, m ∈ {1, . . . , q}, w ≡ 2m (mod q − 1)
and G = um, we see that

Pw(G) =
∑

γ∈H\Γ

det(γ)mJ−wγ u(γ(z)) = Pw,m ∈ Sw(det−m;C∞)

in the notations of Gekeler, [24, (5.11)]. We recall that if w = q + 1 and m = 1, then
h = Pq+1,1.

5.3.4. Example: Poincaré series of weight three. We consider ρ = ρ∗Σ which is of degree
s = |Σ|, where Σ ⊂ N∗. We suppose that s ≡ 1 (mod q− 1). A simple computation shows
that

ρ( ν 0
0 1 ) = Diag(ν−s, · · · , ν−n1 , ν−n0)

where the integer sequence (ni)i≥0 does not depend on s and coincides with the so-called
one-counting sequence, that is, the sequence (ni)i≥0 which gives the number of one’s in
the binary expansion of i. The degree of ρ∗Σ is s. We also consider integers w,m > 0 such
that w > 2m and we set r = 2m − w + s. If s = |Σ| ≡ 1 (mod q − 1) then the smallest
parameters allowable in the above construction of a non-zero Poincaré series as above are
w = 3 and m = 1. We note that the last column of ε(ρ), defined in (5.8), is the opposite
of the last element of the canonical basis of FN×1

q . Hence the last column of P3(G) where

G = Ψ1(ρ∗Σ) is an element of S3(ρ∗Σ det−1;LΣ) \ {0}. Explicitly we have, with a choice of
representatives of H\Γ in SL2(A):

(5.20) P3(G) =
∑
γ

Jγ(z)3(tρΣ)(γ)G(γ(z)), G(z) =
∑
a∈A

(z − a)−1ρ∗Σ(Ta).

Note that if Σ = ∅ then N = 1, ρ = 1 and G = π̃u. we have |Σ| ≡ 1 (mod q − 1) if and
only if q = 2. In this case

P3(G) = π̃
∑
γ

Jγ(z)−3u(γ(z)) = π̃h,

that is, a non-zero multiple of Gekeler’s function h that has weight 3 in this case.
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5.3.5. Growth in annuli. This section is mainly devoted to the proof of Lemma 5.26, only
used in the proof of Proposition 5.24. We suppose that B ⊂ KΣ. We study the series
Ψm(ρ) in the annuli C0 = {z ∈ C∞ : 0 < |z| < 1} and Cn = {z ∈ C∞ : |θ|n−1 < |z| < |θ|n}.
The representation ρ being fixed, we now write Ψm or Ψm(z), instead of Ψm(ρ). We also
write:

Ψ<
m(z) = INz

−m if n = 0,

=
∑
a∈A
|a|<|θ|n

(z − a)−mρ(Ta) if n > 0,

Ψ≥m(z) =
∑
a∈A
|a|≥|θ|n

(z − a)−mρ(Ta) for all n.

Note that Ψ<
m ∈ KΣ(z)N×N and that Ψm = Ψ<

m + Ψ≥m. Also, if Dk denotes the higher
divided derivative of order k in the variable z applied coefficientwise (the operator defined
by Dk(zm) =

(
m
k

)
zm−k), we have

(5.21) Ψm = (−1)m−1Dm−1(Ψ1) = (−1)m−1Dm−1(Ψ<
1 ) + (−1)m−1Dm−1(Ψ≥1 ).

We note that if a ∈ A is such that |a| < |θ|n then |az | < 1 and

1

z − a
=

1

z

1

1− a
z

= z−1

(
1 +

∑
i≥0

(a
z

)i)
.

Hence, we get

(5.22) Ψ<
1 (z) = z−1

(∑
i≥0

H−i(ρ)z−i

)
, |z| > |θ|n−1,

where
H−i(ρ) =

∑
a∈A
|a|<|θ|n

aiρ(Ta), i ≥ 0,

where we adopt the convention a0 = 1 including when a = 0, so thatH0(ρ) =
∑
|a|<|θ|n ρ(Ta).

Similarly, if |a| ≥ |θ|n then | za | < 1 and

1

z − a
= −1

a

1

1− z
a

= −1

a

∑
i≥0

(z
a

)i
= −z−1

∑
j≥1

(z
a

)j
,

and we derive the expansion

(5.23) Ψ≥1 (z) = −z−1
∑
j≥1

Hj(ρ)zj , |z| < |θ|n,

where
Hj(ρ) = −

∑
a∈A
|a|≥|θ|n

a−jρ(Ta), j ≥ 1.
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We deduce that

Ψ1(z) = z−1
∑
i∈Z

Hi(ρ)zi, z ∈ Cn.

We suppose now that ρ = 1 so that N = 1 (this is the only case we need in the study of
Poincaré series). We have the next technical result:

Lemma 5.26. For any m ≥ 1 there exists κ1 ∈ R such that 1 < κ1 < q two non-negative
integers ω1, ω2 such that if 1 < |z| < κ1, then |Ψm(z)| = |z|1−q−m−ω1 and if κ1 < |z| < |θ|,
then |Ψm(z)| = |θ|−m| zθ |

ω2.

Proof. Writing

Sd(i) =
∑

a∈A+(d)

a−i ∈ K

,

S<d(i) =
∑

0≤k<d
Sk(i) ∈ K

and

ζA(i) =
∑
a∈A+

a−i ∈ K∞,

we get Hi(1) = 0 if q − 1 - i, and if q − 1 | i then Hi(1) = −S<n(−i) if i < 0, H0(1) = 1
if n = 0 and H0(1) = 0 if n > 0, and Hi(1) = ζA(i) − S<n(i) ∈ K∞. If n = 0 we get
Hi(1) = 0 for all i < 0 and therefore we conclude with the identity:

(5.24) Ψ1(z) =
1

z

(
1 +

∑
j>0
q−1|j

ζA(j)zj

)
, 0 < |z| < 1.

If we choose n = 1 and z ∈ C1 (i.e. 1 < |z| < |θ|) we get:

Ψ<
1 (z) =

∑
λ∈Fq

1

z − λ
=
−1

zq − z
= −

∑
i≥q
q−1|i

z−i, |z| > 1.

Similarly, we compute

Ψ≥1 (z) = z−1
∑
i≥1
q−1|i

(
ζA(i)− 1

)
zi, |z| < |θ|.

In other words, to construct the formal series which represents Ψ1 on C1 it suffices to
compute

Ψ̃− z−1
∑
j∈Z
q−1|j

zj ,

where Ψ̃ is the formal series (5.24) which represents Ψ1 on C0 (note that the second series
is nowhere converging).
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Since ζA(i) − 1 ≡ θ−i (mod Mi+1
∞ ) for all i > 0 where M∞ = 1

θFq[[
1
θ ]] is the maximal

ideal of K∞, we observe that the ∞-adic Newton polygon of Ψ1 over C1 has three slopes.
If z ∈ C1, we have |Ψ<

1 (z)| = |z|−q and |Ψ≥1 (z)| = |z|q−2|θ|1−q. We therefore have that

|Ψ<
1 (z)| = |Ψ≥1 (z)| if and only if |z| = |θ|

1
2 and if 1 < |z| < |θ|

1
2 we have |Ψ1(z)| =

|Ψ<
1 (z)| = |z|−q while if |θ|

1
2 < |z| < |θ| we have |Ψ1(z)| = |Ψ≥1 (z)| = |z|q−2|θ|1−q. This

yields the lemma in the case m = 1.
Using (5.21) and the fact that (−1)m−1Dm−1(Ψ<

1 ) = Ψ<
m and (−1)m−1Dm−1(Ψ≥1 ) = Ψ≥m

we deduce that if z ∈ C1:

(5.25) |Ψ<
m(z)| = |z|1−q−m−ω1 , |Ψ≥m(z)| = |θ|−m

∣∣∣z
θ

∣∣∣ω2

,

where −1 + q + m + ω1 is the order of Ψ<
m(z) in z−1 with ω1 ≥ 0, and ω2 ≥ 0 is the

order of Ψ≥0
m (z) in z. Indeed, the reader can easily verify that θmDm−1(Ψ≥1 ) =

∑
k αkz

k

where |αk| = |θ|−k for all k. The computation of ω1 and ω2 and their dependence in
m is a combinatorial problem which goes beyond our scopes but fortunately, irrelevant
here. We see that the ∞-adic Newton polygon has three slopes in this case too. Note

that |Ψ<
m(z)| = |Ψ≥m(z)| if and only if |z|1−q−m−ω1 = |θ|−m

∣∣∣ zθ ∣∣∣ω2

which is equivalent to

|z| = |θ|
m+ω2

ω1+ω2+m+q−1 . Now,

m+ ω2

ω1 + ω2 +m+ q − 1
= 1− ω1 + q − 1

ω1 + ω2 +m+ q − 1
∈]0, 1[.

�

5.4. Eisenstein series. The process that leads to the construction of Eisenstein series is
different from that of Poincaré series and delivers, in general, vector-valued modular forms
rather than matrix-valued modular forms. We describe it in our particular setting but the
discussion that follows easily generalizes to e.g. the case of vector-valued modular forms
for the group SL2(Z) etc. Let ρ be a representation

Γ
ρ−→ GLN (B),

with (B, | · |B) a countably cartesian Banach C∞-algebra. Suppose that there is a map

(5.26) A1×2 µ−→ BN×1

such that for all γ ∈ Γ, if (a, b)γ = (a′, b′) in A1×2, then

tρ(γ)µ(a, b) = µ(a′, b′).

Assume further that the image of µ is bounded, that is, there is c1 > 0 such that |µ(a, b)|B ≤
c1 for all a, b ∈ A. Then, for all w > 0, the series

E =
∑′

a,b∈A
(az + b)−wµ(a, b)
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(where the dash ′ indicates that the term corresponding to a = b = 0 is omitted) converges
to a rigid analytic map

Ω→ BN×1

and moreover:

Lemma 5.27. We have that E ∈ Mw(ρ∗;B). If
∑

b∈A\{0} b
−wµ(0, b) is non-zero, then E

does not vanish identically.

Proof. We consider γ ∈ Γ. Then:

Ew(ρ;µ) = Jγ(z)w
∑′

a,b∈A

(
(a, b)γ

(
z

1

))−w
µ(a, b)

= Jγ(z)w
∑′

a′,b′∈A

(
(a′, b′)

(
z

1

))−w
ρ∗(γ)µ(a′, b′)

= Jγ(z)wρ∗(γ)Ew(ρ;µ).

Since |(az + b)−wµ(a, b)|B tends to zero, we easily conclude that E ∈ Mw(ρ∗;B) and the
non-vanishing condition is clear. �

Definition 5.28. We call the function E of Lemma 5.27 the Eisenstein series of weight w
associated with the data (ρ∗, µ) and we denote it by Ew(ρ∗;µ) or more simply Ew(ρ∗) when
the reference to µ is understood.

Although we can always associate Poincaré series to representations of the first kind
ρ (it follows from Proposition 5.24 that for any representation of the first kind ρ there
exists m ∈ Z/(q − 1)Z and w > 0 such that a column of a Poincaré series constructed
there defines a non-zero element of Mw(ρ)) not every representation ρ can be enriched by
a map µ as above. The reader can check that if ρ is a representation of the first kind that
can be constructed by starting from basic representations by using only the elementary
operations ⊕,⊗, Sm,∧m (so the operation (·)∗ is omitted) then maps like µ exist which are
not zero and Lemma 5.27 can be applied to construct non-zero Eisenstein series in Mw(ρ∗)
for certain w > 0. In this paper Eisenstein series will be studied in depth for specific choices
of ρ only. Namely, we will study, in §7, Eisenstein series associated to the representation
ρ∗Σ with Σ a finite subset of N∗.

6. Differential operators on modular forms, Perkins’ series

A classic feature of modular forms for the group SL2(Z) is the existence of differential
operators acting homogeneously on them (sending families of modular forms to modular
forms). For instance, one can mention the so-called Serre’s derivatives, Rankin-Cohen
brackets etc. For scalar Drinfeld modular forms associated to the characters det−m, similar
structures exist and have been investigated (see [13, 14, 53]). Here we describe the natural
extension of Serre’s derivatives over the Drinfeld modular forms for a representation of the
first kind. In order to justify the existence of such operators, we need to first show that
divided derivatives leave the fields of uniformizers invariant.
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In this section (see §6.4) we will also apply our results on quasi-periodic functions and
higher derivatives to determine, in Theorems 6.12 and 6.16, the v-valuations of certain
series introduced by Perkins in his Thesis [64], which turn out to be related to tame series.
Perkins noticed that these series play a singular role in series expansions of Eisenstein series
(see §7).

All along this section, we consider the divided higher derivatives:

Dm(zn) =

(
n

m

)
zn−m, n,m ∈ N.

We choose (B, | · |B) a Banach L-algebra which is countably cartesian in the sense of
Definition 2.4. For all n ≥ 0, Dn defines a B-linear endomorphism of OA1,an

C∞ /B
. Note that

these operators satisfy Leibnitz rule

Dn(fg) =
∑
i+j=n

Di(f)Dj(g),

for f, g analytic functions. To handle divided derivatives it is convenient to introduce the
following map, where x is an indeterminate and where D denotes the family of operators
(Dn)n≥0 (Taylor’s map):

TD,x : OA1,an
C∞ /B

→ OA1,an
C∞ /B

[[x]], TD,x(f) =
∑
i≥0

Di(f)xi.

Then, TD,x induces B-algebra morphisms at the level of the sections, and Leibnitz rule
is equivalent to the multiplicativity TD,x(fg) = TD,x(f)TD,x(g). Let Y be an affinoid

subdomain of A1,an
C∞ /B, z ∈ Y and x0 ∈ C∞ such that z + x0 ∈ Y . If f ∈ OA1,an

C∞ /B
then

TD,x(f)x=x0 = f(z + x0). If x, y are two indeterminates, we therefore have

TD,x(TD,y(f)) = TD,x+y(f).

This implies that the family of higher derivatives D is iterative:

Dm+n =

(
m+ n

m

)
Dm ◦ Dn =

(
m+ n

n

)
Dn ◦ Dm,

for all m,n ≥ 0. By an application of Lucas’ formula, if n = n0 + n1q + · · · + nrq
r ∈ N

with n0, . . . , nr ∈ {0, . . . , q − 1}, we have the identity

Dn = Dn0 ◦ Dn1q ◦ · · · ◦ Dnrqr ,
and the operators Dniqi mutually commute, for i = 0, . . . , r.

6.1. Higher derivatives on tame series. We show that tame series are closed under
higher derivations. The main result of this subsection is Proposition 6.2 but we also present
some auxiliary properties that can be of interest for the reader willing to do computations.
Let Σ be a finite subset of N∗ with s elements. Let m ≥ 0 be the unique integer such that
(m− 1)(q − 1) + 1 ≤ s ≤ m(q − 1). If s = 0 then m = 0. Let l be the unique integer with
s = (m− 1)(q − 1) + l (so that 1 ≤ l ≤ q − 1 and if s = m = 0, then l = q − 1). We set:

(6.1) Ms = eq−1
1 · · · eq−1

m−1e
l
m ∈ F◦q〈〈e〉〉b
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(note that we can define the B-module B◦〈〈e〉〉b for any Fq-algebra B). We clearly have, by
the fact that s = (m− 1)(q − 1) + l:

(6.2) λ(Ms) = s, w(Ms) = (q − 1)

m−1∑
i=1

1

qi
+

l

qm
=: wmax(s).

We set, for B as in §3.2, B◦〈〈e〉〉bs = B◦〈〈e〉〉b∩B〈〈e〉〉bs (recall the graduation by depths (3.10)
and λ in Definition 3.5). We have the direct sum of B-modules B◦〈〈e〉〉b = ⊕s≥0B

◦〈〈e〉〉bs.
We call Ms the maximal tame monomial, a terminology which is motivated by the following
result which tells us that in the homogeneous module B◦〈〈e〉〉bs, Ms has maximal weight (the
proof is easy and left to the reader).

Lemma 6.1. For all f ∈ K◦Σ〈〈e〉〉bs we have w(f) ≤ wmax(s).

We have the next rather straightforward result, where wmax has been defined in (6.2)

(recall that if f ∈ B〈〈e〉〉b then f [i] is the projection of f on B〈〈e〉〉bi of (3.11)), and where
we suppose that K(π̃) ⊂ B:

Proposition 6.2. The following properties hold. (1) The operators (Di)i≥0 induce B-

linear endomorphisms of B◦〈〈e〉〉b, B〈〈e〉〉b, B〈〈e〉〉b[[u]]. (2) If f =
∑

i f
[i] ∈ B〈〈e〉〉b is of

depth ≤ L we have, for all n ≥ 1:

Dn(f) =
∑

L≥i≥`q(n)

Dn(f [i]).

(3) For all n ≥ 0 and for all f ∈ B◦〈〈e〉〉b of depth ≤ s, Dn(f) ∈ B◦〈〈e〉〉b is of depth
≤ s− `q(n) and of weight ≤ wmax(s− `q(n)). (4) We have the commutation rules

(6.3) Dnτ =

{
0 if q - n

τDn
q

if q | n, n ≥ 1.

Sketch of proof. If M ∈ B〈〈e〉〉bs is a tame monomial of depth s (as in §3.2.1), then Dn(M)
is a tame polynomial, and

Dn(M) ∈
⊕
i≥0

B〈〈e〉〉bs−`q(n)−i(q−1).

To see this consider more generally, for i ∈ U with U a finite subset of N∗ of cardinality s,
Fq-linear functions fi ∈ Hol(C∞ → B), so that we can write

fi =
∑
j≥0

fi,qjz
qj , fi,qj ∈ B, i ∈ U.

By Leibnitz rule we have for n ≥ 0:

Dn

(∏
i∈U

fi

)
=

∑
i1+···+is=n

∏
k∈U
Dik(fk).
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By Fq-linearity we have that Dk(fi) = fi if k = 0, Dk(fi) = fi,qj if k = qj with j ∈ N, and
0 otherwise. Hence, setting fi,0 := fi, we can write:

(6.4) Dn

(∏
i∈U

fi

)
=

∑
i1+···+is=n
ik∈{0}∪qN;∀k

∏
k∈U

fk,ik ,

if the subset of indices is non-empty, and 0 otherwise, by the usual conventions on empty
sums. Coming back to our elements of B〈〈e〉〉b, since for all i, ei is Fq-linear, we deduce
that for all n ≥ 0, Dn sends tame monomials on tame polynomials and therefore the
operators Di induce B-linear endomorphisms of B〈〈e〉〉b as expected and the property cor-
responding to B◦〈〈e〉〉b follows easily. Now, it is easy to see that the operators Di extend to
B-linear endomorphisms of B[u−1][[u]] so that we can also deduce the expected property
for B〈〈e〉〉b[[u]] and this suffices to justify (1). For (2), let n be in N∗ and let us consider
the set of decompositions of length r ≥ 1

n =

r∑
i=1

niq
i, r ∈ N, ni ∈ N∗.

Then, the q-ary expansion of n (the unique one which has the coefficients ni ∈ {0, . . . , q−1})
minimises the length r = `q(n). The reader can complete the verifications of the remaining
properties of the proposition. �

Remark 6.3. The behavior of v with respect to the action of the operator τ is multiplica-
tive. On the other hand, it is difficult to make the interaction between v and the collection
of operators D explicit which introduces a difficulty in handling our modular forms.

6.2. Divided higher derivatives of ρ-quasi-periodic functions. We discuss here the
problem of the computation of higher divided derivatives of the entries of the matrix
functions Φρ and Ψm(ρ) for m ≥ 1. We added this section to allow readers to perform
explicit computations of higher derivatives of our modular forms. Indeed, the latter are all
ρ-quasi-periodic and Proposition 4.11 tells us that in order to explicitly compute higher
derivatives of ρ-quasi-periodic functions, it suffices to explicitly compute higher derivatives
of u and Φρ.

For this purpose it is convenient to choose a different normalisation for the higher divided
derivatives. We set

Dn = (−π̃)−nDn
for all n ≥ 0 and we write D = (Di)i≥0. The formalism of the function TD,x extends
to D and matrix functions. Additionally, we record the next straightforward corollary of
Proposition 6.2:

Corollary 6.4. The operators of the family D determine K-linear endomorphisms of the
K-vector spaces

K(tΣ)◦〈〈e〉〉b, K(tΣ)〈〈e〉〉b, K(tΣ)◦〈〈e〉〉b[[u]], K(tΣ)◦〈〈e〉〉b[[u]][u−1].
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We set, for f an analytic function Ω→ KN×N
Σ ,

TD,x(f) =
∑
i≥0

Di(f)xi.

This defines, with H := HolKΣ
(Ω→ KN×N

Σ ) a KN×N
Σ -algebra morphism

H
TD,x−−−→ H[[x]].

We also set

(6.5) Gm(ρ) = π̃−m
∑
a∈A

(z − a)−mρ(Ta) = Dm−1(G1(ρ)), m ≥ 1,

and G0(ρ) = 0. The generating series of these functions is

(6.6) G(ρ) :=
∑
i≥0

Gi(ρ)xi = xTD,x(G1(ρ)).

We have the next lemma where we recall that expC(x) =
∑

i≥0 d
−1
i xq

i
is Carlitz’s expo-

nential in x (see §2.4).

Lemma 6.5. The following formula holds:

G(ρ) =
ux

1− u expC(x)
TD,x(Φρ).

Proof. It suffices to compute TD,x(G1(ρ)). Since G1(ρ) = uΦρ the formula is obvious if we
prove that

TD,x(G1(1)) =
u

1− u expC(x)
.

This is well known, see Gekeler [24, (3.6)]. Nevertheless, we recall the proof here. From
1 = uu−1 we see that 1 = TD,x(u)TD,x(u−1).

Note that
u−1 = expC(π̃z) =

∑
i≥0

d−1
i (π̃z)q

i

so that D0(u−1) = u−1 and, for n > 0, Dn(u−1) = 0 if n is not a power of q and for i ≥ 0,

Dqi(u
−1) = Dqi(d

−1
i π̃q

i
zq
i
) = −d−1

i . Hence

TD,x(u−1) = u−1 −
∑
i≥0

d−1
i xq

i

and

TD,x(u) =
1

u−1 −
∑

i≥0 d
−1
i xqi

=
1

u−1 − expC(x)
=

u

1− u expC(x)
.

�

If ρ = 1 then the formula of Lemma 6.5 reduces to [24, (3.6)] because in this case Φρ = 1.
In general, the next Lemma can be helpful in determining some properties of TD,x(Φρ).

We recall the matrix ωρ defined in (4.16).
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Lemma 6.6. There exist ϑ1, . . . , ϑr ∈ Fq(tΣ) and a matrix

M ∈ K[ϑ1, . . . , ϑr][[x]]N×N

such that
TD,x(ωρΦρω

−1
ρ ) = ωρΦρω

−1
ρ M.

Proof. We recall that Φρ ∈ QP !
0(ρ;E) (Proposition 4.8) and ωρΦρω

−1
ρ ∈ A[ϑ]◦〈〈e〉〉b)N×N

(Corollary 4.9, where the elements ϑi are also introduced). Φρ ∈ QP !
0(ρ;E) implies that

for all n, the columns of Dn(Φρ) are ρ-quasi-periodic. By Proposition 6.2 for all n ≥
0, Dn(ωρΦρω

−1
ρ ) belongs to (K[ϑ1, . . . , ϑr]

◦〈〈e〉〉b)N×N . Note that the coefficients do not
necessarily belong to A[ϑ1, . . . , ϑr]. This comes from the fact that Dn(ei) ∈ K for n > 0
and these coefficients are not, in general, in A. By the proof of Proposition 4.11 the columns
of Dn(Φρ) being ρ-quasi-periodic, they are linear combinations with coefficients in KΣ of
the columns of Φρ. This means that for all n ≥ 0,

ωρDn(Φρ)ω
−1
ρ = ωρΦρω

−1
ρ Mn

for some Mn ∈ KN×N
Σ . From Corollary 4.9 we deduce easily that ωρΦρω

−1
ρ belongs to

GLN (A[ϑ1, . . . , ϑr]〈〈e〉〉b). Hence

Mn = ωρDn(Φρ)Φ
−1
ρ ω−1

ρ ∈ KN×N
Σ ∩ (K[ϑ1, . . . , ϑr]〈〈e〉〉b)N×N = K[ϑ1, . . . , ϑr]

N×N .

Hence
TD,x(ωρΦρω

−1
ρ ) = ωρΦρω

−1
ρ

∑
n≥0

Mnx
n = ωρΦρω

−1
ρ M,

with M =
∑

nMnx
n ∈ K[ϑ1, . . . , ϑr]

N×N [[x]]. �

Corollary 6.7. There exists ϑ1, . . . , ϑr ∈ Fq(tΣ) such that

ωρG(ρ)ω−1
ρ ∈MN×N

Σ ∩
(
K[ϑ1, . . . , ϑr]〈〈e〉〉b[u][[x]]

)N×N
.

