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ON THE BEHAVIOUR AT THE CUSPS OF DRINFELD MODULAR

FORMS

F. PELLARIN

Abstract. In this paper we generalise the notion of Drinfeld modular form for the
group Γ := GL2(Fq[θ]) to a vector-valued setting, where the target spaces are certain
modules over positive characteristic Banach algebras over which are defined what we
call the ’representations of the first kind’. Under quite reasonable restrictions, we show
that the spaces of such modular forms are finite-dimensional, are endowed with certain
generalisations of Hecke operators, with differential operators à la Serre etc. The crucial
point of this work is the introduction of a ’field of uniformisers’, a valued field in which
we can study the expansions at the cusp infinity of our modular forms and which is wildly
ramified. Examples of such modular forms are given through the construction of Poincaré
and Eisenstein series. After this the paper continues with a more detailed analysis of the
special case of modular forms associated to a restricted class of representations ρ∗Σ of Γ
which has more importance in arithmetical applications. More structure results are given
in this case, and a harmonic product formula is obtained which allows, with the help
of three conjectures on the structure of an Fp-algebra of A-periodic multiple sums, to
produce conjectural formulas for Eisenstein series. Some of these formulas can be proved.
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6. Differential operators on modular forms 55
6.1. Higher derivatives on tame series 56

Date: October, 27, 2019.

1



2 F. PELLARIN

6.2. Serre’s derivatives 58
7. Modular forms for the representations ρ∗Σ 58
7.1. Eisenstein series 58
7.2. Structure of weak modular forms 62
7.3. Strongly regular modular forms 65
7.4. Some structural properties of modular forms 69
8. Harmonic relations and Eisenstein series 72
8.1. Multiple zeta values 73
8.2. A-periodic multiple sums 73
8.3. Existence of the harmonic product. 75
9. Some conjectures 77
9.1. A conjecture for zeta values in Tate algebras 77
9.2. Realisations of an algebra of multiple zeta values 82
9.3. Identities for modular forms 83
9.4. Identities for Eisenstein series 85
References 86

1. Introduction

The aim of this text is to revisit the theory of Drinfeld modular forms, initiated by David
Goss, in his Ph. D. Thesis (see [19]). We want to extend the notion of type, considered by
Gekeler in [15], which is a one-dimensional representation of the Drinfeld modular group,
to higher dimensional representations.

Let q = pe be a power of a prime number p with e > 0 an integer, let Fq be the finite field
with q elements and characteristic p, and θ an indeterminate over Fq. All along this text,
we denote by A the Fq-algebra Fq[θ]. We set K = Fq(θ). On K, we consider the absolute

value | · | defined by |a| = qdegθ(a), a being in K, so that |θ| = q. Let K∞ := Fq((1/θ)) be
the local field which is the completion of K for this absolute value, let Kac

∞ be an algebraic
closure of K∞, let C∞ be the completion of Kac

∞ for the unique extension of | · | to Kac
∞.

Then, the field C∞ is at once algebraically closed and complete for | · | with valuation group
qQ and residual field Facq , an algebraic closure of Fq.

The ’Drinfeld half-plane’ Ω = C∞ \K∞, with the usual rigid analytic structure in the

sense of [14, Definition 4.3.1], carries an action of Γ and Γ̃ by homographies: if γ = ( a bc d ) ∈

Γ̃, and z ∈ Ω,

γ(z) :=
az + b

cz + d
.

Denote by

J( ∗ ∗
c d )

(z) = cz + d

the usual factor of automorphy Γ× Ω → C×
∞. Let us consider w,m ∈ Z; then, if w ≡ 2m

(mod q−1), the map (γ, z) 7→ Jγ(z)
w det(γ)−m defines a factor of automorphy for Γ̃. There
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is a bijection between these factors of automorphy and the couples (w,m) ∈ Z×Z/(q−1)Z
submitted to the above congruence.

We thus suppose that w ∈ Z and m ∈ Z/(q − 1)Z are such that w ≡ 2m (mod q − 1).
We recall the definition of Drinfeld modular forms (as considered by Gekeler and Goss).

Definition 1.1. A Drinfeld modular form of weight w ∈ Z and type m ∈ Z/(q − 1)Z for

the group Γ̃ is a rigid analytic function Ω
f
−→ C∞ such that

f(γ(z)) = Jγ(z)
w det(γ)−mf(z) ∀z ∈ Ω, ∀γ ∈ Γ̃

and such that additionally, there exists 0 < c < 1 with the property that if z ∈ Ω is such
that |u(z)| ≤ c, where

u(z) =
1

π̃

∑

a∈A

1

z − a
,

π̃ ∈ C∞ \K∞ being a fundamental period of Carlitz’s module (’our’ analogue of 2πi, see
(10)), then there is a uniformly convergent series expansion

(1) f(z) =
∑

n≥0

fnu(z)
n, fn ∈ C∞.

We say that a function f as in (1) is regular at the infinity cusp.

The type corresponds to a representation

(2) Γ
det−m

−−−−→ GL1(Fq), m ∈ Z/(q − 1)Z.

In dimension > 1 it happens that certain representations of Γ naturally have non-trivial an-
alytic deformations, and this makes it natural to consider functions with values in positive-
dimensional Tate algebras or in similar ultrametric Banach algebras. We consider Σ ⊂ N∗

a finite subset. Let kΣ be the field Fq(tΣ) where tΣ is the set of variables (ti : i ∈ Σ). We
choose a representation

(3) Γ
ρ
−→ GLN (kΣ).

Let w ∈ Z be such that the map (γ, z) 7→ Jγ(z)
wρ(γ) defines a factor of automorphy

Γ̃× Ω→ GLN (kΣ).

This does not happen for any representation of Γ. The necessary and sufficient condition
is that

(4) ρ(µI2) = µ−wIN , µ ∈ F×
q ,

as it comes out after a simple computation.
We consider the field

KΣ = C∞(tΣ)
∧ = Ĉ∞(tΣ)

(the completion for the Gauss norm) (1) so that GLN (kΣ) ⊂ GLN (KΣ). We denote by ‖ · ‖
the norm of KΣ, extending the norm | · | of C∞. We further extend this norm on matrices

1Observe the notation (·)∧ that will be used when the other notation will lead to a too large hat.
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with entries in KΣ in the usual way by taking the supremum of the norms of the entries.
In §2.2 we discuss the notion of rigid analytic functions with values in KΣ. Taking this
notion into account:

Definition 1.2. A rigid analytic function

Ω
f
−→ KN×1

Σ

such that

(5) f(γ(z)) = Jγ(z)
wρ(γ)f(z) ∀z ∈ Ω, ∀γ ∈ Γ̃,

is called modular-like of weight w for ρ. Additionally, we say that such a function f =
t(f1, . . . , fN ) is:

(1) A weak modular form of weight w for ρ if there existsM ∈ Z such that ‖u(z)Mf(z)‖
is bounded as 0 < |u(z)| < c for some c < 1.

(2) A modular form of weight w (for ρ) if ‖u(z)Mf(z)‖ is bounded as 0 < |u(z)| < c
for some c < 1.

(3) A cusp form of weight w if ‖f(z)‖ → 0 as u(z)→ 0.

Let B be a C∞-sub-algebra of KΣ. We suppose that ρ as in (3) has image in GLN (B).
We denote byM !

w(ρ;B) (resp. Mw(ρ;B), Sw(ρ;B)) the B-modules of weak modular forms
(resp. modular forms, cusp forms) of weight w for ρ such that their images are contained
in BN×1. We have that

Sw(ρ;B) ⊂Mw(ρ;B) ⊂M !
w(ρ;B).

If B = C∞, N = 1 and ρ = det−m, these C∞-vector spaces coincide with the correspondent
spaces of ’classical’ Drinfeld modular forms of weight w, type m.

To be of some interest, Definition 1.2 must deliver certain primordial properties such
as the finite dimensionality of spaces of modular forms, or their invariance under the
action of suitable Hecke operators. We are far from being able to return satisfactory
answers in such a level of generality. However, there is a class of representations (called
representations of the first kind, introduced and discussed in §4.1) which look suitable for
our investigation because they contain a variety of arithmetically interesting examples. An
explicit example of such representations is, with t a variable, the one which associates to a
matrix γ = ( a bc d ) ∈ Γ, the matrix

(6) ρt(γ) =

(
χt(a) χt(b)
χt(c) χt(d)

)
∈ GL2(Fq[t]),

where χt is the unique Fq-algebra morphism Fq[θ] → Fq[t] sending θ to t. Another inter-
esting example is ρ∗t := tρ−1, investigated in [28, 37]; in this last case, we have explicitly

described the module structure of Mw(ρt; Ĉ∞[t]) (the values are in a Tate algebra) and

proved that these Ĉ∞[t]-modules are endowed with endomorphisms given by a natural
generalisation of Hecke operators.
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Results of the text. The following synthesis summarises our results (more precise statements
will be formulated along the text). The key object is called the field of uniformizers.

Theorem A. There exists a valued field K, called the field of uniformizers, with valuation
v, valuation group Z[1p ], residual field ∪ΣKΣ, valuation ring O and maximal ideal M,

satisfying the following properties. Let Σ ⊂ N∗ be a finite subset and ρ : Γ→ GLN (kΣ) be
a representation of the first kind, let w ∈ Z be such that (γ, z) 7→ Jγ(z)

wρ(γ) is a factor of

automorphy for Γ̃. The following properties hold.

(1) There is a natural embedding of KΣ-vector spaces M !
w(ρ;KΣ)

ιΣ−→ KN×1.
(2) The image by ιΣ of the KΣ-vector space of modular forms Mw(ρ;KΣ) can be iden-

tified with ιΣ(M
!
w(ρ;KΣ)) ∩ON×1.

(3) The vector space of cusp forms Sw(ρ;KΣ) can be identified with the sub-vector space
of Mw(ρ;KΣ) which is sent to MN×1 by the embedding ιΣ.

(4) We have that C∞((u)) naturally embeds in K and v restricts to the u-adic valuation.
(5) The vector spaces Mw(ρ;KΣ), Sw(ρ;KΣ) are endowed with Hecke operators Ta as-

sociated to ideals a of A, which provide a totally multiplicative system of endo-
morphisms reducing, in the case Σ = ∅, to the classical Hecke operators acting on
classical scalar Drinfeld modular forms and cusp forms.

(6) We have KΣ-linear maps ∂
(n)
w : Mw(ρ;KΣ) → Sw+2n(ρdet

−n;KΣ), defined for all
n ≥ 0 and generalising Serre’s derivatives.

The corresponding results in the body of the text are more precise and cover a wider
spectrum of applications. The field K will be constructed explicitly in §3 by taking the
fraction field of the ring of tame series. The main examples of modular forms (construc-
tion of Poincaré series etc.) and the basic results concerning the spaces Mw(ρ;KΣ) and
Sw(ρ;KΣ) are contained in §5. Parts (1), (2), (3) will be proved in Theorem 4.14 and (4) is
an obvious consequence of the above (so, when ρ = 1 is the trivial representation (sending
every element of Γ to 1 ∈ GL1), our construction specialises to the known setting, and
M = ⊕wMw(1;C∞) is the well known algebra of C∞-valued Drinfeld modular forms for
Γ (of type 0). We will introduce Poincaré series in §5.3 as a first main class of specimens
of modular forms. Part (5) is our Theorem 4.19; the proof is very simple, thanks to the
flexibility of the use of the field of uniformizers, and we can say the same about part (6),
which corresponds to our Theorem 6.7.

A non-complete field LΣ intermediate between KΣ and the fraction field of TΣ will be
needed in the next Theorem; it is defined in §2.1.3.

Theorem B. The following properties hold, for ρ a representation of the first kind.

(1) For all w ∈ Z, the LΣ-vector space Mw(ρ;LΣ) has finite dimension. The dimension
is zero if w < 0.

(2) The dimension of the space M1(ρ;LΣ) does not exceed the dimension of the space of

common eigenvectors in LN×1
Σ of all the matrices ρ(γ) with γ in the Borel subgroup

of Γ.
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Note that (1) of Theorem B only deals with modular forms with values in LΣ. One
reason for this restriction comes from the fact that we use, in the proof, a specialisation
property at roots of unity which is unavailable in the general case of KΣ-valued functions.
This result corresponds to Theorem 5.4. Part (2), proved in Theorem 5.12 which provides
an upper bound for the dimensions of the LΣ-vector spaces, and implies a positive answer
to the question raised by [37, Problem 1.1] thanks to Theorem C in the following way.

We fix a subset Σ ⊂ N∗ of cardinality s and we consider, for all i ∈ Σ,

ρ∗ti(γ) =
t

(
a(ti) b(ti)
c(ti) d(ti)

)−1

,

and

(7) ρ∗Σ :=
⊗

i∈Σ

ρ∗ti .

This is indeed a representation of the first kind of degree s where N = 2|Σ|. Additionally,
ρ∗Σ is an irreducible representation of Γ in GLN (Fq[tΣ]) (see [31]). An important feature of
this class of representations is that it allows to construct certain Eisenstein series in §7.1.
If s ≡ 1 (mod q − 1) we have the Eisenstein series of weight 1:

E(1; ρ∗Σ)(z) :=
∑

(a,b)∈A2\{(0,0)}

(az + b)−1
⊗

i∈Σ

(
a(ti)

b(ti)

)
,

which is a non-zero holomorphic function Ω→ TN×1
Σ , where TΣ = Ĉ∞[tΣ] is the standard

Tate algebra in the variables tΣ. We have E(1; ρ∗Σ) ∈ M1(ρ
∗
Σ;TΣ) \ S1(ρ

∗
Σ;TΣ). Writing

E(1; ρ∗Σ) = t(E1, . . . , EN ) ∈ ON×1
Σ we can prove that E1, . . . , EN−1 ∈ M and EN ∈ O \M

(we recall that O and M are respectively the valuation ring and the maximal ideal of
the field of uniformisers). We also study in depth the v-valuations of the elements Ei for
i = 1, . . . , N − 1, a problem which, we should say, is not easy. It turns out that

EN ≡ −ζA(1;σΣ) (mod M)

where

(8) ζA(n;σΣ) =
∑

a∈A+

a−nσΣ(a), n ∈ N∗

σΣ(a) =
∏
i∈Σ χti(a), are the zeta values in Tate algebras introduced in [28] and studied in

[2, 3, 4] as well as in other papers.

Theorem C. The vector space M1(ρ
∗
Σ;LΣ) is one-dimensional, generated by E(1; ρ∗Σ).

This is Theorem 7.6. The proofs of (2) of Theorem B and of Theorem C are easy but use
a natural isomorphism between (scalar) Drinfeld modular forms for congruence subgroups
of Γ and spaces of automorphic functions (harmonic cocycles) over the Bruhat-Tits tree of
Ω, and the same specialisation properties in terms of the variables ti used in the proof of
(1). When we do this with the entries of the elements of M1(ρ;LΣ) span scalar Drinfeld
modular forms of weight one for congruence subgroups of Γ. The proof of this result is thus
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based on a crucial earlier remark of Gekeler (which can be found in Cornelissen’s paper
[11]).

From §7 on the paper focuses on structure properties of modular forms for the represen-
tation ρ∗Σ. We introduce here the notion of strongly regular modular form (see Definition
7.12). A strongly regular modular form f = (f1, . . . , fN ) is a Drinfeld modular form which
satisfies certain conditions on the v-valuations of its entries. Theorem 7.15 allows a com-
pletely explicit structure description for these modular forms which can be stated as follows
(more precise results can be found in the text).

Theorem D. Every strongly regular modular form associated to the representation ρ∗Σ can
be constructed combining Eisenstein series E(1; ρti) and E(q; ρti) for i ∈ Σ by using the
Kronecker product, and scalar Eisenstein series. In particular, the M ⊗C∞ KΣ-module of
KΣ-valued strongly regular modular forms is free of rank N = 2s where s = |Σ|.

The continuous Fq(tΣ)-linear automorphism τ of KΣ extending the automorphism c 7→ cq

of KΣ induces injective mapsMw(ρ
∗
Σ;KΣ)→Mqw(ρ

∗
Σ;KΣ). We show, in Theorem 7.23 that

for every w there exists k ∈ N such that τk(f) is strongly regular for every f ∈Mw(ρ
∗
Σ;KΣ).

This allows to deduce:

Theorem E. The KΣ-vector spaces Mw(ρ
∗
Σ;KΣ) are finitely dimensional.

Note that the functions of Theorem E have values in KN×1
Σ , not just in LN×1

Σ so that the
methods of proof of Theorem B do not apply for Theorem E. After Theorem D for every
modular form f ∈ Mw(ρ

∗
Σ;KΣ) there is k such that τk(f) can be constructed combining

Eisenstein series, and the coefficients in the construction are in KΣ. If f is an Eisenstein
series, there seem to emerge another phenomenon: the coefficients are in Fp(θ). This is
considered in §8 and 9. In §8 we prove a variant of a harmonic product formula for certain
A-periodic multiple sums. In §8 we propose conjectures which apply to produce certain
conjectural formulas for Eisenstein series E(w; ρ∗Σ). These formulas are so complicate that
are essentially undetectable by numerical experiments.

Acknowledgements. This sub-section will be written once the reviewing process complete.

2. Preliminaries

Most commonly used notation.

• N = {0, 1, . . .} the set of natural integers.
• N∗ = {1, . . .} the set of positive natural integers.
• BM×N : M -row, N -column arrays with coefficients in the set B.
• Ir: the r × r identity matrix.
• ⊔ disjoint union.
• Diag(∗, . . . , ∗) diagonal matrix.
• ℓq(n) sum of the digits of the base-q expansion of the positive integer n.
• A = Fq[θ]
• Γ = GL2(A)

• Γ̃ = Γ/F×
q .
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• 1 the trivial representation sending Γ to 1 ∈ F×
q .