Proof. We have u
1−u expC(x) ∈ K[u][[x]] and

TD,x
(
ωρΦρω

−1
ρ

)
∈
(
K[ϑ1, . . . , ϑr]

◦〈〈e〉〉b[[x]]
)N×N

by Corollary 4.9. The result follows applying Lemma 6.5. �

For example, if ρ = ρχ is basic, we have seen in Corollary 4.10 that Φρ = Ξρ =
(
In χ(z)
0n In

)
,

with N = 2n. By (2.15) Dqk(χ) = D−1
k

(
ϑ − θqkIn

)−1
ω−1
χ for k ≥ 0, and Dj(χ) = 0 if

j > 0 is not a q-power. Hence in this case the matrix M of Lemma 6.6 is:

M =

(
In χ(z)
0n In

)
+ ω−1

χ expC

(
(ϑ− θIn)−1x

)(
0n In
0n 0n

)
,

with τ(x) = xq.
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6.3. Serre’s derivatives. In this subsection we prove part (6) of our Theorem A. We
discuss variants of Serre’s higher derivatives introduced in [14, §1.2.3]. Following this

reference, we set, for n,w ∈ N and f ∈ Hol(Ω→ KN×1
Σ ):

(6.7) ∂(w)
n (f) := Dn(f) +

n∑
i=1

(−1)i
(
w + n− 1

i

)
Di−1(E)Dn−i(f),

where E is the normalised false Eisenstein series of weight 2 and type 1 of Gekeler, defined
in [24, §8]. We recall the definition here, for convenience of the reader. We can define E
by using the conditionally convergent lattice sum

(6.8) E(z) = π̃−1
∑
a∈A+

∑
b∈A

a

az + b
.

This defines a rigid analytic function E : Ω→ C∞ which satisfies

E(γ(z)) = Jγ(z)2 det(γ)−1
(
E(z)− π̃ c

cz + d

)
, γ = ( ∗ ∗c d ) ∈ Γ

(a Drinfeld quasi-modular form of weight 2, type 1 and depth 1 in the terminology of [13]).
We also recall the u-expansion, with ua = eC(az)−1:

E =
∑
a∈A+

aua.

Another property of E is that it can be computed as a logarithmic derivative E = D1(∆)
∆ of

∆ the cusp form of weight q2−1 defined in [24, §(6.4)]. See also §7.6.4. Coming back to our

modular forms, note that the case n = 1 of (6.7) yields the operator ∂
(w)
1 = D1 − wEIN .

This is the analogue of Ramanujan’s derivative introduced by Gekeler in [24, (8.5)].

Theorem 6.8. Let ρ : Γ→ GLN (Fq(tΣ)) be a representation of the first kind. The operator

∂
(w)
n determines a KΣ-linear map Mw(ρ;KΣ)→ Sw+2n(ρdet−n;KΣ) and an LΣ-linear map
Mw(ρ;LΣ)→ Sw+2n(ρdet−n;LΣ).

Proof. If f ∈Mw(ρ;KΣ) then f can be identified with an element of ON×1
Σ (Theorem 4.12)

which is ∂
(w)
n -stable for all n,w. The same arguments of the proof of [14, Theorem 4.1]

(which holds in a wider context of Drinfeld quasi-modular forms) imply that ∂
(w)
n (f) ∈

Mw+2n(ρdet−n;KΣ). Further, it is easy to see that ∂
(w)
n (f) has entries in MΣ so it is a

cusp form. �

6.4. Application to Perkins’ series. In this subsection we present the series indicated
in the title, originally introduced by Perkins in his Ph. D. Thesis [64], as generating series
for certain zeta values in Tate algebras introduced by the author in [55]. These series
define elements of OΣ and the problem of computing their v-valuations (or equivalently,
weights) arises. This is quite an intricate problem that we partially solve here. One of the
difficulties is that the matrix formalism of the preceding sections does not seem suitable to
extract this kind of information.
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Let U be a finite subset of N∗. We set

σU =
∏
i∈U

χti .

Explicitly, σU (a) =
∏
i∈U χti(a) ∈ Fq[tU ] for all a ∈ A.

For further use, with Σ a given finite subset of N∗:

Definition 6.9. A semicharacter is a map σ : A → Fq[tΣ] defined, for a ∈ A, by σ(a) =∏
i∈Σ χti(a)αi for integers αi ≥ 0.

We are interested in the following class of function.

Definition 6.10. Let U be a finite subset of N∗. The Perkins series of order n ≥ 1
associated to σU is the series:

ψ(n;σU ) =
∑
a∈A

(z − a)−nσU (a).

For any U and n as above, the series converges for z ∈ C∞ \ A (with respect to the
norm ‖ · ‖ of KΣ, Σ being a finite subset of N∗ containing U) and z 7→ eA(z)nψ(n;σU )(z)
define entire functions C∞ → EΣ, as it is easily seen. If U = ∅ we have σ∅ = 1 the trivial
semi-character, and Perkins’ generating series are related to Goss’ polynomials associated
to the lattice A ⊂ C∞ as in [35, §6] and [24, §3]. Indeed,

(6.9) ψ(n; 1) = Sn,A =
∑
b∈A

1

(z − b)n
= Gn,A(S1,A),

for polynomials Gn,A ∈ K∞[X] (in the notations of [24].) The functions ψ(n;σU ) with
U ⊂ Σ occur in the entries of Ψn(ρΣ), where ρΣ is the representation of the first kind

ρΣ =
⊗
i∈Σ

ρti ,

where ρti(
a b
c d ) =

(
a(ti) b(ti)
c(ti) d(ti)

)
(or alternatively, one can also use ρ = ρ∗Σ). Since Ψn(ρΣ) ∈

QP !
n(ρΣ;EΣ) by Proposition 4.6, Lemma 6.5 implies:

Lemma 6.11. For all U ⊂ Σ and n ≥ 1 we have ψ(n;σU ) ∈ KΣ. Additionally, φ(1;σU ) :=
e0ψ(1;σU ) ∈ E◦Σ〈〈e〉〉b.

6.4.1. Perkins’ series of order n = 1. We focus now on φ(1;σΣ) ∈ E◦Σ〈〈e〉〉b. The next
question is the computation of its weight. We set, for Σ non-empty with s = |Σ| =
(m− 1)(q − 1) + l with m ≥ 1 and l ∈ {1, . . . , q − 1}:
(6.10) κ(Σ) := q−m(q − l) ∈]0, 1[∩Z[p−1].

For Σ = ∅, we extend the definition to κ(∅) := 1. Note that κ(Σ) defines a strictly
decreasing function |Σ| 7→ κ(Σ), and lim|Σ|→∞ κ(Σ) = 0. We prove:

Theorem 6.12. The function φ(1;σΣ) ∈ E◦Σ〈〈e〉〉b has weight

(6.11) w(φ(1;σΣ)) = 1− κ(Σ) = 1− q1−m + lq−m = wmax(s).
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Proof. The identities connecting κ and wmax are easily verified. If Σ = ∅, it is clear that
φ(1;σΣ) has weight 0 (it is in this case a constant function). We suppose that Σ is non-
empty. We consider the unique representative gΣ ∈ E◦Σ〈〈e〉〉b of

∏
i∈Σ χti(z) (see §2.4.4 for

the definition of χt(z)) modulo the ideal of EΣ〈〈e〉〉b generated by e0. By Corollary 4.9, we

have φ(1;σΣ) = gΣ. We can write gΣ =
∑s

i=0 g
[i]
Σ with g

[i]
Σ ∈ E◦Σ〈〈e〉〉bi (see (3.11)) (11). We

note that

(6.12) g
[s]
Σ =

[∏
i∈Σ

χti(z)

][s]

= eq−1
1 · · · eq−1

m−1e
l
m︸ ︷︷ ︸

Tame monomial Ms

PΣ + Φ,

with w(Ms) = wmax(s), Φ ∈ EΣ〈〈e〉〉b, with w(Φ) < wmax(s), and where

PΣ :=
∑

I0tI1t···tIm=Σ
|I0|=···=|Im−1|=q−1

|Im|=l

∏
i1∈I1

ti1

 · · ·( ∏
im∈Im

tm−1
im

)
∈ Fp[tΣ].

This polynomial is non-zero as it is easily verified by tracking the contribution coming from

a subset Ĩ ⊂ Σ such that |Σ \ Ĩ| = l. Substituting ti by 1 if i ∈ Σ \ Ĩ and by 0 if i ∈ Ĩ, we
get the value 1. By Lemma 6.1:

w
(
g

[s]
Σ − PΣMs

)
< wmax(s).

This implies the theorem because the map s 7→ wmax(s) is a strictly increasing function
(s > 0) so that

w(φ(1;σΣ)) = w(gΣ) = w(g
[s]
Σ ) = wmax(s).

�

For all Σ ⊂ N∗ a finite subset, the above proof yields the next corollary:

Corollary 6.13. We have

lim
|z|=→∞

eA(z)κ(Σ)ψ(1;σΣ) = PΣ.

Example. If Σ is a singleton we can work with one variable t and we have the explicit
formula, due to Perkins, a simple proof of which can be found in [61] (combine (3) and
Theorem 1):

(6.13) ψ(1;χ) = π̃u(z)χt(z).

11In fact, one sees that if i 6≡ s (mod q − 1), then g
[i]
Σ = 0.
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Let Σ be a subset of N∗ of cardinality q. Developing the product
∏
k∈Σ eC

(
z

θ−tk

)
we get,

after elimination of the q-th powers:

∏
k∈Σ

eC

(
z

θ − tk

)
= e0 −

∑
j≥0

(
θ
∏
i∈Σ

tji −
∏
i∈Σ

tj+1
i

)
ej+1+

+
∑

0≤i1≤···≤iq
ik not all equal

ei1+1 · · · eiq+1

∑
α=(αi:i∈Σ)∈N|Σ|
|α|=qi1+···+qiq

∏
k∈Σ

tαkk .

from this tame series expansion (of depth q) we deduce that the leading tame monomial

of the tame series
∏
i∈Σ χti(z) is e0. Hence,

∏
k∈Σ eC

(
z

θ−tk

)
− e0 ∈ A[tΣ]◦〈〈e〉〉b and we get

an explicit computation of φ(1;σΣ) for this choice of Σ, first obtained by Perkins.

6.4.2. Perkins’ series of higher order. In this part we are interested in the following ques-
tion:

Question 6.14. Compute the valuation v(ψ(n;σΣ)) ∈ Z[1
p ]≥0 explicitly in terms of l,m, n.

The case Σ = ∅, where N = 1 was partially settled by Gekeler in [26]. The complete
solution is now available in Gekeler’s manuscript [31]. In Theorem 6.16 we give a partial
answer in the several variables case. We suppose that s = |Σ| 6= 0. We recall that by
Proposition 6.2, Dn induces KΣ-linear endomorphisms of K◦Σ〈〈e〉〉b and KΣ〈〈e〉〉b for all n.
We also recall that w denotes the opposite of the valuation v (degree).

Proposition 6.15. Let i be a non-negative integer, let r ≥ 0 be such that D(i+1)qr−1(fΣ) 6=
0. Then,

w(ψ(1 + i;σΣ)) =
1

qr
w(D(i+1)qr−1(fΣ))− 1

qr
∈
[
− 1

qr
, 0

[
.

Proof. We observe that τ r(ψ(i+ 1;σΣ)) ∈ KΣ. Further, we have:

(6.14) τ r(Di(ψ(1;σΣ))) = (−1)iτ r(ψ(i+ 1;σΣ)) = Dqr(i+1)−1(ψ(1;σΣ)), i, r ≥ 0.

We are interested in the computation of the weight of τ r(ψ(i + 1;σΣ)) (it is equal to qr

times the weight of ψ(i+1;σΣ), which is the quantity we ultimately want to compute). We
set fi = Di(eC(z)ψ(1;σΣ)) ∈ K◦Σ〈〈e〉〉b. In particular, f0 = fΣ = eC(z)ψ(1;σΣ) ∈ K◦Σ〈〈e〉〉b.
By Leibnitz rule, we have

(6.15) fi = eC(z)Di(ψ(1;σΣ)) +
∑

α+β=n
α>0

Dα(eC(z))Dβ(ψ(1;σΣ))

︸ ︷︷ ︸
=:Ξ

.

All terms of the above sum are in KΣ. Since the higher derivatives of positive order of eC(z)
are constant and all the functions ψ(1 + β;σΣ) for β ≥ 0 tend to zero as |z| = |z|= → ∞,
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the weight of the above defined term Ξ is < 0. We apply the operator τ r. We get, by
(6.14):

(6.16) τ r(fi) = eC(z)q
rD(i+1)qr−1(ψ(1;σΣ)) + τ r(Ξ).

We have that τ r(Ξ) ∈ K and the weight is ≤ 0; we also set n = (i+ 1)qr − 1. Then,

Dn(ψ(1;σΣ)) = Dn(ufΣ)

= uDn(fΣ) +
∑

α+β=n
α>0

Dα(u)Dβ(fΣ)

︸ ︷︷ ︸
=:Υ

.

If α > 0, Dα(u) ∈ C∞[u] ⊂ K which is of weight ≤ −2 as the reader can easily check.
Since fΣ ∈ K◦Σ〈〈e〉〉b, the weights of all its higher derivatives are in {−∞} ∪ [0, 1[ and thus,
the weight of the term Υ above defined is < −1. Let us suppose that Dn(fΣ) is non-zero.
Then, its weight belongs to [0, 1[ and the weight of uDn(fΣ) belongs to [−1, 0[. We deduce
that, under this hypothesis of non-vanishing, the weight of Dn(ψ(1;σΣ)) is equal to the
weight of uDn(fΣ), belonging to the interval [−1, 0[. Coming back to the identity (6.16)
and recalling that τ r(Ξ) has negative weight, we deduce that τ r(fi) and eC(z)q

r−1Dn(fΣ)
have the same weight, belonging to the interval [qr − 1, qr[, and the weight of fi satisfies:

(6.17) w(fi) = 1 +
1

qr
w(Dqr(i+1)−1(f))− 1

qr
∈
[
1− 1

qr
, 1

[
, r ≥ 0, i ≥ 1.

Coming back to (6.15), we have noticed that the term Ξ has weight < 0. But fi has
non-negative weight by (6.17). Hence, the weight of the first term in the right-hand side
of (6.15) has the same weight as fi and the result follows. �

We recall that if s = |Σ| = (m − 1)(q − 1) + l with m ≥ 1 and l ∈ {1, . . . , q − 1},
then w(ψ(1;σΣ)) = lq−m − q1−m (see Theorem 6.12). We want to compute the weight of
ψ(1 + n;σΣ) for n ≥ 0 and this allows to compute the v-valuation of these elements. The
following Theorem generalizes Theorem 6.12:

Theorem 6.16. Let Σ, s,m, l as above and let n be ≥ 0 such that `q(n) ≤ l. Then,

v(ψ(1 + n;σΣ)) = q1−m − (l − `q(n))q−m.

Proof. We choose i = n and r = 0 in Proposition 6.15 (note that in this case n = (i +
1)qr − 1). We show that Dn(fΣ) 6= 0 and we compute its depth. To construct fΣ, we have

applied the rule ei−1 = Cθ(ei) to the product
∏
i∈Σ eC

(
z

θ−ti

)
which implies that

fΣ = f
[s]
Σ + f

[s−q+1]
Σ + · · · .

We recall that we have already seen that f
[s]
Σ is equal to χ(σΣ)[s] and has the monic maximal

tame monomial Ms as a non-zero term of its tame expansion. Further, w(f
[s−j(q−1)]
Σ ) <
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wmax(s) for all j > 0. Hence, we can write fΣ = Ms + g with w(g) < wmax(s) and Dn(g)
has weight strictly less than

wmax(s− `q(n)) = 1− q1−m + (l − `q(n))q−m.

We now claim that w(Dn(fΣ)) = wmax(s− `q(n)). If this is true, we deduce, from Proposi-
tion 6.15, the formula w(ψ(1+n;σΣ)) = (l− `q(n))q−m− q1−m hence completing the proof
of the Theorem. �

The claim is the object of the next Lemma, where Ms is defined in (6.1):

Lemma 6.17. With s = |Σ| equal to (m − 1)(q − 1) + l, m ≥ 1 and 1 ≤ l ≤ q − 1, let
n ∈ N be such that `q(n) ≤ l. Then,

Dn(Ms) = κnMs−`q(n) + h,

with

κn :=

(
π̃

θm

)n0
(

π̃q

θmqd1

)n1

· · ·
(

π̃q
r

θmqrdr

)nr
∈ C×∞,

where n = n0 + n1q + · · · + nrq
r is the base-q expansion of n, and with h ∈ T ◦(C∞) of

weight < wmax(s− `q(n)).

Proof. We write Ms = FG with F = (e1 · · · em−1))q−1 and G = elm. By Leibnitz rule
Dn(Ms) =

∑
α+β=nDα(F )Dβ(G). If α > 0, then w(Dα(F )Dβ(G)) is strictly smaller than

wmax(s−`q(n)). Now, we consider the term with α = 0. Note, by the formula (6.4) applied

to the product of Fq-linear maps G = elm, that

Dn(G) = (Dn0 ◦ Dn1q ◦ · · · ◦ Dnrqr)(elm) = κne
l−`q(n)
m .

The result follows. �

7. Eisenstein series for ρ∗Σ

This section contains the proofs of the various items of Theorem C in the introduction.
We present several aspects of Eisenstein series for the representation ρ = ρ∗Σ, with N = 2s.
These functions provide important examples of the modular forms we consider (see also
[57]). We set, for w ∈ N∗:

E(w; ρ∗Σ) :=
∑′

(a,b)∈A

(az + b)−w
⊗
i∈Σ

(
χti(a)

χti(b)

)
,

where the sum runs over the a, b ∈ A which are not both zero. This series corresponds to
the choice

µ(a, b) =
⊗
i∈Σ

(
χti(a)

χti(b)

)
in (5.26) (this is the transposition of the first line of ρΣ

(
a b
∗ ∗

)
) so that by Lemma 5.27

Ew(ρ∗Σ) ∈ Mw(ρ∗Σ) \ {0} if s = |Σ| ≡ w (mod q − 1) (see also [57, §5]). Note also that this
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series defines a holomorphic function Ω→ EN×1
Σ . We call E(w; ρ∗Σ) the Eisenstein series of

weight w associated to ρ∗Σ.
Here is the plan of this section. In §7.2, Corollary 7.4, we compute the v-valuation of

the entries of E(1; ρ∗Σ). The computation uses results of §6 on Perkins’ series. The general
problem of the computation of the v-valuation of the entries of E(m; ρ∗Σ) for m > 0 is likely
to be a difficult problem. Some partial results can be obtained applying Theorem 6.16. In
§7.3 we use the Eisenstein series E(1; ρ∗Σ) to show that the dimension of M1(ρ∗Σ;LΣ) equals
one if |Σ| ≡ 1 (mod q−1). This is one of the very few spaces of non-scalar Drinfeld modular
forms that we are able to fully characterize. As a corollary, the series E(1; ρ∗Σ) are Hecke
eigenforms. In §7.4, Theorem 7.8 we describe integrality properties of the u-expansions (in
the sense of Proposition 3.32) of the entries of E(m; ρ∗Σ). Naturally, these series expansions
are much more complicated and less explicit than those obtained by Gekeler in [24] for the
scalar Eisenstein series. In §7.6 we show how certain results of Petrov [67] on A-expansions
can be generalized to show that series such as∑

a∈A+

alGm(ua) ∈ K[[u]]

with l,m > 0 such that l ≡ m (mod q−1) give rise to u-expansions of quasi-modular forms
in the sense of [13]. These series occur as special values of an entry of the Eisenstein series
E(m; ρ∗Σ) hence confirming a prediction of D. Goss on a link between Petrov’s A-expansions
and Eisenstein series; see Theorem 7.15. In §7.6.5 we present, succinctly, some applications
to v-adic modular forms.

7.1. Link between Eisenstein series and Poincaré series. The next lemma provides
a connection with Poincaré series.

Lemma 7.1. E(w; ρ∗Σ) = ζA(w;σΣ)P(0)
w (Φρ∗Σ

).

Here P(0)
w (Φρ∗Σ

) denotes the last column of the matrix valued Poincaré series Pw(Φρ∗Σ
)

defined in (5.6), with G = Φρ∗Σ
and, as in (1.17),

ζA(w;σΣ) =
∑
a∈A+

σΣ(a)

aw
.

Proof of Lemma 7.1. We consider a matrix γ = ( ∗ ∗c d ) ∈ Γ. We note that the last column of
Φρ∗Σ

(γ(z)) is the last entry of the canonical basis of the vector space FN×1
q . Indeed, Φρ∗Σ

(z)
itself is a matrix function which is lower triangular with 1 on the diagonal. Moreover, the

last column of ρ∗Σ(γ)−1 = tρΣ(γ) is ⊗i∈Σ

(χti (c)
χti (d)

)
, which is therefore also equal to the last

column of ρ∗Σ(γ)−1Φρ∗Σ
(γ(z)) and to the last column of

ρ∗Σ(γ)−1Φρ∗Σ
(γ(z))ρ∗Σ( det(γ) 0

0 1
).
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Therefore, the last column P(0)
w (Φρ∗Σ

) of Pw(Φρ∗Σ
) is∑

γ=( ∗ ∗c d )

c,d∈A
relatively prime

(cz + d)−w
⊗
i∈Σ

(
χti(c)

χti(d)

)
,

independent on the choice of the representatives modulo the subgroup H of Γ. Observe
that the index set of the sum defining the series E(w; ρ∗Σ), A2 \ {(0, 0)}, is equal to IA+,
where I is the set of couples (c, d) ∈ A2 with c, d relatively prime. This means that

E(w; ρ∗Σ) =
∑
a∈A+

σΣ(a)

aw

∑
(c,d)∈I

(cz + d)−w
⊗
i∈Σ

(χti(c), χti(d)) = ζA(w;σΣ)P(0)
w (Φρ∗Σ

).

�

7.2. The v-valuation of Eisenstein series. We expand the entries of our vector-valued
Eisenstein series along the principles of Theorem 4.12 and we compute their v-valuations
in certain cases.

If |Σ| = s > 0 and N = 2s, the ordering on Σ induces a bijection Σ
ε−→ {0, . . . , s − 1}.

This in turn defines a bijection between subsets J ⊂ Σ and integers 0 ≤ n ≤ N − 1. If
n = n0 + n12 + · · · + ns−12s−1 is the base-2 expansion of n, the image of n is the subset
J = {j ∈ Σ : nj 6= 0} ⊂ Σ. We can write |J |Σ := n. For example, |∅|Σ = 0. Then, we can
describe in two ways an N -tuple of objects parametrized by the subsets of {1, . . . , 2s}:

f = (fJ)J⊂Σ = (fi)1≤i≤N ,

by using that the latter is (f|J |Σ+1)J⊂Σ (note how we distinguish the N∗-indexing from the
Σ-indexing). Note that the first entry is

f0 = f∅.

The Perkins series ψ(w;σU ) defined in (6.10) are elements ofthe ring of integers of the
field of uniformizers OΣ, if U ⊂ Σ. We set

ψa(w;σΣ) := ψ(w;σΣ)(za),

functions which also belong to OΣ. Their valuations v are positive and we have, for all
a ∈ A+,

v(ψa(w;σΣ)) = |a|v(ψ(w;σΣ))

by Proposition 3.35. We set

(7.1) V (w; ρ∗Σ) :=
1

π̃w

∑
b∈A

1

(z + b)w

(
σJ(b)

)
J⊂Σ

.
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We denote by V (w; ρ∗Σ)a the function of the variable z in ON×1
Σ obtained by rescaling

z 7→ az. We also set

(7.2) Z(w; ρ∗Σ) :=


0
...
0

ζA(w;σΣ)

 .

The next Proposition generalizes [63, Proposition 3.7] to the case of ρ = ρ∗Σ.

Proposition 7.2. If s = |Σ| ≡ w (mod q − 1) and w > 0, then:

(7.3) E(w; ρ∗Σ) = −Z(w; ρ∗Σ)− π̃w
∑
a∈A+

ρΣ

(
a 0
0 1

)
V (w; ρ∗Σ)a.

Writing E(w; ρ∗Σ) = (EJ)ItJ=Σ, we have, more explicitly:

EJ = −(−1)|J |
∑
a∈A+

σI(a)ψa(w;σJ), J 6= Σ,(7.4)

EΣ = −ζA(w;σΣ)− (−1)|Σ|
∑
a∈A+

ψa(w;σΣ).(7.5)

In particular, if J = ∅ 6= Σ, we have

(7.6) E∅ = −π̃w
∑
a∈A+

σΣ(a)Gw(ua(z)) ∈ KΣ[[u]].