In this section we collect the basic settings over which we are going to build our theory.
We give a very short and self contained account of holomorphic functions with values in
Tate algebras or more generally, in Banach algebras, of which we are going to study the
first examples, useful for what follows.

2.1. Rings, fields, modules. Let Σ be a finite subset of the set of positive integers N∗.
We denote by tΣ the set of variables {ti : i ∈ Σ}. If Σ = {i} is a singleton, we will often
simplify our notations by writing t instead of ti.

2.1.1. Tate algebras. Let

C∞[tΣ]
v∞−−→ Q ∪ {∞}

be the unique extension of the valuation v∞ over C∞ which is trivial over Fq[tΣ] (Gauss

valuation). The completion Ĉ∞[tΣ]v∞ (= C∞[tΣ]
∧ alternate notation when the hat is too

large) of C∞[tΣ] with respect to this valuation is the standard Tate algebra (of dimension
s = |Σ|) denoted by TΣ in all the following. If Σ is a singleton we will prefer the notation
T for this algebra, with variable t. Note that if Σ′ ⊂ Σ then, the natural embedding
C∞[tΣ′ ] ⊂ C∞[tΣ] induces an embedding TΣ′ ⊂ TΣ.

It is well known that TΣ is a ring which is Noetherian, factorial, of Krull dimension s
(see [9] for the general theory of these algebras). The Tate algebra TΣ is isomorphic to the
sub-C∞-algebra of the formal series

f =
∑

ij≥0∀j∈Σ
i=(ij :j∈Σ)

fi
∏

j∈Σ

t
ij
j ∈ C∞[[tΣ]]

which satisfy
lim

min{ij :j∈Σ}→∞
fi = 0.

Thus, we have, for f a formal series of TΣ expanded as above, and non-zero, that

v∞(f) = inf
i
v∞(fi) = min

i
v∞(fi).

We also set, for convenience,

‖ · ‖ := q−v∞(·)

and 0 = ‖0‖ = q−∞; this extends the norm | · | of C∞.

2.1.2. The completion KΣ of the fraction field of TΣ. For Σ a finite subset of N∗, we write
KΣ for the completion of the fraction field of TΣ which is also equal to the completion of
C∞(tΣ). If Σ

′ ⊂ Σ, we have the obvious isometric embedding KΣ′ ⊂ KΣ.

Lemma 2.1. Let Σ′ be a subset of Σ. Let B = (bi)i∈I be a basis of the Facq (tΣ′)-vector space
Facq (tΣ). Then, every element f of KΣ can be expanded, in an unique way, as a converging
series

f =
∑

i∈I

fibi, fi ∈ KΣ′ , fi → 0, ‖f‖ = max
i∈I
‖fi‖.
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In the above lemma, I is countable, and the limit fi → 0 is for the Fréchet filter of I.
If Σ′ = ∅ this means that the Banach C∞-space KΣ is endowed with an orthonormal basis
providing us with an isometric isomorphism with a Banach C∞-space cC∞(I) in the sense
of Serre in [42]. The proof that we present is essentially the same as [42, Lemma 1].

Proof of Lemma 2.1. Let B = (bi)i∈I be a basis of the Facq (tΣ′)-vector space Facq (tΣ). Let us
consider α ∈ C∞[tΣ]\{0}. We can decompose (in unique way) α = α0+α1 with αi ∈ C∞[tΣ]
and α1 ∈ Facq [tΣ] \ {0}, and ‖α0‖ < 1. For any multi-index k = (ki : i ∈ Σ) ∈ NΣ we have,

in KΣ (with t
k
Σ =

∏
i∈Σ t

ki
i ):

t
k
Σα

−1 =
tkΣ
α1

(
1−

α0

α1
+
α2
0

α2
1

− · · ·

)

(the series converges because ‖α0‖ < 1). For any k and j ≥ 0, t
k
Σα

−j
1 ∈ Facq (tΣ) can be

expanded in the basis B (in a unique way) We deduce that any element f = β
α ∈ C∞(tΣ)

can be expanded, in a unique way, as a convergent series:

f =
∑

i∈I

fibi, fi → 0, fi ∈ KΣ′ , fi → 0.

This means that there is an isometric embedding C∞(tΣ)→ cKΣ′ (I) where cKΣ′ (I) denotes

the Banach KΣ′-space of the sequences (fi : i ∈ I) ∈ KI
Σ′ with fi → 0 and with the

max-norm. Completing, we are left with an isometric isomorphism KΣ
∼= cKΣ′ (I) which

terminates the proof. �

2.1.3. The non-complete fields LΣ. We consider δ1, . . . , δr ∈ Facq (tΣ). Then, we have the
affinoid C∞-algebra (completion for the Gauss norm)

TΣ[δ1, . . . , δr]
∧ = ̂TΣ[δ1, . . . , δr] = ̂C∞[tΣ][δ1, . . . , δr]

which embeds in KΣ (with the Gauss norm). We consider

LΣ =
⋃

d∈Fac
q [tΣ]\{0}

TΣ[d
−1]∧.

Lemma 2.2. LΣ is a subfield of KΣ.

Proof. We note the following elementary properties:

(1) We can find d ∈ Fq[tΣ] \ {0} with TΣ[δ1, . . . , δr]
∧ ⊂ TΣ[d

−1]∧.

(2) If d1, d2 ∈ Facq [tΣ] \ {0} are relatively prime then TΣ[
1
d1
]∧ ∩ TΣ[

1
d2
]∧ = TΣ.

(3) If d1 | d2 then TΣ[
1
d2
]∧ ⊂ TΣ[

1
d1
]∧.

We deduce that LΣ is a C∞-algebra. All it remains to show is that every non-zero element
f of LΣ is invertible; we follow the same ideas of Lemma 2.1; there is no loss of generality
to suppose that ‖f‖ = 1. There exists δ ∈ Facq (tΣ) such that f ∈ TΣ[δ]

∧. We can write
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f = α1 − α0 where α1 ∈ Facq [tΣ][δ] \ {0} and where α0 ∈ TΣ[δ] is such that ‖α0‖ < 1.
Therefore, in KΣ:

1

α
=

1

α1

(
1−

α0

α1

)−1

=
1

α1

∑

i≥0

(
α0

α1

)i

and the series converges in TΣ[δ̃]
∧ ⊂ LΣ, for some element δ̃ ∈ Facq (tΣ). �

Note that LΣ is not complete, and contains the fraction field of TΣ. The fields LΣ and
KΣ both have residual field Facq (tΣ) and KΣ is the completion of LΣ for the Gauss norm.

2.1.4. The Carlitz exponential. The automorphism c 7→ cq of C∞ extends in a unique way
to an Fq[tΣ]-linear automorphism τ of C∞[tΣ] and therefore, to each of the three C∞-
algebras TΣ ⊂ LΣ ⊂ KΣ, being continuous and open on the first and the third. For all
f ∈ KΣ, we have that ‖τ(f)‖ = ‖f‖q. The sub-ring Tτ=1

Σ of the elements f ∈ TΣ such
that τ(f) = f is the polynomial ring Fq[tΣ], and we have the identities of fixed subfields
kΣ = Fq(tΣ) = Lτ=1

Σ = Kτ=1
Σ . For all Σ, the C∞-algebra EΣ of entire functions CΣ

∞ → C∞

further embeds in TΣ. We will write E for the C∞-algebra of entire functions of the variable
t (case of Σ a singleton). We can also consider the KΣ-algebras KΣ[τ ] and KΣ[[τ ]] (the
multiplication is defined by the commutation rule τf = τ(f)τ for f ∈ KΣ).

For a more complete background on the Carlitz module and the Carlitz exponential, we
refer to [21]. See also [34]. To define the Carlitz exponential, we introduce the analogue of
the sequence of numbers qn!, defined as follows:

dn =
∏

a

a,

where the product runs over the monic polynomials a of A of degree n. It can be proved
(see [21, Proposition 3.1.6]) that

dn = (θq
n

− θ) · · · (θq
n

− θq
n−1

), n ≥ 0.

Then, dn is invertible for all n and the formal series

expC :=
∑

n≥0

d−1
n τn ∈ K[[τ ]] ⊂ KΣ[[τ ]],

well defined, is the unique one such that the first term for n = 0 is 1 = τ0 (normalized)
and at once,

Cθ expC = expC θ,

where Cθ = θ + τ . The inverse of expC for the multiplicative structure of K[[τ ]] is the
Carlitz logarithm operator

logC :=
∑

n≥0

l−1
n τn ∈ K[[τ ]],

where ln is equal to (−1)n times the least common multiple of all polynomials of A of
degree n. It can be proved (see [21, Proposition 3.1.6]) that

ln = (θ − θq) · · · (θ − θq
n

).
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The formal series expC induces a continuous, open Fq(tΣ)-linear endomorphism

KΣ
expC−−−→ KΣ,

by setting

expC(f) =
∑

i≥0

d−1
i τ i(f), f ∈ KΣ.

This induces an isometric Fq-linear automorphism of the disk

D◦
KΣ

(0, |π̃|) = {f ∈ KΣ : ‖f‖ < q
q

q−1},

of inverse logC . Let us first look at the restriction of expC on C∞ ⊂ KΣ. Since it is
an entire function C∞ → C∞, its kernel Λ, a discrete Fq-vector space, determines expC
uniquely, and we have the convergent Weierstrass product expansion

(9) expC(z) = z
∏

λ∈Λ\{0}

(
1−

z

λ

)
, z ∈ C∞.

The function expC on C∞, is the unique entire Fq-linear map F : C∞ → C∞ which satisfies
dF
dz = 1, and which induces an exact sequence of A-modules:

0→ Λ→ C∞
expC−−−→ C(C∞)→ 0,

with C(C∞) the Carlitz module on C∞; the unique A-module which has as underlying
Fq-vector space the space C∞, and with multiplication by θ given by Cθ = θ + τ . The
kernel of the Carlitz exponential function expC is free of rank one over A, generated, as an
A-module, by the element

(10) π̃ = θ(−θ)
1

q−1

∞∏

i=1

(1− θ1−q
i

)−1.

It can be proved that π̃ is transcendental over K; there are several ways that lead to this
result, using the above product expansion. See [27] for an overview.

2.1.5. The Carlitz exponential over KΣ. We now look more generally at the map expC :

KΣ → KΣ. We choose an Facq -basis B = (bi)i∈I of Facq (tΣ). Let J̃ ⊂ I be a finite subset.

Considering the orbit under the action of the group Gal(Fq(bj : j ∈ J̃)/Fq(tΣ)) we see that
there exists J finite, with J̃ ⊂ J ⊂ I, and a matrix MJ ∈ GL|J |(F

ac
q ) such that, writing bJ

for the column matrix (bi)i∈J ,

τ(bJ) =MJbJ .

Lemma 2.3. For any J̃ ⊂ I and J ⊃ J̃ as above, the exponential map expC induces a
surjective Fq-linear endomorphism of ⊕j∈JC∞bj .

Proof. By Lang’s result [23, Corollary p. 557] there exists UJ ∈ GL|J |(F
ac
q ) such that

τ(UJ) = MJUJ . Hence, τn(UJ) = MJUJτ(UJ) · · · τ
n−1(UJ) for all n. If bJ is the row
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matrix with entries bj, j ∈ J and if fJ is the column matrix of C|J |×1
∞ such that f = bJfJ ,

then

expC(f) = bJU
−1
J expC UJfJ .

Since the map expC : C|J |×1
∞ → C|J |×1

∞ is surjective, the lemma follows. �

We denote by C(KΣ) the kΣ-vector spaceKΣ with the kΣ[θ]-module structure determined
by the multiplication Cθ by θ given by Cθ = θ + τ . This is the Carlitz module over KΣ.
Note that C(LΣ), C(A), . . . can be defined in analogous way.

We can prove:

Proposition 2.4. The map expC induces an exact sequence of Fq(tΣ)[θ]-modules:

(11) 0→ π̃Fq(tΣ)[θ]→ KΣ
expC−−−→ C(KΣ)→ 0.

Proof. We have seen that expC is well defined, and kΣ-linear. We show surjectivity. Let f
be in KΣ. By Lemma 2.1 can decompose f = f0 + f1 where f1 ∈ C∞(tΣ) and ‖f0‖ < |π̃|.
Since expC is easily seen to induce an isometric isomorphism on D◦

KΣ
(0, |π̃|) (of inverse

the Carlitz logarithm logC), there exists g0 ∈ KΣ such that expC(g0) = f0. We can find
J ⊂ I finite as above, such that f1 =

∑
j∈J fjbj and applying Lemma 2.3, there exists

g1 ∈ C∞(tΣ) such that expC(g1) = g1.
It remains to show that the kernel of expC is π̃kΣ[θ]. It certainly contains it. Now it is

easy to modify the standard arguments of [21, Proposition 2.9] to deduce, from the well
known structure of the Newton polygon of expC : C∞ → C∞ that the set of zeroes of expC
in DKΣ

(0, |π̃||θ|i) is an Fq(tΣ)-vector space Vi of dimension equal to i + 1 (see also [34]).
This dimension also is the dimension of the space VectFq(tΣ)

(1, θ, . . . , θi) for all i ≥ 0. Since

π̃VectFq(tΣ)
(1, θ, . . . , θi) is contained in Vi, it equals it, and we are done. �

Let δ be an element of k×Σ . From the proof of Proposition 2.4 one deduces that expC
also induces an Fq[tΣ][δ]-linear surjective endomorphism of TΣ[δ]

∧ ⊂ KΣ, and we deduce
the next result (compare with [3]):

Corollary 2.5. The map expC induces an exact sequence of A[tΣ][δ]-modules:

(12) 0→ π̃A[tΣ][δ]→ T̂Σ[δ]
expC−−−→ C(T̂Σ[δ])→ 0.

Hence, we also have an exact sequence of Fq(tΣ)[θ]-modules:

(13) 0→ π̃Fq(tΣ)[θ]→ LΣ
expC−−−→ C(LΣ)→ 0.

2.1.6. Omega matrices. Let

A
χ
−→ kn×nΣ

be an injective Fq-algebra morphism. We set

ϑ := χ(θ) ∈ Fq(tΣ)
n×n.
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Let d ∈ Fq[tΣ]\{0} be such that dϑ ∈ Fq[tΣ]
n×n. Then, the image of χ lies in Fq[tΣ][

1
d ]
n×n.

We set

ωχ :=
∑

i≥0

expC

(
π̃

θi+1

)
ϑi = expC

(
π̃(θIn − ϑ)

−1
)
∈ T̂Σ[d−1]

n×n
⊂ Kn×n

Σ ,

where the map expC is applied coefficient-wise on the entries of the matrix π̃(θIn−ϑ)
−1 ∈

Kn×n
Σ . We have, for all a ∈ A, that

Ca(ωχ) = expC(π̃a(θIn − ϑ)
−1) = expC(π̃(aIn − χ(a))(θIn − ϑ)

−1) + χ(a)ωχ = χ(a)ωχ,

because aIn − χ(a) = (θIn − ϑ)H with H ∈ A[ϑ]n×n. Recall in the next lemma that
dϑ ∈ Fq[tΣ]

n×n.

Lemma 2.6. We have ωχ ∈ GLn(TΣ[
1
d ]

∧) and ωχ is solution of the linear τ -difference
system

τ(X) = (ϑ− θIn)X.

Moreover, every solution X in Kn×1
Σ of this difference system is of the form X = ωχm,

with m ∈ kn×1
Σ .

Proof. observe that

ωχ = expC
(
π̃(θIn − ϑ)

−1
)
= expC

(
π̃θ−1(In − ϑθ

−1)−1
)
= expC(π̃θ

−1)In +R

where ‖R‖ < q
1

q−1 , and that expC(π̃θ
−1) = |π̃θ−1| = q

1
q−1 . This proves that ωχ ∈

GLn(TΣ[
1
d ]

∧). The fact that ωχ is a matrix solution of the system indicated above is clear.

Finally, if X is a column solution of the system above, we have that ω−1
χ X has entries in

the constant subfield of KΣ which is kΣ = Fq(tΣ), and this proves the last assertion. �

In the next result, we make a choice of a (q − 1)-th root of −θ.

Corollary 2.7. We have the identity

ωχ = (−θ)
1

q−1

∏

i≥0

(
In − ϑθ

−qi
)−1

,

up to the choice of an appropriate root (−θ)
1

q−1 . Moreover, ω−1
χ ∈ GLn(TΣ[

1
d ]

∧)∩(EΣ[
1
d ]

∧)n×n.

Note that the factors of the infinite product commute to each other.

Proof of Corollary 2.7. The methods are standard, but we give the details. First of all
note that

F := (−θ)
1

q−1

∏

i≥0

(
In − ϑθ

−qi
)−1
∈ (TΣ[d

−1]∧)n×n

is a matrix solution X of the difference system τ(X) = (ϑ − θIn)X, Lemma 2.6 applies
and there exists a matrix V ∈ GLn(kΣ) such that F = V ωχ. Now we proceed to prove

that V = In. We recall that (−θ)
1

q−1 = expC(
π̃
θ ) for a unique choice of (−θ)

1
q−1 . We

have seen, in the proof of Lemma 2.6, that ωχ = expC(π̃θ
−1)In + R where R ∈ Kn×n

Σ and
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‖R‖ < q
1

q−1 . We also have F = expC(π̃θ
−1)In+R

′, R′ ∈ KΣ such that ‖R′‖ < q
1

q−1 . Hence
V = In. Additionally, note that π̃(θIn − ϑ)

−1 ∈ (TΣ[
1
d ]

∧)n×n so that, by Corollary 2.5, ωχ
has entries in TΣ[

1
d ]

∧. Also, F in this case is an element of GLn(TΣ[
1
d ]

∧) but each factor

(In − ϑθ
−qi) composing the product expansion of its inverse belongs to K[tΣ][

1
d ] so that

F−1 has the entries which are in (EΣ[
1
d ]

∧)n×n. �

An example: the function of Anderson and Thakur. It is likely that this function appeared
for the first time in the literature in the paper of Anderson and Thakur [1, Proof of Lemma
2.5.4 p. 177]. It is equal to ωχ when χ = χt, the map

A
χ
−→ Fq[t]

defined by a ∈ A 7→ a(t) (therefore, n = 1), and we denote it by ω for simplicity. We have:

ω(t) = expC

(
π̃

θ − t

)
.

Corollary 2.7 implies that

(14) ω(t) = (−θ)
1

q−1

∏

i≥0

(
1−

t

θqi

)−1

∈ T×,

for a fixed choice of the (q − 1)-th root. This element can be also viewed as a function of
the variable t ∈ C∞, because the infinite product converges for all

t ∈ C∞ \ {θ
qk ; k ≥ 0}

and defines a meromorphic function over the above set, with simple poles at θq
k
, k ≥ 0.

The element ω is a (θ − t)-torsion point in the Carlitz A[t]-module C(T). In particular, ω
is a generator of the free sub-Fq[t]-module of rank one of T, kernel of the evaluation of the
operator

Cθ−t = τ + θ − t ∈ K[t][τ ],

so that ω is a solution of the linear homogeneous τ -difference equation of order 1 (see also
[26, Proposition 3.3.6]):

(15) τ(ω)(t) = (t− θ)ω(t).

All these properties easily follow from Corollary 2.7.

2.2. Analytic functions with values in Banach algebras. In this subsection, B de-
notes a C∞-Banach algebra with norm | · |B . We identify C∞ with a subalgebra of B
via C∞ · 1 ⊂ B. The norm | · |B of B extends the norm | · | of C∞, we have |x + y|B ≤
sup{|x|B , |y|B}, |xy|B ≤ |x|B |y|B (x, y ∈ B) and |cx|B = |c||x|B (c ∈ C∞, x ∈ B), and we
assume that the valuation group is equal to that of C∞, that is, the set of norms |f |B for
f ∈ B is equal to the set of norms |x|, x ∈ C∞.
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Let X/C∞ be a rigid analytic space so that it is the datum of (X,T,OX ) with a G-
topology T and a structure sheaf OX of C∞-algebras. In all the following, we denote by
OX/B the presheaf of B-algebras defined, for U = (Ui)i an affinoid covering of X, by

OX/B(Ui) = ̂OX(Ui)⊗C∞ B,

the completion being taken for the spectral norm on Ui. Tate’s acyclicity theorem [14,
Theorem 4.2.2] extends to this framework. If X = Spm(A) (maximal spectrum) with A
an affinoid C∞-algebra and if M is a finitely generated A-module, then, we define the
pre-sheafMB on X by

MB(U) =M ⊗A OX/B(U).

One can see that the covering U is acyclic forMB. In particular, OX/B is a sheaf.
A holomorphic function, also called analytic function, from X to B is by definition

a global section of OX/B , that is, a function f : X → B such that for every rational
subset Y ⊂ X, the restriction f |Y is the uniform limit over Y of a sequence of elements of
OX(Y )⊗C∞ B. As an alternative notation, we write f ∈ Hol(Y → B).

We suppose that B has a countable orthonormal basis B = (bi : i ∈ I): for all i ∈ I we
have |bi|B = 1 and moreover, for all g ∈ B there is a unique convergent series expansion

g =
∑

i∈I

gibi, gi ∈ C∞,

with |gi| → 0 (Fréchet filter). Examples of such algebras are KΣ and TΣ[δ] for δ ∈ kΣ.
Then, an analytic function

X
f
−→ B

can be expanded, in a unique way, as f =
∑

i∈I fibi, where fi : X → C∞ are analytic
functions such that fi → 0 for the norm of the uniform convergence, on every rational
subset of X.

Let C be a sub-algebra of B (not necessarily complete). We write

HolB(X → C)

for the C-algebra of holomorphic (or analytic) functions from X to B such that the image
is contained in C, and we omit the subscript if B = C. For instance, we can take C =
LΣ ⊂ KΣ = B.

2.2.1. Entire functions. We look at B-valued analytic functions on disks. If X is the disk

DC∞(0, r) = {x ∈ C∞; |x| ≤ r}

with r ∈ |C×
∞| and with the usual structure sheaf of converging series, then Hol(X → B)

equals the ring of series
∑

i≥0 fiz
i where fi ∈ B for all i and |fi|Br

i → 0 as i → ∞. We

thus deduce that the B-algebra Hol(C∞ → B) is equal to the B-algebra of the functions
C∞ → B which can be identified with the formal series

∑
i≥0 fiz

i ∈ B[[z]] such that

|fi|Br
i → 0 for all r ∈ |B|B. It is easy to see that a function f : C∞ → B belongs to

Hol(C∞ → B) if, on every bounded subset U of C∞, f can be obtained as a uniform limit
of polynomial functions fi ∈ B[z], fi : U → B. These functions are called B-entire (or
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simply entire if the reference to B is understood). The following property is easily checked.
Let (fi)i≥0 be a sequence of B-entire functions. If for every such r, the sequence (fi)i≥0

converges uniformly over D(0, r), then the limit function C∞ → B is an entire function.
The next result is a simple generalization of the analogue of Liouville’s theorem which

can be found in Schikhof’s [41, Theorems 42.2 and 42.6].

Proposition 2.8 (B-analogue of Liouville’s Theorem). A bounded B-entire function is
constant.

Proof. See [35, Proposition 8]. The proof uses the fact that the valuation group is dense
and that |B|B = |C∞|. �

To illustrate an application used in this paper we have, with eC(z) = expC(π̃z):

Corollary 2.9. For any map g : A → B, there exists at most one entire function f :
C∞ → B with |f(z)/eC(z)|B → 0 as |z| → ∞ with |z| 6∈ |A|, such that f(a) = g(a) for all
a ∈ A.

Proof. Let us suppose that f1, f2 are entire functions such that f1(a) = f2(a) = g(a) for all
a, with |fi(z)/eC (z)|B → 0 as in the statement, for all i. Then, f = f1− f2 vanishes on all
A. We set h := f/eC ; it is an entire function C∞ → B. We consider r ∈ |C×

∞| \ |K
×
∞| and

z ∈ C∞ such that |z| = r. We can apply Proposition 3.10 and the maximum principle which
tells us that max|z|=r |h(z)|B tends to 0 as r goes to infinity along a subset of |C×

∞| \ |K
×
∞|.

We conclude that h = 0 identically, applying Proposition 2.8. �

2.2.2. A class of entire functions.

Lemma 2.10. For any Fq-algebra morphism χ : A→ Fq(tΣ)
n×n there exists d ∈ Fq[tΣ]\{0}

and an entire function χ̃ : C∞ → (EΣ[
1
d ]

∧)n×n such that χ̃(a) = χ(a) for all a ∈ A.

Proof. We set ϑ := χ(θ) ∈ Fq(tΣ)
n×n and we choose d ∈ Fq[tΣ] \ {0} such that dϑ ∈ Fq[tΣ].

For z ∈ C∞, we set (2):

(16) χ̃(z) := expC
(
π̃z(θIn − ϑ)

−1
)
ω−1
χ ,

where ωχ ∈ GLn(TΣ[
1
d ]

∧) has been introduced in §2.1.6. Since

expC
(
π̃z(θIn − ϑ)

−1
)
=
∑

i≥0

d−1
i (π̃z)q

i

(θq
i

In − ϑ)
−1, z ∈ C∞

and ‖d−1
i (θq

i
In−ϑ)

−1‖ = q(i−1)qi for all i ≥ 0, the map χ̃ defines an entire function C∞ →
(EΣ[

1
d ]

∧)n×n (we recall from Corollary 2.7 that ω−1
χ has entries in EΣ[

1
d ]

∧). Moreover,
observe that if a ∈ A,

χ̃(a) = expC(π̃a(θIn − ϑ)
−1)ω−1

χ

= Ca(ωχ)ω
−1
χ

= χ(a).

�

2Note that the factors commute.



ON THE BEHAVIOUR AT THE CUSPS OF DRINFELD MODULAR FORMS 17

Note that Corollary 2.9 applies to the function χ̃.

Lemma 2.11. The matrix function χ̃ is a solution X of the difference system

τ(X) = X + eC(z)ω
−1
χ .

Proof. We set F = expC
(
π̃z(θIn − ϑ)

−1
)
. Then,

τ(F ) = −θF + eC(z(θIn − ϑ+ ϑ)(θIn − ϑ)
−1)

= −θF + eC(z(θIn − ϑ)
−1)ϑ) + eC(z)In

= F · (ϑ − θIn) + eC(z)In.

�

From now on, we will denote both maps, A
χ
−→ Fq(tΣ)

n×n and C∞
χ̃
−→ Kn×n

Σ , with χ to
simplify our notations.

2.2.3. An example for the map χt. We define, for z ∈ C∞:

χt(z) :=
eC

(
z
θ−t

)

ω(t)
=

expC

(
π̃z
θ−t

)

ω(t)
, z ∈ C∞.

We deduce that χt defines an entire function C∞ → E which satisfies χt(a) = a(t) for all
a ∈ A, and the τ -difference equation

(17) τ(χt(z)) = χt(z) +
eC(z)

τ(ω)
.

To mention an additional property of the entire function χt, it can be proved that the

function z 7→ χt(z)
z ∈ E is non-constant, entire, with no zeroes.

3. Field of uniformisers

We introduce and discuss the field of uniformisers which provides a natural environment
to study the modular forms discussed in the present paper. Similar constructions have also
been considered in [33]. We begin with §3.1, where we introduce some algebraic settings.
We define tame series in §3.2 and we prove the main structural properties of them.

3.1. Some B-algebras. In this subsection, we consider a difference ring (B, τ) with A
ι
−→

B an integral, commutative A-algebra and B
τ
−→ B an endomorphism which acts as the

Fq-algebra endomorphism c 7→ cq over ι(A). To simplify, we suppose that ι is an inclusion,
and we identify θ with ι(θ).

We consider, further, the polynomial B-algebra R = B[Xi; i ∈ Z] in infinitely many
variables Xi, and the ideal P generated by the polynomials Xq

i + θXi−Xi−1 for all i ∈ Z.
Then, with X the collection (Xi : i ∈ Z), the quotient B-algebra R/P can be identified
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with the ring B〈X〉 whose elements F are formal finite sums in the indeterminates Xi,
i ∈ Z:

(18) F =
∑

j∈Z[ 1
p
]

Fj〈X〉
j =

∑

j∈Z[ 1
p
]

Fj
∏

k∈Z

Xjk
k , Fj ∈ B,

where we have expanded the indices j =
∑

k∈Z jkq
−k in base q (the coefficients ji are almost

all zero and belong to {0, . . . , q − 1}). Note that a product over B〈X〉 is well defined in
virtue of the rulesXq

i = Xi−1−θXi. We have thus identified, after a mild abuse of notation,
B〈X〉 with a complete system of representatives of R modulo P and we have defined over
it, a product which makes it isomorphic to the quotient R/P.

Example. Note that with Cθ = θ + τ the multiplication by θ of the Carlitz A-module,
we have Xi−1 = Cθ(Xi) in C(B〈X〉). Hence, if B is a C∞-algebra, the substitution
Xi 7→ eC(

z
θi
) yields a natural B-algebra homomorphism

B〈X〉 → Map (K → B) .

We define a map

B〈X〉
v
−→ Z[p−1] ∪ {∞}

in the following way. We define v(0) := ∞ and we set v(B \ {0}) = {0}. Further,

for a monomial 〈X〉j =
∏
i∈ZX

ji
i (so only finitely many factors satisfy ji > 0), we set

v(〈X〉j) = −j. Note that distinct monomials 〈X〉j correspond to distinct values in Z[1p ]

so that v is injective over {〈X〉j : j ∈ Z[1p ]}. If F is non-zero as in (18), then we set

v(F ) = inf{v(〈X〉j) : Fj 6= 0}; the infimum is a minimum. The map v is a valuation: with

j, k ∈ Z[1p ] and by the definition of the ideal P, 〈X〉j〈X〉k = 〈X〉j+k + F where F ∈ B〈X〉

satisfies v(F ) > v(〈X〉j+k), so that if F,G ∈ B〈X〉, v(FG) = v(F ) + v(G).
Now, B〈X〉 being a valued ring, it is integral and we deduce that P is a prime ideal.

The residual ring of B〈X〉 is B. Further, τ(Xi) = Xq
i ≡ Xi−1 − θXi (mod P) induces an

endomorphism of B〈X〉 and the subring B〈X〉τ=1 of the elements F such that τ(F ) = F
is equal to Bτ=1. Note that even in the case of τ inducing an automorphism of B, it does
not extend to an automorphism of B〈X〉.

We analyse now another difference B-algebra containing B〈X〉 (it will not be complete,
but it is inversive, that is, τ induces an automorphism).

Definition 3.1. We define B〈〈X〉〉 to be the B-module of formal series as in (18), without
the condition of finiteness of the sums, and such that the following conditions hold:

(1) There exists L ≥ 0 (depending on F ) such that if Fj 6= 0, then ℓq(j) ≤ L, with
ℓq(j) denoting the sum of digits of j in base q (which means that the length of the
base-q expansions of the exponents j involved is bounded).

(2) If Fj 6= 0, then j ≥M with a constant M depending on F (which means that only
the variables Xi with i in a subset of Z which has an lower bound in Z occur).

The first condition also means that the number of factors of the monomials occurring in
F ∈ B〈〈X〉〉 is bounded.
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3.1.1. Product in B〈〈X〉〉. Let F ∈ B〈X〉 \ {0} be as in (18). We denote by µ(F ) the
largest m ∈ Z such that the variable Xm occurs in at least one non-zero monomial of
F (remember that the elements of B〈X〉 are polynomials so that µ(F ) is well defined).
Similarly, we denote by ν(F ) the smallest n ∈ Z such that the variable Xn occurs in at
least one non-zero monomial of F . Clearly, the function µ dominates the function ν over
B〈〈X〉〉 (in the natural ordering of Z).

Lemma 3.2. For two monomials 〈X〉i and 〈X〉j in B〈〈X〉〉, writing

〈X〉i〈X〉j =
∑

k∈Z[ 1
p
]

ck〈X〉
k, ck ∈ K,

then, if ck 6= 0:

µ(〈X〉k) = max{µ(〈X〉i), µ(〈X〉j)},(19)

ν(〈X〉k) ∈ {min{ν(〈X〉i), ν(〈X〉j)},min{ν(〈X〉i), ν(〈X〉j)} − 1}, .(20)

The relation (20) says that there are only two possible values for ν(〈X〉k).

Proof of Lemma 3.2. By using inductively that Xq
i = Xi−1 − θXi, we see that:

(21) 〈X〉(q−1)( 1
q
+···+ 1

qn
)〈X〉

1
qn = 〈X〉1 − θ

n−1∑

i=0

〈X〉
(q−1)( 1

q
+···+ 1

qi
)
〈X〉

1
qi+1 , ∀n ≥ 1.

From this, (19) and (20) follow easily. It also appears that the minus one in (20) is
necessary. �

Proposition 3.3. The B-module B〈〈X〉〉 is endowed with the structure of a difference B-
algebra with endomorphism τ , extending that of the difference algebra (B〈X〉, τ). This
difference algebra (B〈〈X〉〉, τ) carries a unique extension of the valuation v for which the
residual ring is B, and for all F ∈ B〈〈X〉〉, v(τ(F )) = qv(F ). Furthermore, if (B, τ) is
inversive, then (B〈〈X〉〉, τ) is inversive.

By this proposition, the fraction field of the integral algebra Kper〈〈X〉〉, where Kper

denotes the perfect closure of K, is a perfect field.

Proof of Proposition 3.3. It is clear that there is an inclusion of B-modulesB〈X〉 ⊂ B〈〈X〉〉.
Let us consider k ∈ Z[1p ], and let us write

k = krq
r + · · ·+ kr+sq

r+s, ki ∈ {0, . . . , q − 1}, krkr+s 6= 0.

Let L be a positive integer and let us consider the set (depending on k):

S = {(i, j) ∈ Z[p−1]2 : ℓq(i), ℓq(j) ≤ L and 〈X〉k occurs in a summand of 〈X〉i〈X〉j}.

Let (i, j) be in S. By Lemma 3.2, we have

r ∈ {min{ν(〈X〉i), ν(〈X〉j)},min{ν(〈X〉i), ν(〈X〉j)} − 1},

and
r + s = max{µ(〈X〉i), µ(〈X〉j)}.
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This implies that S is a finite set and therefore the product of B〈〈X〉〉 is well defined.
The property involving the endomorphism τ can be checked similarly, and also the fact

that the valuation v extends to B〈〈X〉〉 is easily verified. We now prove the last part of the
proposition, in the case of (B, τ) inversive. Observe that

(22) Yj :=
∑

i≥j

θ
i
qXi+1 ∈ B〈〈X〉〉,∀j ∈ Z,

with θ
1
q the q-th root of θ in B (which is inversive by hypothesis, and therefore contains

{x
1
p : x ∈ ι(A)}). By Xq

i+1 = Xi − θXi+1 for i ≥ 0, we deduce that τ(Yj) = Xj for all j.

Now consider f =
∑

j∈Z[ 1
p
] Fj〈X〉

j ∈ B〈〈X〉〉, with ℓq(j) ≤ L for all j such that Fj 6= 0. Let

j be such that Fj 6= 0 and write 〈X〉j =
∏
k∈Z Y

jk
k . We set

Y(j) :=
∏

k∈Z

Y jk
k ∈ B〈〈X〉〉.