Moreover, if Σ = ∅, we have, for q − 1 | n:

(7.7) E(w; 1) = −ζA(w)− π̃n
∑
a∈A+

Gw(ua(z)).

In all cases, we can identify E(w; ρ∗Σ) with an element of ON×1
Σ .

We deduce, in yet another way, that E(w; ρ∗Σ) ∈Mw(ρ∗Σ;KΣ). Additionally, we see that
it does not belong to Sw(ρ∗Σ;KΣ) because of the non-vanishing of ζA(w;σΣ) in (7.5). Note
that writing E(w; ρ∗Σ) = t(E1, . . . , EN−1, EN ), we have v(Ei) > 0 for i = 1, . . . , N − 1 and
v(EN ) = 0.

More precisely, in the case E = (EI)I = E(1; ρ∗Σ) with |Σ| ≡ 1 (mod q−1), recalling that
the map κ is defined in (6.10) and combining with Theorem 6.12:

Corollary 7.3. Assume that Σ 6= ∅. We have that v(EΣ) = 0, v(E∅) = 1 and, for ∅ ( I (
Σ, v(EI) = κ(I). Explicitly, if |I| = (µ− 1)(q − 1) + λ with µ ≥ 1 and 1 ≤ λ ≤ q − 1,

v(EI) = q−µ(q − λ) ∈]0, 1[∩Z[p−1].

Note that the above valuations do not depend on Σ.
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Proof of Proposition 7.2. The sum defining E(w; ρ∗Σ) splits in two pieces, a sum over the
couples (a, b) ∈ A×A with a 6= 0 and a sum over the couples (0, b) with b 6= 0. While the
second sum is easily seen to be equal to −Z(w; ρ∗Σ), for the first sum we have

∑
a∈A\{0}
b∈A

1

(az + b)w

⊗
i∈Σ

(
χti(a)

χti(b)

)
=

=
∑

a∈A\{0}

ρΣ

(
a 0
0 1

)∑
b∈A

1

(az + b)w

⊗
i∈Σ

(
1

χti(b)

)

=
∑
a′∈A+

ρΣ

(
a′ 0
0 1

)∑
λ∈F×q

λ−wρΣ

(
λ 0
0 1

)
· ρΣ

(
1 0
0 λ

)∑
b′∈A

1

(a′z + b′)w

(
σJ(b′)

)
J⊂Σ

= −π̃w
∑
a′∈A+

ρΣ

(
a′ 0
0 1

)
V (w; ρ∗Σ)a,

where we made the change of variables a = λa′ (with λ ∈ F×q ), b = λb′ in the summation,

and used that |Σ| ≡ w (mod q − 1) because
∑

λ∈F×q λ
|Σ|−w = −1. Now note that

V (w; ρ∗Σ) =
1

π̃w

(
(−1)|J |ψ(w;σJ)

)
J⊂Σ

.

The identity concerning the case J = ∅ 6= Σ is clear, and the last identity, concerning
the scalar Eisenstein series, is well known; see, for instance, [24, (6.3)]. The last assertion
of the proposition is a direct consequence of the fact that ψa(w;σΣ) ∈ OΣ for all a ∈ A
and w ∈ N∗ and the fact that v(ψa(w;σΣ)) = |a|v(ψa(w;σΣ)) → ∞ as a runs in A+

(Proposition 3.35). �

Thanks to Theorem 6.12 we can compute the v-valuations of the entries of E(1; ρ∗Σ)
(recall that κ has been introduced in (6.10)). The corresponding problem for E(w; ρ∗Σ)
for general w is at the moment unsolved but the reader can apply Theorem 6.16 to some
specific cases.

Corollary 7.4. If |Σ| ≡ 1 (mod q − 1) and E(1; ρ∗Σ) = (EJ)J⊂Σ, we have v(EJ) = κ(J) if
J ( Σ and v(EΣ) = 0.

7.3. Application to modular forms of weight one for ρ∗Σ. In this subsection we prove
Theorem D of the introduction. We recall that N = 2s. We have:

Theorem 7.5. Assuming that |Σ| ≡ 1 (mod q − 1), M1(ρ∗Σ;LΣ) is of dimension one over
LΣ, generated by the Eisenstein series E(1; ρ∗Σ).
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Proof. We note that in the case ρ = ρ∗Σ we have the following identity for the space
H(ρ;KΣ) defined in §5.2.3:

(7.8) H(ρ;KΣ) =


0
...
0
KΣ

 .

We claim that if f = (f1, . . . , fN ) is a modular form for ρ∗Σ, we can identify f1, . . . , fN−1

with elements of MΣ and fN with an element of OΣ. Indeed we know already that f ∈
ON×1

Σ . In particular, there exists α ∈ KN×1
Σ such that f ≡ α (mod MN×1). But note that

for all a ∈ A, f(z + a) = ρ∗Σ(Ta)f(z) for all z ∈ Ω so that α = ρ∗Σ(Ta)α for all a ∈ A.
Identity (7.8) allows to deduce the claim.

We conclude by observing that E(1; ρ∗Σ) ∈M1(ρ∗Σ;LΣ)\S1(ρ∗Σ;LΣ) and applying Theorem
5.12 knowing that in this case, δρ = 1. �

This yields a positive answer to [63, Problem 1.1]. By Theorem 4.13, E(1; ρ∗Σ) is an
eigenform for all the Hecke operators defined in §4.3. We deduce:

Corollary 7.6. For all a ∈ A \ {0} we have Ta(E(1; ρ∗Σ)) = E(1; ρ∗Σ).

Proof. By Theorem 7.5 M1(ρ∗Σ;LΣ) is one-dimensional generated by E(1; ρ∗Σ) and we have
Ta(E(1; ρ∗Σ)) = λaE(1; ρ∗Σ) for all a ∈ A \ {0} for elements λa ∈ LΣ. It suffices to show that
λP = 1 for every irreducible element P ∈ A by using the Hecke operators TP described in

(4.20). We set f = E(1; ρ∗Σ). In (4.20), g :=
∑
|b|<|P | ρ

(
1 b
0 P

)−1
f
(
z+b
P

)
∈ MN×1

Σ . Indeed,

let f1, . . . , fN be the entries of f . We have f1, . . . , fN−1 ∈MΣ and fN ∈ OΣ. This implies
that the first N − 1 coefficients of g are in MΣ and by (4.22) the last coefficient of g is

P−1σΣ(P )
∑
|b|<|P |

fN

(z + b

P

)
so it is an element of L◦Σ〈〈e〉〉b with zero constant term. Hence λP equals the lower right

coefficient of ρ∗Σ

(
P 0
0 1

)−1
which is equal to 1. �

7.3.1. Digression: another class of Eisenstein series. One of the main motivations for the
introduction of the Eisenstein series E(w; ρ∗Σ), for which they have been initially considered
in [55], is that the non-zero entry (which is the last one, in the prescribed ordering) tends
to −ζA(w;σΣ) (the zeta values defined in (1.17)) as z ∈ Ω approaches the cusp infinity
or, in other words, it is congruent to −ζA(w;σΣ) modulo MΣ. These are not the only
Eisenstein series which enjoy this property. Another example is discussed in this remark;
further investigations will lead to a better understanding of these examples. We consider
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the Fq-algebra morphism χ : A→ Fq[tΣ]s×s (with s = |Σ|) defined by

ϑ = χ(θ) =


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−P0 −P1 · · · −Ps−1

 ,

where P0, . . . , Ps−1 ∈ Fq[tΣ] are defined by
∏
i∈Σ(X − ti) = Xs + Ps−1X

s−1 + · · · + P0.
Then, for all a ∈ A, det(χ(a)) = σΣ(a) (see [57, §2.1]). We consider the representation of

the first kind ϕ∗Σ = ∧sρ∗χ, of dimension N :=
(

2s
s

)
. We suppose that w ≡ s (mod q−1) and

w > 0. Just as in Lemma 7.1, the last column of the Poincaré series Pw(Φϕ∗Σ
) multiplied

by ζA(w;σΣ) equals

E(w;ϕ∗Σ) :=
∑

(a,b)∈A\{(0,0)}

(az + b)−w
s∧(

χ(a)

χ(b)

)
.

This defines an element of Hol(Ω → EN×1
Σ ) and a modular form in Mw(ϕ∗Σ;KΣ) \

Sw(ϕ∗Σ;KΣ). Moreover, the only entry EN of E(w;ϕ∗Σ) which does not vanish at infin-
ity, which is the last one, satisfies

EN ≡ −ζA(w;σΣ) (mod MΣ).

In other words, −ζA(w;σΣ) is the ’constant term’ of the last entry of E(w;ϕ∗Σ). It is evident
that E(w;ϕ∗Σ) 6= E(w; ρ∗Σ).

7.4. Rationality and integrality of coefficients. We investigate rationality and inte-
grality properties of coefficients of Eisenstein series. Our main result in this subsection is
Theorem 7.8, in the same vein as classical results of Gekeler [24, §5]. We will also obtain,
with an alternative proof, a weaker version of [2, Theorem 1] and a generalization of the
principles of [56, Theorem 8], namely, a ‘modular proof’ of Theorem 7.9.

Definition 7.7. An element f ∈M !
w(ρ;KΣ) is said to be rationally definable if there exists

a matrix M ∈ GLN (KΣ) such that the image of Mf by the embedding ιΣ of Theorem
4.12 is an element of K(tΣ)◦〈〈e〉〉b((u))N×1. It is integrally definable if this image lies
in A[tΣ]◦〈〈e〉〉b[u−1][[u]]N×1. If v : K(tΣ) → Z ∪ {∞} is a valuation of K(tΣ) we say
that a rationally defined element f ∈ M !

w(ρ;KΣ) is v-integrally definable if, writing fi for
the i-th entry of Mf with M the above mentioned matrix and expanding it as a formal
series fi =

∑
j≥j0 fi,ju

j with fi,j ∈ K(tΣ)◦〈〈e〉〉b, which can be done in a unique way after

Proposition 3.32, we have v(fi,j) ≥ 0 for all i, j.

Note that if N = 1 and Σ = ∅, this coincides, up to multiplication by a proportionality
factor, with the scalar modular forms having u-expansions in K((u)) and A[[u]], or v-
integral respectively.

We borrow from Proposition 7.2 the notation EI that designates the I-th entry of E =
E(m; ρ∗Σ) with I ⊂ Σ, |Σ| ≡ m (mod q − 1). Also, we recall that ωI =

∏
i∈I ω(ti) ∈ T×Σ .

We have:
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Theorem 7.8. For all I ( Σ we have

EI ∈ π̃mω−1
I

(
K(tΣ)◦〈〈e〉〉b((u)) ∩MΣ

)
and

EΣ ∈ −ζA(m;σΣ) + π̃mω−1
Σ

(
K(tΣ)◦〈〈e〉〉b((u)) ∩MΣ

)
.

Moreover, E(m; ρ∗Σ) is v-integrally definable for the valuations of K(tΣ) associated with a
non-zero prime ideal p of A, and this for all but finitely many p.

The proof of Theorem 7.8 is easy if we introduce another class of matrix-valued func-
tions. As seen in §5.3, Poincaré series naturally occur as square matrix functions. On
the other hand, Eisenstein series, following our constructions in §5.4, are defined as vector
functions. The following matrix function is very useful in studying Eisenstein series for the
representation of the first kind ρ∗Σ:

(7.9) E(m; ρ∗Σ) :=
∑′

c∈A
ρΣ

(
c 0
0 1

)
Ψm(cz) + EΣ

∑′

d∈A
d−mρ∗Σ(T−d),

where m > 0, EΣ denotes, with N = 2s, s = |Σ|, the N ×N -matrix with zero coefficients,
except the bottom-right coefficient which is equal to 1, Ψm(z) = Ψm(ρ∗Σ)(z) (as defined in
§4.1.1) and the sums over c, d run in A \ {0}. We have, as it is easily seen,

E(m; ρ∗Σ) ∈ HolKΣ
(Ω→ EN×NΣ ).

There is a bijection between the columns of E(m; ρ∗Σ) and the subsets I of Σ. We use the
ordering described at the beginning of §7.2 and we denote by EI the I-th column in such
a way that the first column corresponds to I = Σ and the last one to I = ∅. It is easy to
show that

EI = E(m; ρ∗I)⊗
⊗
j∈Σ\I

I2 ∈Mm

(
ρ∗Σ ⊗

⊗
j∈Σ\I

12;KΣ

)
,

where 12 is the representation (of the first kind) γ ∈ Γ 7→ I2 =
(

1 0
0 1

)
, so that the first

column EΣ equals E(m; ρ∗Σ) (compare with (7.3).

Proof of Theorem 7.8. By (6.5) we see (Gm(ρ)c := Gm(ρ)z 7→cz) that

E(m; ρ∗Σ) = π̃m
∑′

c∈A
ρΣ

(
c 0
0 1

)
Gm(ρ∗Σ)c︸ ︷︷ ︸

=:E

+EΣ

∑′

d∈A
d−mρ∗Σ(T−d).

In virtue of Corollary 6.7 we have (recall the definitions (4.16)) that

E ∈MN×N
Σ ∩ π̃mω−1

ρ∗Σ
K(tΣ)◦〈〈e〉〉b[[u]]N×Nωρ∗Σ .

Additionally we see that the coefficients are v-integral for v as expected in the statement
of the theorem. From this it is very easy to conclude the proof. �
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7.5. Negative weight modular forms and functional identities. From the theory
described in the present work we can deduce a weaker form of the functional zeta-identities
for the zeta values in Tate algebras of [2, Theorem 1] (the zeta values defined in (1.17)).
We shall give a ‘modular’ proof of the following:

Theorem 7.9. Let Σ be a finite subset of N∗ and w > 0 an integer such that w ≡ |Σ|
(mod q − 1). If q is larger than a constant depending on |Σ| and w then

ζA(w;σΣ) = λw,Σ
π̃w

ωΣ
,

where λw,Σ is an element of K(tΣ)×.

This result is weaker than the original result of loc. cit. In that reference, there is no
condition on q and denominators of λw,Σ are explicitly computed. The interest in presenting
this in our work in this part exclusively relies in the nature of the proof. Indeed, we will
derive the formula of Theorem 7.9 from a comparison between the constant term and the
positive terms of the tame series expansion of our Eisenstein series, in a way which is not
completely different from Serre’s [73].

Previously, ’modular proofs’ of such identities were only known in the two-dimensional
case [55, Theorem 8] and in the slightly, and partially, more general setting of [60, Theorem
4.9.9]. Both proofs rest in fact on a duality principle between on one side modular forms
of weight w in our settings and on the other side, weak modular forms of weight −1, for
suitable choices of representations (a representation and its contragredient). Functional
identities occur in the comparison of rational structures arising from duality. For the sake
of simplicity, we will only illustrate the case w = 1 here (this case contains the main
principles so it is the most relevant). As the zeta values (1.17) are also involved in certain
variants of Taelman’s class number formula in [76], see [5], it is certainly desirable to extend
Taelman’s theory to the settings of the present paper. We are going to prove that, in order
to reach our conclusion, it suffices that

q > 2(m− 1)m−1

if |Σ| = m(q − 1) + 1 with m ≥ 1 (12).
The original proof of Theorem 7.9 in [2] notably relies on certain arithmetic properties

of Gauss-Thakur sums. There are other available proofs for similar results. In [4, Theorem
5.7], a class of even more general functional identities is proved (13), as an application of
a generalized variant of Anderson log-algebraicity theorem, to certain ‘Dirichlet-like values
in Tate algebras’. Other proofs of variants, or similar or more general results are equally
available in the literature.

12The condition on q can be improved to the price of a more complicated proof which is not suitable for
the present work. We know that the result is true for any choice of q, but we do not know how to make the
present proof unconditional.

13That is, relative to a ‘base ring’ A = H0(X \{∞},OX) where X is a projective, smooth, geometrically
irreducible curve over Fq and ∞ a point of X(Fq).
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7.5.1. Duality. We begin with two lemmas. In the first lemma we consider two subfields
F ⊂ L of KΣ and a representation ρ : Γ→ GLN (F ). The lemma is applied with the choices
F = Fq(tΣ) and L = LΣ or L = KΣ.

Lemma 7.10. Assume that ρ is irreducible and let f be an element in M!!
w(ρ;L). If the

entries of f are linearly dependent over L, then f vanishes identically.

Proof. Straightforward, but we prefer to give full details. Let V be the L-subspace of L1×N

the elements of which are the v’s such that v · f = 0. Assume that V 6= {0} and let us
consider γ ∈ Γ. Then

0 = v · f(γ−1(z)) = Jγ−1(z)wv · ρ(γ−1)f(z).

Hence v · ρ(γ−1) ∈ V and this, for all γ ∈ Γ. This means that ρ∗ has the invariant space
W = tV that is, for all γ ∈ Γ, ρ∗(γ)W ⊂ W with W 6= {0}. But ρ is irreducible if and
only if ρ∗ is irreducible. �

In the next lemma we choose L = KΣ and F = Fq(tΣ). We give explicit examples of
irreducible representations of the first kind.

Lemma 7.11. For all Σ finite subset of N∗ the representations

ρΣ, ρ
∗
Σ : Γ→ GLN (KΣ)

are irreducible.

Proof. Since Fq(tΣ) is contained in the residual field Facq (tΣ) of KΣ, if the statement of the

lemma were false there would exist a non-trivial subvector space {0} ( U ( Facq (tΣ)N×1

such that ρΣ(γ)U ⊂ U for all γ ∈ Γ. This would be, however, in contradiction with [57,
Theorem 14]. �

In particular, the representations ρΣ, ρ
∗
Σ are irreducible for Σ a finite subset of N∗.

We set

E := E(1; ρ∗Σ),

where E(1; ρ∗Σ) is the Eisenstein series of weight 1 defined in §7. The main result in the
present subsection is the following, where |Σ|,m ≥ 1 are as above:

Proposition 7.12. If m = 1, 2 or if m ≥ 3 and q > 2(m− 1)m−1, there exists a non-zero
element

(7.10) F ∈M !
−qm(ρΣ;LΣ) ∩ π̃−1

⊗
j∈Σ

(
1 0
0 ω(tj)

)(
K(tΣ)◦〈〈e〉〉b((u))

)N×1

such that

(7.11) tE · F = 0.

Before proving it, we show how this result implies Theorem 7.9.
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Proof of Theorem 7.9. By Lemma 7.11, given F = (FI)I⊂Σ as in the statement of Propo-
sition 7.12, we have FΣ non-zero. Hence we have an identity of non-zero elements of
KΣ:

EΣFΣ = −
∑
I(Σ

EIFI .

By Theorem 7.8 and (7.10) the right-hand side is an element of K(tΣ)◦〈〈e〉〉b((u)). Moreover,
the left-hand side is the sum of a non-zero element of −ζ(1;σΣ)ωΣπ̃

−1K(tΣ)◦〈〈e〉〉b((u)) and
an element of K(tΣ)◦〈〈e〉〉b((u)). The theorem follows. �

The reader can easily deduce, from a small variation of these arguments, and a simple
explicit computation (case m = 0), that

(7.12) ζA(1;χt) =
π̃

(θ − t)ω(t)

which holds in T. In this case, the proof is very similar to that given in [55], where this
formula was first noticed.

Proof of Proposition 7.12. We shall use certain weak modular forms of weight −1 associ-
ated to ρχti that have been originally introduced in [55]. In the classical theory of complex-

valued vectorial modular forms there seem to be no analogue of these forms yet. By [60,
Theorem 4.9.3],

Fi(z) := expΛz

((z
1

)
1

θ − ti

)
∈ Hol(Ω→ LΣ)2×1

where expΛz : LΣ → LΣ is the exponential function associated to the A-lattice of rank two

Λz = Az ⊕A with z ∈ Ω studied in §2.3.2, is an element of M !
−1(ρχti ;LΣ). If we write

Fi =

(
Fi,1
Fi,2

)
,

then the proof of loc. cit. yields that

(7.13) v(Fi,1) = −1

q
, v(Fi,2) = 0, i ∈ Σ.

An application of [60, Lemma 4.9.4] that we leave to the reader ensures that

Fi ∈ π̃−1
( 1 0

0 ω(ti)

)
K(tΣ)◦〈〈e〉〉b[[u]]2×1.

We are given with m > 0 and Σ ⊂ N∗ with |Σ| = m(q − 1) + 1. We now proceed to
construct a class of weak modular forms of weight −qm. We consider the set U(Σ) whose
elements are the ordered m-tuples

U = (U1, . . . , Um) ⊂ (Σ, . . . ,Σ)

with Σ = U1 t · · · tUm and |U1| = · · · = |Um−1| = q − 1 (hence |Um| = q). For instance, if
|Σ| = q, m = 0 and U(Σ) = {(Σ)}.
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We choose U ∈ U(Σ) and we define

FU =

m⊗
i=1

⊗
j∈Ui

F (m−i)
j .

The condition on U and [60, Lemma 4.9.4] imply that

FU ∈M !
−qm(ρΣ;LΣ) \ {0}.

The rationality property of the tame series expansion of the forms Fj along with the
functional identity (2.17) implies that

FU ∈ π̃−1
(⊗
j∈Σ

(
1 0
0 ω(ti)

))
K(tΣ)◦〈〈e〉〉b((u))N×1.

We have lower bounds for the v-valuations of the entries of FU . By (7.13) and by the

choice of U we have, writing FU = (FIU )I⊂Σ,

(7.14) v(FIU ) = −
m∑
i=1

qm−i|Ui \ I| ≥ −qm−1, I ⊂ Σ.

In the lower bound in the right, we have equality if and only if I = ∅, and if I = Σ we get
v(FΣ

U ) = 0.

Recall that E ∈ M1(ρ∗Σ;LΣ). For all the matrices γ ∈ Γ it is clear that t(ρ∗Σ(γ)) · ρΣ(γ)
is the identity matrix of size N . Hence

tE · FU ∈M !
1−qm(1;LΣ) = M !

1−qm(1;C∞)⊗C∞ LΣ,

and tE ·FU ∈ KΣ((uq−1)). By (7.14) and the comments that follow it, and by the fact that

v(E∅) = 1, v(EI) > 0 for i 6= ∅,Σ and v(EΣ) = 0 (see Corollary 7.3),

v(tE · FU ) ≥ 1− qm.
If m = 1 we see that, setting F = FU with U the unique element of U(1), tE · F ∈
M1−q(1;LΣ) = (0) and the proposition is proved in this case (unconditionally on q).

We now suppose that m ≥ 2. We consider

F ∈ VectK(tΣ)

(
FU : U ∈ U(m)

)
.

We can expand

tE · F = cµu
−µ(q−1) + cµ−1u

−(µ−1)(q−1) + · · ·+ c1u
−(q−1)+

+
(

element of LΣ((uq−1))
)
, c1, . . . , cµ ∈ LΣ,

where

µ := µ(m) := 1 + q + · · ·+ qm−2

(we can also set µ(1) := 0). Since v(FΣ
U ) = 0, we can also expand

tE · F ∈ K(tΣ)((uq−1)) + ζA(1;σΣ)π̃−1ωΣK(tΣ)[[uq−1]].
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In particular, we have c1, . . . , cµ ∈ K(tΣ) for any choice of F as above (note that a priori,
a coefficient of the u-expansion of such an F needs not to be in K(tΣ), only the coefficients
corresponding to negative powers have this property). We set

ν(m) := dimK(tΣ)

(
VectK(tΣ)

(
FU : U ∈ U(m)

))
.

To show the proposition we can use the next lemma, with ν := ν(m).

Lemma 7.13. We have ν(2) > µ(2) for all q and ν(m) > µ(m) if m ≥ 3 and q >
2(m− 1)m−1.

Proof. It suffices to find I ⊂ Σ such that the set

{v(FIU ) : U ∈ U(Σ)}
has cardinality > µ. Note that µ(2) = 1. In this case, it suffices to choose I = {i} ⊂ Σ
a singleton as there certainly are at least two elements in the above set, regardless of the
choice of q, so that ν(2) ≥ 2.