Note that ν(Y(j)) ≥ ν(〈X〉j) + 1. Moreover, writing Y(j) =
∑

k∈Z[ 1
p
] Y

(j)
k 〈X〉

k, if Y
(j)
k 6= 0,

then ℓq(k) ≤M for some M . Let k be an element of Z[1p ]. In the same way as before, one

shows that there are only finitely many elements j ∈ Z[1p ] such that Y
(j)
k 6= 0 in the above

expansion. Hence, the formal series

g =
∑

j∈Z[ 1
p
]

τ−1(Fj)Y
(j)

defines an element of B〈〈X〉〉 and τ(g) = f . �

3.2. Tame series. We shall fix, throughout this subsection, a τ -difference sub-A-algebra
B of KΣ, for some Σ. We denote by B〈〈X〉〉b the sub-B-algebra of B〈〈X〉〉 formed by the
series as in (18), satisfying supj ‖Fj‖ < ∞ ((·)b stands for ’bounded’). We leave to the
reader the proof of the following:

Lemma 3.4. B〈〈X〉〉b is a difference sub-B-algebra of B〈〈X〉〉 containing B〈X〉.

We consider the map B〈X〉
J
−→ Hol(C∞ → KΣ) defined by J(Xi) = ei, where

ei := eC

( z
θi

)

for all i ∈ Z. It is easy to see that J is a B-algebra morphism. By the fact that expC
defines, locally at zero, an Fq-linear isometry of C∞, it is easy to see that J defines an

algebra map from B〈〈X〉〉b to the maps from C∞ to KΣ; this follows from the fact that, for

all z ∈ C∞, |ei(z)| = |
π̃z
θi
| for all but finitely many i (depending on z).

We denote by T (B) the image of J in the KΣ-valued maps. We call it the B-algebra of
tame series. Explicitly:
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Definition 3.5. A tame series with coefficients in B is a map C∞ → KΣ defined by an
everywhere converging series f of the type

(23) f(z) =
∞∑

l=0

∑

i=(i1,...,il)∈Zl

i1<···<il
j∈{1,...,q−1}l

fi,je
j1
i1
· · · ejlil , fi,j ∈ B,

satisfying the following properties.

(1) There exists an integer L ≥ 0 such that if fi,j 6= 0, then |j| =
∑

k jk ≤ L.

(2) There exists M > 0 such that, for all i, j, fi,j ∈ B satisfies ‖fi,j‖ ≤M .

(3) There exists N ∈ Z such that if i = (i1, . . . , il) is such that fi,j 6= 0, then i1 ≥ N .

Proposition 3.6. The map J extends to a τ -difference B-algebra morphism

B〈〈X〉〉b
J
−→ Hol(C∞ → KΣ).

Proof. Let us consider a series f such as in (23). Observe that for all i, j, the function

z 7→ fi,je
j1
i1
· · · ejlil is KΣ-entire. It suffices to show that, for all R ∈ |C∞|, the series defining

f converges uniformly over D(0, R).
Note that f(z) is a tame series if and only if f(θ−1z) is a tame series. Hence, we

are reduced to prove the above property in the case R = 1. Now, observe that the set
S = {(i, j) : fi,j 6= 0 and ∃r ∈ {1, . . . , l} such that ir ≤ 0} is finite (in the definition of S,

i = (i1, . . . , il) and j = (j1, . . . , jl) and l varies between 0 and L). Hence, we can decompose

f =
∑

(i,j)∈S

fi,je
j1
i1
· · · ejlil +

∞∑

l=0

∑

i=(i1,...,il)∈(N∗)l

i1<···<il
j∈{1,...,q−1}l

fi,je
j1
i1
· · · ejlil .

The first sum is finite and therefore defines an entire function. Note now that if i =
(i1, . . . , il) ∈ (N∗)l, then, for |z| ≤ 1,

|ei1(z)
j1 · · · eil(z)

jl | ≤ |π̃|j1+···+jl |θ|−(i1j1+···+iljl).

Hence

‖fi,jei1(z)
j1 · · · eil(z)

jl‖ ≤M |π̃|L(q−1)|θ|−(i1j1+···+iljl) → 0

the limit considered being along the Fréchet filter over the set of couples (i, j). This means
that in the above decomposition, the second series defines a B-entire function and the
series defining f converges to a KΣ-entire function. �

3.2.1. Examples of tame series. We give examples of such functions in the setting of B =
Fq(tΣ)[θ] ⊂ KΣ, which carries the Gauss norm.

Lemma 3.7. Let a be in Fq(tΣ)((θ
−1))× ⊂ K×

Σ. Then, the entire function z 7→ eC(az) :
C∞ → KΣ defines an element of T (Fq(tΣ)[θ]).
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Proof. We write:

a =
∑

i≥i0

ai
θi
, ai ∈ Fq(tΣ),

and we immediately get that

eC (az) =
∑

i≥i0

aiei.

�

In particular, eC(
z
a) ∈ T (A) for all a ∈ A \ {0} and eC(

z
θ−ti

) ∈ T (Fq[tΣ][θ]), for all

i ∈ Σ. Let χ : A → Fq(tΣ) be an injective Fq-algebra morphism. Then, there exists

d ∈ Fq[tΣ] \ {0} such that the image is in Fq[tΣ][
1
d ]. We consider its entire extension

χ : C∞ → Kn×n
Σ , defined in §2.2.2. Note that, for all z ∈ C∞:

χ(z) = ω−1
χ eC

(
z(θIn − ϑ)

−1
)
= ω−1

χ

∑

i≥0

ei+1ϑ
i,

where ϑ = χ(θ), with the convergence for the Gauss norm of KΣ. The last sum defines a
matrix of tame series of T (Fq(tΣ)[θ])

n×n. Hence, χ ∈ T (KΣ)
n×n, and in fact:

Lemma 3.8. The entire matrix functions χ define elements of T (ÊΣ[
1
d ])

n×n. The entries
of χ, when non-zero, have depth one.

Another important example is given by an apparently different class of functions related
to the previous ones thanks to work of Perkins (see [39]). For simplicity, we confine our
description to some very particular examples, but see §4 for more general quasi-periodic
functions.

Define the Perkins series (of order 1 associated to the semicharacter χt):

ψ(1;χt) =
∑

a∈A

χt(a)

z − a
.

Note that for all z ∈ C∞ \ (A \ {0}), this series converges. Then, the function z 7→
eC(z)ψ(1;χt) is E-entire and in fact belongs to T (E). Indeed Perkins (see [39, Theorem
1.1]) proved the identity of E-entire functions

(24) eA(z)ψ(1;χt) = χt(z),

where eA(z) = z
∏′

a∈A
(1− z

a).

3.2.2. Asymptotic behavior of tame series. We suppose that l > 0 and we set:

(25) M =Mi,j = ej1i1 · · · e
jl
il
= J(Xj1

i1
· · ·Xjl

il
) = J(〈X〉j) ∈ T (A),

so that jk ∈ {1, . . . , q − 1} for all k = 1, . . . , l and i1 < · · · < il, for some l > 0. We call
this a monic tame monomial. Its depth is the integer d(M) = |j| =

∑
k jk. We define its

weight to be the rational number

w(M) :=
j1
qi1

+ · · ·+
jl
qil
∈ Z[p−1] = j = −v(〈X〉j) ∩ R≥0.



ON THE BEHAVIOUR AT THE CUSPS OF DRINFELD MODULAR FORMS 23

In particular, the weight of e0 = eC(z) is one and the weight of 1 or of a non-zero constant
is 0. The fact that the exponents jk are all ≤ q − 1 ensures that distinct tame monomials
have distinct weights. The condition of finite depth ensures that the supremum of the
weights of the monomials composing a tame series is a maximum. In the following, we
call the unique tame monomial of maximal weight in a non-zero tame series f , the leading
tame monomial. The weight w(f) of f is by definition equal to the weight of the leading
tame monomial. The weight −∞ is assigned to the zero tame series. We now discuss
the question on whether, assigning to a non-zero tame series f the weight w(f), we have
defined a degree map

T (B)
w
−→ Z[p−1] ∪ {−∞},

that is, the opposite of a valuation. Of course, this is related to the uniqueness of the tame
expansion of a function such as in (23), entire after Lemma 3.6; we are going to focus on
these questions now.

Lemma 3.9. Let M be a monic tame monomial of weight w as in (25), of depth l ≤ L.
Let z ∈ C∞ such that |z| 6∈ qZ. If |z| > qil, we have |M(z)| = |eC(z)|

w.

Proof. We recall that | · | is normalised so that |C∞| = qQ. Let z ∈ C∞ be such that
qn−1 < |z| < qn, for n ∈ Z. Then, there exists a rational number ǫ ∈]0, 1[ such that
|z| = qn−1+ǫ. Let us suppose that n ≥ 1. From the Weierstrass product expansion of the
function eA(z) = π̃−1 expC(π̃z):

(26) eA(z) = z
∏

a∈A\{0}

(
1−

z

a

)
,

we see that

|eA(z)| = |z|
∏

a6=0

∣∣∣1− z

a

∣∣∣ = |z|
∏

0<|a|<|z|

∣∣∣z
a

∣∣∣ = |z|qn
∏

0<|a|≤qn−1

|a|−1.

One computes easily
∏

0<|a|≤qn−1 |a|−1 = qq
qn−1
q−1

−nqn so that |eA(z)| = q
qn

(
ǫ−1+ q

q−1

)
− q

q−1

and, by eC(z) = expC(π̃z), we deduce that

logq |eC(z)| = qn
(

1

q − 1
− ǫ

)

(where logq denotes the logarithm in base q of a positive real number). Let i be a non-

negative integer. If n > i (note that | z
θi
| 6∈ qZ)

|ei(z)| =
∣∣∣eC

( z
θi

)∣∣∣ = q
qn−i

(
1

q−1
+ǫ

)

= |eC(z)|
1

qi .

This suffices to complete the proof of the Lemma. �

Proposition 3.10. Let us consider a non-zero tame series f as in (23) and let Mi0,j0
be

its leading tame monomial. Then, for all z ∈ C∞ such that |z| 6∈ qZ and with |z| large
enough depending on f , ‖f(z)‖ = ‖fi0,j0‖|eC (z)|

w(f).
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Proof. Let z ∈ C∞ be such that qn−1 < |z| < qn, for n ∈ Z. Then, as observed above,
there exists a rational number ǫ ∈]0, 1[ such that |z| = qn−1+ǫ. Let us suppose that n ≤ i.
Then, |z| < qi and |z/θi| = qn−i−1+ǫ < 1. In this case the product expansion (26) tells us
that |eC

(
z
θi

)
| =

∣∣π̃ z
θi

∣∣. We now consider a tame monomial of weight w, as in (25), and z
as above. Then, we can write (note that what follows is a well defined tame monomial):

M = ej1i1 · · · e
jk
ik︸ ︷︷ ︸

[M ]>n

e
jk1
ik+1
· · · ejlil︸ ︷︷ ︸

[M ]≤n

,

with i1 < · · · < il, where

[M ]≤n :=
∏

m such that n≤im

ejmim ,

and [M ]>n is defined analogously. Both [M ]≤n and [M ]>n are tame monomials, and w′ :=
w([M ]>n) =

∑
m≤k jmq

−im ≤ w(M). There is equality only if M = [M ]>n. We have

|[M ]>n(z)| = |eC(z)|
w′

(Lemma 3.9) and

|[M ]≤n(z)| =
(π̃z)jk+1+···+jl

|θ|ik+1jk+1+···+iljl
≤

|π̃|L(q−1)

|θ|ik+1jk+1+···+iljl
|z|L(q−1).

To ease our notation, we set δM (z) := ik+1jk+1 + · · ·+ iljl. Then, we see that

|M(z)| ≤ |eC(z)|
w|θ|−δM (z)|π̃|L(q−1)|z|L(q−1).

Let us choose w̃ ∈ Z[1p ]∩R>0. Then, for |z| ≥ R0 with R0 ∈ |C∞| large enough, depending

only on w̃ and L, we have that |π̃|L(q−1)|z|L(q−1) ≤ |eC(z)|
w̃, so that

|M(z)| ≤ |eC(z)|
w+w̃|θ|−δM (z).

Now, let us consider a non-zero tame series f that we can write in the following way

f = fi0,j0
Mi0,j0

+
∑

(i,j)6=(i0,j0)

fi,jMi,j

with fi0,j0
6= 0 and w(Mi0,j0

) = w(f) (we have seen that (i0, j0) is uniquely determined with

this property). From now on, we always suppose that z 6∈ qZ. There exists w̃ ∈ Z[1p ]∩R>0

such that if (i, j) 6= (i0, j0) is such that fi,j 6= 0, then w(Mi,j) + w̃ < w(f). Hence, for all

(i, j) 6= (i0, j0) such that fi,j 6= 0,

‖fi,jMi,j‖ ≤ C|eC(z)|
w′
|θ|

−δMi,j
(z)
, |z| ≥ R0,

where C is an upper bound for all the absolute values ‖fi,j‖. Since δM (z) → ∞ for M

running in the set of monic tame monomials (25) of bounded depth such that i1 ≥ α for
some fixed α, ∥∥∥∥∥∥

∑

(i,j)6=(i0,j0)

fi,jMi,j

∥∥∥∥∥∥
≤ C|eC(z)|

w′
, |z| ≥ R0,
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for w′ ∈ Z[1p ], 0 ≤ w
′ < w(f) and R0 depending on w̃. Hence,

∥∥∥f(z)− fi0,j0Mi0,j0

∥∥∥ ≤ C|eC(z)|w
′

and if |z| ≥ R1 depending on C and w′, we get

‖f(z)‖ = ‖fi0,j0‖|Mi0,j0
(z)| = ‖fi0,j0‖|eC(z)|

w(f).

�

Remark 3.11. We define, for z ∈ C∞, |z|ℑ = inf{|z−l| : l ∈ K∞} = min{|z−l| : l ∈ K∞}.
The statement of Proposition 3.10 holds under the weaker condition that |z|ℑ is large
enough. We leave the details to the reader.

We have the following important consequence of Proposition 3.10.

Corollary 3.12. If f ∈ T (B), then its tame series expansion is unique.

Proof. It suffices to show that a tame series as in (23) cannot vanish identically, if not
trivially. But otherwise, such a series would then have a unique leading tame monomial,
which would contradict the property of Proposition 3.10. �

Thanks to the above Corollary, J is injective, the map w ◦ J is the opposite of the
valuation v and the depth d(f) of a tame series f defined as the depth of g ∈ B〈〈X〉〉b such
that J(g) = f becomes a well defined invariant of the entire function it represents. Let
f be in T (B) as in (23). We denote by S(f) the subset of Z whose elements are the ik’s
which occur in (i, j) such that fi,j 6= 0. We set ν(f) := inf(S(f)) and µ(f) := sup(S(f)).

Then, µ(f) ≥ ν(f) and ν(f) ∈ Z if and only if f 6= 0 and µ(f) ∈ Z if and only if f is a
polynomial in ei, i ∈ Z. Note also that for any ν0 ≤ µ0 integers, the set of monic tame
monomials as in (25) such that

ν0 ≤ ν(M) ≤ µ(M) ≤ µ0

is finite.
We denote by Ts(B) the B-submodule of T (B) whose elements are the tame series f as

in (23) such that if fi,j 6= 0, then Mi,j has depth equal to s (homogeneous tame series of

depth s). It is easy to see that

(27) T (B) =
⊕

s≥0

Ts(B).

If f ∈ T (B), we can expand in finite sum and in a unique way

(28) f =
∑

s≥0

f [s],

where f [s] ∈ Ts(B). Moreover, we have the next Lemma, the proof of which is left to the
reader.

Lemma 3.13. For any s ≥ 0, τ induces an endomorphism of the B-module Ts(B).
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Unfortunately, the B-algebra T (B) is not graded by the depths. Instead, we have that

Ts(B)Ts′(B) ⊂
⊕

j≥0

Ts+s′−j(q−1)(B),

where we set Ts(B) = {0} if s < 0.

3.2.3. Some endomorphisms of T (B). We consider the B-linear endomorphism Φ of B[ei :
i ∈ Z] determined by

ei 7→
d∑

j=0

ciei−j ,

for fixed c0, . . . , cd ∈ B not all zero.

Lemma 3.14. The endomorphism Φ extends to an endomorphism of T (B).

Proof. Let M be a monic tame monomial. It is easy to see that if d(M) ≤ c0, then
d(Φ(M)) ≤ c1, where c1 is a constant depending on c0 and Φ. Further, µ(Φ(M)) ≤ µ(M)
and ν(Φ(M)) ≥ ν(M) − c3. Hence, for any monic tame monomial N , the set of monic
tame monomials M such that N occurs in the expansion of Φ(M), is finite. This implies
that if f ∈ T (B). Expanding f as in (23), we see that the formal series

Φ(f) :=
∑

i,j

fi,jΦ(Mi,j) =
∑

i,j

f̃i,jMi,j

has the property that f̃i,j 6= 0 implies d(Mi,j) ≤ c2 (for some c2) and ν(Mi,j) ≥ ν(f)− c3.

Moreover, it is plain that ‖f̃i,j‖ ≤ c4 (for some c4) so that Φ(f) is a tame series. �

Lemma 3.15. Let f be an element of T (KΣ) and α ∈ Fq(tΣ)((θ
−1))×, β ∈ Fq(tΣ)((θ

−1)).
Then, the function h(z) := f(αz + β) belongs to T (KΣ) and we have d(h) ≤ d(f) and
w(h) = |α|w(f).

Proof. We first show the lemma in the case β = 0. For f an entire function over C∞,
fα denotes the function f(αz). We recall that we have seen, in Lemma 3.7, that (ei)α ∈
T ◦(Fq(tΣ)((θ

−1))) (of depth≤ 1, and the weight is |α|q−i). Hence, ifM is a tame monomial,
then Mα ∈ T (KΣ) (because T (KΣ) is a KΣ-algebra), and d(Mα) ≤ d(M), w(Mα) =
|α|w(M). Expanding f =

∑
M fMM (FM ∈ KΣ for all M tame monomial) then, given a

tame monomial N , the set {M : N occurs in the tame expansion of Mα} is finite. Hence,
fα =

∑
M fMMα defines a tame series and we have the claimed properties of the depth and

the weight. We now assume that α = 1 and β ∈ Fq(tΣ)((θ
−1)). Since ei(z+β) = ei+ei(β),

we then see that f(z + β) = f + g where g ∈ T (KΣ) is such that d(g) ≤ d(f) and
w(g) < w(f). �

Note that the map f 7→ fθ is an automorphism of T (KΣ) (recall that fθ(z) = f(θz)).
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3.2.4. Tame series of weight < 1. We denote by T ◦(B) the B-submodule of T (B) of the
tame series f which have weight w(f) < 1: note that T ◦(B) is not a ring. Also, if a tame
monomial as in (25) is in T ◦(B), then i1 > 0. Indeed, Z[1p ] ∩ [0, 1[ contains only elements

of the form ji1q
−i1 + · · · with i1 > 0 if ji1 6= 0.

Lemma 3.16. Every element f ∈ T (B) can be expanded, in a unique way, as

f =
r∑

i=0

fie
i
0, fi ∈ T

◦(B).

Proof. Since any monic tame monomial involving ei with i > 0 always has weight in
[0, 1[∩Z[1p ], this follows from the fact that we have an isomorphism of B-modules T ◦(B) ∼=

T (B)/(e0), the quotient of T (B) by the principal ideal generated by e0. �

It is suggestive to write, after this lemma, T (B) = T ◦(B)[e0], with the warning that
T ◦(B) is not a ring, so that the multiplication of T ◦(B)[e0] is not the Cauchy one.

3.2.5. Some remarks. There are entire functions C∞ → C∞ which do not come from
evaluation of tame series. One of them is the identity map z 7→ z. Indeed, one sees easily
that for all w ∈ Z[1p ],

lim
|z|ℑ→∞

|z|

|eC(z)|w
∈ {0,∞}.

therefore, (z 7→ z) 6∈ T (C∞) as otherwise, we could assign a well defined weight in Z[1p ]∩R>0

to it.
To define T (B), we have used formal series with bounded coefficients in B. One of the

reasons for this choice is that the isomorphism J of Proposition 3.6 is likely not to extend
to a larger sub-algebra of B〈〈X〉〉. We illustrate the problem for B = C∞.

We set

G =
∑

i≥0

θ
i
qXi+1 ∈ C∞〈〈X〉〉.
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Then, we have the identities in C∞〈〈X〉〉 (we have used the following computation to show
that C∞〈〈X〉〉 is inversive for τ):

Gq =


∑

i≥0

θ
i
qXi+1



q

=
∑

i≥0

θiXq
i+1

=
∑

i≥0

θi(Cθ(Xi+1)− θXi+1)

=
∑

i≥0

θi(Xi − θXi+1)

!
=

∑

i≥0

θiXi −
∑

i≥0

θi+1Xi+1

= X0.

Note the exclamation mark over the next to the last equality. In parallel, let us set

g =
∑

i≥0

θ
i
q ei+1.

We claim that this defines an entire function. Indeed, for all R ∈ |C∞| and all z ∈

D(0, R), we have, for any i large enough, |ei+1(z)| = |π̃||z||θ|
−i−1 so that |θ

i
q ei+1(z)| ≤

|π̃||θ|
i
q
−i−1

R → 0 which implies the uniform convergence of the series defining g over any
disk D(0, R).

Now, gq 6= e0. One way to see this is observing that e0 = π̃z + hq, with h an entire
function. If gq = e0 we would have the identity map z 7→ z equal to the q-th power of
an entire function, which is false. However, to compute gq − e0 we cannot use the same
argument we applied to show the identity Gq = X0; where the argument breaks at the

level of the equality
!
= because the series of functions

∑
i≥0 θ

iei+1 is divergent outside 0

although the series
∑

i≥0 θ
iXi+1 defines an element of C∞〈〈X〉〉.

To compute gq we proceed in the following way. We set φ = eC(
z
θ−t) =

∑
i≥0 t

iei+1 ∈
T (E). It is easy to see that limt→θ(θ − t)φ = π̃z. But

eC(z) = Cθ−t(φ) = (θ − t)φ+ τ(φ)

so that eC(z) = π̃z + limt→θ τ(φ) = π̃z +
∑

i≥0 θ
ieqi+1 = π̃z + gq. We thus obtain:

gq − e0 = π̃z.

From this identity we deduce (1) that g 6∈ T (C∞) (because z is not tame) and (2) the map
J does not extend to a C∞-algebra map over C∞〈〈X〉〉

b[G].
Also, note that the condition of finite depth in the definition of T (C∞) is necessary. It is

not difficult to show that there is a uniformly convergent series expansion (in any bounded
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subset of C∞)

π̃z =
∑

i≥0

cie
qi

i ,

with c0 = 1 and ci ∈ K∞ such that ci → 0 so that the sequence (ci)i≥0 is bounded. The
reader can compute the coefficients ci inductively.

3.2.6. The field of uniformisers. let L ⊂ KΣ be a field extension of K with an extension
‖ · ‖ of the norm | · | and with an endomorphism τ extending the map c 7→ cq of K, such
that for all x ∈ L, ‖τ(x)‖ = ‖x‖q. We set

KL = ̂Frac(T (L))v

(v-adic completion); we call this the field of uniformisers over L. The next proposition
provides a simple way to represent the elements of KL.

Proposition 3.17. Every element f of KL can be expanded in a unique way as a sum

f =
∑

i≥i0

fie
−i
0 , fi ∈ T

◦(L).

We can write T ◦(L)((e−1
0 )) for the set of the formal series f =

∑
i≥i0

fie
−i
0 as above,

with fi ∈ T
◦(L) for all i, with the warning that this needs not to be a field for the usual

Cauchy product rule of formal series, since, as pointed out previously, T ◦(L) is not a ring
but just an L-vector space. The proposition tells that this set in fact carries a structure
of complete field, and equals KL, but the product rule is not the Cauchy’s one. To prove
the proposition we will need the next two Lemmas. The first one describes the valued ring
structure of T ◦(L)((e−1

0 )).

Lemma 3.18. The set T ◦(L)((e−1
0 )) has a natural structure of commutative ring with unit,

over which the valuation v extends from T ◦(L), and which is complete for it.

Proof. Since T ◦(L) is an L-vector space, in order to show that T ◦(L)((e−1
0 )) is a ring, all we

need to do is to describe the product structure. Let f =
∑

i≥i0
fie

−i
0 and g =

∑
j≥j0

gje
−j
0

be two elements of T ◦(L)((e−1
0 )). We note that hk :=

∑
i+j=k figj ∈ T (L) has weight in

{−∞} ∪ [0, 2[ so that we can write, by Lemma 3.16, hk = αke0 + βk, with αk, βk ∈ T
◦(L).

We define

h = fg =
∑

k≥k0:=i0+j0

e−k0 hk =
∑

k≥k0

αke
1−k
0 +

∑

k≥k0

βke
−k
0 ∈ T ◦(L)((e−1

0 )).

From this, the ring structure follows easily. If f =
∑

i fie
−1
0 ∈ T ◦(L)((e−i0 )) is such that

fi0 6= 0, then we set v(f) := v(fi0) + i0 ∈]i0 − 1, i0] and it is plain that v defines a
valuation over the ring T ◦(L)((e−1

0 )) and that every series of T ◦(L)((e−1
0 )) converges for

this valuation.
Note that f =

∑
i fie

−i
0 ∈ T

◦(L)((e−1
0 )) is such that v(f) > N if the smallest i0 such that

fi0 6= 0 is such that i0 ≥ N+1 (indeed, if fi0 ∈ T
◦(L)\{0}, v(fi0e

−i
0 ) ∈]i0−1, i0]). Thus, if
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(Fk)k is a Cauchy sequence of T ◦(L)((e−1
0 )), the sequence (F0−Fk)k = (

∑k
i=1(Fi−1−Fi))k

converges to an element of T ◦(L)((e−1
0 )) which is then complete. �

We now introduce the ring:

T •(L) := T (L)[M−1 :M monic tame monomial] = T (L)[e−1
i : i ∈ Z],

which contains T (L). Every element f of T •(L) has a well defined weight w(f) in Z[1p ].
Indeed, for every g ∈ T •(L), there exists a monic tame monomial M such that Mg ∈ T (L)
and this provides the unique extension of the weight map over T •(L). If L is a complete
valued field extension of C∞, It is easy to see that T •(L) is an L-algebra which embeds in
the L-algebra Hol(Ω→ L).

Lemma 3.19. We have T •(L) ⊂ T ◦(L)((e−1
0 )).

Proof. If n > 0 we have e−1
−n ∈ e−q

n

0 (1 + e−1
0 A[[e−1

0 ]]) (recall that Ca(eC(z)) = eC(az)

for all a ∈ A) and therefore, e−1
−n ∈ T

◦(L)((e−1
0 )) for all n > 0. Now, we show that

e−1
i ∈ T ◦(L)((e−1

0 )) for all i ≥ 0. Since this is clear for i = 0, let us assume (induction)

that e−1
0 , . . . , e−1

i−1 ∈ T
◦(L)((e−1

0 )). We observe, in the fraction field of T (L):

1

ei
=
eq−1
i

eqi
=

eq−1
i

ei−1 − θei
=

eq−1
i

ei−1

(
1− θei

ei−1

) .

Since v(θei/ei−1) > 0, the series
∑

j≥0(
θei−1

ei
)j converges in (T (L)[e−1

i−1])
∧
v to an element h

such that h(1 − θei
ei−1

) = 1. Now, we have T (L)[e−1
i−1]

∧
v ⊂ T

◦(L)((e−1
0 )) by our induction

hypothesis. Since T ◦(L)((e−1
0 )) is a ring, 1

ei
= eq−1

i · 1
ei−1
· h ∈ T ◦(L)((e−1

0 )), and more

generally, 1
M ∈ T

◦(L)((e−1
0 )), and the lemma follows remembering Lemma 3.16 which says

that T (L) = T ◦(L)[e0]. �

Proof of Proposition 3.17. The uniqueness of the series expansion of an element of the L-
vector space T ◦(L)((e−1

0 )) follows from Lemma 3.18. We show that Frac(T (L)) embeds
in (T •(L))∧v . To see this, we only need to show that if f ∈ T (L) is not proportional by
an element of L× to a tame monomial, then there exists g ∈ (T •(L))∧v such that fg = 1.
Now, write f = αM − h where M is the leading monomial and where h ∈ T (L) is such
that v(h) > v(M). Then, the series

∑
i≥0(

h
αM )i converges in (T •(L))∧v and we can set

g =
1

αM

∑

i≥0

(
h

αM

)i
∈ T̂ •(L)v.

By Lemma 3.19, (Frac(T (L)))∧v ⊂ T
◦((e−1

0 )) which is complete. On the other hand, any

series
∑

i≥i0
fie

−i
0 with the coefficients fi in T

◦(L) converges (for v) and the partial sums are

elements of T •(L)[e−1
0 ] ⊂ Frac(T (L)))∧v from which we can conclude that (Frac(T (L)))∧v =

T ◦((e−1
0 )) and also, we note that T ◦((e−1

0 )) carries the structure of a complete, valued
field. �
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We also introduce the corresponding valuation ring OL together with its maximal ideal
ML. The residual field is L. Denote, for simplicity, KΣ for KKΣ

etc.

Definition 3.20. The field of uniformisers is the complete v-valued field

K =
⋃̂

Σ

KΣ.

We denote by O,M the valuation ring and the maximal ideal of v.

3.2.7. Galoisian interpretation. Let Λ ⊂ C∞ be the set of torsion points of the Carlitz
module. We consider the field F := Fq(Λ)(x) with x indeterminate; note that it contains
K. Let F sep be a separable closure of F , set x0 := x, and choose, inductively, xi ∈ F

sep with
Cθ(xi) = xi−1. The field H := K(Λ)(x0, x1, . . .) is a Galois extension of F0 contained in
F sep. Note that the field L = K(Λ)(e0, e1, . . .) ⊂ KK(Λ) (subfield of the field of meromorphic
functions over C∞), wildly ramified at v (the valuation which is trivial on Ksep and such
that v(x0) = −1), is isomorphic to H. the translations z 7→ z+a with a ∈ A induce Galois
automorphisms of L/K(Λ)(e0) and therefore, of H/F .

4. Quasi-periodic matrix functions

In the next lemma, we temporarily go to a more general setting. Let k be any field, and
R a commutative k-algebra. We denote by B(R) the Borel subgroup {( ∗ ∗

0 ∗ )} ⊂ GL2(R)
and by U(R) the unit-triangular subgroup {( 1 ∗

0 1 )} ⊂ GL2(R). Let E/k be a field extension.

Lemma 4.1. Suppose we are given

GL2(k)
µ
−→ GLN (E)

ν
←− U(k[θ])

two representations such that µ|U(k) = ν|U(k) and such that for all λ ∈ k× and a ∈ k[θ],

µ( λ 0
0 1 )ν(

1 a
0 1 )µ(

λ−1 0
0 1 ) = ν( 1 λa0 1 ).

Then, there is a unique representation ρ : GL2(k[θ]) → GLN (E) which restricts to µ, ν
respectively on GL2(k) and U(k[θ]).

Proof. We recall, from Nagao’s paper [25], that

GL2(k[θ]) = GL2(k) ∗B(k) B(k[θ]),

which means that GL2(k[θ]) is the amalgamated product of GL2(k) and B(k[θ]) along the
common subgroup B(k). This implies that every element γ ∈ GL2(k[θ]) can be written, in
a unique way

γ = A1B1 · · ·AlBl

for some l, where Ai ∈ B(k)( 0 1
1 0 )U(k) andBi ∈ B(k[θ]) (because of Bruhat’s decomposition

GL2(k) = B(k)( 0 1
1 0 )U(k) ⊔B(k)). Therefore, the identities

( λ 0
0 1 )(

1 a
0 1 )(

λ−1 0
0 1 ) = ( 1 λa0 1 )

are the gluing condition for µ, ν to be extended to a unique representation ρ. �



32 F. PELLARIN

We come back to our initial setting k = Fq. We recall that Γ = GL2(A). We also recall
that we have denoted by Ω the rigid analytic space whose underlying set is C∞ \ K∞ as
defined, for instance, in [15]. We fix a representation

Γ
ρ
−→ GLN (kΣ).

We set, for a ∈ A, Ta = ( 1 a0 1 ) and S = ( 0 −1
1 0 ) (in Γ).

Then we see that, in order to study modular forms over Ω for a representation ρ : Γ→
GLN (kΣ), we can start by separately studying their behaviour when we apply homographies
in U(Fq[θ]). This suggests the next definition.

Definition 4.2. Let f : Ω → KN×N
Σ be a holomorphic matrix function. We say that it is

ρ-quasi-periodic if it is such that, for all z ∈ Ω and a ∈ A

(29) f(z + a) = ρ(Ta)f(z).

We say that f is of type l ∈ Z/(q − 1)Z if for all ν ∈ F×
q , we have

f(νz) = ν−lρ( ν 0
0 1 )f(z)ρ(

ν 0
0 1 )

−1.

We say that f is tempered at ∞ if there exists L ∈ Z such that u(z)Lf(z)→ 0 as z ∈ Ω is
such that |u(z)| → 0 and that f is regular if ‖f‖ is bounded as |u(z)| → 0.

If ρ = 1 (with 1 the trivial map which sends every element of Γ to 1 ∈ F×
q ), then a

quasi-periodic function is a holomorphic function f : Ω → KΣ such that f(z + a) = f(z)
for all a ∈ A. Examples are eC(z) and

u(z) =
1

π̃

∑

a∈A

1

z − a
=

1

eC(z)
.

Both functions are obviously tempered. The function eA(z) is of type −1 and the function
u(z) is of type 1. For further use, we record the next Proposition whose proof runs along
standard arguments (see [34]).

Proposition 4.3. Let f : Ω→ KΣ be holomorphic, such that f(z+a) = f(z) for all a ∈ A.
Then, the following properties hold:

(a) There is a unique series expansion

f =
∑

n∈Z

fnu(z)
n, fn ∈ KΣ,

convergent if z ∈ Ω is such that |z|ℑ > c for some c ∈ |C×
∞|.

(b) If lim|z|ℑ→∞ f(z) = 0, then fn = 0 for all n ≤ 0.
(c) If f extends to an entire function over C∞, and there exists L ∈ Z such that

u(z)Lf(z)→ 0 as |z|ℑ →∞, then f ∈ KΣ[u(z)
−1].

We denote by QP !
l(ρ;KΣ) the KΣ-vector space of tempered ρ-quasi-periodic functions

Ω→ KN×N
Σ
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of type l, and by QP l(ρ;KΣ) the sub-vector space of quasi-periodic regular functions.
Proposition 4.3 implies that QP !

l(1;KΣ) can be embedded in the field KΣ((u)) and that

for all Σ and l ∈ Z/(q − 1)Z, QP !
l(ρ;KΣ) is a module over QP !

0(1;KΣ)
N×N , and a similar

property holds for the regular quasi-periodic functions. Of course, we can reduce the target
space; the meaning of QP !

l(ρ;LΣ) etc. is therefore understood.

Lemma 4.4. Let l be a positive integer. The function Ψ(ρ; l) defined, for all z ∈ C∞ \A,
by

Ψ(ρ; l)(z) =
∑

a∈A

(z − a)−lρ(Ta),

determines a non-zero element of QP l(ρ;KΣ).

Proof. It is easy to show that Ψ(ρ; l) = Ψ(ρ; l)(z) converges uniformly for z ∈ C∞ \
(⊔a∈AD(a, r)) with r ∈ |C×

∞|, 0 < r < 1. This shows that Ψ(ρ; l) defines a holomorphic

function Ω→ KN×N
Σ , and this function is non-zero because it has, in any disk D(0, r) with

r ∈ |C×
∞|, a meromorphic extension which has poles of order l at any a ∈ D(0, r) ∩ A.