We now assume that m ≥ 3. Here we need a few combinatorial additional remarks. The
number of m-tuples (i1, . . . , im) with ik ∈ N for all k and i1 + · · ·+ im = i, with i given, is(
i−1
m−1

)
. Suppose i = q + 1 (assuming that q ≥ m − 1). The number of m-tuples as above

with ik ≤ q − 1 that sum to q + 1 is therefore

ν0 =

(
q

m− 1

)
−m−

(
m

2

)
(we subtract two terms to exclude m-tuples of the type qek + eh with (er)r the canonical
basis). The integer ν0 is a lower bound for ν(m) because given any subset I ⊂ Σ of
cardinality q + 1, and given any (i1, . . . , im) as above, there are at least ν0 m-tuples U ∈
U(m) such that |Uj \ I| = ij . The valuations v(FIU ) for such U are all distinct (because by

(7.14) they correspond to integers that have distinct q-ary expansions). It is elementary to
verify that if q ≥ 2m then ν0 ≥ 1

2

(
q

m−1

)
. Now,

(
q

m−1

)
≥ ( q

m−1)m−1 so that if additionally

q > 2(m−1)m−1, we get the desired lower bound ν ≥ ν0 > µ. Note that we have used, in a
crucial way, that the u-expansion of tE ·F is in LΣ((uq−1)). Having solved linear equations
corresponding to initial parts of formal series in LΣ((u)) would have lead to too many
equations and we would have needed supplementary arguments to achieve this proof. �

Applying Lemma 7.13 we can construct F ∈M !
−qm(ρΣ;LΣ) non-zero with the property

that tE · F ∈M1−qm(1;LΣ). The latter space is zero and tE · F = 0. �

Remark 7.14. There is no apparent reason, in the above proof, that a modular form as in
Proposition 7.12 is unique up to scalar multiplication. We did not compute the dimension
ν(m) and we do not know if the condition on q, when m ≥ 3, is really necessary. Note that
the set U(Σ) can be enlarged; see §10.2.1. It would be interesting to construct explicitly
a basis for the space of modular forms satisfying the properties illustrated in Proposition
7.12. In fact, the isomorphism (4.14) could allow to bypass these constructions of modular
forms in negative weight. The principle is simple. Choose, for example, two Eisenstein

series E and E ′ for ρ∗ of weights w and w′ respectively. If Ẽ ′ denotes the image of E via
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the isomorphism (4.14), so it is a modular form of weight w′ for detdeg(ρ) ρ. Then the inner

product f := tE · Ẽ ′ is in Mw+w′(detdeg(ρ);LΣ) and one can compute explicitly the ’first’
coefficients of the u-expansion. By using that this is a finite-dimensional LΣ-vector space,
this in turn leads in explicit non-trivial linear dependence relations involving elements of
TΣ that explicitly contain ζA(w;σΣ) and ζA(w′;σΣ). The author tried several examples,
some of which are complicated already in small weight. What we did above seems to be
fairly simple, but the reader must be aware that this is not the only way to approach results
such as Theorem 7.9.

7.6. Some applications to quasi-modular and v-adic modular forms. In this sub-
section we illustrate how constructions of Drinfeld modular forms defined over Ω with
values in C∞ having ‘A-expansions’ as considered by Petrov in [67] can be naturally car-
ried out as evaluations of our Eisenstein series E(m; ρ∗Σ) at certain specific points. This
also leads to some properties of v-adic modular forms with v a valuation of K(tΣ) that will
be sketched at the end of the present subsection to illustrate further directions of research.

Consider a finite subset Σ ⊂ N∗ of cardinality s and, for i ∈ Σ, integers ki ∈ N. With
k = (ki)i∈Σ ∈ NΣ, set ev = ev

θq
k the evaluation map that sends an element f of EM×NΣ for

integers M,N to

ev(f) = (f)
ti=θq

ki ,∀i∈Σ
∈ CM×N∞ .

The family k ∈ NΣ is fixed all along the subsection.
The Eisenstein series E(m; ρ∗Σ) defines a non-zero rigid analytic function Ω → EN×1

Σ
with N = 2s. Hence the evaluation ev(E(m; ρ∗Σ)) can be viewed as a rigid analytic function
Ω→ CN×1

∞ . We recall, from [67], the series

(7.15) fk,m =
∑
a∈A+

ak−mGm(ua) ∈ K[[u]],

running over the monic polynomials in A. This series converges in K[[u]] (for the u-adic
valuation) for every m > 0 and k ∈ Z.

We show the following result, where we use the notion of Drinfeld quasi-modular form
introduced in [13, Definition 2.1], answering a question that D. Goss addressed to A. Petrov
[37] on the general nature of the A-series defined in (7.15).

The C∞-algebra

M̃ := C∞[E, g, h],

where g, h are the already discussed normalized modular forms, respectively inMq−1(1;C∞)

and Mq+1(det−1;C∞) (Gekeler’s notations) and E is the false Eisenstein series (6.8),
has dimension 3 (this is not difficult to see) and is Z × Z/(q − 1)Z-graded by weights
and types, and filtered by depths, where weights and types of E, g, h are respectively
(2, 1), (q − 1, 0), (q + 1, 1), and the depth is just the degree in E. We recall that a polyno-

mial f of M̃ that is homogeneous of weight w, type m, and has depth ≤ l is by definition a
Drinfeld quasi-modular form of same weight, type, and depth. For example, E is a quasi-
modular form of weight 2, type 1 and depth ≤ 1 which is not a modular form, and the
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C∞-algebra M of Drinfeld modular forms can be identified with the sub-algebra of M̃ of
the quasi-modular forms that have depth ≤ 0.

We suppose that s = |Σ| and the integer m > 0 are chosen so that s ≡ m (mod q − 1).
We also set

l :=
∑
i∈Σ

qki ∈ N,

so that l ≡ s (mod q − 1).

Theorem 7.15. The first entry of ev(E(m; ρ∗Σ)) equals −π̃mfl+m,m and is a non-zero
quasi-modular form of weight l +m type m and depth ≤ l.

7.6.1. Preliminaries, Hypothesis H. We choose a representation of the first kind ρ : Γ →
GLN (Fq(tΣ)) satisfying the next:

Hypothesis H. We suppose that ρ is constructed starting from the basic representations
ρti with i ∈ Σ applying the usual elementary operations ⊕,⊗, Sα,∧β, (·)∗.

Assuming the Hypothesis H amounts to make an initial restriction on the basic rep-
resentations used to define ρ. This condition can be relaxed but is convenient for our
exposition.

We note that the matrix functions Ξρ,Φρ introduced in §4.2.1 and §4.2.2 belong to

GLN (E◦Σ〈〈e〉〉b) for N ≥ 1 so that

Φ̃ρ := ev(Φρ), Ξ̃ρ := ev(Ξρ)

define entire functions C∞ → CN×N∞ .

Lemma 7.16. Assuming the Hypothesis H we have Φ̃ρ, Ξ̃ρ ∈ GLN (C∞[z]).

Proof. We begin by proving the property for Φ̃ρ. The Hypothesis H implies that every
entry of Φρ ‘comes from Perkins’ series’ in that they are of the type∑

a∈A
(z − a)−1Θ(a)

where Θ : A → Fq[tΣ] is a map such that there exists a polynomial P ∈ Fp[X1, . . . , Xr]
(for some r) and semi-characters σ1, . . . , σr : A → Fq[tΣ] (see Definition 6.9) such that
Θ(a) = P (σ1(a), . . . , σr(a)) for all a ∈ A. Hence, to prove the lemma, it suffices to show
that, with f = e0ψ(1;σΣ) (ψ is a Perkins series, see Definition 6.10). We have

f̃ := ev(f) ∈ C∞[z].

To justify this we note that after [61, Theorem 2],

f(z) =
π̃
∏
i∈Σ expC

(
π̃z
θ−ti

)
∏
i∈Σ ω(ti)

+ e0g(z)



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 127

where g : C∞ → EΣ is an entire function which vanishes identically after evaluation ev at

tΣ = θq
k
. Recall that

χti(z) = ω(ti)
−1 expC

( π̃z

θ − ti

)
,

where expC is the exponential map associated to Carlitz’s module as discussed in §2.3.2,
for all i ∈ Σ and for all z ∈ C∞. It is therefore easily seen that

ev(χti(z)) = zq
ki .

Hence the claimed property of f̃ follows, and together with it, that of Φ̃ρ.

To show that Ξ̃ρ ∈ GLN (C∞[z]) it suffices to verify it for ρ = ρti with i ∈ Σ so we

assume now Σ = {i} and k = k ≥ 0. In this case however, Φ̃ρ = Ξ̃ρ = ( 1 zq
k

0 1
), and thanks

to the Hypothesis H,

(7.16) Ξ̃ρ = ev
(
ρ(Tθ)

)
θ 7→z
∈ GLN (Fq[z]).

The proof of the lemma is complete. �

We can now prove:

Lemma 7.17. Under the Hypothesis H we have Φ̃ρ = Ξ̃ρ.

Proof. By Proposition 4.8 (c) we have Ξρ = Φρ(IN +N1) with N1 a function belonging to
e0EΣ[e0]N×N . evaluating we get

Ξ̃ρ = Φ̃ρ(IN +N2)

for N2 ∈ e0C∞[e0]N×N . By Lemma 7.16 we see that IN+N2 ∈ GLN (C∞[z]) and this shows
that N2 = 0N because the functions z 7→ z and z 7→ e0(z) are algebraically independent
over C∞ (easy to check). �

We now choose an integer n > 0 and we study ev(Gm(ρ)) where Gm(ρ) has been defined
in (6.5). We recall that G1(ρ) = π̃−1Ψ1(ρ) = uΦρ. It is easy to see (we leave the verification
to the reader) that for all ρ satisfying the Hypothesis H, Φρ can be expanded into an N×N
matrix of entire functions of the variables z and tΣ (|Σ|+ 1 variables). It follows that for
all m ≥ 1,

Dm−1(Ξ̃ρ) = Dm−1(Φ̃ρ) = ev(Dm−1(Φρ)),

so we have:

(7.17) ev
(
Gm(ρ)

)
= Dm−1

(
uΞ̃ρ

)
.

7.6.2. Matrix functions and proof of Theorem 7.15. From now on we suppose that ρ = ρ∗Σ
and that |Σ| ≡ m (mod q− 1) with m > 0. Recalling the matrix functions E of §7.4, from
(7.17) we obtain the series expansion:
(7.18)

π̃−m ev
(
E(m; ρ∗Σ)

)
=
∑′

c∈A
ev
(
ρΣ( c 0

0 1 )
)
Dm−1

(
uΞ̃ρ∗Σ

)
c

+ π̃−mEΣ ev
(∑′

d∈A
d−mρ∗Σ(T−d)

)
,
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where (·)c indicates that we have applied the substitution z 7→ cz. We rewrite the identity
(7.18) at the level of the first columns in a more convenient way. Our next task is to show
the subsequent identities (7.19) and (7.21). We note that the first column of

EΣ

∑′

d∈A
d−mρ∗Σ(T−d)

equals

−


0
...
0
Z


where Z = ζA(m;σΣ) is the ζ-value (1.17), and we get

ev(Z) = ζA(m− l) =
∑
d≥0

∑
a∈A+(d)

al−m

(sum over the polynomials of A which are monic of degree n), a special value of the Goss
zeta function associated to A, see [36, §8.6]. The Goss’ zeta values

ζA(k) =
∑
d≥0

∑
a∈A+(d)

a−k

are well defined elements of K∞ for all k ∈ Z. We recall that we have the following
properties: (a) if k > 0 is such that q− 1 | k, then ζA(k) ∈ K×π̃k, (b) ζA(k) ∈ A for k ≤ 0,
and (c) ζA(k) = 0 if and only if k < 0, q − 1 | k (see Goss’ book [36] for an introduction
to the theory of these functions). In particular Z is zero if and only if l > m and l ≡ m
(mod q − 1).

We resume the computation as follows (the index 1 indicates that we are extracting the
first column):

(7.19) π̃−m

(
EΣ

∑′

d∈A
d−mρ∗Σ(T−d)

)
1

= −


0
...
0

π̃−mζA(m− l)

 .

We now compute Dm−1(uΞ̃ρ∗Σ). For this, set, with I ⊂ Σ,

lI =
∑
i∈I

qki

so that I = IΣ (note that I ⊂ J implies lI ≤ lJ and if I t J = Σ, lI + lJ = l). In place of
(7.16) we have the explicit formula

Ξ̃ρ∗Σ =
⊗
i∈Σ

(
1 0

−zqki 1

)
,
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and, by Leibnitz rule,

Dj(Ξ̃ρ∗Σ) =
∑⊗

k∈Σ

Dik(
1 0

−zqki 1
)

where the sum runs over the families (ik : k ∈ Σ) ⊂ N such that
∑

k ik = j. Since

Di(z
qk) = −π̃qk , zqk , 0 depending on whether i = qk, 0 or another value distinct from the

previous ones, we see that

Dj

(
Ξ̃ρ∗Σ

)
=

∑
ItJ=Σ
lI=j

⊗
i∈J

(
1 0

−zqki 1

)
⊗
⊗
h∈I

(
0 0

(−π̃)−q
kh 0

)
.

By Dm−1−lI (u) = Gm−lI (u) we deduce the formula

(7.20) Dm−1

(
uΞ̃ρ∗Σ

)
=

∑
ItJ=Σ
lI<m

Gm−lI (u)
⊗
i∈J

(
1 0

−zqki 1

)
⊗
⊗
h∈I

(
0 0

(−π̃)−q
kh 0

)
.

Note that, with c ∈ A,

ev
(
ρΣ( c 0

0 1 )
)(⊗

i∈J

(
1 0

−zqki 1

)
⊗
⊗
h∈I

(
0 0

(−π̃)−q
kh 0

))
=

=
⊗
i∈J

((
cq
ki 0
0 1

)(
1 0

−zqki 1

))
⊗
⊗
h∈I

((
cq
kh 0
0 1

)(
0 0

(−π̃)−q
kh 0

))
=

=

(⊗
i∈J

(
cq
ki 0

−(cz)q
ki 1

))
⊗
⊗
h∈I

(
0 0

(−π̃)−q
kh 0

)
.

Considering (7.20) we get (remember that the index (·)1 means that we are extracting
the first column):(∑′

c∈A
ev
(
ρΣ( c 0

0 1 )
)
Dm−1

(
uΞ̃ρ∗Σ

)
c

)
1

=

=
∑

ItJ=Σ
lI<m

(∑′

c∈A
clJGm−lI (uc)

)(⊗
i∈J

(
1 0

−zqki 1

)
⊗
⊗
h∈I

(
0 0

(−π̃)−q
kh 0

))
1

.

Note that ∑
c∈A\{0}

clJGm−lI (uc) = −fm−lI+lJ ,m−lI

(see (7.15)) if l = lΣ ≡ m (mod q − 1), and it equals zero otherwise (because l = lI + lJ).
But |Σ| ≡ l (mod q − 1). Hence, writing FI for fm−lI+lJ ,m−lI for simplicity:
(7.21)(∑′

c∈A
ev
(
ρΣ( c 0

0 1 )
)
Dm−1

(
uΞ̃ρ∗Σ

)
c

)
1

= −
∑

ItJ=Σ
lI<m

FI

(⊗
i∈J

(
1

−zqki

)
⊗
⊗
h∈I

(
0

(−π̃)−q
kh

))
.
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Proof of Theorem 7.15. We study the first column of π̃−m ev(E(m; ρ∗Σ)). Gathering to-
gether (7.19) and (7.21) we find
(7.22)

Ẽ := ev
(
E(m; ρ∗Σ)

)
1

= −π̃m
∑

ItJ=Σ
lI<m

FI

(⊗
i∈J

(
1

−zqki

)
⊗
⊗
h∈I

(
0

(−π̃)−q
kh

))
−


0
...
0

ζA(m− l)

 .

Observe, from the modularity of E := E(m; ρ∗Σ), the following identity, where (v)1 now
denotes the first entry of an element v ∈ RN×1 for some ring R, and where γ = ( ∗ ∗c d ) ∈ Γ:(

E(γ(z))
)

1
= Jγ(z)m

(
ρ∗Σ(γ)E(z)

)
1

= det(γ)−mJγ(z)m
⊗
i∈Σ

(
χti(d),−χti(c)

)
E(z).

This is obtained by noticing that det(γ)−|Σ|⊗i∈Σ (χti(d),−χti(c)) is the first row of ρ∗Σ(γ),

and |Σ| ≡ m (mod q−1). Evaluating at ti = θq
ki for all i ∈ Σ this becomes det(γ)−m⊗i∈Σ

(dq
ki ,−cqki ). Observe that, for any x ∈ C×∞, with the dot · being the standard scalar

product,⊗
i∈Σ

(dq
ki ,−cqki ) ·

(⊗
i∈J

(
1

−zqki

)
⊗
⊗
h∈I

(
0

−x−q
kh

))
= Jγ(z)lJ (cx)lI = J lγLγ(z)lj ,

where Lγ(z) := − c
cz+d .

Moreover,

⊗
i∈Σ

(dq
ki ,−cqki ) ·


0
...
0

ζA(m− l)

 = (−c)lζA(m− l).

Using (7.22) yields the identity for f := (Ẽ)1 (first entry):

(7.23) f(γ(z)) = det(γ)−mJγ(z)m
⊗
i∈Σ

(
dq
ki ,−cqki

)
·

·

−π̃m ∑
ItJ=Σ
lI<m

FI

(⊗
i∈J

(
1

−zqki

)
⊗
⊗
h∈I

(
0

(−π̃)−q
kh

))
−


0
...
0

ζA(m− l)


 =

= det(γ)−mJγ(z)m+l

− ∑
ItJ=Σ
lI<m

π̃m−lIFILγ(z)lI − ζA(m− l)Lγ(z)l

 .

This implies that f is a Drinfeld quasi-modular form of weight l+m type m and depth ≤ l
in the sense of [13, Definition 2.1], which is equivalent to our definition of quasi-modular
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form in virtue of loc. cit., Theorem 1. With γ the identity we have Lγ = 0 and f = −π̃mF∅
and the proof of our theorem is complete. �

If l ≤ m, the quasi-modular form has depth l because of the non-vanishing of ζA(m− l).
If l > m the depth is < l and these results can be compared with with Petrov’s work [67].
In his Theorem 1.3 Petrov shows that l > m, l ≡ m (mod q − 1) and if

m ≤ p−vp(l)

where vp is the p-adic valuation of Z, then fl+m,m is the u-expansion of a Drinfeld cusp form
in Sl+m(det−m;C∞), a Drinfeld cusp form of weight l+m and type m in the terminology
of [24] and therefore a quasi-modular form of depth zero.

The reader can easily deduce the following result which is however slightly weaker than
Petrov’s (note that pvp(l) = qvq(l)pvp(`q(l)), with vq denoting the order of divisibility by q
and `q denoting the sum of the digits in the q-ary expansion).

Corollary 7.18. If l > m with l ≡ m (mod q − 1) and m ≤ qvq(l) then fl+m,m is the
u-expansion of a modular form in Sl(det−m;C∞).

Proof. Indeed with this hypothesis on the order of divisibility by q in the sums in (7.23)
there is no I such that lI < m, unless I = ∅. Moreover, ζA(m − l) = 0 (trivial zero) and
the depth of f is zero. �

7.6.3. An example of Hecke eigenform. Consider Σ such that s = |Σ| ≡ 1 (mod q− 1) and
set m = 1. Both Corollary 7.18 and Petrov’s [67, Theorem 3.1] imply that f := fl+1,1

is the u-expansion of an element of Sl+1(det−1;C∞) \ {0}. It is proportional to an entry
of ev(E(1; ρ∗Σ)). It is easy to see that this cusp form is not doubly cuspidal (that is, with
multiplicity ≥ 2 at ∞). It is also well known that f is the u-expansion of an Hecke
eigenform. We can deduce this property from the fact that E := E(1; ρ∗Σ) is a Hecke
eigenform. We come back to (4.21). We have, for all P ∈ A+ irreducible,(

TP (E)
)

1
= σΣ(P )

(
E(Pz)

)
1

+ P−1
∑
|b|<|P |

(
E
(z + b

P

))
1

and this equals (E)1 by Corollary 7.6. Evaluating at ti = θq
ki for all i ∈ Σ implies the

identity

f(Pz) + P−1−l
∑
|b|<|P |

f
(z + b

P

)
= P−lf(z)

which tells us that f is a Hecke eigenform for all the Hecke operators TP , with eigenvalue
P ∈ A+ irreducible (the operators TP are those of [24], we use the normalisation of [24] to
allow an easier comparison with existing results).
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7.6.4. Examples of quasi-modular forms. The content of this subsection is also related to
the sequence of extremal quasi-modular forms (xk)k≥0 introduced in [14], where the initial
explicit elements are x0 = −E, x1 = −Eg−h, in the notations of [24], and where we recall
that E is the normalized false Eisenstein series of weight 2 (6.8). From Theorem 7.15 we
deduce that E(qn; ρ∗t )t=θ = −π̃qnfqn+1,qn for all n ≥ 0 and xn = −fqn+1,qn . If n = 0, we
deduce Gekeler’s series expansion [24, p. 686]:

(7.24) E =
∑
a∈A+

aua.

Taking E(1; ρ∗t )t=θqn for n ≥ 1 we get, up to a proportionality factor, Petrov’s sequence of
Hecke eigenforms

Fn =
∑
a∈A+

aq
n
ua

of weight qn + 1 and type 1, notably the initial values F1 = h and F2 = hgq (see [67, §3.2]
and the proof of Theorem 3.6 ibid.).

7.6.5. v-adic modular forms from Eisenstein series. In this short subsection we quickly
introduce further desirable directions of investigation, with few details to preserve the flow
of the main topics of the present work. Consider an element

f ∈ K(tΣ) + uK(tΣ)◦〈〈e〉〉b[[u]].

We say that f is an entry of a rational Drinfeld modular form if there exist w ∈ Z,
ρ : Γ → GLN (K(tΣ)) a representation of the first kind, F ∈ Mw(ρ;KΣ) and a linear map
λ : KN

Σ → KΣ such that f = λ(F ). We denote by X the set of all entries of rational
Drinfeld modular forms.

Write

f = f0 +
∑
i>0

fiu
i

with f0 ∈ K(tΣ) and fi ∈ K(tΣ)◦〈〈e〉〉b for i > 0. This expansion exists and is unique (see
Proposition 3.32). Let v : K(tΣ) → Z ∪ {∞} be an additive valuation. We say that f is
v-integral if fi ∈ O◦v〈〈e〉〉b, where Ov is the subring of K(tΣ) of elements with non-negative
v-valuation, i. e. f ∈ Ov + uO◦v〈〈e〉〉b[[u]]. Over the ring Ov + uO◦v〈〈e〉〉b[[u]] of v-integral
series we have the infimum v-valuation (relative to the series expansion f =

∑
i fiu

i) and
we denote by Xv the metric space of all entries of rational Drinfeld modular forms which
are v-integral (compare with Definition 7.7).

Definition 7.19. A v-adic Drinfeld modular form is an element of the completed space

X̂v.

Following the ideas of Goss in [39] the reader can verify the following explicit example.
Consider Σ = Σ′ t {1} with s′ = |Σ′| and set v to be the χt1(p)-adic valuation of K(tΣ)
with p = (P ) a prime ideal of A of degree d (and P monic). We choose m > 0. We consider
a sequence of positive integers (ki)i≥0 with ki = r + αi(q

d − 1), with r ∈ {0, . . . , qd − 2}
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with ki →∞ as i→∞ and with αi converging p-adically. We also suppose that for all i,
ki + s′ ≡ m (mod q − 1). Then, as i→∞, the sequence of series∑

a∈A+

P -a

χt1(a)kiσΣ′(a)Gm(ua) ∈ K(tΣ)[[u]],

all v-integral, defines a v-adic Drinfeld modular form which is non-zero. Of course, it is
related to an Eisenstein series E(m; ρ∗Σ′′), for a suitable Σ′′, after an appropriate evaluation.

A remark. It is an interesting problem to determine an appropriate complete topological
group of weights for v-adic modular forms in the sense of our Definition 7.19. We note
indeed that the union⋃

w,Σ,ρ

Mw(ρ;KΣ), w > 0, Σ ⊂ N∗, ρ of the first kind,

Σ being finite, generates an algebra over ∪ΣKΣ with multiplication ⊗. It is not difficult
to show that this algebra is graded over the monoid (Z,+) ⊕ ({ρ : of the first kind},⊗).
To define his ∞-adic and v-adic zeta and L-functions, Goss introduced several complete
topological spaces containing Z, see [36, Chapter 8]. For instance, the complete topological
group S projective limit of the groups Z/((qd−1)pn)Z as n→∞ with d = degθ(P ) and q =
pe, isomorphic to Z/(qd−1)Z×Zp, contains the weights of the p-adic modular forms of [38],
with p the ideal of A generated by P irreducible. The same question arises when one wants
to define a topological space over which interpolate the L-series of [56], see [38]. At the
time being, there is no complete topological group containing ({ρ : of the first kind},⊗)
behaving as nicely as S, allowing to give rise to a nice space of weights for our v-adic
modular forms. A similar question has been addressed in connection with multiple zeta
values in Tate algebras, see [34, Remark 3.1.2].

8. Modular forms for the representations ρ∗Σ

In this section we consider modular forms associated to representations of the first kind,
with values in vector spaces over KΣ rather than vector spaces over LΣ as we did in the
previous sections. To classify them we cannot use the techniques of specialization at roots
of unity of §5.2.1. We are therefore led to introduce other techniques which, however,
are harder to apply in the general setting of all the representations of the first kind. At
least, they lead to proofs of Theorems E, F in the introduction. We will focus on the
representations

ρ = ρ∗Σ det−m

only, as they seem to have a larger spectrum of applications. We are going to determine the
complete structure of the spaces M !

w(ρ;KΣ) in Theorem 8.1. An important tool introduced
in this section (see §8.2) is the notion of strongly regular modular form. The v-valuations
of the entries of a strongly regular modular form are submitted to certain sharp lower
bounds making them into a module over the scalar modular forms, the structure of which
can be easily computed, see Theorem 8.7. If |Σ| ≤ q − 1, the notions of modular form and
strongly regular modular form agree (Corollary 8.12). If |Σ| ≥ q, this is no longer true but
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in Theorem 8.9 we show that twisting an element of Mw(ρ∗Σ;KΣ) by a large enough power
of the operator τ defined in the corresponding section (the exponent depending on Σ)
yields a strongly regular modular form. Besides these properties, the precise structure of
the KΣ-vector spaces Mw(ρ∗Σ;KΣ) for a general choice of Σ subset of N∗ remains presently
unknown.

8.1. Structure of weak modular forms. We consider a finite non-empty subset Σ ⊂ N∗.
The structure of the KΣ-vector space M !

w(ρ;KΣ) is quite simple to describe.
We recall that, after Corollary 5.4, for all m, with W ∈ {S,M}, B ∈ {LΣ,KΣ},

Ww(detm;B) = Ww(detm;C∞)⊗C∞ B.

In particular, Mw(detm;KΣ) is finite-dimensional. The main result of this subsection is
the following.

Theorem 8.1. Assuming that ρ = ρ∗Σ det−m, we have:

M !
w(ρ;KΣ) = M !

w−1(ρ;KΣ)⊗ E(1; ρ∗tk) +M !
w−q(ρ;KΣ)⊗ E(q; ρ∗tk).

Note that E(q;χtk) = τ(E(1;χtk)) where τ is defined in (1.18). We choose k ∈ Σ. We
set Σ′ = Σ \ {k}. We denote by ρ∗Σ′ the Kronecker factor of the representation ρ∗Σ. Hence:

(8.1) ρ∗Σ = ρ∗Σ′ ⊗ ρ∗tk .

We can suppose, without loss of generality, that k = min(Σ). The natural ordering of
Σ ⊂ N∗ is considered in the Kronecker product (it is non-commutative).

Proof of Theorem 8.1. We recall that:

E(1; ρ∗t ) =
∑′

a,b∈A
(az + b)−1

(
χt(a)

χt(b)

)
.

We denote by E the transposition (row function) of E(1; ρ∗t ). It satisfies:

E(γ(z)) = Jγ(z)E(z)ρt(γ)−1, γ ∈ Γ.

We also consider the matrix function

E =

(
E

τ(E)

)
∈ Hol(Ω→ K2×2

Σ ),

satisfying

E(γ(z)) =

(
Jγ(z) 0

0 Jγ(z)q

)
E(z)ρt(γ)−1, γ ∈ Γ.

Note that τ(E) = tE(q; ρ∗t ). Let h = −u+ o(u) be as in §5.3.3. By [63, Theorem 3.9]:

det(E) = −π̃ζA(q;χt)h(z),

which is also equal to

− π̃q+1h(z)

(θq − t)(θ − t)ω(t)
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by the formula (7.12), after application of τ . The function h does not vanish on Ω and
v(h) = 1. Since the function det(E) can vanish identically for certain values of t with
|t| > 1, the matrix function E(z)−1 belongs to Hol(Ω→ T2×2) but not to Hol(Ω→ E2×2),
and satisfies

E(γ(z))−1 = ρ(γ)E(γ(z))−1

(
Jγ(z)−1 0

0 Jγ(z)−q

)
, γ ∈ Γ.

In any case, τ2(ω)−1E(z)−1 defines a function of Hol(Ω→ E2×2). We are going to generalize
some aspects of the proof of [63, Theorem 3.9]. We set

E = τ2(ω(t))−1E−1,

and Etk the same function in the variable tk instead of t. Note that the function

(8.2) F := IN ′ ⊗Etk ∈ Hol(Ω→ EN×N{k} ),

with N = 2s, s′ = s− 1, and N ′ = 2s
′
, satisfies:

F (γ(z)) = (1N ′ ⊗ ρtk(γ))F (z)

(
1N ′ ⊗

(
Jγ(z)−1 0

0 Jγ(z)−q

))
, γ ∈ Γ.

Let G be an element of M !
w(ρ;KΣ). Then by definition, for all γ ∈ Γ and z ∈ Ω, we have

G(γ(z)) = Jγ(z)w det(γ)−mρ∗Σ(γ)G(z).

Now setting G = tG and, denoting with H the row function GF , with values in K1×N
Σ , we

have, for γ ∈ Γ:

H(γ(z)) =

= Jγ(z)w det(γ)−mG(z)ρ−1
Σ (γ)(1N ′ ⊗ ρtk(γ))(1N ′ ⊗Etk(z)−1)×

×
(

1N ′ ⊗
(
Jγ(z)−1 0

0 Jγ(z)−q

))
= det(γ)−mG(z)(ρ−1

Σ′ (γ)⊗ 12)(1N ′ ⊗Etk(z)−1)

(
1N ′ ⊗

(
Jγ(z)w−1 0

0 Jγ(z)w−q

))
= det(γ)−mG(z)(1N ′ ⊗Etk(z)−1)(ρ−1

Σ′ (γ)⊗ 12)

(
1N ′ ⊗

(
Jγ(z)w−1 0

0 Jγ(z)w−q

))
= det(γ)−mH(z)(ρ−1

Σ′ (γ)⊗ 12)

(
1N ′ ⊗

(
Jγ(z)w−1 0

0 Jγ(z)w−q

))
.

In the above computation, we have observed the distributive property of the mixed product
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (for matrices A,B,C,D). This identity that we have
found,

H(γ(z)) = det(γ)−mH(z)(ρ−1
Σ′ (γ)⊗ 12)

(
1N ′ ⊗

(
Jγ(z)w−1 0

0 Jγ(z)w−q

))
, γ ∈ Γ

can be interpreted in the following way. The column holomorphic function H := tH, with
values in KN×1

Σ can be written as H = H1 � H2 with both H1 and H2 columns of size
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N ′ = 2Σ′ , where the symbol � is defined, if a = t(a1, . . . , aN ′) and b = t(b1, . . . , bN ′), by
a� b = (a1, b1, a2, b2, . . . , aN ′ , bN ′). Then, both H1,H2 are separately weak modular forms
for ρ∗Σ′ det−m, with values in KΣ and the weights are respectively w − 1 and w − q. �

We have, with ρ as above:

Theorem 8.2. The following equality of KΣ-vector spaces holds, for any w ∈ Z, m ∈
Z/(q − 1)Z and finite Σ ⊂ N∗:

(8.3) M !
w(ρ;KΣ) =

⊕
ItJ=Σ

(⊗
i∈I
E(1; ρ∗ti)

)
⊗

⊗
j∈J
E(q; ρ∗ti)

M !
w−|I|−q|J |(det−m;KΣ).

We denote by M !(det•;KΣ) the Z × Z/(q − 1)Z-graded B-algebra of scalar weak KΣ-
valued Drinfeld modular forms for Γ of any weight and type, and we set M !(ρ∗Σ det•;KΣ) =

⊕w,mM !
w(ρ∗Σ det−m;KΣ), which is a graded module over M !(1;KΣ).

Also, we denote by M !(ρ∗Σ;KΣ) = ⊕w∈ZM !
w(ρ∗Σ;KΣ) the sub-module of M !(det•;KΣ) of

weak modular forms for ρ∗Σ and M !(1;KΣ) = ⊕wM !
w(1;KΣ). We have the next corollary:

Corollary 8.3. (a) The KΣ-vector space M !(ρ∗Σ det•;KΣ) is a graded free M !(det•;KΣ)-

module of rank N = 2s. (b) The KΣ-vector space M !(ρ∗Σ;KΣ) is a graded free M !(1;KΣ)-
module of rank N .

Observe that further, the N = 2s generators of these modules are explicitly described in
Theorem 8.2 and are the elements⊗

i∈I
E(1; ρ∗ti)⊗

⊗
j∈J
E(q; ρ∗ti) ∈M|I|+q|J |(ρ

∗
Σ;TΣ), I t J = Σ.

Proof of Theorem 8.2. We deduce from Theorem 8.1, by induction on |Σ|, that a weaker
version of (8.3) holds, with

∑
in place of

⊕
. It remains to show that the sum is a direct

sum. For this, it suffices to show that the N = 2s functions ⊗i∈IE(1; ρ∗ti)⊗
⊗

j∈J E(q; ρ∗tj ),

for I t J = Σ, which define elements of ON×1
Σ , are linearly independent over the field

KΣ((u)). Note indeed that M !
w−|I|−q|J |(det−m;KΣ) ↪→ KΣ((u)) because all the elements of

the space on the left are A-periodic and tempered.
Let a, b be two elements of KΣ. We write a ≈ b if v(a) = v(b) (note that if a = 0 and

a ≈ b then b = 0) and we extend the definition to vectors and matrices whose entries are in
K by saying that (ai,j) ≈ (bi,j) if for all i, j, v(ai,j) = v(bi,j). Then by Proposition 7.2, we

have E(1; ρ∗ti) ≈
(
u
1

)
and E(q; ρ∗ti) ≈

(
uq

1

)
. Hence, up to permutation of rows and columns,

we have the ≈-equivalence of N ×N -matrices in ON×N
Σ :

N :=

(⊗
i∈I
E(1; ρ∗ti)

)
⊗

⊗
j∈J
E(q; ρ∗tj )


ItJ=Σ

≈
(
uq u
1 1

)⊗s
.

The anti-diagonal of the matrix on the right is equal to (1, u)⊗s (up to reordering). This
corresponds to a unique monomial which minimizes the v-valuation in the series expansion
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of the determinant of N . We deduce that det(N ) ≈ uas , where (as)s≥1 is the sequence
defined, inductively, by a1 = 1 and

as = 2as−1 + 2s−1

for s > 1. The matrix N is therefore non-singular, and the functions ⊗i∈IE(1; ρ∗ti) ⊗⊗
j∈J E(q; ρ∗tj ) for I t J = Σ are linearly independent over KΣ((u)), from which the result

follows. �

8.2. Strongly regular modular forms. We keep considering a finite non-empty subset
Σ ⊂ N∗ of cardinality s, the representation ρ = ρ∗Σ det−m, k := max(Σ). We discuss quite
a restricted but useful class of modular forms which have a particularly simple behaviour
at infinity.

Definition 8.4. A tempered ρ∗Σ-quasi-periodic holomorphic function

G : Ω→ KN×1
Σ

is called strongly regular at infinity if(
u−1 0
0 1

)⊗s
G(z) ∈ ON×1

Σ .

Note, with Diag denoting a diagonal matrix, that(
u−1 0
0 1

)⊗2

= Diag(u−2, u−1, u−1, 1)(
u−1 0
0 1

)⊗3

= Diag(u−3, u−2, u−2, u−1, u−2, u−1, u−1, 1).

Writing

(8.4)

(
u−1 0
0 1

)⊗s
= Diag(u−s, . . . , u−n1 , u−n0),

and letting s tend to infinity, an integer sequence (ni)i≥0 is defined and coincides with the
one’s-counting sequence (compare with the sequence (ai)i in the proof of Theorem 8.2; we
used it also in §5.3.4). We need the next Lemma, where we use the sequence introduced
in (8.4) and the notation � introduced in the course of the proof of Theorem 8.1.

Lemma 8.5. We have (ni)i≥0 = (n2i)i≥0 � (n2i+1 + 1)i≥0.

Proof. Straightforward computation of the carry over in binary addition when we add one
to an integer. �

The above serves to make the next definition.

Definition 8.6. A weak modular form G ∈M !
w(ρ∗Σ det−m;KΣ) is said strongly regular (of

weight w) if it is strongly regular at infinity after definition 8.4. Taking (8.4) into account
and writing G = t(G1, . . . ,GN ), this is equivalent to v(GN−i) ≥ ni for i = 0, . . . , N − 1.
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The KΣ-vector subspaces of the spaces Mw(ρ;KΣ) of strongly regular modular forms
have quite a simple structure which can be described essentially by adapting the proof of
Theorem 8.1; The main result is Theorem 8.7 below. Also, regarding the Definition 8.4
of strongly regular functions, if we want to use the indexation of the components of G,
G = (GJ)ItJ=Σ (so that the first entry G∅ = G1 has a u-expansion) we then get that the
above condition is equivalent to

(8.5) GJu−|I| ∈ OΣ, ∀I, J such that I t J = Σ.

We denote by M †w(ρ∗Σ det−m;KΣ) the KΣ-sub-vector space of M !
w(ρ∗Σ det−m;KΣ) generated

by the strongly regular modular forms of weight w for ρ∗Σ det−m (with values in KΣ).

Examples. Any scalar Drinfeld modular form is strongly regular. In fact, we have

M †w(det−m;KΣ) = Mw(det−m;KΣ) = Mw(det−m;C∞)⊗C∞ KΣ

for all w,m by Corollary 5.4. From Proposition 7.2 we immediately see that E(1; ρ∗t ) ∈
M †1(ρ∗t ;L) and E(q; ρ∗t ) ∈ M

†
q (ρ∗t ;L) (recall that we write L = LΣ when Σ is a singleton,

with variable t); these functions are strongly regular. In particular, after Theorem 8.2 and
Corollary 8.3, the generators of the module M !(ρ∗Σ det•;KΣ) described in the statements
are all strongly regular modular forms.

8.2.1. Structure of strongly regular modular forms. We shall prove the next result where
B can be taken to be equal to LΣ or KΣ:

Theorem 8.7. The following equality of B-vector spaces holds, for any w ∈ Z, m ∈
Z/(q − 1)Z, finite Σ ⊂ N∗:

(8.6) M †w(ρ∗Σ det−m;B) =
⊕

ItJ=Σ

(⊗
i∈I
E(1; ρ∗ti)

)
⊗

⊗
j∈J
E(q; ρ∗tj )

Mw−i−qj(det−m;B).

The direct sum M †(ρ∗Σ det•;B) := ⊕w,mM †w(ρ∗Σ det−m;B) is a graded module over the
graded algebra M(det•;B) of scalar Drinfeld modular forms Ω→ KΣ for any power of the
determinant character. Similarly, we have, recalling that M(1;B) is the graded algebra
of (scalar) Drinfeld modular forms for Γ (it is equal to the graded algebra B[g,∆]) and
M †(ρ∗Σ;B) the M(1;B)-module of strongly regular modular forms for ρ∗Σ, we immediately
deduce, with the same settings and s = |Σ|:

Corollary 8.8. (a) The M(det•;B)-module M †(ρ∗Σ det•;B) is free of rank N = 2s. (b)

The graded M(1;B)-module M †(ρ∗Σ;B) is free of rank N = 2s. (c) Both modules are
generated by the N modular forms (⊗i∈IE(1; ρ∗ti))⊗ (⊗j∈JE(q; ρ∗tj )), for I, J ⊂ Σ such that
I t J = Σ.

The fact that the rank is N is not a surprise in view of the papers of Marks and Mason
[47] and of Bantay and Gannon [6], in the settings of complex vector-valued modular
forms. These authors prove that vector spaces of vector valued modular forms for SL2(Z)
associated to an indecomposable finite dimensional complex representation of this group
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(and satisfying some additional conditions we do not want to discuss here) all are free
of dimension, the dimension of the representation. However, note that the vector-valued
modular forms that we study in the present work are not simple variants of the above
complex valued ones.

Proof of Theorem 8.7. It is easily seen that the left-hand side of (8.6) is contained in the
right-hand side and we have to prove the reverse inclusion. Corollary 8.2 ensures the
equality of the corresponding B-vector spaces of weak modular forms (“when † is replaced

with !”). This means that if G ∈M †w(ρ∗Σ det−m;B), then

G ∈M !
w(ρ∗Σ det−m;B) =

⊕
ItJ=Σ

(⊗
i∈I
E(1; ρ∗ti)

)
⊗

⊗
j∈J
E(q; ρ∗tj )

M !
w−i−qj(det−m;B).

All we need to prove is that the coefficients occurring in the various spaces of scalar weak
modular forms M !

w−i−qj(det−m;B) are in fact Drinfeld modular forms (regular at infinity).
To see this it suffices to show that

G ∈Mw−1(ρ∗Σ′ det−m;B)⊗ E(1; ρ∗tk) +Mw−q(ρ
∗
Σ′ det−m;B)⊗ E(q; ρ∗tk),

where k is an integer such that k < min(Σ′) with Σ = Σ′ t {k}. A simple induction will
then allow to complete the proof.

Lemma 8.5 implies that for all s ≥ 1, writing(
u−1 0
0 1

)⊗s
= Diag(Us),

then

(8.7) Us = u−1Us−1 � Us−1.

Now, we set G = G1 �G2 with G = tG an element of M †w(ρ∗Σ det−m;B), hence we also
write Gi = tGi. We know by the proof of Theorem 8.1 that

H = H1 �H2 = GF

(with F as in (8.2)) is such that

H1 = tH1 ∈M !
w−1(ρ∗Σ′ det−m;B), and H2 = tH2 ∈M !

w−q(ρ
∗
Σ′ det−m;B).

It remains to prove that H1 and H2 are both strongly regular. We have to show that

Hj(z) Diag(Us−1) ∈ O1×N ′
Σ , j = 1, 2.

By hypothesis, we know that the entries of G(z) Diag(Us) are in OΣ. Explicitly, the entries
of u(z)−1G1(z) Diag(Us−1) and of G2(z) Diag(Us−1) are in OΣ. We recall the relation
a ≈ b, for elements of K×Σ , and its extension to matrices. We note that H1,H2 are given,
explicitly, by the formulas:

H1 =
−G1τ(e2) + G2τ(e1)

π̃ζA(q;χtk)h
, H2 =

G1e2 −G2e1

π̃ζA(q;χtk)h
,
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where E = (e1, e2) (14). By the well-known u-expansion h ∈ −u+ uC∞[[uq−1]] (which tells
us that v(h) = 1 and h ≈ u), we thus have

uH1 ≈ −G1τ(e2) + G2τ(e1), uH2 ≈ G1e2 −G2e1.

We first study H1. We have:

H1 Diag(Us−1) ≈ u−1(−G1τ(e2) + G2τ(e1)) Diag(Us−1)

≈ −u−1G1 Diag(Us−1)τ(e2) + G2 Diag(Us−1)u−1τ(e1).

Now, by hypothesis u−1G1 Diag(Us−1) ∈ O1×N ′
Σ , while v(τ(e2)) = 0, from which we deduce

that u−1G1 Diag(Us−1)τ(e2) ∈ O1×N ′
Σ . On the other hand, we have that τ(e1) ≈ uq. hence,

we have that G2 Diag(Us−1)u−1τ(e1) ≈ G2 Diag(Us−1)uq−1 ∈M1×N ′
Σ ⊂ O1×N ′

Σ . Therefore
all entries of H1 Diag(Us−1) are in OΣ and H1 is strongly regular.

Let us now deal with H2. Similarly, we have that

H2 Diag(Us−1) ≈ u−1(G1e2 −G2e1) Diag(Us−1)

≈ u−1G1 Diag(Us−1)e2 −G2 Diag(Us−1)u−1e1.

Since v(e2) = 0, we have that the term u−1G1 Diag(Us−1)e2 has all the entries in OΣ.
Moreover, e1 ≈ u so that all the entries of G2 Diag(Us−1)u−1e1 are in OΣ by the hypothesis

on G2. Hence, H2 Diag(Us−1) ∈ O1×N ′
Σ and H2 is strongly regular. This completes the

proof of the Theorem. �

8.3. More structure properties. In contrast with that of strongly regular modular
forms, the structure of the vector spaces Mw(ρ∗Σ det−m;KΣ) is more difficult to describe.
In this subsection, we report on some properties in this direction. Let r ≥ 0 be the unique
integer such that r(q − 1) + 1 ≤ s := |Σ| ≤ (r + 1)(q − 1). We recall that the map

τ r : Mw(ρ;KΣ)→Mqrw(ρ;KΣ) is defined in (1.18). We also write, sometimes, f (k) instead

of τk(f), with f a modular form. Note that the definition also makes sense if k < 0.
However, in this case, the resulting function over Ω needs not to be analytic. We want to
show:

Theorem 8.9. Let f ∈Mw(ρ∗Σ det−m;KΣ). Then, τ r(f) ∈M †wqr(ρ∗Σ det−m;KΣ).

To prove this result we need preliminary tools to handle the representations ρΣ and ρ∗Σ.
We order, for γ ∈ Γ, the columns of ρΣ(γ) from ∅ to Σ along the total order described
in §7.2, and we order the rows from Σ to ∅ along the opposite of this order. In parallel,
we also label rows and columns with integers 1, . . . , N = 2|Σ| in the usual way (this will
serve to transpose matrices), so we have two orderings. Let M = (MI,J)I,J⊂Σ ∈ BN×N be
a matrix with entries in some ring B, with rows and columns indexed as above (the first
index always indicates rows). Since the order opposite of the inclusion order on the subsets
of Σ is obtained by computing complementaries I 7→ Ic := Σ \ I, we have the following
transposition rule:

(8.8) tM = (MJc,Ic)I,J⊂Σ ∈ BN×N .

14The reader will not mix these functions with the functions ei of §3.



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 141

Note that the transposition is relative to the ordering by integers in {1, . . . , N}. In relation
to the ordering by subsets of Σ, this is anti-transposition (that is, transposition with respect
to the anti-diagonal). Now we write with a ∈ A:

ρΣ(Ta) = (ρI,J(Ta))I,J⊂Σ ∈ Fq(tΣ)N×N ,

and similarly, we write ρ∗Σ(Ta) = (ρ∗I,J(Ta))I,J⊂Σ. For U ⊂ Σ, we recall the map (semi-

character) σU : A→ Fq[tU ] defined by

σU (a) =
∏
i∈U

χti(a).

An elementary computation, the fact that the inverse of ρti(Ta) is ρti(T−a), and an appli-
cation of (8.8), lead to:

Lemma 8.10. For I, J ⊂ Σ, we have:

ρI,J(Ta) =

{
0 if I ∪ J ( Σ

σI∩J(a) if I ∪ J = Σ
, ρ∗I,J(Ta) =

{
0 if J ∩ I 6= ∅

(−1)|(J∪I)
c|σ(J∪I)c(a) if J ∩ I = ∅ .

Note that ρΣ(Ta) is symmetric with respect to the anti-diagonal (in the ordering by
{1, . . . , N}; this is the diagonal in the ordering by subsets I, J ⊂ Σ because we can swap
I, J). Note also that the entries in the diagonal (in the ordering over {1, . . . , N}) are all
equal to 1 because these are the entries indexed by I, J with I t J = Σ. The coefficient of
ρΣ(Ta) in the upper-right corner is equal to σΣ(a) =

∏
i∈Σ χti(a). We deduce the explicit

expression of the coefficients of Φρ∗Σ
= (ΦI,J)I,J (defined in §4.2.2) in term of Perkins’

series. In particular, since the function κ in (6.10) is strictly decreasing (with respect to
inclusion), we deduce from Theorem 6.12 the following property. If I, J ⊂ Σ with I∩J = ∅
and I ∪ J 6= Σ (not corresponding to a diagonal coefficient), then

(8.9) v(ΦI,J) ≥ κ(I)− 1.

We set ρ = ρ∗Σ det−m. The above properties can be used to prove:

Lemma 8.11. Let f = (f I)I be a ρ-quasi-periodic function in OΣ. Then, if I ( Σ,
v(f I) ≥ κ(I).

Proof. By Proposition 4.11, we have

f = Φρg

where g = (gI)I ∈ KΣ[[u]]N×1. Since the entries of Φρ are in K◦Σ〈〈e〉〉b (v-valuations in
] − 1, 0] ∪ {∞}) we see, inductively, that gI ∈ uKΣ[[u]] if I ( Σ (while gΣ ∈ KΣ[[u]]) and
(8.9) allows to conclude. �

This generalizes Corollary 7.4. Theorem 8.9 now follows easily. Thanks to the alternative
condition for strong regularity (8.5) and Lemma 8.11, the property of the Theorem is
verified taking into account that if I ( Σ then qrκ(I) ≥ |I|, which is easily seen.
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Note that if s = 1 (case in which we denote by t the unique variable), every Drinfeld
modular form for ρ∗t is strongly regular, which is a restatement of Theorem 3.9 of [63]. We
have

M †w(ρ∗Σ det−m;KΣ) ⊂Mw(ρ∗Σ det−m;KΣ) ⊂M !
w(ρ∗Σ det−m;KΣ),

and the inclusions are in general strict. Moreover, as an immediate consequence of Theorem
8.9, we have:

Corollary 8.12. If s = |Σ| < q, then M †w(ρ∗Σ det−m;KΣ) = Mw(ρ∗Σ det−m;KΣ). For any
s, Mw(ρ∗Σ det−m;KΣ) is of finite dimension over KΣ.