Moreover, we have, for all z ∈ C∞ \A and b ∈ A:

Ψρ(z − b) =
∑

a∈A

(z − a− b)−1ρ(Ta)

=
∑

a∈A

(z − a− b)−1ρ(Ta+b)ρ(T−b)

= Ψρ(z)ρ(T−b) = ρ(T−b)Ψρ(z).

so that

(30) Ψρ(z + a) = Ψρ(z)ρ(Ta) = ρ(Ta)Ψρ(z), ∀a ∈ A.

Since

Ta =

(
λ 0
0 1

)
Tλ−1a

(
λ−1 0
0 1

)
, ∀a ∈ A, λ ∈ F×

q ,

for all λ ∈ F×
q :

Ψ(ρ; l)(λz) =
∑

a∈A

(λz − a)−lρ(Ta)

= λ−lρ

(
λ 0
0 1

)
Ψ(ρ; l)(z)ρ

(
λ−1 0
0 1

)
,

and the type is l. Now, as |z|ℑ →∞, we get Ψ(ρ; l)(z) → 0 so that Ψ(ρ; l) ∈ QP l(ρ;KΣ).
�

Remark 4.5. We consider a representation ρ : Γ → GLN (KΣ). We additionally suppose
that:

(31) ‖a−1ρ(Ta)‖ → 0, as a runs in A.

Then, the functions Ψ(ρ; l) can be defined for all l > 0 and the statement of Lemma 4.4
holds in this more general situation.
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In the following, we set Ψρ := Ψ(1; ρ) and Φρ := eAΨ(1; ρ).

4.1. Representations of the first kind. We now introduce a class of representations of
Γ for which we can construct explicitly entire non-zero quasi-periodic functions. First of
all, we introduce a useful technical definition.

Definition 4.6. We say that a representation ρ : Γ→ GLN (kΣ) is of degree l ∈ Z/(q−1)Z
if for all µ ∈ F×

q , ρ(µI2) = µ−lIN .

We recall that after (4), Jγ(z)
wρ(γ) is a factor of automorphy if and only if ρ is of degree

w. For example, det−m is of degree 2m (the double of the type). The identity map over
Γ is of degree −1. All the representations that we consider in this text necessarily have a
well defined degree (otherwise, 0 will be the only associated modular form).

Definition 4.7. Let χ : A → Fq(tΣ)
n×n be an injective Fq-algebra morphism, let d ∈

Fq[tΣ] \ {0} be such that dχ(θ) ∈ Fq[tΣ]
n×n. Then the map

ρχ : Γ→ GL2n

(
Fq[tΣ][d

−1]
)
⊂ GL2n(Fq(tΣ))

defined, with γ = ( a bc d ) ∈ Γ, by

ρχ(γ) :=

(
χ(a) χ(b)
χ(c) χ(d)

)
,

is a representation of degree −1, called the basic representation associated to χ. Note also
that

det(ρχ(γ)) = det(χ(ad− bc)) = det(γ)n.

If ρ is a representation, we write ρ∗ := tρ−1; it is its contragredient representation. If ρ is
of degree l, ρ∗ is of degree −l. Let ρ : Γ→ GLN (tΣ) be a representation. We say that ρ is
a representation of the first kind if ρ can be obtained from basic representations by finitely
many iterated applications of (·)∗, direct sums ⊕, Kronecker products ⊗, symmetric powers
Sn, exterior powers ∧n, in such a way that ρ has a well defined degree.

Note that if ρ has degree l and if ψ has degree m, then:

ρ⊕ ψ has degree l (if l = m)

ρ⊗ ψ l +m,

Sr(ρ) rl,

∧rρ rl,

ρ∗ −l,

where in the right, (·)∗,⊕,⊗, Sr and ∧r denote respectively the contragredient, direct sum,
Kronecker product, r-th symmetric power and the r-th exterior power, of representations.
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4.1.1. Quasi-periodic functions for representations of the first kind. For any representation
of the first kind ρ, we can canonically associate two quasi-periodic functions Ξρ and Φρ.
Let us first assume that ρ = ρχ is a basic representation. We denote by χ the function χ̃
of Lemma 2.10.

By using Lemma 3.8, we see that the function

Ξρ(z) =

(
1 χ(z)
0 1

)
,

belongs to QP !
0(ρ;EΣ[

1
d ]

∧) (with dχ(θ) ∈ Fq[tΣ] \ {0}). If now ρ is a representation of
the first kind, it can be constructed from basic representations ρ1, . . . , ρm by finitely many
iterated applications of direct sums, Kronecker products, exterior and symmetric powers,
and the star operation, and following the same process, we can combine the functions

Ξρ1 , . . . ,Ξρm to construct a quasi-periodic matrix function Ξρ ∈ QP
!
0(ρ; ÊΣ[

1
d ]) for some d.

More precisely, we set, for ρ, ψ two representations of the first kind:

Ξρ⊕ψ = Ξρ ⊕ Ξψ,(32)

Ξρ⊗ψ = Ξρ ⊗ Ξψ,

ΞSr(ρ) = Sr(Ξρ),

Ξ∧rρ = ∧rΞρ,

Ξρ∗ = (Ξρ)
∗.

To simplify our notations we write, in the following,

E := ÊΣ[d−1]

Lemma 4.8. If ρ is a representation of the first kind, the function Ξρ has all its entries
in T (E) and is a tempered ρ-quasi-periodic function of type 0.

Proof. The fact that Ξρ is quasi-periodic is clear from the properties of the functions
χ : C∞ → Kn×n

Σ . Moreover, it is easy to see that it is of type 0. It suffices to check this
for basic representations. For this note that, for ν ∈ F×

q , and for any Fq-algebra morphism

χ : A→ Fq(tΣ), (
In χ(νz)
0 In

) = ( In νχ(z)
0 In

) = ( νIn 0
0 In

)( In χ(z)
0 In

)( ν
−1In 0
0 In

). But since ρ = ρχ, we

have ρ( a bc d ) = ( aIn bIn
cIn dIn

) for all ( a bc d ) ∈ GL2(Fq), and therefore,

(33) Ξρ(νz) = ρ

(
ν 0
0 1

)
Ξρ(z)ρ

(
ν 0
0 1

)−1

.

Additionally, since the entries of the function χ are tame series, they are tempered. �

Proposition 4.9. The following properties hold:

(a) The function Φρ extends to an entire function C∞ → EN×N .

(b) We have that Φρ,Ψρ ∈ QP
!
1(ρ;E).

(c) There exist matrices U1, . . . , Uk ∈ EN×N , uniquely determined and depending on ρ,
such that

Φρ(z) = (IN + U1eC(z) + · · ·+ UkeC(z)
k)Ξρ(z).
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(d) We have Φρ ∈ T
◦(E)N×N and this is the unique element f of T ◦(E)N×N such that

f(a) = ρ(Ta) for all a ∈ A.

Note that if ρ = 1 is the trivial representation, then we have Ξρ = 1 = Φρ, Ψρ =∑
b∈A

1
z−b .

Proof of Proposition 4.9. (a). In any disk D(0, r) with r ∈ |C×
∞|, the product eA(z)Ψρ(z)

extends to a holomorphic function because of the Weierstrass factorization

eA(z) = z
∏

a∈A\{0}

(
1−

z

a

)
.

This immediately implies that Φρ is entire.

(b). Since ρ is a representation of the first kind, Ξρ can be constructed applying finitely
many operations as in (32) to finitely many functions Ξρi associated to basic representations
ρi, which are unipotent (in fact, triangular with one on the diagonals). Therefore Ξ−1

ρ

defines an entire function C∞ → EN×N . Hence, M(z) := Ψρ(z)Ξρ(z)
−1 has entries which

are holomorphic Ω→ En×n, and M(z + a) =M(z) for all a ∈ A, by (30). Moreover, since
Ξρ is tempered, there exists L ∈ Z such that u(z)LM(z) → 0 as |z|ℑ → ∞. By (b) of
Proposition 4.3, M can be identified with an element of E((u))N×N and we easily check
that Ψρ ∈ QP

!
1(ρ;E).

(c). We have seen that Ξρ defines an element of T (E)N×N therefore by the arguments
at the point (b), we additionally observe that Ξρ ∈ GLN (T (E)) and therefore, Φρ(z)Ξ

−1
ρ ∈

E((u))n×n extends to an entire matrix function which, in virtue of (c) of Proposition 4.3,
belongs to E[eC(z)]

n×n.
Thus, we have proved the existence of matrices U0, U1, . . . , Uk ∈ En×n such that

Φρ(z)Ξρ(z)
−1 = U0 + U1eC(z) + · · ·+ UkeC(z)

k.

To determine U0, we replace z = a ∈ A \ {0}; we get U0 = Φρ(a)Ξρ(a)
−1 = Φρ(a)ρ(T−a).

Now, Φρ(a) = limz→a eA(z)Ψρ(z) = limz→a eA(z)(z − a)
−1ρ(Ta) = ρ(Ta) because e′A = 1.

Hence, U0 = In.

(d). From (c) above, Φρ ∈ T (E)
N×N . We denote by w ∈ Z[1p ]≥0 the supremum of

the weights of all the entries of Φρ. Note that w < 1 so that Φρ ∈ T
◦(E)N×N . An

element of T ◦(E) clearly satisfies the decay condition of Corollary 2.9. Hence, for any map
g : A→ B, there exists at most one element f ∈ T ◦(E) such that f(a) = g(a) for all a ∈ A.
Consequently, if f is element of T ◦(E)N×N such that f(a) = ρ(Ta) for all a ∈ A, then,
Φρ = f . The other properties are obvious. �

We have the next corollary, where ρ is a representation of the first kind.

Corollary 4.10. The tame series expansion of Φρ is provided by the unique representative

in the E-module T ◦(E)N×N of the matrix Ξρ in the quotient of T (E)N×N by the principal

ideal generated by e0IN . Moreover, we have det(Φρ) = 1 and Φρ ∈ QP
!
0(ρ;E).
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Proof. The first property follows directly from Proposition 4.9 (c), (d). To show the second
property we first note that the matrices ρ(Ta), a ∈ A, can be simultaneously (upper)
triangularised over Fq(tΣ)

ac, and the diagonal entries are all equal to one because T pa = I2
for all a. Hence, Ψρ is conjugated over Fq(tΣ)

ac to a upper triangular matrix having
eA(z)

−1 as diagonal entries. This implies that Φρ is conjugated over Fq(tΣ)
ac to a upper

triangular matrix having 1 in the diagonal. Hence, det(Φρ) = 1 while it is clear that it is
quasi-periodic of type 0. �

Let χ : A→ Fq(tΣ)
n×n be an Fq-algebra morphism and denote by ρ the basic represen-

tation ρχ : Γ → GLN (Fq(tΣ)) defined by ρ( a bc d ) = (
χ(a) χ(b)
χ(c) χ(d) ), with N = 2n. For a matrix

f ∈ KN×N
Σ , v(f) denotes the infimum of the valuations of the entries of f .

Corollary 4.11. We have Φρ = Ξρ, v(Φρ) = −
1
q and v(Φρ − ω

−1
χ e1) > −

1
q .

Proof. By definition, Ξρ = ( In χ
0 In

) and χ(z) = ω−1
χ eC(z(θIn − ϑ)

−1) has entries in T ◦(KΣ)
so we have already Φρ = Ξρ by Corollary 4.10. Moreover, the tame series expansion of
eC(z(θIn − ϑ)

−1) is eC(z(θIn − ϑ)
−1) = e1In+terms of smaller weight, which implies the

remaining properties. �

4.1.2. Application to column quasi-periodic functions. We consider, in this subsection, a

representation Γ
ρ
−→ GLN (kΣ).

Definition 4.12. A holomorphic column function

Ω
f
−→ KN×1

Σ

such that

f(z + a) = ρ(Ta)f(z), ∀a ∈ A,

is called a ρ-quasi-periodic function. We say that f is tempered if there exists L ∈ Z such
that lim|z|=|z|ℑ→∞ f(z)u(z)L = t(0, . . . , 0). We further say that f is regular if there exists
c > 0 such that the set {‖f(z)‖ : |z|ℑ ≥ c} is bounded.

Note that in §4, we discussed quasi-periodic N ×N matrix functions. Their columns are
quasi-periodic in the above sense. We now suppose that the representation ρ is of the first
kind. Recall the notation KΣ = KKΣ

where, for a subfield L of KΣ, KL has been defined in
§3.2.6. The v-valuation ring is denoted by OΣ (and the maximal ideal is denoted by MΣ).

Proposition 4.13. Assuming that ρ is of the first kind, if f is ρ-quasi-periodic and tem-
pered, we can identify it with an element of KN×1

Σ . If additionally f is regular, then we can

identify it with an element of ON×1
Σ .

Proof. In the proof of part (c) of Proposition 4.9, we have seen that Ξρ can be identified

with an element of GLN (T (KΣ)). Hence, the function Ξ−1
ρ f : Ω → KN×1

Σ has entries
which are all A-periodic and tempered. By part (b) of Proposition 4.3, the entries are
thus elements of KΣ((e

−1
0 )) and the entries of f = ΞρΞ

−1
ρ f are therefore in T ◦(KΣ)((e

−1
0 ))

which is equal, by Proposition 3.17, to KΣ. This proves the first part of the proposition.
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Since Φρ is quasi-periodic we have f = Φρg where g ∈ KΣ((u))
N×1. Corollary 4.10

implies that Φρ ∈ GLN (T
◦(KΣ)). Observe that g = Φ−1

ρ f . Since the entries of Φ−1
ρ are in

T ◦(KΣ), for |z|ℑ ≥ c1 for some constant c1 ∈ |C×
∞|, we have ‖Φ−1

ρ f‖ ≤ c2|eA(z)|
w, where

w ∈ Z[1p ] ∩ [0, 1[, for some c2 > 0. This means that ‖uwg‖ ≤ c2 as |z|ℑ is large. Let α > 0

be such that pαw ∈ Z. Then ‖up
αwgp

α
‖ is bounded at infinity and up

αwgp
α
∈ KΣ((u))

N×1.

Therefore, uwg ∈ KΣ[[u
1
pα ]]N×1 and we deduce that, necessarily, g ∈ KΣ[[u]]

N×1. Hence,

f = Φρg ∈ ON×1
Σ . �

Now viewing Definition 1.2, we deduce parts (1), (2), (3) of Theorem A in the introduc-
tion:

Theorem 4.14. For all w ∈ Z, there is a natural embeddingM !
w(ρ;KΣ)

ιΣ−→ KN×1
Σ such that

Mw(ρ;KΣ) = ι−1
Σ (ιΣ(M

!
w(ρ;KΣ))∩O

N×1
Σ ) and such that Sw(ρ;KΣ) = ι−1

Σ (ιΣ(M
!
w(ρ;KΣ))∩

MN×1
Σ ).

Proof. Since a weak modular form is a tempered quasi-periodic function and a modular
form is a regular quasi-periodic function, the first part of the result follows directly from
Proposition 4.13, where the hypothesis that ρ is of the first kind is essential. To prove the
two other parts of the statement, namely the characterisation of the image of Mw(ρ;KΣ)
and Sw(ρ;KΣ), we combine Proposition 3.17 with Proposition 3.10, which allows to derive,
from the fact that f is bounded at infinity (resp. has zero limit at infinity) that valuations
of the entries of f are non-negative (resp. positive). �

4.1.3. Application to Perkins’ series. Let U be a finite subset of N∗, let

σU =
∏

i∈U

χti

be the corresponding semi-character A→ Fq[tU ].

Definition 4.15. The Perkins series of order n ≥ 1 associated to σU is:

ψ(n;σU ) =
∑

a∈A

(z − a)−nσU (a).

All these series converge for z ∈ C∞ \ A and the functions z 7→ eA(z)
nψ(n;σU )(z)

converge to entire functions C∞ → EΣ, as it is easily seen. If Σ = ∅ we have σ∅ = 1

the trivial semi-character, and Perkins’ generating series are related to Goss’ polynomials
associated to the lattice A ⊂ C∞ as in [19, §6] and [15, §3]. Indeed,

(34) ψ(n;1) = Sn,A =
∑

b∈A

1

(z − b)n
= Gn,A(S1,A),

for polynomials Gn,A ∈ K∞[X] (we adopt the notations of ibid.) These functions have
been considered by Perkins in his Thesis [38]. We study Perkins’ series of order 1: we show
that they are in KΣ and we compute their weight in the case n = 1.

We need to introduce a few tools. Let Σ be a finite subset of N∗ with s elements. Let
m ≥ 0 be the unique integer such that (m− 1)(q − 1) + 1 ≤ s ≤ m(q − 1). If s = 0, then
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m = 0. Let l be the unique integer with s = (m− 1)(q − 1) + l (so that 1 ≤ l ≤ q − 1 and
if s = m = 0, then l = q − 1). We set:

(35) Ms = eq−1
1 · · · eq−1

m−1e
l
m ∈ T

◦(Fq)

(note that we can define the B-module T ◦(B) for any Fq-algebra B). We call Ms the
maximal tame monomial, a terminology which is motivated by the following result. We
clearly have, by the fact that s = (m− 1)(q − 1) + l:

(36) d(Ms) = s, w(Ms) = (q − 1)

m−1∑

i=1

1

qi
+

l

qm
=: wmax(s).

We set T ◦
s (B) = T ◦(B) ∩ Ts(B) (recall the grading (27)). We have T ◦(B) = ⊕s≥0T

◦
s (B).

Then, the next lemma holds (the proof is easy and left to the reader), which tells us that
in the homogeneous piece T ◦

s , Ms has maximal weight.

Lemma 4.16. For all f ∈ T ◦
s (KΣ) there exists fs ∈ KΣ unique such that w(f − fsMs) <

w(f) ≤ wmax(s).