In particular, one can easily check that, in the above hypotheses,

(8.10) E(s; ρ∗Σ) = (−1)s
⊗
i∈Σ

E(1; ρ∗ti).

In fact, the formula (8.10) can be proved also for s = q by using the methods of §9.
This implies and generalizes [21, Theorem 4.4] (see the identity at the level of the first
coefficients).

We also deduce the next result which asserts, in particular, that there are no non-zero
KΣ-valued modular forms of negative weight:

Corollary 8.13. We have Mw(ρ∗Σ det−m;KΣ) = {0} for w < 0, for w = 0 and m 6= 0, or
for w = 0 and Σ 6= ∅.

Proof. Note that M †w(ρ∗Σ det−m;KΣ) = {0} if w < 0. Hence we obtain the first assertion,
combining with Theorem 8.9. The other properties are easy. �

Corollary 8.13 is also a consequence of the main result of the next subsection.

8.3.1. Another consequence of Theorem 8.9. We shall show:

Theorem 8.14. For all Σ ⊂ N∗ finite and m ∈ Z/(q − 1)Z we have that

Mw(ρ∗Σ det−m;KΣ) = Mw(ρ∗Σ det−m;LΣ)⊗LΣ
KΣ.

We point out that we do not know if the dimensions, of Mw(ρ;KΣ) over KΣ and of
Mw(ρ;LΣ) over LΣ, agree. The proof of Theorem 8.14 rests also on a notion of analytic
part of non-analytic modular form. The main result regarding this notion is Proposition
8.16. Recall that h = −u+o(u) is Gekeler’s cusp form in Sq+1(det−1;C∞) as in [24, (5.11),
(9.3)]. We need the following technical refinement of Proposition 3.32 where, for k ≥ 0,

K
(k)
Σ denotes the image of KΣ by τk in KΣ and K

(−k)
Σ denotes the τ -difference field generated

by the elements f (k) with f ∈ KΣ. This field can be embedded in the perfect closure Kperf
Σ

of KΣ. Note that h1/qk = h(−k) is a well defined element of C∞((u))perf.

Proposition 8.15. (1) For k ≥ 0 the field KΣ is a K
(k)
Σ -vector space of dimension qk with

basis (1, h, . . . , hq
k−1). (2) Every element f of K

(−k)
Σ can be expanded, in a unique way, as

f =
∑
i≥i0

fih
−i/qk , fi ∈ K◦Σ〈〈e〉〉b.



THE ANALYTIC THEORY OF VECTORIAL DRINFELD MODULAR FORMS 143

Proof. (1) We note that

KΣ[[u]] =

qk−1⊕
i=0

KΣ[[uq
k
]]ui.

We claim that

KΣ =

qk−1⊕
i=0

K
(k)
Σ ui.

Indeed otherwise, there would exist a non-trivial linear dependence relation

(8.11)

qk−1∑
i=0

αie
i
0 = 0, αi ∈ K

(k)
Σ .

We know from Corollary 6.4 that the higher divided derivatives D stabilize the field KΣ.

In particular, K
(k)
Σ is contained in the subfield of constants of each one of the operators Di,

with i = 1, . . . , qk − 1. In (8.11), consider the integer i ∈ {0, . . . , qk − 1} maximal with the
property that αi 6= 0. Since

ej0 =
∑

k1,...,kj≥0

(π̃z)q
k1+···+qkj

dk1 · · · dkj
, 0 ≤ j ≤ qk − 1,

we have that Di(e
j
0) = 0 if j < i and Di(e

i
0) = (−1)i. Applying Di on both sides we get

αi = 0 in contradiction with our assumptions.
Note that h is a uniformizer of C∞[[u]]. By the u-expansion

h ∈ −u+ uC∞[[uq−1]] ⊂MΣ

[24, (9.3)] there is an h-expansion:

u = −h+
∑
i≥1

cih
i, ci ∈ A

and a canonical isomorphism KΣ[[h]] ∼= KΣ[[u]] (consider a compositional inverse). We
identify these two rings. Then

KΣ =

qk−1⊕
i=0

K
(k)
Σ hi.

(2) From the identities eqi + θei = ei−1, equivalent to

(8.12) e
1
q

i =
1

θ1/q

(
e

1
q

i−1 − ei
)
, i ∈ Z

we deduce, with Kperf the perfect closure of K, that

(〈e〉j)(−1) ∈
(
Kperf(tΣ)〈e〉 ∩K◦Σ〈〈e〉〉b

)
[e

1
q

0 ], j ∈ Z[p−1]≥0



144 F. PELLARIN

so that K
(−1)
Σ = KΣ[u

1
q ], which implies, identifying KΣ[[u1/qk ]] and KΣ[[h1/qk ]] (u1/qk and

h1/qk are two uniformizers)

K
(−k)
Σ = KΣ[u

1

qk ] = KΣ[h
1

qk ] =

qk−1⊕
i=0

KΣh
i

qk , k ≥ 0.

Combining with Proposition 3.32 we see that

K
(−k)
Σ = K◦Σ〈〈e〉〉b((u))[u

1

qk ] = K◦Σ〈〈e〉〉b((h))[h
1

qk ] = K◦Σ〈〈e〉〉b((h
1

qk )).

�

Let f be an element of KN×1
Σ . We can expand in a unique way (depending on the choice

of the modular form h)

(8.13) f =

qk−1∑
i=0

fih
i, fi ∈

(
K

(k)
Σ

)N×1
.

With ρ : Γ→ KN×1
Σ a representation of the first kind and w an integer, we have:

Proposition 8.16. Assume that f is an element of M !
w(ρ;B) with B = LΣ or B = KΣ.

Then, for all i, fi equals g
(k)
i for some analytic function gi : Ω→ KN×1

Σ and

fi ∈M !
w−i(q+1)(ρdet i;B) ∩ (K

(k)
Σ )N×1, i = 0, . . . , qk − 1.

Proof. In the statement we understand that for all i there exists f̃i ∈M !
w(ρ;B)(k), uniquely

determined, such that it can be identified, in (KΣ)N×1, with fi (and we identify the two
objects). Consider a weak modular form f of weight w. We consider the decomposition
(8.13) determined by Proposition 8.15. Denote by Mero(Ω→ BN×1) the B-vector space of
meromorphic functions Ω→ BN×1 (in the obvious sense, extending our notion of analytic
functions Ω→ BN×1). Then

(8.14) Mero(Ω→ BN×1) =

qk−1⊕
i=0

Mero(Ω→ BN×1)(k)hi.

Since f is meromorphic, we have an expansion

(8.15) f =

qk−1∑
i=0

f̃ih
i, f̃i ∈ Mero(Ω→ BN×1)(k).

If γ ∈ Γ, applying the Petersson slash operator (4.19) we obtain, by using the modularity
of h:

qk−1∑
i=0

(
f̃i|w−i(q+1),ρ det iγ

)
hi = f |w,ργ = f =

qk−1∑
i=0

f̃ih
i.
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By the uniqueness of the decomposition (8.14), we deduce that

f̃i ∈M!!
w−i(q+1)(ρdet i;B), i = 0, . . . , qk − 1.

We now proceed to show that all the functions f̃
(−k)
i are analytic. Let z0 be an element of

Ω. All we need to show is that for all i, f̃i is locally analytic at z0. Being ordz0 : Mero(Ω→
B) → Z the map that associates to a meromorphic function its order at z0 we note that,
by the fact that ordz0(h) = 0, locally at z0,

f(z) =
∑
i≥0

gi(h(z)− h(z0))i, gi ∈ BN×1.

Now, again locally at z0,

f(z) =

qk−1∑
i=0

(h(z)− h(z0))i
∑
j≥0

gi+jqk(h(z)− h(z0))jq
k

=

qk−1∑
i=0

g̃i(z)(h(z)− h(z0))i

=

qk−1∑
i=0

hif̃i(z),

where g̃i :=
∑

j≥0 gi+jqk(h(z)− h(z0))jq
k

is locally analytic at z0 and the last step follows,

after expansion of the powers (h(z) − h(z0))i, by uniqueness in (8.15). This means that

f̃i is locally analytic at all z0 ∈ Ω. Being modular-like, it is ρ-quasiperiodic. Combining
the proofs of Propositions 4.2 and 4.11 we see that it is also tempered. By uniqueness, we

can identify f̃i with its tame expansion fi ∈ (K
(k)
B )N×1 and fi ∈M !

w−i(q+1)(ρdeti;B), each

function being the k-th twist of an analytic function over Ω. �

With B as above we have:

Corollary 8.17. Consider f ∈M !
qkw

(ρ;B). Then

[f ]k := f
(−k)
0

is in M !
w(ρ;B).

Proof. By Proposition 8.16 we have that f0 ∈ M !
wqk

(ρ;B) and f is the k-th twist of an

analytic function. Hence, writing g := [f ]k,

g|w,ργ =
(
g(k)|wqk,ρ

)(−k)
= g, γ ∈ Γ.

�

Given f ∈ M !
qkw

(ρ;B) we call [f ]k ∈ M !
w(ρ;B) the analytic part of f (−k). The latter

needs not to be analytic. Note that if f = τk(g) with g analytic, then [f ]k = g.
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Proof of Theorem 8.14. Clearly Mw(ρ∗Σ det−m;LΣ) ⊗LΣ
KΣ ⊂ Mw(ρ∗Σ det−m;KΣ) so we

need to prove the opposite inclusion; this is a consequence of the fact that for all w′,

M †w′(ρ
∗
Σ;KΣ) is of finite dimension over KΣ, by Corollary 8.8.

We set once again ρ = ρ∗Σ det−m (for our choice of Σ and m). By Theorem 8.9 there
exists k ≥ 0 such that

τk
(
Mw(ρ;KΣ)

)
⊂M †

qkw
(ρ;KΣ)

and by Corollary 8.8, the space on the right is finitely dimensional over KΣ and generated
by modular forms that take values in LΣ and are defined over LΣ, with a basis (g1, . . . , gr)
constituted by modular forms that are also elements of

Mqkw(ρ;LΣ) ∩
(
L◦Σ〈〈e〉〉b((u))

)N×1
.

This property on the tame series expansion follows easily from the properties of the func-
tions Fi mentioned and used in the proof of Proposition 7.12 and in §8.2.

Let f be an element of Mw(ρ;KΣ). Since τk(f) ∈M †
qkw

(ρ;KΣ) we can write, in a unique
way,

f =

r∑
i=1

αig
(−k)
i , α1, . . . , αr ∈ KΣ.

By Corollary 8.17,

f =

r∑
i=1

αi[gi]k ∈M !
w(ρ;LΣ)⊗LΣ

KΣ ∩
(
L◦Σ〈〈e〉〉b((u))⊗LΣ

KΣ

)N×1
.

Note that [gi]k ∈M !
w(ρ;LΣ) for all i, but we do not have, in general [gi]k ∈Mw(ρ;LΣ). We

still need to show that f ∈ Mw(ρ;LΣ) ⊗LΣ
KΣ, that is, that f is a linear combination of

regular LΣ-valued modular forms. We already know that there exist h1, . . . , hr ∈M !
w(ρ;LΣ)

such that f ∈ VectKΣ
(h1, . . . , hr). We can even choose h1, . . . , hr linearly independent over

LΣ with r = r0 minimal with the property that the given element f is in their KΣ-span.
Also, there is no loss of generality if we suppose that µ := min{v(hi) : i ≤ r} is maximal,
where v(hi) stands for the infimum of the v-valuations of the entries of the weak modular
form hi. A last reduction that we can assume, without loosing generality, is that the set
I of indices i such that v(hi) = µ is non-empty and minimal; note that it cannot be a
singleton. We select one such minimal family (h1, . . . , hr) of LΣ-linearly independent weak
modular forms.

Assume by contradiction that µ < 0. We know that there exist α1, . . . , αr ∈ KΣ, not all
zero, such that v(

∑
i αihi) ≥ 0 (because f belongs to the span). By Proposition 3.32, we

can expand in a unique way hi =
∑

j hi,ju
i with hi,j ∈ (L◦Σ〈〈e〉〉b)N×1. Then,

(8.16)
∑
i

αihi,j = 0, j < 0,
∑
i

αihi,0 ∈ KN×1
Σ .

We claim that given elements c1, . . . , cr ∈ (L◦Σ〈〈e〉〉b)N×1 that are KΣ-linearly dependent,
then they also are LΣ-linearly dependent. To see the latter property, note that a KΣ-linear
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dependence relation connecting the r elements c1, . . . , cr of (L◦Σ〈〈e〉〉b)N×1 is equivalent to
a relation

r∑
l=1

αl
∑

j∈Z[1/p]≥0

cl,j〈e〉j = 0

for α1, . . . , αh ∈ KΣ and cl,j ∈ LN×1
Σ (with Gauss’ norm of entries that are uniformly

bounded over Z[1
p ]≥0). Since the elements 〈e〉j are linearly independent over KΣ, the above

is equivalent to
r∑
l=1

αlcl,j = 0, j ∈ Z[1/p]≥0.

If α1, . . . , αr are not all zero, then there exist α′1, . . . , α
′
r ∈ LΣ, not all zero, such that∑

i α
′
ici = 0 hence proving the claim.

Returning to the proof of our Theorem, let us suppose that j = j0 < 0 is the smallest
integer such that in (8.16), the linear dependence relation is non-trivial, among not all zero
elements hi,j0 . There exist α′1, . . . , α

′
r ∈ LΣ, not all zero, such that

∑
i α
′
ihi,j0 = 0 so that

v
(∑
i∈I

α′ihi

)
> µ.

If i0 ∈ I is such that α′i0 6= 0 (it exists), we can set h′i0 :=
∑

i∈I α
′
ihi and h′i = hi if i 6= i0.

Then (h′1, . . . , h
′
r) is a basis of VectKΣ

(h1, . . . , hr) hence containing f so that by maximality
of µ, min{v(h′i) : i ≤ r} = µ. Now, by construction, {i : v(h′i) = µ} ( I contradicting the
minimality of I. Hence µ ≥ 0 and the proof of the theorem is complete in this case. The
handling of the case j = j0 = 0 in (8.16) is slightly different but similar in spirit (note that
the v-valuation of a tame series is in ]− 1, 0]). We leave it to the reader. �

9. Harmonic product and Eisenstein series

In this section we study another aspect of the Eisenstein series of §7 associated to
representations of the form ρ∗Σ with Σ a finite subset of N∗ that connects to the multiple
zeta values as introduced and discussed by Thakur in [77]. The first entries of these
Eisenstein series are proportional, by Proposition 7.2, to combinations of series such as

(9.1)
∑
a∈A+

σΣ(a)Gm(ua) ∈ A[tΣ][[u]]

where σΣ is the semi-character a 7→
∏
i∈Σ χti(a) and Gm the m-th Goss polynomial asso-

ciated to the lattice π̃A ⊂ C∞. In [58, 34] an Fp-algebra structure is described, over the
set of multiple zeta series in the Tate algebras TΣ (in fact, these are functions in EΣ ⊂ TΣ)
generalizing Thakur’s multiple zeta values (see for example [77, 1, 79]). We will see, in this
section, that this algebra structure determines a multiplication rule for the series 9.1 and
can be viewed as a source of explicit relations connecting Eisenstein series.

The results of the present section cover various aspects of an harmonic product formula
(Theorem 9.4 and complements) generalizing [58, Theorems 2.3, 3.1]. We present now the
basic tools.
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We recall that, as usual in this text, Σ denotes a finite subset of N∗ of cardinality s (the
empty set is allowed). Let L/Fq be a field extension.

Data 9.1. Let us suppose we are given with:

(1) Injective Fq-linear maps δi : A→ L, for i ∈ Σ.
(2) For αi,j ∈ N (i ∈ Σ and j = 1, . . . , r), maps σj : A → L defined by σj(a) :=∏

i∈Σ δi(a)αi,j . We call semi-characters such maps A→ L (15).
(3) Injective Fq-linear map γ : A→ L (we adopt the notation γa for the evaluation of

γ in a ∈ A).

We consider a semi-character σ =
∏
i∈Σ δ

αi
i with linear maps δi as above, i ∈ Σ (empty

products are allowed). The map 1 sending A to 1 ∈ L is the trivial semi-character.
Together with the objects that we have introduced so far, we consider, for integers

ni ∈ N∗ with i = 1, . . . , r composition arrays, that is, tables of the form:

(9.2) C :=

(
σ1 · · · σr
n1 · · · nr

)
.

When r = 1, we may sometimes write (n;σ) instead of
(
σ
n

)
. If C = ( 1 ··· 1

n1 ··· nr ) we simplify it

to C = (n1, . . . , nr). The degree of C is
(
σ
n

)
where σ = σ1 · · ·σr and n =

∑
i ni. The weight

is n and the type is σ. If σ = 1 we say that the type is trivial. For a composition array as
in (9.2), we introduce the twisted power sum

Sd(C) :=
∑

d1>···>dr≥0
a1,...,ar∈A+

degθ(ai)=di,∀i=1,...,r

σ1(a1) · · ·σr(ar)
γn1
a1 · · · γnrar

∈ L.

These twisted power sums generalize the classical power sums of Thakur in [77], as well as
the twisted power sums of [62]. We shall show the following generalization of [58, Theorem
3.1]:

Theorem 9.2. Let σ, ψ be two semi-characters and m,n two positive integers. For any
α, β semi-characters and i, j ∈ N∗ there is an element fα,β,i,j ∈ Fp such that, for all d ≥ 0,

Sd

(
σ
m

)
Sd

(
ψ
n

)
− Sd

(
σψ

m+ n

)
=

∑
αβ=σψ
i+j=m+n

fα,β,i,jSd

(
α β
i j

)
.

In the theorem, the sum is on the couples of semi-characters (α, β) such that αβ = σψ,
and over the decompositions n+m = i+ j, so there are only finitely many terms in it. In
order to proceed further, we need additional data of conditions:

Data 9.3. Let us assume that:

(1) L is endowed with a valuation ν : L→ Q∪{∞} and it is complete for this valuation
(2) ν(δi,j(a)) ∈ {0,∞} for all i, j and a ∈ A

15Note that they generalize the semi-characters that we have discussed so far.
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(3) γ−1
a → 0 as a runs in A (for the valuation ν).

Assuming the Data 9.3 it is easy to see that the series

(9.3) fA(C) :=
∑
d≥0

Sd(C)

converges in L for any composition array C as in (9.2). Let n be a positive integer, and let
σ : A→ L be a semi-character such that ν is trivial over its image. We denote by Fσn the
Fp-sub-vector space of L generated by the elements fA( σ1 ··· σr

n1 ··· nr ) with r > 0,
∏
i σi = σ,∑

i ni = n (with ni > 0 for all i). We also set F1
0 := Fp and Fσ0 := (0) if σ 6= 1. We consider

the sum F :=
∑

n,σ Fσn . The above result can be used, in a lengthy but straightforward

way very similar to that of [58], to prove the next result.

Theorem 9.4. For all m,n > 0 and σ, ψ semi-characters, We have that FσmF
ψ
n ⊂ Fσψm+n,

and the Fp-vector space F is an Fp-algebra.

9.1. Existence of the harmonic product. In this section we prove Theorem 9.2. We
will use the methods of [58, §3.1.2 and §3.1.3] which deeply borrow from Thakur in [79].
The following result can be found in [58].

Proposition 9.5. Let Σ be a finite subset of N∗. Consider U, V such that U tV = Σ. Let
L/Fq be a field extension and let us suppose that xi (i ∈ Σ) are elements of L and let z be
an element of L \ Fq. Then, the following formula holds:∑

µ,ν∈F2
q\∆

∏
i∈U (xi + µ)

∏
j∈V (xj + ν)

(z + µ)(z + ν)
= −

∑
ItJ=Σ

|J |≡1 (mod q−1)
J⊂U or J⊂V

∑
µ∈Fq

∏
k∈I(xk + µ)

(z + µ)
.

With appropriate choices of the set Σ, of the subsets U, V , of the elements xi and z and
applying a power of an endomorphism of L which is Fq(xi : i ∈ Σ)-linear and which sends
z to zq, and specialization of some xi to z, we deduce:

Corollary 9.6. Considering a finite set Σ ⊂ N∗, an ordered partition Σ = UtV , a positive
integer N and two integers α, β such that N = α+ β, for all 1 ≤ k ≤ N and I ⊂ Σ, there
exists cI,k ∈ Fp such that∑

µ,ν∈F2
q\∆

∏
i∈U (xi + µ)

∏
j∈V (xj + ν)

(z + µ)α(z + ν)β
=

∑
k=1,...,N
I⊂Σ

cI,k
∑
µ∈Fq

∏
i∈I(xi + µ)

(z + µ)k
.

In the above formula, ∆ denotes the diagonal subset. We can now prove Theorem 9.2.
We recall that we have denoted by A+(d) the set of monic polynomials of degree d in A.
We also denote by A+(< d) the set of monic polynomials of A which have degree < d. For
n ∈ A+(d) and m ∈ A+(< d), we write

Sm,n = {(n+ µm, n+ νm);µ, ν ∈ Fq, µ 6= ν} ⊂
(
A+(d)×A+(d)

)
\∆,
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where ∆ is the diagonal of A+(d) × A+(d). Similarly, we define for n ∈ A+(d) and m ∈
A+(< d):

S′m,n = {(n+ µm,m);µ ∈ Fq} ⊂ A+(d)×A+(< d).

From [58, Lemmas 3.10 and 3.11] and following the original ideas of Thakur in [79], we
deduce that the sets Sm,n determine a partition of A+(d) × A+(d) \∆ and the sets S′m,n
determine a partition of A+(d)× A+(< d). Moreover, S′m,n = S′m′,n′ if and only if Sm,n =
Sm′,n′ .

Now, let us choose d > 0. We write σψ =
∏
i∈Σ δi with δi an injective Fq-linear map

A → L for all i ∈ Σ (there can be multiple occurrences of such maps), and σ =
∏
i∈U δi,

ψ =
∏
i∈V δi with U t V = Σ. We have, with U a set of representatives of the above-

mentioned partition:

Sd

(
σ
α

)
Sd

(
ψ
β

)
− Sd

(
σψ
N

)
=

∑
(a,b)∈A+(d)×A+(d)\∆

σ(a)ψ(b)

γαa γ
β
b

=

=
∑

(m,n)∈U

∑
(a,b)∈Sm,n

σ(a)ψ(b)

γαa γ
β
b

.

We focus on the sub-sum corresponding to the choice of a set Sm,n. We want now to
compute:

∑
(a,b)∈Sm,n

σ(a)ψ(b)

γαa γ
β
b

=

=
∑

(µ,ν)∈F2
q\∆

σ(n+ µm)ψ(n+ νm)

γαn+µmγ
β
n+νm

=
∑

(µ,ν)∈F2
q\∆

∏
i∈U δi(n+ µm)

∏
j∈V δi(n+ νm)

(γn + µγm)α(γn + νγm)β

=
σ(m)ψ(m)

γNm

∑
(µ,ν)∈F2

q\∆

∏
i∈U

(
δi(n)
δi(m) + µ

)∏
j∈V

(
δj(n)
δj(m) + ν

)
(
γn
γm

+ µ
)α (

γn
γm

+ ν
)β .

Note that we have used the Fq-linearity of δi for all i ∈ Σ so that δi(n+µm) = δi(n)+µδi(m)
and the hypothesis of injectivity, to divide by δi(m) which needs to be non-zero. Similarly,
we have used the Fq-linearity of the map a 7→ γa and the fact that γn + λγm does not
vanish, because n,m, in the above computation, have distinct degrees. Applying Corollary

9.6 with xi = δi(n)
δi(m) for i ∈ Σ and z = γn

γm
which does not belong to Fq, we obtain the
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identity:

(9.4)
∑

(a,b)∈Sm,n

σ(a)ψ(b)

γαa γ
β
b

=

= σ(m)ψ(m)γ−Nm
∑
I⊂Σ

k=1,...,N

cI,k
∑
µ∈Fq

∏
i∈I

(
δi(n)
δi(m) + µ

)
(
γn
γm

+ µ
)k =

=
∑

ItJ=Σ
k=1,...,N

cI,k
∑
µ∈Fq

∏
i∈I δi(n+ µm)

∏
j∈J δj(m)

γkn+µmγ
N−k
m

.