We come back to Perkins’ series. All the functions ψ(1;σU ) with U ⊂ Σ occur in the
entries of ΨρΣ , where ρΣ is the representation of the first kind

ρΣ =
⊗

i∈Σ

ρti ,

where ρti(
a b
c d ) = (

a(ti) b(ti)
c(ti) d(ti)

). Since ΨρΣ ∈ QP
!
1(ρΣ;EΣ) from (d) of Proposition 4.9 we

deduce that

φ(1;σU ) := e0ψ(1;σU ) ∈ T
◦(EΣ), U ⊂ Σ.

Without loss of generality, we focus now on φ(1;σΣ) ∈ T
◦(EΣ). The next question is the

computation of its weight. We set, for Σ non-empty with l,m as above:

(37) κ(Σ) := q−m(q − l) ∈]0, 1[∩Z[p−1].

For Σ = ∅, we extend the definition to κ(∅) := 1. Note that κ(Σ) defines a strictly
decreasing function |Σ| 7→ κ(Σ), and lim|Σ|→∞ κ(Σ) = 0. We prove:

Theorem 4.17. The function φ(1;σΣ) ∈ T
◦(EΣ) has weight

(38) w(φ(1;σΣ)) := 1− κ(Σ) = 1− q1−m + lq−m.

Proof. If Σ = ∅, it is clear that φ(1;σΣ) has weight 0 (it is in this case a constant function).
We suppose that Σ is non-empty. We consider the unique representative gΣ ∈ T

◦(EΣ) of∏
i∈Σ χti(z) (see §2.2.3 for the definition of χt(z)) modulo the ideal of T (EΣ) generated

by e0. By Corollary 4.10, we have φ(1;σΣ) = gΣ. We can write gΣ =
∑s

i=0 g
[i]
Σ with
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g
[i]
Σ ∈ T

◦
i (EΣ) (see (28)) (3). We note that

(39) g
[s]
Σ =

[
∏

i∈Σ

χti(z)

][s]
= eq−1

1 · · · eq−1
m−1e

l
m︸ ︷︷ ︸

Tame monomial Ms

PΣ +Φ,

with w(Ms) = wmax(s), Φ ∈ T (EΣ), with w(Φ) < wmax(s), and where

PΣ :=
∑

I0⊔I1⊔···⊔Im=Σ
|I0|=···=|Im−1|=q−1

|Im|=l


∏

i1∈I1

ti1


 · · ·


∏

i∈Im

tm−1
im


 ∈ Fp[tΣ],

a polynomial which is easily seen to be non-zero. By Lemma 4.16:

w(g
[s]
Σ − PΣMs) < wmax(s).

This implies the theorem because the map s 7→ wmax(s) is a strictly increasing function
(s > 0) so that

w(φ(1;σΣ)) = w(gΣ) = w(g
[s]
Σ ) = wmax(s).

�

For all Σ ⊂ N∗ a finite subset, the above proof yields the next corollary:

Corollary 4.18. We have

lim
|z|ℑ→∞

eA(z)
κ(Σ)ψ(1;σΣ) = PΣ.

Example. Let Σ be a subset of N∗ of cardinality q. Developing the product
∏
k∈Σ eC

(
z

θ−tk

)

we get, after elimination of the q-th powers:

∏

k∈Σ

eC

(
z

θ − tk

)
= eC(z)−

∑

j≥0

(
θ
∏

i∈Σ

tji −
∏

i∈Σ

tj+1
i

)
eC

( z

θj+1

)
+

+
∑

0≤i1≤···≤iq
ik not all equal

eC

( z

θi1+1

)
· · · eC

( z

θiq+1

) ∑

α=(αi:i∈Σ)∈N|Σ|

|α|=qi1+···+qiq

∏

k∈Σ

tαk

k .

from this tame series expansion (of depth q) we deduce that the leading tame monomial

of
∏
i∈Σ χti(z) is eC(z). Hence,

∏
k∈Σ eC

(
z

θ−tk

)
− eC(z) ∈ T

◦(A[tΣ]) and equals φ(1;σΣ)

for this choice of Σ.

3In fact, one sees that if i 6≡ s (mod q − 1), then g
[i]
Σ = 0.
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4.2. Hecke operators. As simple consequences of the above investigations, we will now
define Hecke operators acting on the spaces Ww(ρ;B) with symbols W ∈ {M,S} and

B ∈ {LΣ,KΣ}. Let us consider a representation Γ
ρ
−→ GLN (kΣ) and let a be a non-zero

ideal of A. The group Γ acts (on the left) on Ma = {γ ∈ A
2×2 : det(γ) is a generator of a}.

Let G be an element of Hol(Ω → KN×1
Σ ) and let us consider k ∈ Z and m ∈ Z/(q − 1)Z.

We define, for γ ∈Ma, the Petersson slash operator G|k,m,ργ on G by

(40) (G|k,m,ργ)(z) := Jγ(z)
−k det(γ)mρ(γ)−1G(γ(z)),

and we set, choosing a complete set of representatives of Γ\Ma:

T k,m,ρa (G)(z) := ak−m
∑

γ∈Γ\Ma

G|k,m,ργ.

Let G be such that

(41) G(z) = Jγ(z)
k det(γ)−1ρ(γ)G(z), ∀z ∈ Ω, ∀γ ∈ Γ.

It is a standard computation to show that the function H := Ta(G) = T k,m,ρa (G), regard-
less of the choice of the representatives involved in the sum defining it, also satisfies the
collection of functional equations (41). Moreover, TaTb = Tab for all a, b non-zero ideals of

A. We have the next result, where Ta = Tw,0,ρa for all ideals a:

Theorem 4.19. Assuming that ρ is of the first kind, we have that for all a, Ta defines
a B-linear endomorphism of M !

w(ρ;B) which induces endomorphisms of Mw(ρ;B) and
Sw(ρ;B).

Proof. If a = p = (P ) is a prime ideal, then we can choose Mp = {( P 0
0 1 ), (

1 b
0 P ) : b ∈

A, |b| < |P |}. Thanks to Lemma 3.15, Tp operates on KN×1
Σ and furthermore, leaves ON×1

Σ

andMN×1
Σ invariant. The total multiplicativity of the operators Ta completes the proof. �

This generalises [37, Proposition 5.12] (which deals the very special case of N = 2 and
ρ = ρ∗t , with an ad hoc proof very hard to generalise to our settings).

5. Structure results for modular forms

We consider, in this section, a representation

Γ
ρ
−→ GLN (kΣ).

We recall that M !
w(ρ;LΣ), Mw(ρ;LΣ), Sw(ρ;LΣ) denote respectively, the LΣ-vector spaces

of weak modular forms, modular forms, and cusp forms in HolKΣ
(Ω→ LN×1

Σ ) of weight w

for ρ (in the sense of Definition 1.2), so that Sw(ρ;LΣ) ⊂ Mw(ρ;LΣ) ⊂ M !
w(ρ;LΣ). The

operator τ induces kΣ-linear injective maps

Mw(ρ;LΣ)
τ
−→Mqw(ρ;LΣ),

and similarly for M !
w(ρ;LΣ), Sw(ρ;LΣ) etc. Of course, this depends on the choice of Σ. To

simplify, we will sometimes also write Mw(ρ) for Mw(ρ;LΣ) etc. when the reference to the
field LΣ is clear. The next sub-section also allows to justify this abuse of notation.
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5.1. Changing the coefficient field. We have defined, for ρ : Γ → GLN (kΣ) a repre-
sentation, the LΣ-vector space of modular forms Ww(ρ;LΣ) (with W a symbol such that
W ∈ {M !,M, S}). Let Σ′ be finite such that Σ ⊂ Σ′ ⊂ N∗. Then, we also have the spaces
Ww(ρ;LΣ′). The next result allows to compare the various spaces Mw(ρ;LΣ′) for Σ′ ⊃ Σ
under the hypothesis of finite dimensionality.

Proposition 5.1. If dimLΣ
(Mw(ρ;LΣ)) <∞ and ρ is of the first kind, then

Mw(ρ;LΣ′) =Mw(ρ;LΣ)⊗LΣ
LΣ′ .

To prove this proposition we need the next two Lemmas.

Lemma 5.2. Let X be a rigid analytic curve. We have

HolKΣ
(X → LΣ) =

⋃

d∈Fac
q [tΣ]\{0}

Hol(X → T̂Σ[d−1]).

Proof. We first show the lemma when X = Spm(A) where A is an integral C∞-affinoid
algebra. Remember that in this case, if f : X → C∞ is holomorphic with infinitely many
zeroes, then it is identically zero. Now, let f : X → KΣ be a global section of OX/KΣ

such that the image lies in LΣ. For all x ∈ X there exists d ∈ Facq [tΣ] \ {0} such that

f(x) ∈ TΣ[
1
d ]

∧. We thus have a map

X
Φ
−→ Facq [tΣ] \ {0},

defined by sending x ∈ X to any d such that f(x) ∈ TΣ[
1
d ]

∧.
Since X is, as a set, uncountable, while the target set is countable, there exists an infinite

subset X0 ⊂ X and d, such that Φ(x) = d for all x ∈ X0. We can complete an orthonormal
basis Bd ⊂ Facq [tΣ][

1
d ] of TΣ[

1
d ]

∧ to an orthonormal basis B = Bd ⊔B
′ ⊂ Facq (tΣ) of KΣ/C∞.

Then, we can expand f in a uniformly convergent series over X:

f(x) =
∑

b∈B

fb(x)b, x ∈ X

where fb : X → C∞ are holomorphic functions (explicitly, fb tends to zero for the spectral
norm over X with respect to the Fréchet filter). If b ∈ B′, then fb vanishes over X0 infinite
and therefore vanishes identically. Hence, f ∈ HolTΣ[d−1]∧(X → TΣ[d

−1]∧), or in other
words, we have a uniformly convergent series expansion

(42) f(x) =
∑

b∈Bd

fb(x)b, x ∈ X

with fb ∈ OX for all b ∈ Bd. Now, suppose that X ( Y are two affinoids, let f be in
HolKΣ

(Y → LΣ). Consider an orthonormal basis Bd of TΣ[d
−1]∧ and complete it to an

orthonormal basis Bd′ = Bd⊔C of TΣ[d
′−1]∧ assuming that TΣ[d

−1]∧ ⊂ TΣ[d
′−1]∧ and that

at once, f ∈ HolTΣ[d′−1]∧(Y → TΣ[d
′−1]∧) and f ∈ HolTΣ[d−1]∧(X → TΣ[d

−1]∧). Then, by

(42), we have

f(x) =
∑

b∈Bd′

fb(x)b, x ∈ Y
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and fb vanishes identically for all b ∈ C. This implies that TΣ[d
′−1] = TΣ[d

−1]. The lemma
follows easily working on an admissible covering of a rigid curve by affinoids. �

Let Σ′ = Σ ⊔ U be a finite subset of N∗ decomposed as a disjoint union of two subsets.

Lemma 5.3. For all d′ ∈ Facq [tΣ] \ {0} there exists S ⊂ DC∞(0, 1)U affinoid, with S =
Spm(R) (maximal spectrum), R affinoid C∞-algebra of dimension |U |, and d ∈ Facq [tΣ]\{0},

such that TΣ′ [ 1d′ ]
∧ ⊂ TΣ[

1
d ]

∧⊗̂C∞R.

Proof. There exists S = Spm(R) as in the statement of the lemma such that d′ = du with
d ∈ Facq [tΣ] and u ∈ R

×. Then, we can identify g with a convergent series
∑

i∈I gibi with

gi ∈ TΣ[
1
d ]

∧ and (bi)i∈I an orthonormal basis of R over C∞. Hence g ∈ TΣ[
1
d ]

∧⊗̂C∞R. �

Proof of Proposition 5.1. In the statement, the space on the right-hand side is obviously
contained in the space on the left-hand side so we prove now the opposite inclusion. Since
ρ : Γ→ GLN (kΣ)) is of the first kind, there exists d1 ∈ Fq[tΣ]\{0} such that the image of ρ

lies in Fq[tΣ][
1
d1
]N×N . We also write Σ′ = Σ⊔U . Let f be an element of Mw(ρ;LΣ′). Since

f : Ω → LN×1
Σ′ is analytic, by Lemma 5.2 with X = Ω, there exists d2 ∈ Fq[tΣ′ ] \ {0} such

that the image has entries in the completion, for the Gauss norm, of TΣ′ [ 1
d2
]. By Lemma

5.3, we can find d3 and R an affinoid C∞-algebra such that the image of f is in

(T̂Σ[d
−1
3 ]⊗̂C∞R)

N×1,

with R of Krull dimension |U |, S = Spm(R) with S ⊂ DC∞(0, 1)U . In the above, we can
in fact make a choice so that d1 = d2 = d3 =: d.

Since by hypothesis dimLΣ
(Mw(ρ;LΣ)) <∞, we can choose a basis (g1, . . . , gr), writing

gi =



g
[1]
i
...

g
[N ]
i


 , i = 1, . . . , r, f =



f [1]

...

f [N ]


 .

We can view f as an analytic map

Ω× S
(z,s)7→f(z,s)
−−−−−−−−→ T̂Σ[d−1]

N×1

and adjusting again the choice of d, the maps gi take their values in the module on this
right-hand side. If we fix s ∈ S, the resulting map fs = f(·, s), which is analytic Ω→ TN×1,
belongs to Mw(ρ;T) ⊂Mw(ρ;LΣ), where we have written

T := T̂Σ[d−1].

Indeed, note that for all s ∈ S, ‖fs‖ is bounded on {z ∈ C∞ : |z|ℑ ≥ M}, for some
M ∈ |C×

∞| with M > 1. Hence, fo any s ∈ S:

fs(z) =

r∑

j=1

φj(s)gj(z),
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with coefficients φj(s) ∈ LΣ, or more precisely, in T, for an appropriate choice of d com-
patible with all the above. Now, we choose z1, . . . , zl ∈ Ω. Then, we can write, for all
k = 1, . . . , l:

(43) (f [1]s (zk), . . . , f
[N ]
s (zk)) = (φ1(s), . . . , φr(s))



g
[1]
1 (zk) · · · g

[N ]
1 (zk)

...
...

g
[1]
r (zk) · · · g

[N ]
r (zk)




︸ ︷︷ ︸
=:Mk

.

Now, since g1, . . . , gr are linearly independent over LΣ, we can find appropriate l and
z1, . . . , zl such that the matrix M = (M1, . . . ,Ml) has rank r. We can thus extract an

r × r submatrix M̃ ∈ GLr(LΣ). Then, for a vector f̃s of length r extracted from

(f [1]s (z1), . . . , f
[N ]
s (zl))︸ ︷︷ ︸

length Nl

which represents an analytic function

S → LrΣ,

we have

(44) f̃s = (φ1(s), . . . , φr(s))M̃

and therefore

φ = φ(s) = (φ1(s), . . . , φr(s)) = f̃sM
−1

is an analytic function S → T1×r (of course for a good choice of d invisible in our notation)
and therefore an element of

(T⊗̂C∞R)
r×1 = (T̂Σ[d−1]⊗̂C∞R)

r×1,

(for this good choice of d). Therefore,

f ∈Mw(ρ;T)⊗T (T⊗̂C∞R).

We still need to justify that f ∈ Mw(ρ;LΣ) ⊗LΣ
LΣ′ . For this, note that the identity

(43) has the left-hand side in L1×N
Σ′ hence (44) has the left-hand side in L1×r

Σ′ . Therefore
φ1, . . . , φr extend, as elements of HolKΣ

(S → LΣ) to elements of LΣ′ and we are done. �

5.2. Finiteness results. We suppose, along this subsection, that the representation ρ :
Γ→ GLN (kΣ) is of the first kind. We also recall that KΣ is the completion of the fraction
field of T (KΣ) for the valuation v, and that OΣ, MΣ are respectively the valuation ring
and the maximal ideal of v. We have the following results which corresponds to part (1)
of Theorem B in the introduction:

Theorem 5.4 (Finiteness Theorem). The LΣ-vector space Mw(ρ;LΣ) has finite dimension
rρ(w) not exceeding (1 + ⌊ w

q+1⌋)N .
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In particular, if w < 0, then rρ(w) = 0 and Mw(ρ;LΣ) = {0} but this property will
be actually proved separately to obtain the general result. The proof of this theorem
makes use of an important feature of our Drinfeld modular forms when they take values
in LΣ; the possibility of evaluating the variables ti (i ∈ Σ) at roots of unity. This will the
subject of the next subsection. In the subsequent subsection, we will prove Theorem 5.4 by
using that the spaces of modular forms of negative weight are trivial, which comes from a
corresponding result of classical (scalar) Drinfeld modular forms for congruence subgroups
of Γ.

5.2.1. Evaluating at roots of unity. The representation of the first kind ρ is constructed
starting from a finite set of basic representations which are themselves associated with in-
jective Fq-algebra morphisms χi : A→ kΣ (i = 1, . . . , r). If d1, . . . , dr ∈ Fq[tΣ]\{0} are such
that the entries of diχi(θ) are in Fq[tΣ] then the image of ρ is in GLN (Fq[tΣ][

1
d1
, . . . , 1

dr
]) ⊂

GLN (Fq[tΣ][
1
d ]) for some d ∈ Fq[tΣ] \ {0}. We thus get, after Proposition 4.9, that

Ξρ,Φρ ∈ Hol(C∞ → ÊΣ[d−1]
N×N

).

Let Σ = U ⊔ V be a finite subset of N∗ written as a disjoint union of sets U, V . The set

VU(d) = {ζ ∈ (Facq )U : d(ζ) = 0}

is contained in a proper hypersurface of (Facq )U . Let ζ = (ζi : i ∈ U) be an element of

(Facq )U over which d does not vanish.
The evaluation map

evζ : T̂Σ[d−1]→ ̂TV [evζ(d)−1]

is the TV -algebra morphism uniquely determined by the assignment ti 7→ ζi for i ∈ U . We
extend this map to matrices with entries in TΣ[d

−1]∧. If M is a matrix with entries in
TΣ[d

−1]∧ we also write M(ζ) = evζ(M). It is easy to see that if X is an analytic space

and f ∈ Hol(X → TΣ[d
−1]∧), then evζ(f) ∈ Hol(X → TV [d(ζ)−1]∧). Moreover:

Lemma 5.5. Let X be a rigid analytic space over C∞. If f ∈ Hol(X → TΣ[
1
d ]

∧) and if

for all ζ ∈ (Facq )U \ VU (d), evζ(f) ∈ Hol(X → TV [
1
d(ζ) ]

∧) is constant, then f is constant.