The latter is a sum over S′m,n. In view of our previous observations, this concludes the
proof of our Theorem. The deduction of Theorem 9.4 from Theorem 9.2 is standard and
we omit it. If we choose δi = χti for i ∈ Σ and γa = eC(az), and we follow closely the
above proof of Theorem 9.4 in conjonction with [58, Theorem 3.1], we deduce the following
explicit result that will be used later, with σΣ =

∏
i∈Σ χti and γa = eC(az) for a ∈ A \ {0}.

Theorem 9.7. The following formula holds, for all Σ ⊂ N∗ and U t V = Σ:

fA

(
σU
1

)
fA

(
σV
1

)
− fA

(
σΣ

2

)
=

fA

(
σU σV
1 1

)
+ fA

(
σV σU
1 1

)
−

∑
ItJ=Σ

|J |≡1 (mod q−1)
J⊂U or J⊂V

fA

(
σI σJ
1 1

)
.

In the next three short subsections we give the three main sets of Data 9.1 that are
considered in this paper (we will mainly consider the second one, described in §9.1.2).

9.1.1. Multiple zeta values. We choose the Data 9.1 in the following way. We consider

variables tΣ = {ti : i ∈ Σ} and the field L = KΣ := K̂(tΣ)v∞ obtained by completing
K(tΣ) with respect to the Gauss’ valuation ν extending the valuation v∞ of K. We consider
further the injective Fq-algebra morphisms δi(a) := χti(a) for all i ∈ Σ to build our semi-
characters. As we did previously, we write, for U a finite subset of N∗, σU (a) :=

∏
i∈U χti(a).

More generally, we can also consider elements in the monoid of degrees of [34, §2.1] in place
of U ; this amounts in considering semi-characters σ defined by

(9.5) σ(a) =
∏
i∈Σ

χti(a)ni

with Σ ⊂ N∗ finite and ni ≥ 0. Finally, we choose γ the identity map, so that for all
a ∈ A, γa = a ∈ L. Then we also have the Data 9.3 and we are in the settings of [58].
In the notations of ibid., we have ζA(C) = fA(C) for any C as in (9.2) and we can speak
about degree, weight and type of ζA(C). One proves (see [34, Corollary 3.3]) that the
K[tN]-algebra they generate is graded by the degrees. Note also that for any such element
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there exists a finite subset Σ of N∗ such that it belongs to EΣ ⊂ KΣ . If we consider the
particular case of composition arrays C as in (9.2) such that the semi-characters σi are all
equal to the trivial semi-character 1 (trivial type), then it is easy to see that the series
ζA(C) ∈ K∞ are the multiple zeta values of Thakur (the reader can find more in the papers
[1, 79] and the survey [80] also provides a wider set of references).

9.1.2. A-periodic multiple sums. These are closely related to first entries of Eisenstein series
for ρ∗Σ. We choose, for the Data 9.1:

γa := eC(az), a ∈ A \ {0}.

This choice leads us to work with the same semi-characters as in §9.1.1, and in the field
L = K(tΣ)((u)) which is complete for the valuation ν = v, giving the order at u = 0 of a
formal power series of u. We are also in the settings of Data 9.3. In this case, for C as in
(9.2), we set ϕA(C) = fA(C) and we can continue to speak about degree, weight and type
of such a sum. Explicitly:

ϕA(C) =
∑

d1>···>dr≥0
a1,...,ar∈A+

degθ(ai)=di,
∀i=1,...,r

σ1(a1) · · ·σr(ar)un1
a1
· · ·unrar ∈ L,

(with ua = expC(π̃az)−1). These series define formal series of K(tΣ)[[u]] and each of them
is also converging for u in a non-empty disk of C∞ of radius ≤ c for some c ∈ |C∞|∩]0, 1[,
containing 0. From Theorem 9.4 we deduce:

Corollary 9.8. The Fp-vector space spanned by 1 and the series ϕA(C) with C as in (9.2)
is an Fp-algebra. The multiplication rule is compatible with the filtration induced by the
semigroup of the elements (w, σ) with w ∈ Z and σ semi-characters as in §9.1.1.

Again with C as in (9.2), we consider a variant of the above sums based on Goss’
polynomials:

(9.6) φA(C) =
∑

|a1|>···>|ar|>0

σ1(a1) · · ·σr(ar)Gn1(ua1) · · ·Gnr(uar),

with the sum running over elements a1, . . . , ar ∈ A+. These sums are more closely related
to the first entries of our Eisenstein series. We have the next result.

Corollary 9.9. The K-vector space spanned by 1 and the series φA(C) with C as in (9.2)
is a K-algebra and equals the K-vector space spanned by the series ϕA(C).

Proof. We claim that the family (Gm(X))m>0 is a K-basis of XK[X]. First of all, these
polynomials are linearly independent over K because the functions z 7→ Gm(u(z)), mero-
morphic over C∞, have poles of distinct orders at the elements a ∈ A ⊂ C∞. To show
that these polynomials span XK[X] it suffices to prove that for k > 0, uk belongs to the
K-span V of the polynomials Gm(u) with m > 0. This is clear for k = 1. Now assuming
that uk−1 belongs to V , by the fact that uk = uuk−1, it suffices to show that uGm(u) ∈ V
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for all m, but this easily follows from [24, Proposition (3.4) (ii)] and induction on m hence
proving the claim. The result now follows from Corollary 9.8. �

9.1.3. Remark on product rule. The product rule of Corollary 9.9 does not seem to be com-
patible with a filtration involving the composition arrays in a simple way, unlike Corollary
9.8. Note however the following formula, which is homogeneous in the orders of the Goss’
polynomials: ∑

m+n=k

Gm(X)Gn(X) =

((
k

1

)
− 1

)
Gk(X), k ≥ 0.

To prove this formula we use (6.6) and Lemma 6.5, and

G(1) = xTD,x(G1(u)) =
ux

1− u expC(x)
.

Hence we obtain the following Riccati-like differential equation from which the above iden-
tities can be derived:

G(1)2 = x
∂

∂x

(
G(1)

)
−G(1).

9.1.4. Multiple sums in KΣ. This is the third important type of multiple sums that is
determined by making the following choice of Data 9.1, but it will be only studied in §10.1.
We consider L = K the field of uniformizers with the valuation ν = v. As in §9.1.2 we use
γa := eC(az) for a ∈ A \ {0}. Instead of the semi-characters of §9.1.1, we use, for i ∈ N∗,
δi : A→ L defined by

δi(a) = χti(az) =
expC

(
π̃z
θ−t

)
ω(t)

,

seen as a tame series in L◦〈〈e〉〉b. These maps are clearly Fq-linear and injective, and they
give rise to semi-characters

σ̃U (a) :=
∏
i∈U

χti(az)

with U a finite subset of N∗ (16). With them we can construct the formal series

(9.7) ϕ̃A

(
σ̃1 ··· σ̃r
n1 ··· nr

)
=

∑
|a1|>···>|ar|>0

σ̃1(a1) · · · σ̃r(ar)un1
a1
· · ·unrar ,

where the semi-characters σ̃i are of the above form, where n1, . . . , nr are positive integers,
and with the sum running over elements a1, . . . , ar ∈ A+. This time however, we do
not have a consistent set of Data 9.3 but not for this reason, this case is less interesting.
Condition (2) does not hold in general. We cannot guarantee the convergence of the series
in (9.7) for the v-valuation. However, when these series converge for the v-valuation (this
can happen), they give rise to well defined elements of L.

We have:

16Or more generally, an element of the monoid of degrees as in §9.1.1.
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Corollary 9.10. There is a multiplication rule on the series (9.7) that are convergent for
the v-valuation. Choosing a correspondence χti ↔ δi identifies, if all the terms are well
defined, the multiplication rule with that of Corollary 9.8 and that of §9.1.1.

Example. We have the following formulas expressing the same harmonic product rule in
the three different settings of §9.1.1, 9.1.2 and 9.1.4. We use δ the semi-character defined
by δ(a) = χt(az) (17):

(9.8) ζA(1;χt)ζA(q − 1) = ζA(q;χt) + ζA

(
χt 1
1 q−1

)
,

ϕA(1;χt)ϕA(q − 1) = ϕA(q;χt) + ϕA

(
χt 1
1 q−1

)
,

ϕ̃A(1; δ)ϕ̃A(q − 1) = ϕ̃A(q; δ) + ϕ̃A

(
δ 1
1 q−1

)
.

It is not difficult to verify that all the multiple series involved in the third formula converge
for the v-valuation. To prove the identities (9.8) one observes that the first identity follows
from identities on multiple power sums (see [34, §7.2]), then uses that the product rules
of §9.1.1, 9.1.2, 9.1.4 are the same upon choice of the appropriate correspondence between
the semi-characters.

Remark 9.11. In the settings of §9.1.1 we mention that Khac Nhuan Le [45] gave a direct
and completely explicit proof of Theorem 9.2. The method he uses is a generalization of
Chen’s method in [18]. It would be nice to see if his method extends to our general setting
of Data 9.1.

9.2. Explicit formulas. The harmonic product can be applied to obtain identities for
certain modular forms, notably Eisenstein series. We give three examples. In §9.2.1 an
identity for Eisenstein series of weight q + 1 for ρ∗{1,2}, in §9.2.2 an identity for Eisenstein

series of weight 2 for ρ∗Σ with |Σ| ≡ 2 (mod q − 1) and in §9.2.3 we present a question on
Serre’s derivatives of Eisenstein series of weight 1 and their possible relation with Poincaré
series of weight 3.

We are going to use Lemma 7.10 by means of the following consequence: if an element
of Mw(ρ∗Σ;KΣ) has vanishing first entry, then it vanishes identically. This can be applied
to prove (8.10) for s ≤ q. To see this we choose k ∈ Σ and we write Σ′ := Σ \ {k}, with
Σ non-empty finite subset of N∗ of cardinality s ≤ q. The harmonic product formula of
Theorem 9.7 yields inductively

ϕA(s− 1, σΣ′)ϕA(1, χtk) = ϕA(s, σΣ).

This formula can also be written more explicitly in the following way:∏
i∈Σ

∑
a∈A+

χti(a)ua

 =
∑
a∈A+

σΣ(a)usa.

17Note that for coherence with other references, we render in different ways the multiple series of ‘depth’
r = 1 or with trivial semi-character (scalar). In particular, we sometimes write, for the arguments of
multiple sums, (n;σ) instead of

(
σ
n

)
, and (n1, . . . , nr) instead of ( 1 ··· 1

n1 ··· nr
).
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This implies (8.10); we leave the details to the reader.

9.2.1. An identity for Eisenstein series of weight q+ 1. We use Σ = {1, 2} and we suppose
that q > 2. We denote by g the (scalar) normalized Eisenstein series of weight q − 1 for 1
(following Gekeler’s notations in [24]).

Proposition 9.12. The following identity holds when q > 2:

E(q+ 1; ρ∗Σ) = −E(1; ρ∗t1)⊗E(q; ρ∗t2)−E(q; ρ∗t1)⊗E(1; ρ∗t2)− (θq − θ)−1gE(1, ρ∗t1)⊗E(1, ρ∗t2).

To prove it, we use the next Lemma in the settings of Theorem 9.7.

Lemma 9.13. The following formula holds:

(9.9) ϕA(q + 1, σΣ) =

= ϕA(1, χt1)ϕA(q, χt2) + ϕA(q, χt1)ϕA(1, χt2)− ϕA(q − 1)ϕA(1, χt1)ϕA(1, χt2).

Proof. We have the following formulas where we also observe, with Σ = {1, 2}, the formula
ϕA(1;χt1)ϕA(1;χt2) = ϕA(2;σΣ):

ϕA(1, χt1)ϕA(q, χt2) = ϕA

(
σΣ

q + 1

)
+ ϕA

(
σΣ 1
2 q − 1

)
+ ϕA

(
χt2 χt1
2 q − 1

)
ϕA(1, χt2)ϕA(q, χt1) = ϕA

(
σΣ

q + 1

)
+ ϕA

(
σΣ 1
2 q − 1

)
+ ϕA

(
χt1 χt2
2 q − 1

)
ϕA(q − 1)ϕA(2, σΣ) = ϕA

(
σΣ

q + 1

)
+ 2ϕA

(
σΣ 1
2 q − 1

)
− ϕA

(
χt2 χt1
2 q − 1

)
−

−ϕA
(
χt1 χt2
2 q − 1

)
.

The formula (9.9) follows easily; it also holds for q = 2. �

Proof of Proposition 9.12. We note that since q > 2, E(2, ρ∗Σ) = E(1, ρ∗t1) ⊗ E(1, ρ∗t2) by
(8.10). The first coordinates of the modular forms

E(q + 1; ρ∗Σ), E(1; ρ∗χt1
)⊗ E(q; ρ∗χt2

), E(q; ρ∗χt1
)⊗ E(1; ρ∗χt1

), gE(2, ρ∗Σ)
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are proportional to the following A-expansions (where we recall once again that Gn(X)
denotes the n-th Goss polynomial [24, §(3.4)]):

X :=
∑
a∈A+

σΣ(a)Gq+1(ua),

Y1 :=

∑
a∈A+

χt1(a)ua

∑
b∈A+

χt2(b)uqb

 = ϕA(1, χt1)ϕA(q, χt2),

Y2 :=

∑
a∈A+

χt2(a)ua

∑
b∈A+

χt1(b)uqb

 = ϕA(q, χt1)ϕA(q, χt1),

Z :=

1− (θq − θ)
∑
a∈A+

uq−1
a

∑
a∈A+

σΣ(a)u2
a

 = (1− (θq − θ)ϕA(q − 1))ϕA(2, σΣ).

Note that Y1,Y2 ∈ FσΣ
q+1. A simple computation yields Gq+1(X) = Xq+1 + (θq − θ)−1X2.

Hence

X = (θq − θ)−1ϕA(2;σΣ) + ϕA(q + 1;σΣ).

By using Lemma 9.13 with fA = ϕA, the first entry of the modular form given by the
difference of both sides of the identity of our statements vanishes identically so this modular
form vanishes identically by Lemmas 7.10 and 7.11. �

9.2.2. An identity for Eisenstein series of weight 2. We prove here a more complicated
identity involving Eisenstein series of weights 1 and 2 in the case of q odd. We suppose
that |Σ| ≡ 2 (mod q − 1) and we write s = |Σ| = α(q − 1) + 2, α ∈ N. We have:

Proposition 9.14. If q is odd the following formula holds:∑
UtV=Σ

|U |≡1 (mod q−1)
|V |≡1 (mod q−1)

E(1; ρ∗U )⊗ E(1; ρ∗V ) = 2E(2; ρ∗Σ).

Proof. This is a simple combination of Lemmas 7.10 and 7.11 and the next Lemma 9.15. �

Lemma 9.15. The following formula holds:

(9.10)
∑

UtV=Σ
|U |≡1 (mod q−1)
|V |≡1 (mod q−1)

ϕA

(
σU
1

)
ϕA

(
σV
1

)
= 2ϕA

(
σΣ

2

)
.
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Proof. We set m = α(q − 1) + 2 and n = α(q − 1) + 1, for α ≥ 0. We claim that∑
k≡1 (mod q−1)

0≤k≤m

(
m

k

)
≡ 2 (mod p),(9.11)

∑
k≡1 (mod q−1)

0<k≤n

(
n

k

)
≡ 0 (mod p).(9.12)

To see this we consider more generally N ∈ N and we write N = α(q − 1) + l with α ≥ 0
and 0 ≤ l ≤ q − 2. Let λ, µ be in Fq with λ+ µ 6= 0. Then,

1 = (λ+ µ)l = (λ+ µ)N =

N∑
r=0

(
N

r

)
λrµN−r =

q−2∑
r′=0

λr
′
µν(r′)

∑
r≡r′ (mod q−1)

0≤r≤N

(
N

r

)
︸ ︷︷ ︸

=:βr′

,

where ν(r′) is the unique integer in {0, . . . , q − 2} such that l − r′ ≡ ν(r′) (mod q − 1).
Setting further µ = 1, we have the polynomial

P (X) =

q−2∑
r′=0

βr′X
r′ − (X + 1)l ∈ Fp[X],

which vanishes identically over the set Fq\{−1} with q−1 elements, and has degree ≤ q−2.

This implies that it is identically zero; in other words, βr′ =
(
l
r′

)
for r′ = 0, . . . , q−2. Taking

N = m = α(q − 1) + 2 we have l = 2 and computing the coefficient of X in P , we deduce
(9.11). Taking N = n = α(q − 1) + 1 and computing the constant term of P , we deduce
(9.12). This shows the claim. We can complete the proof of formula 9.10. We use Theorem
9.7, which tells us that if U t V = Σ with |U | ≡ |V | ≡ 1 (mod q − 1),

ϕA

(
σU
1

)
ϕA

(
σV
1

)
− ϕA

(
σΣ

2

)
=

ϕA

(
σU σV
1 1

)
+ ϕA

(
σV σU
1 1

)
−

∑
ItJ=Σ

|J |≡1 (mod q−1)
J⊂U or J⊂V

ϕA

(
σI σJ
1 1

)
.

We sum these identities over all such partitions Σ = U t V . First of all, the number of
such partitions is equal to

α∑
k=0

(
|Σ|

k(q − 1) + 1

)
which is congruent to 2 modulo p by (9.11). Let

f : P(Σ)2 → L
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be any map with values in a field L of characteristic p, where P(Σ) is the set of subsets of
Σ. Then,

∑
UtV=Σ

|U |≡1 (mod q−1)


∑

ItJ=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

f(I, J)− f(U, V )− f(V,U)

 =

=
∑

UtV=Σ
|U |≡1 (mod q−1)

∑
ItJ=Σ

|J |≡1 (mod q−1)
J(U or J(V

f(I, J) =

=
∑

ItJ=Σ
|J |≡1 (mod q−1)

f(I, J)
∑

UtV=Σ
|U |≡1 (mod q−1)
U)J or V )J

1,

which vanishes by (9.12). Observing that we can choose f(I, J) = fA( σI σJ1 1 ) terminates
the proof. �

As a complement of Proposition 9.14 we propose the following question, to be compared
with Cornelissen, [19, Proposition (1.15)]. We assume that |Σ| ≡ 2 (mod q − 1).

Question 9.16. Do the forms E(1; ρ∗U ) ⊗ E(1; ρ∗V ), for U t V = Σ and |U | ≡ |V | ≡ 1
(mod q − 1) generate the module M2(ρ∗Σ;KΣ)?

9.2.3. Serre’s derivatives of Eisenstein series. The last type of explicit formulas we want
to discuss in this volume is related to Serre’s derivatives of Eisenstein series. We are going
to see that they are closely related to the harmonic product. We return to the operators

∂
(w)
n (f) introduced in §6.3. We suppose that Σ ⊂ N∗ is such that s = |Σ| ≡ 1 (mod q − 1)

and we study the u-expansion of the first entry (the one which is indexed by ∅) of

∂
(1)
1 (E(1; ρ∗Σ)) ∈ S3(ρ∗Σ det−1;KΣ).

By Proposition 7.2, the first entry of E(1; ρ∗Σ) is equal to −π̃ϕA(1;σΣ). We compute, by
setting Σ′ = Σ t {0}:

∂
(1)
1 (ϕA(1;σΣ)) =

=
∑
a∈A+

σΣ(a)au2
a −

∑
a∈A+

aua
∑
b∈A+

σΣ(b)ub

= −[ϕA(1;χt0)ϕA(1;σΣ)− ϕA(2;σΣ′)]t0=θ.

This implies that the image of ∂
(1)
1 at ϕA(1;σΣ) is the evaluation of a linear combinations of

multiple sums as in §9.1.2 and we transcribe Serre’s derivatives in terms of specializations
of the harmonic relations of §9:
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Lemma 9.17. We have the formula:

(9.13) ∂
(1)
1 (ϕA(1;σΣ)) =


∑

ItJ=Σ′

|J |≡1 (mod q−1)
J(Σ

ϕA

(
σI σJ
1 1

)

t0=θ

.

Proof. This follows directly from Theorem 9.7. �

Viewing Lemma 9.17, it is natural to ask for non-vanishing properties of Serre’s deriva-
tives of our Eisenstein series. In many cases indeed, we can prove that these are non-zero.
For instance, we have the next lemma:

Lemma 9.18. If q > 2, m ≥ 1 and p - m−1, and if Σ is a finite subset of N∗ of cardinality

m(q − 1) + 1, then ∂
(1)
1 (E(1; ρ∗Σ)) 6= 0.

Sketch of proof. In view of Lemmas 7.10, 7.11 and 9.17, it suffices to show that the right-
hand side of (9.13) does not vanish identically if our hypotheses are verified. Note that for
I t J = Σ′ as in the sum in (9.13),

ϕA

(
σI σJ
1 1

)
= u

∑
λ∈Fq

σI(θ + λ)uθ+λ + (elements in uq+2K(tΣ)[[u]]),

and note that for all λ, uuθ+λ ≡ uq+1 (mod (uq+2)). This follows from

uθ+λ = uq(1 + (θ + λ)uq−1)−1, λ ∈ Fq

a consequence of the formula (e0)θ = Cθ(e0). Therefore

ϕA

(
σI σJ
1 1

)
≡ uq+1

∑
λ∈Fq

σI(θ + λ) (mod (uq+2)).

If I occurs in the sum, |I| ≡ 1 (mod q − 1), 0 ∈ I and I is not a singleton. The next step
is to move outside the formalism of power sums and to study algebraic relations between
elementary symmetric polynomials (modulo p). There is an explicit formula that can be
proved by elementary combinatorial way (but we omit the details of the proof) which is:

(9.14) QI :=
∑
λ∈Fq

σI(θ + λ) = −
i−1∑
j=0

ej(q−1)+1(tI), |I| = i(q − 1) + 1, i ≥ 0, q > 2,

where ek(tI) is the k-th elementary symmetric polynomial in the variables tI . It is precisely
here that we suppose q > 2. There is a similar formula in the case q = 2 but since it is
not identical we disregard this case to avoid a too lengthy proof (but things proceed is a
sensibly close way).
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By the formula (9.14) the homogeneous term of QI of highest total degree in tΣ′ is equal
to −e(i−1)(q−1)+1(tI). Now we consider:

RΣ :=
∑

ItJ=Σ′

|J |≡1(q−1)
J(Σ

∑
λ∈Fq

σI(θ + λ)

= −
∑

ItJ=Σ′

|J |≡1(q−1)
J(Σ

|I|−1
q−1
−1∑

j=0

ej(q−1)+1(tI)

= −
m−1∑
j=0

∑
|I|=(j+1)(q−1)+1

ItJ=Σ′
0∈I

ej(q−1)+1(tI).

We have ∂
(1)
1 (ϕA(1;σΣ)) 6= 0 if and only if RΣ 6= 0. There is a linear dependence relation

(in any polynomial ring of characteristic zero):∑
|I|=m(q−1)+1

0∈I

e(m−1)(q−1)+1(tI) = (m(q − 1) + 1)e(m−1)(q−1)+1(tΣ′).

Clearly, if p - m − 1, the linear form in elementary symmetric polynomials in the left-
hand side does not vanish and therefore the homogeneous part of highest total degree
in RΣ is non-zero hence proving that RΣ itself is non-zero. This completes the proof:

∂
(1)
1 (ϕA(1;σΣ)) 6= 0. �

We avoided the case |Σ| = 1 in the above lemma because, on the opposite side:

Lemma 9.19. If s = |Σ| ≤ q − 1, then ∂
(s)
1 (E(s; ρ∗Σ)) = 0.

Proof. The result follows from the case s = 1 because of (8.10) and Leibnitz rule for ∂•1
(relative to ⊗). In the remaining case of one variable t = ti observe that if F = Fi is as in

§7.5.1 (we recall that this is an element of M !
−1(ρχt ;LΣ)), then hF (1) ∈M1(det−1 ρχt ;LΣ)\

{0} thanks to (7.13). By (4.23) we see that

hρχt(S)F (1) ∈M1(ρ∗χt ;LΣ) \ {0}.

Since M1(ρ∗χt ;LΣ) is one-dimensional generated by E(1; ρ∗χt) we deduce that, for some

λ ∈ L×Σ ,

E(1; ρ∗χt) = λhρχt(S)F (1).

But then,

∂
(1)
1 (E(1; ρ∗χt)) = λ∂

(q+1)
1 (h)ρχt(S)F (1) = 0.

The identity ∂
(q+1)
1 (h) = 0 is well known, see [24, Proposition (8.8)]. �
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We propose the next question with s = |Σ| ≡ 1 (mod q− 1), s > 1, where we recall that
P3(G) is the Poincaré series defined in (5.20):

Question 9.20. In the case |Σ| ≡ 1 (mod q−1) and |Σ| > 1 when are the form ∂
(1)
1 (E(1;σΣ))

and the last column of P3(G) proportional with a proportionality factor in L×Σ?

In the above question, G is as in Proposition 5.24 with m = 1. The question is suggested

by the fact that ∂
(q−1)
1 (g) = h [24, Theorem (9.1)], and in the case Σ = ∅ and q = 2, this

responds positively to one (and only one) particular case. But if |Σ| = 1, from our results

one sees that the question has negative answer. Indeed P3(G) 6= 0 and ∂
(1)
1 (E(1; ρ∗χt)) = 0.

9.3. A conjecture on multiple sums. We write Zζ = ⊕n,σZn,σ for the graded Fp-
algebra of the multiple zeta values in Tate algebras where Zn,σ is the Fp-subvector space
of Fp[ti : i ∈ N∗][[1

θ ]] generated by the corresponding multiple sums of §9.1.1. Hence, this
space is endowed with the Gauss norm ‖·‖ extending |·| and is generated by the sums fA(C)
of (9.3) in the settings of §9.1.1 and the semi-characters σ involved in the compositions
arrays (9.2) are maps from A to Fq[ti : i ∈ N∗] defined by

(9.15) σ(a) =
∏
i∈N

χti(a)ni , a ∈ A,

with ni ∈ N and ni = 0 for all but finitely many i ∈ N∗. Here we prefer to write ζA(C)
instead of fA(C).

Similarly, we write Zϕ for the Fp-algebra F =
∑

n,σ Fn,σ where Fn,σ is this time the

Fp-subvector space of Fp[θ][ti : i ∈ N∗][[u]] (with the v-valuation) generated by the sums
ϕA(C) of (9.1.2). Theorem 9.4 implies that Zζ and Zϕ are Fp-algebras. However, we do not
know if Zϕ is graded by the degrees like Zζ . The algebra Zϕ is the algebra of A-periodic
multiple sums. We propose:

Conjecture 9.21. The correspondence ζA(C) ↔ ϕA(C) induces an isomorphism of Fp-
algebras Zζ ∼= Zϕ.

Conjecture 9.21 implies that Zϕ is graded by the degrees. Moreover, all the identities for
multiple zeta values in Zζ correspond to identities for multiple A-periodic sums, many of
which can be proved directly (e.g. Lemmas 9.13 and 9.15). For example, note that in the
proof of Proposition 9.12, X and Z are not homogeneous. By Conjecture 9.21, any linear
dependence relation between X ,Y1,Y2 and Z must come from two homogeneous ones, one
in FσΣ

q+1 and another one in FσΣ
2 , both defined over Fp. We see that these relations exist

and are indeed derived from (9.9) and the identity ϕA(2;σΣ) = ϕA(1;χt1)ϕA(1;χt2).

10. Perspectives on algebraic properties of Eisenstein series

We give here further conjectures which allow to produce examples of relations which
can be in certain cases verified by explicit computations. This section provides perspec-
tives suggested by experimental investigations we did for modular forms associated to the
representations ρ∗Σ. Conjecture 10.4 using the notion of multiple Eisenstein series, and
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Conjectures 10.6, 10.7 and 9.21 together provide a collection of identities between our
Eisenstein series. Although yet hypothetical, some special cases of these identities can be
verified by explicit computation. Therefore these conjectures can be viewed as challenging
problems to pursue researches in this domain.

10.1. Multiple Eisenstein series. In [18], Chen introduces a function field variant of
Eisenstein and double Eisenstein series as initially defined by Gangl, Kaneko and Zagier
in [23]. We propose here a generalization of her viewpoint. We begin with a description
of the required settings, introducing a vector-valued generalization of multiple Eisenstein
series. We state Conjecture 10.4 suggesting correspondences between multiple zeta values
and multiple Eisenstein series.

We consider ρ1, . . . , ρr representations of the first kind which are constructed starting
from basic representations by using the operations ⊕,⊗,∧α, Sβ as well as the ‘comatrix
operation’ Co, defined through the comatrix map. All these representations extend to
monoid maps defined over A2×2, with its standard matrix product. Before going on we
need some notation: we need to work with composition arrays having the first line composed
by representations of the first kind.

We consider positive integers n1, . . . , nr and composition arrays (with (·)∗ contragredi-
ent)

Ĉ =

(
ρ1 · · · ρr
n1 · · · nr

)
, Ĉ∗ =

(
ρ∗1 · · · ρ∗r
n1 · · · nr

)
.

We also set, for j ∈ {0, . . . , r}

Ĉ≤j =

(
ρ1 · · · ρj
n1 · · · nj

)
, Ĉ>j =

(
ρj+1 · · · ρr
nj+1 · · · nr

)
,

so that Ĉ≤r = Ĉ and we set Ĉ≤0 = ∅. We now define:

Φ̃(Ĉ∗) =
∑

|a1|>···>|ar|>0

ρ1

(
a1 0
0 1

)
⊗ · · · ⊗ ρr

(
ar 0
0 1

)
·Ψn1(ρ∗1)a1 ⊗ · · · ⊗Ψnr(ρ

∗
r)ar ,

with the sum running over elements a1, . . . , ar ∈ A+. The dot · is the usual matrix product,
and the index (·)a with a ∈ A designates the the matrix function (with entries in KΣ for
appropriate Σ ⊂ N∗) obtained after substitution z 7→ az. The matrices ( aj 0

0 1
) do not belong

to Γ but all the terms of the series are well defined thanks to the hypothesis on ρ1, . . . , ρr.
This series converges to a rigid analytic map Ω → KN×N

Σ for appropriate Σ ⊂ N∗ and

N > 0 and to an element of MN×N
Σ .

In the case ρi = ρUi with, for i = 1, . . . , r, Ui finite subsets of N∗, the case that interests
us the most in the present paper, we have:[
Φ̃(Ĉ∗)

]
1

= π̃
∑
i ni

∑
a1,...,ar∈A+

|a1|>···>|ar|

ρU1

(
a1 0
0 1

)
⊗· · ·⊗ρUr

(
ar 0
0 1

)
·V (n1; ρ∗U1

)a1⊗· · ·⊗V (nr; ρ
∗
Ur)ar

where [·]1 denotes the first column of a matrix and V (n; ρ∗U ) is defined in (7.1).
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We also set

Z(Ĉ∗) := (ρ1 ⊗ · · · ⊗ ρr)
(

0 0
0 1

)
·

∑
a1,...,ar∈A+

|a1|>···>|ar|>0

a−n1
1 · · · a−nrr ρ∗1

(
T−a1

)
⊗ · · · ⊗ ρ∗r

(
T−ar

)
,

a series which converges in Fq(tΣ)((θ−1))N×N (we follow the same conventions used in the

definition of Φ̃(Ĉ∗)). In the case ρi = ρUi for all i, it is easy to see that

[
Z(Ĉ∗)

]
1

=


0
...
0

ζA

(
σU1

··· σUr
n1 ··· nr

)
 ∈ TN×1

Σ

where Σ = ∪iUi and N is the product of the dimensions of the representations ρi, in
agreement with (7.2).

Definition 10.1. The multiple Eisenstein series associated with the composition array Ĉ∗
is the series

EA(Ĉ∗) =
[
Φ̃(Ĉ∗) + Φ̃(Ĉ∗≤r−1)⊗Z(Ĉ∗>r−1) + · · ·+ Z(Ĉ∗)

]
1
∈ ON×1

Σ .

We say that EA(Ĉ∗) is of degree
(
ρ∗1⊗···⊗ρ∗r
n1+···+nr

)
.

It is easy to verify that, if the representations ρi are all equal to 1 (case in which N = 1
and Σ = ∅) and r = 1, 2, this coincides with [18, Definition 3.2]. The function Ek(z)

defined in ibid. coincides with our EA(k) = EA
(
1
k

)
(for k > 0) and similarly, Er′,s′(z) of

ibid. coincides with our EA(r′, s′) = EA( 1 1
r′ s′ ). The case of depth r = 1 can be resumed

in the next formula which follows easily from (7.9) and Proposition 7.2, where m > 0 and
Σ ⊂ N∗ a finite subset such that |Σ| ≡ m (mod q − 1):

(10.1) EA
(
ρ∗Σ
m

)
=

[
Φ̃

(
ρ∗Σ
m

)
+ Z

(
ρ∗Σ
m

)]
1

= −E(m; ρ∗Σ).

It is also easy to verify the next lemma, where ρ∗1, . . . , ρ
∗
r are representations of the form ρ∗Uj

with Uj ⊂ Σ for some finite subset Σ of N∗, and where σ1, . . . , σr denote the projections
of ρ1, . . . , ρr on their upper-right coefficients (these are semi-characters). We recall the
multiple sums φA defined in (9.6).

Lemma 10.2. Writing

Ĉ∗ =

(
ρ∗1 · · · ρ∗r 1 · · · 1
n1 · · · nr m1 · · · ms

)
, C =

(
σ1 · · · σr 1 · · · 1
n1 · · · nr m1 · · · ms

)
,

for r > 0, s ≥ 0, the first entry E1 of E = EA(Ĉ∗) satisfies, with n =
∑

i ni,

E1 = π̃n
(
π̃
∑
j≤smjφA

(
σ1 ··· σr 1 ··· 1
n1 ··· nr m1 ··· ms

)
+π̃

∑
j≤s−1 mjφA

(
σ1 ··· σr 1 ··· 1
n1 ··· nr m1 ··· ms−1

)
ζA(ms)+· · ·

· · ·+ π̃m1φA

(
σ1 ··· σr 1
n1 ··· nr m1

)
ζA(m2, . . . ,ms) + φA

(
σ1 ··· σr
n1 ··· nr

)
ζA(m1, . . . ,ms)

)
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and the last entry EN ∈ OΣ of E = EA(Ĉ∗) satisfies

EN − ζA(C) ∈MΣ.

10.1.1. Eulerian multiple zeta values. We consider semi-characters σ1, . . . , σr defined as in
(9.5) and positive integers n1, . . . , nr. We write σ =

∏
i σi =

∏
j χ

νj
tj

for the type and

n =
∑

i ni for the weight of the multiple zeta value ζA( σ1 ··· σr
n1 ··· nr ). In this subsection we

return to the settings of §9.1.1 to make the following definition.

Definition 10.3. Let Z be a K-linear combination of multiple zeta values of degree
(
σ
n

)
.

We say that Z is Eulerian if

Z ∈ K(tΣ)
π̃n∏

j ω(tj)νj
.

This agrees with the notion of eulerian multiple zeta value of Thakur as in [77, Definition
5.10.8] because in the case of trivial type the product involving the Anderson-Thakur
function is equal to one. See [17] for deep properties of Eulerian multiple zeta values in
the case of trivial type. Examples of Eulerian combinations of multiple zeta values in our
settings are given by the elements ζA(n;σΣ) with |Σ| ≡ n (mod q− 1). By using [34, (39)]

we see that the elements ζA(
χt 1 ··· 1
1 q−1 ··· qr−1(q−1) ) are eulerian for all r ≥ 0.

10.1.2. A conjecture for multiple Eisenstein series. We denote byWρ∗
n the Fp-vector space

of multiple Eisenstein series of degree
(
ρ∗

n

)
, with n > 0 where ρ∗ is a product of represen-

tations of the type ρ∗Ui . Writing ρ∗ = ⊗j(ρ∗tj )
⊗νj , we set σ =

∏
j χ

νj
tj

. We consider C, Ĉ∗ as

in Lemma 10.2. We address the following:

Conjecture 10.4. The following properties hold:

(1) We have inclusions Wρ∗
m ⊗Wψ∗

n ⊂ Wρ∗⊗ψ∗
m+n .

(2) The correspondence ζA(C) 7→ EA(Ĉ∗) defines an isomorphism η of Fp-vector spaces

between the space Zσn of multiple zeta values of degree
(
σ
n

)
and Wρ∗

n which is com-

patible with the multiplication rules in such a way that the sum W :=
∑

n,ρ∗W
ρ∗
n is

graded, and endowed with a structure of Fp-algebra with multiplication ⊗, isomor-
phic to the algebra

⊕
n,σ Zσn .

(3) An element f ∈ Zσn is eulerian if and only if η(f) is a modular form in Mn(ρ∗;LΣ).

The next result describes a depth two identity which illustrates the pertinence of the
above conjecture in a special case, interesting because lying outside the case of Eisenstein
series. The reader will notice that the proof given is quite ad hoc and not easily gener-
alizable. While the first item of the conjecture is likely to be at reach by an appropriate
generalization of the harmonic product of §9, the equivalence between eulerianity of con-
stant terms and modularity of vector functions may require deeper arithmetic/geometric
tools.

Proposition 10.5. The following identity holds:

E(1; ρ∗t )⊗ E(q − 1; 1) + E(q; ρ∗t ) = EA
(
ρ∗t 1
1 q−1

)
.
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Proof. We claim that

(10.2) E(1; ρ∗t ) = π̃

(
−ϕA

(
χt
1

)
ϕ̃A
(
δ
1

) )− ( 0

ζA(1;χt)

)
,

where δ is the semi-character a 7→ χt(az) and ϕ̃A has been introduced in §9.1.4. This
follows easily from (10.1), Perkins’ identity (6.13) and Proposition 7.2. In a similar way,
we can easily prove the identity

(10.3) E(q; ρ∗1) = π̃q

(
−ϕA

(
χt
q

)
ϕ̃A
(
δ
q

) )+
π̃q

(t− θ)ω(t)

(
0

ϕ̃A(q − 1)

)
−
(

0

ζA(q;χt)

)
.

To see this, note that τ(E(1; ρ∗1)) = E(q; ρ∗1) and use (2.18); all the series involved in these
formulas are convergent for the v-valuation. We deduce from (10.2) and (10.3) that

E(1; ρ∗t )⊗ E(q − 1; 1) + E(q; ρ∗t ) =

= π̃q

ϕA

(
χt 1
1 q−1

)
−ϕ̃A

(
δ 1
1 q−1

)+ π̃

ϕA

(
χt
1

)
−ϕ̃A

(
δ
1

) ζA(q − 1) +

(
0

ζA

(
χt 1
1 q−1

))
.

This identity is reached applying the second and the third identities in (9.8) and the formula
(7.12). But a direct computation shows that

EA
(
ρ∗t 1
1 q − 1

)
=

[
Φ̃

(
ρ∗t 1
1 q − 1

)
+ Φ̃

(
ρ∗t
1

)
⊗Z

(
1

q − 1

)
+ Z

(
ρ∗t 1
1 q − 1

)]
1

equals the right-hand side of the above identity. �

We deduce that EA( ρ
∗
t 1
1 q−1 ) is in Mq(ρ

∗
t ;L). One further proves that it is non-zero and

is not a cusp form. In fact we have that

EA
(
ρ∗t 1
1 q−1

)
−
(

0

ζA

(
χt 1
1 q−1

)) ∈M2×1
Σ ,

with MΣ the maximal ideal of the valuation v, and Σ a singleton, so that η(ζA( χt 1
1 q−1 )) =

EA( ρ
∗
t 1
1 q−1 ) and we see, by [34, Lemma 6.12] that ζA( χt 1

1 q−1 ) is Eulerian. One proves easily

that ζA( χt 1
1 q−1 ) = θ−t

θq−θζA( χtq ). However, the cusp form EA( χt 1
1 q−1 )− θ−t

θq−θEA( χtq ) does not

vanish identically by Corollary 8.12. Hence the item (3) of Conjecture 10.4 does not extend
to K-linear combinations of multiple Eisenstein series.

10.2. A conjecture for zeta values in Tate algebras. We now focus on zeta values in
Tate algebras (1.17). Recall from the introduction that q = pe with e > 0. Hence τ = µe

where µ is the Fp-linear automorphism of C∞ given by c 7→ cp for c ∈ C∞, which can be
extended Fp(tΣ)-linearly to KΣ for any finite set Σ. We introduce the following Fp-algebra

I := Fp
[
µm(ζA(1, χti)) :

i ∈ N∗
m ∈ Z

]
⊂
⋃
k≥0

Fp[ti : i ∈ N∗][[θ−
1

pk ]].
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We set ζA(0) := 1. The Fp-algebra I is thus generated by all the µ-twists (negative or
positive) of the functions ζA(1, χti) for i ∈ Σ. It is very important to allow negative
values for m, and for this reason this Fp-algebra carries a structure of inversive µ-difference
algebra. We address the following

Conjecture 10.6. For all n ∈ N∗ and Σ ⊂ N∗ such that |Σ| ≡ n (mod q − 1) we have a
unique expansion

(10.4) ζA(n;σΣ) =
∑

0≤k≤n
k≡0 (mod q−1)

ζA(k)ηk, ηk ∈ I.

Recall that in our conventions, ζA(k) = ζA(k; 1) are the usual Carlitz zeta values. We
are going to give some examples of relations along the predictions of this conjecture. Note
that the factors ηk need not to lie in Fp[ti : i ∈ N∗]((1

θ )). However, there exists l ∈ N such

that µl(ηk) ∈ Fp[ti : i ∈ N∗]((1
θ )) for all k ≡ 0 (mod q − 1) in the range 0 ≤ k ≤ n and

all the terms involved are products of zeta values. Since µl(ζA(k;σΣ)) = ζA(kpl;σΣ), the
identity (10.4) is equivalent to an algebraic identity of zeta values as in (1.17) defined over
Fp. We recall from Thakur conjectures in [79, §5.3] that the only Fp-relations among his
multiple zeta values in K∞ are those which come from the harmonic product.

Conjecture 10.7. The only Fp-algebraic relations in I are those coming from the harmonic
product.

After Conjecture 10.7, all the algebraic relations defined over Fp between the elements
ζA(n;σΣ) with n ≡ |Σ| (mod q − 1) can be derived from the harmonic product and for
each zeta value ζA(n;σΣ) it should be possible to derive explicit formulas like in (10.4) by
using the harmonic product of Theorem 9.7 (or in [58]). However, carrying this program
might be very difficult in practice due to the combinatorial computations involved. The
challenge is to introduce other techniques to tackle it. This was accomplished by Hung Le
and Ngo Dac in [43], where they proved a particular case of this conjecture hence proving
a conjectural formula of the author of the present text. Their result is reviewed in the
following §10.2.1.

10.2.1. Some evidences. We focus on the case n = 1 in Conjecture 10.7 so that we can now
suppose that |Σ| = m(q − 1) + 1 with m ≥ 0. We know from [2, 5] that

(10.5) ζA(1;σΣ) =
(−1)mπ̃BΣ

ωΣ
, |Σ| ≡ 1 (mod q − 1), |Σ| > 1,

where BΣ ∈ A[tΣ] (18) is a monic polynomial in θ of degree m − 1 when m ≥ 1 and
ωΣ =

∏
i∈Σ ω(ti) ∈ T×Σ . If m = 0, the conjecture is clearly verified thanks to the formula

(7.12). If m = 1 then BΣ = 1 by [5, Corollary 7.3] so that

ζA(1, σΣ) = τ−1

(∏
i∈Σ

ζA(1, χti)

)
∈ I

18B stands for ’Bernoulli’.
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confirming Conjecture 10.6 also in this case.
To describe the case m = 2 (so that |Σ| = 2q − 1) we shall introduce the notation

L(m)
U := τm

(∏
i∈U

ζA(1, χti)

)
,

for U ⊂ Σ. Then it is possible to show the following explicit formula:

ζA(1, σΣ) =
∑

Σ=U1tU2

|U1|=q−1
|U2|=q

L(−1)
U1
L(−2)
U2

,

where t denotes disjoint union. Now, recall that the right-hand side is equal to
π̃B∗Σ
ωΣ

, with

B∗Σ = −
∑
U2⊂Σ
|U2|=q

∏
i∈U2

(
ti − θ

1
q

)
,

while the left-hand side is easily seen to be equal to π̃BΣ
ωΣ

, with

BΣ = θ −
∑
V⊂Σ
|V |=q

∏
i∈V

ti = −eq
(
ti − θ

1
q : i ∈ Σ

)

(with en denoting here the n-th elementary symmetric polynomial), and it is easy to see

that BΣ = B∗Σ (all the terms defined over Fp[θ
1
q ], but not all over Fp[θ], cancel. More

generally we have the next result (see [43, Theorem 1.3]) (19):

Theorem 10.8 (Hung Le and Ngo Dac). For all m ≥ 0 and for all q > m the following
formula holds:

(10.6) ζA(1;σΣ) =
∑

U1t···tUm=Σ
q−1|U1|+···+q−m|Um|=1

L(−1)
U1
· · · L(−m)

Um
.

Although Conjecture 10.7 predicts that such formulas can all be derived from the har-
monic product the method of Hung Le and Ngo Dac does not use it, and introduces new
tools which do not reduce it to a mere computational verification, the latter being most
likely out of reach.

19The formula (10.6) has been conjectured by the author of the present paper and incorporated in an
earlier version of it. The work [43] has been anticipated by the verification of the cases m = 1, 2, 3, 4 by
Ngo Dac in [20].
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10.2.2. More about Theorem 10.8. It is not hard to show that Hung Le and Ngo Dac’s
Theorem is equivalent to the following corollaries (20):

Corollary 10.9. Assuming that m ≥ 2 and that q > m, we have the formula

ζA(1, σΣ) =
m−2∑
r=0

∑
UtV tΣ′=Σ
|V |=q−r−1
|U |=rq

τ−1(ζA(1, σΣ′))L
(−2)
U L(−1)

V .

The interest of Corollary 10.9 is that it can be considered in parallel with similar (but not
analogue) classical formulas by Euler. We recall that the well-known Riccati’s differential
equation f ′ = −1 − f2 satisfied by the cotangent function f(x) = cot(x) implies, via the
formula −πx

2 cot(πx) =
∑

i≥0 ζ(2i)x2i:(
n+

1

2

)
ζ(2n) =

n−1∑
i=1

ζ(2i)ζ(2n− 2i), n > 1.

Note that the coefficients in the quadratic expression on the right-hand side are all equal
to 1.

Theorem 10.8 implies nice formulas for the polynomials BΣ ∈ A[tΣ] (when |Σ| > q.
Indeed, observe that for all m ≥ 1,

(10.7) τ−m((t− θ)ω)−1 =
(
t− θ

1
qm−1

)
· · ·
(
t− θ

1
q

)
ω−1.

Hence,

τ−m
(
ζA(1, χt)

)
= −

π̃
1
qm

(
t− θ

1
qm−1

)
· · ·
(
t− θ

1
q

)
ω

, m ≥ 1.

Setting b∗m :=
(
t − θ

1
qm−1

)
· · ·
(
t − θ

1
q

)
(again for m ≥ 1) and B∗m(tΣ) =

∏
i∈Σ b

∗
m(ti), we

thus have:

Corollary 10.10. The following formula holds, when q > m.

BΣ = (−1)m−1
∑

U1t···tUm=Σ
q−1|U1|+···+q−m|Um|=1

B∗1(tU1
) · · ·B∗m(tUm).

Similarly, Corollary 10.9 is equivalent to:

Corollary 10.11. The following formula holds, for |Σ| = m(q − 1) + 1 with q > m ≥ 2.

BΣ =
m−2∑
r=0

(−1)r+1
∑

UtV tΣ′=Σ
|U |=qr

|V |=q−r−1
|Σ′|=(m−r−1)(q−1)+1

τ−1(BΣ′)
∏

i∈UtΣ′

(
ti − θ

1
q

)
.

20They were stated as Conjectures in the earlier versions of the present manuscript.
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10.3. A modular analogue. We end this work with a conjectural formula which can be
derived from Theorem 10.8. We set, with U ⊂ N∗ a finite subset and j ∈ Z:

E(j)
U := τ j

(⊗
i∈U
E(1; ρ∗ti)

)
,

for U ⊂ Σ. Note that this needs not to represent an analytic function Ω→ LN×1
Σ for N ≥ 1

if j < 0.

Conjecture 10.12. For all m ≥ 0, |Σ| = s = m(q−1)+1 and for all q > m, the following
formula holds:

(10.8) E(1; ρ∗Σ) =
∑

U1t···tUm=Σ
q−1|U1|+···+q−m|Um|=1

E(−1)
U1
⊗ · · · ⊗ E(−m)

Um
.

We note that (10.8) expresses the analytic function E(1; ρ∗Σ) as a linear combination
of non-analytic functions if s ≥ 2q − 1. Clearly, Theorem 10.8 and Conjecture 9.21, or
Conjecture 10.4 imply Conjecture 10.12 (and the latter implies Theorem 10.8). The cases
s = 1, q are obviously verified, see (8.10). The case s = 2q − 1 is at the moment unsolved.
The author was only able to verify, numerically, for few values of q a prime number, that
the u-expansions of the ∅-coordinates of both sides in (10.8) agree up to a certain order.
But this is not enough to conclude.

Addendum

The reader may notice that some results in [34] depend on results written here, and
some results of loc. cit. are cited in our §9. However, there is no loop in the chains of
deductions.
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