Proof. This is obvious if X is the polydisk DC∞(0, 1)n. Indeed, if f ∈ Hol(X → TΣ[
1
d ]

∧),

then we can write in a unique way f(z) =
∑

i∈Nn fiz
i (multi-indicial notation) with fi ∈

TΣ[
1
d ]

∧, fi → 0. Evaluating, we get f(ζ)(z) =
∑

i fi(ζ)z
i with fi(ζ)→ 0 in KV . But such

a function is constant only if all the coefficients are zero except, possibly, the constant
term. The hypotheses imply fi(ζ) = 0 for all i ∈ Nn \ {0} for all ζ ∈ (Facq )U \ VU (d)

which is Zariski-dense in (Facq )U so that fi = 0 for all such i. From this we also deduce the
statement for X affinoid (use quotients of standard Tate algebras). This suffices to prove
the lemma. �

Let n be an element of A+. We denote by Γ(n) the principal congruence subgroup of Γ:

Γ(n) = {γ ∈ Γ : γ ≡ ( 1 0
0 1 ) (mod n)}.
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We recall that ρ : Γ→ GLN (Fq[tΣ][d
−1]) is a representation of the first kind.

Lemma 5.6. Let ζ = (ζi : i ∈ Σ) be an element of (Facq )Σ \ VΣ(d). There exists n ∈ A+

such that for all γ ∈ Γ(n), ρ(γ)(ζ) = IN .

Proof. By definition, ρ is build on a finite set of basic representations ρχ1 , . . . , ρχr . The
evaluations ηi := χi(θ)(ζ) are well defined in (Facq )ni×ni . We consider the minimal poly-

nomials Pi ∈ Fq[X] of ηi (for all i) and we denote by ni ∈ A+ the element (Pi)X=θ. If
γ ∈ Γ(ni), then ρχi

(γ) = Ini
. Since the operations which construct all the representations

of the first kind send m-tuples of identity matrices (of various sizes) to identity matrices,
considering n the least common multiple of the elements ni, we see that ρ(γ)(ζ) = IN for
all γ ∈ Γ(n). �

Let G be a congruence subgroup of Γ. The quotient space G\Ω carries a natural structure
of analytic curve YG with compactification XG obtained by adding finitely many cusps to
YG. We can consider neighbourhoods of a cusp of G\Ω in Ω in the usual way and therefore,

there is a natural notion of modular-like forms f : Ω→ LN×1
Σ for ρ, seen as a representation

of G (restriction), namely, satisfying the collection of functional equations

(45) f(γ(z)) = Jγ(z)
wρ(γ)f(z) ∀z ∈ Ω, ∀γ ∈ G.

Let c be a cusp of XG and let us consider δ ∈ Γ such that δ(∞) = c. If f : Ω→ LN×1
Σ is a

map and w an integer, we set

f δ(z) := f |w,0,ρδ = Jδ(z)
−wρ(δ)−1f(δ(z))

(Petersson slash operator as in (40)). A simple computation shows that if f is modular-like

of weight w for G and the restriction ρ on G, then f δ : Ω→ LN×1
Σ is modular-like of weight

w for Gδ := δ−1Gδ and the restriction ρ on Gδ (in particular, if f is modular-like for the
group Γ, then f = f δ).

Definition 5.7. Let w be in Z. We say that a modular-like form Ω
f
−→ LN×1

Σ of weight w
for the restriction of ρ over G is:

(1) A weak Drinfeld modular form of weight w for ρ if there exists H ∈ Z such that

‖u(z)Hf δ(z)‖ → 0

for z ∈ Ω such that |u(z)| 6= 0 is smaller than a constant < 1, for all δ ∈ Γ.
(2) A Drinfeld modular form of weight w for ρ, if ‖f δ(z)‖ is bounded as z is such that
|u(z)| 6= 0 is smaller than a constant < 1, for all δ ∈ Γ.

(3) A cusp form of weight w for ρ is a modular form f of weight w such that ‖f(z)‖ → 0
as z approaches any cusp of G\Ω.

We denote by M !
w(G; ρ;LΣ) (resp. Mw(G; ρ;LΣ), Sw(G; ρ;LΣ)) the LΣ-vector spaces of

weak modular forms (resp. modular forms, cusp forms) of weight w for ρ. More generally,
if B is a Banach C∞-subalgebra of KΣ, we will write Mw(G; ρ;B) for the corresponding
B-module of modular forms.
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It is easy to see that the C∞-vector spaceMw(G;1;C∞) is equal to the C∞-vector space
of the classical (scalar) Drinfeld modular forms of weight w for G and a similar property
holds for weak modularity and cuspidality of a form. In the next proposition, Ww stands
for M !

w,Mw, Sw (so the proposition is in fact equivalent to three distinct statements).

Proposition 5.8. Let f be in Ww(ρ;LΣ). Then, there exists d ∈ Fq[tΣ] \ {0} such that

f ∈ Ww(ρ; T̂Σ[
1
d ]). Let us consider, further, ζ ∈ (Facq )Σ \ VΣ(d). We have evζ(f) ∈

Ww(Γ(n);1;C∞)N×1 where n is any element as in Lemma 5.6.

Hence, the evaluations of the entries of f ∈Mw(ρ;LΣ) are scalar Drinfeld modular forms
of weight w for Γ(n).

Proof of Proposition 5.8. By Lemma 5.6, for all γ ∈ Γ(n) and z ∈ Ω, f(ζ)(γ(z)) =
Jγ(z)

wf(ζ)(z) and also, it is easy to see that f(ζ) has holomorphic entries. It remains
to show that the entries of f(ζ) = evζ(f) have the decay properties of Definition 5.7 which

is guaranteed if we show regularity at all cusps of G\Ω. In more detail, if f has image

defined over T̂Σ[
1
d ], we show that the map evζ(·) defines maps (C∞-linear maps)

M !
w(ρ; T̂Σ[d−1]) → M !

w(Γ(n);1;C∞)N×1,(46)

Mw(ρ; T̂Σ[d−1]) → Mw(Γ(n);1;C∞)N×1,(47)

Sw(ρ; T̂Σ[d−1]) → Sw(Γ(n);1;C∞)N×1.(48)

First of all, a holomorphic function f : Ω → C∞ satisfying f(γ(z)) = Jγ(z)
wf(z) for all

γ ∈ Γ(n) is a weak modular form of weight w for Γ(n) if for all δ ∈ Γ, the function f δ(z)
can be expanded as a series of C∞((u(z

n
))) in the neighborhood of the cusp δ(∞). We

deduce that f δ(z) is weak modular form of weight w for the group δ−1Γ(n)δ. Note indeed
that u(zn ) is a uniformizer at ∞ for the action of Γ(n) over Ω in virtue of the fact that the

group ( 1 n
0 1 ) is contained in δ−1Γ(n)δ for all δ ∈ Γ.

Let F be in M !
w(ρ;TΣ[d

−1]∧). Then, evζ(F ) has all the entries which are nA-periodic

and evζ(F
δ) is tempered for all δ ∈ Γ. This implies that evζ(F ) ∈ M

!
w(Γ(n);1;C∞)N×1

which proves (46). Now assume that F is, additionally, a modular form inMw(ρ;TΣ[d
−1]∧).

Then, all the entries bδ of evζ(F
δ) satisfy bδ ∈ C∞[[u(zn )]] for all δ ∈ Γ, which yields (47).

Similarly, if F is in Sw(ρ;TΣ[d
−1]∧), we see that all the entries of evζ(F ) vanish at all the

cusps of X(n) hence confirming (48) and completing the proof of the Proposition. �

Question 5.9. Compute the span inMw(Γ(n);1;C∞) of all the modular forms which occur
as an entry of the evaluation at some element of (Facq )Σ of some element ofMw(ρ;TΣ[d

−1]∧)
for some Σ and for some representation of the first kind ρ. For which n do we obtain the
whole space?

5.2.2. Proof of the Finiteness Theorem. We first study the structure of the spaceM0(ρ;LΣ).

Lemma 5.10. We have M0(ρ;LΣ) ⊂ LN×1
Σ .
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Proof. Let f be an element of M0(ρ;LΣ). Then, there exists d ∈ Fq[tΣ] \ {0} such that the

image of f is in T̂Σ[
1
d ]. By Proposition 5.8, for all ζ ∈ (Facq )Σ \ VΣ(d) there exists n ∈ A+

such that f(ζ) ∈ M0(Γ(n);1;C∞)N×1. A scalar Drinfeld modular form of weight zero is

constant. Hence, for all ζ as above, f(ζ) ∈ CN×1
∞ . Therefore, f is constant by Lemma 5.5

with X = Ω. �

Corollary 5.11. If w < 0, Mw(ρ;LΣ) = {0}.

Proof. Let f be an element of Mw(ρ;LΣ) with negative w. For all k, α, β ∈ N with β > 0,

f̃ := gαhβτk(f) ∈ Sqkw+α(q−1)+β(q+1)(ρdet
−β;LΣ), where g is the normalised Eisenstein

series in Mq−1(1;C∞) and h is −1 times the normalised generator of Sq+1(det
−1;C∞) (we

are adopting Gekeler’s notations in [15], see also §5.3.1). We show that there exist k, α, β
with β > 0 such that

(49) qkw + α(q − 1) + β(q + 1) = 0.

This is very easy but we give all the details. To find such k, α, β, we first observe that
we need qkw + α(q − 1) + β(q + 1) ≡ 0 (mod q − 1), and this is guaranteed by w ≡ −2β
(mod q − 1). We must have:

α =
1

q − 1
(−wqk − β(q + 1))

=
1

q − 1
(−wqk − 2β) + β.

Assume first that p 6= 2. Then, there exists β ∈ {1, . . . , q − 1} such that w ≡ −2β
(mod q − 1). We can choose k large enough so that −wqk − 2β, divisible by q − 1, is ≥ 0.
Therefore we can choose α ∈ N such that, with such β and k, (49) holds.

If p = 2 we can set β = 1 and k such that α = −2kw − 3 ≥ 0. Since β > 0 we see

that f̃ is a cusp form and Lemma 5.10 now implies that f̃ = 0; hence f = 0 because τ is
injective. �

Proof of Theorem 5.4. The result is already proved in Lemma 5.10 and Corollary 5.11 if
w ≤ 0. Now assume that w > 0 and let f be in Mw(ρ;LΣ). Again, we can suppose that

f ∈Mw(ρ; T̂Σ[
1
d ]) for some d ∈ Fq[tΣ] \ {0}.

Then, f = Φρg, where Φρ has been defined in §4.1.1 and studied in Proposition 4.9, and

where g is in TΣ[
1
d ]

∧[u−1][[u]]N×1 (by using the same methods of proof of (b) of Proposition

4.9). Recall from Proposition 4.9 and Corollary 4.10 that Φρ ∈ GLN (T
◦(TΣ[

1
d ]

∧)) (this
means that it is a matrix with entries in T ◦(· · · ) which is invertible, and the entries of the
inverse are in T ◦(· · · )). Also, by the fact that f is quasi-periodic and regular, we have

f ∈ ON×1
TΣ[ 1

d
]∧

by Theorem 4.14. Since the v-valuations of the entries of Φ−1
ρ are either ∞ or

in Z[1p ] ∩ [0, 1[, we get, from g = Φ−1
ρ f , g ∈ (TΣ[

1
d ]

∧[[u]])N×1.

Let ν be in F×
q . We have

ρ( ν 0
0 1 )Φρ(z)ρ(

ν 0
0 1 )

−1g(νz) = f(νz) = νwρ( ν 0
0 1 )f(z) = νwρ( ν 0

0 1 )Φρ(z)g(z), ∀z ∈ Ω.
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Since ρ is of the first kind, ρ( ν 0
0 1 ) is diagonal and we can write:

ρ( ν 0
0 1 ) =



ν−n1

. . .

ν−nN


 , ni ∈ Z/(q − 1)Z, ν ∈ F×

q .

Writing additionally g = t(g1, . . . , gN ), we deduce that

gi(νz) = νw−nigi(z)

for all i = 1, . . . , N , so that gi ∈ u
miTΣ[

1
d ]

∧[[uq−1]] where mi is the unique representative
of ni − w modulo q − 1 in {0, . . . , q − 2}. We deduce that there is a vector space Ww over
LΣ of dimension at most N such that

Mw(ρ;LΣ) = hMw−(q+1)(ρdet;LΣ)⊕Ww.

By induction over w, the result follows. �

5.2.3. Modular forms of weight one. Since T pa = I2 we deduce that for all a ∈ A there
exists Na ∈ k

N×N :

(50) ρ(Ta) = IN +Na,

with NaNb = NbNa and Na+b = Na +Nb+NaNb (and Na is nilpotent of exponent p). On
the other hand, ρ(S) is involutory, and diagonalisable if p > 2.

By Lemma 5.10 and by (50), we see that M0(ρ;LΣ) is contained in the KΣ-span H(ρ) in

KN×1
Σ of the common eigenvectors in KN×1

Σ of eigenvalue in F×
q for the left multiplication

by the matrices ρ(γ), γ ∈ B(A), the Borel subgroup of A. The eigenvalue is one for γ = Ta.
In the following, we denote by δρ(0) the dimension of this space.

We can now prove the following result which justifies part (2) of Theorem B in the
introduction:

Theorem 5.12. We have the inequality dimLΣ
(M1(ρ;LΣ)) ≤ δρ(0).

Proof. Let f = f(z) be in ON×1
Σ . Then, for all a ∈ A and λ ∈ F×

q we have that the function

f(λz + a) is well defined in KN×1
Σ and again belongs to ON×1

Σ (this follows from Lemma

3.15). Similarly, if now f ∈ MN×1
Σ , then again f(λz + a) ∈ MN×1

Σ . If b ∈ OΣ, we denote

by bv ∈ LΣ its reduction modulo MΣ (constant term of the tame series expansion) and we
extend this to matrices in the obvious way. Then, for any f ∈Mw(ρ;LΣ) (temporarily for

any w ∈ Z) we have that the well defined element f v ∈ LN×1
Σ belongs to the above defined

space H(ρ) (observe that the entries are in LΣ, not just in KΣ). Assume by contradiction
that dimLΣ

M1(ρ;LΣ) > δρ(0). then, there is a non-zero cusp form in S1(ρ;LΣ).
Let ζ = (ζi; i ∈ Σ) and n as in Proposition 5.8, let f be a non-zero cusp form of S1(ρ;LΣ).

this proposition implies that for all such ζ, the evaluation evζ(f) is well defined and its

entries are cusp forms of S1(Γ(n)). The latter space is zero as it was first noticed by
Gekeler (see Cornelissen, in [11, Theorem (1.10)]). Hence, for all ζ as above, evζ(f) = 0.

By Lemma 5.5, f vanishes identically, contradicting our assumptions. �

A more precise result in a particular case is Theorem 7.6.
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5.3. Poincaré series. In the last part of this section we construct modular forms in our
generalised setting. We are mainly concerned with a class of matrix-valued Poincaré series.

We keep considering a representation

Γ
ρ
−→ GLN (kΣ).

Let w be an integer and let G : Ω→ KN×N
Σ be a tempered ρ-quasi-periodic matrix function

of type m, following definition 4.2. We set, for γ ∈ Γ and z ∈ Ω:

Sγ(w,m;G)(z) = det(γ)mJγ(z)
−wρ(γ)−1G(γ(z))ρ( det(γ) 0

0 1
).

Lemma 5.13. Let γ, γ′ ∈ Γ be in the same left coset modulo H := {( ∗ ∗
0 1 )} ⊂ Γ. Then we

have the equality Sγ(w,m;G)(z) = Sγ′(w,m;G)(z). Moreover, for all δ ∈ Γ,

Sγ(w,m;G)(δ(z)) = det(δ)−mJδ(z)
wρ(δ)Sγδ(w,m;G)(z)ρ( det(δ)

−1 0
0 1

).

Proof. We simplify the notation: Sγ(w,m;G)(z) = Sγ(z). We prove the first property.
Since H is the semidirect product of A by F×

q , it suffices to show that: (1) for all a ∈ A,

STaγ(z) = Sγ(z) and (2) for all ν ∈ F×
q , Sδγ(z) = Sγ(z) if δ = ( ν 0

0 1 ). For (1), we observe,
by the properties of G, that

STaγ(z) = det(Taγ)
mJTaγ(z)

−wρ(Taγ)
−1G(Ta(γ(z)))ρ(

det(Taγ) 0
0 1

)

= det(γ)mJγ(z)
−wρ(γ)−1ρ(Ta)

−1ρ(Ta)G(γ(z))ρ(
det(γ) 0

0 1
)

= Sγ(z).

For (2), we see, similarly, with δ = ( ν 0
0 1 ):

Sδγ(z) = det(δγ)mJδγ(z)
−wρ(δγ)−1G(δ(γ(z)))ρ( det(δγ) 0

0 1
)

= det(γ)mJγ(z)
−wρ(γ)−1ρ(δ)−1 det(δ)m det(δ)−mρ(δ)G(γ(z))ρ(δ)−1ρ( det(δγ) 0

0 1
)

= Sγ(z).

This completes the proof of the first part of the Lemma. For the second, observe, if γ′ = γδ
with δ ∈ Γ:

Sγ(δ(z)) = det(γ)mJγ(δ(z))
−wρ(γ)−1G(γ(δ(z)))ρ( det(γ) 0

0 1
)

= det(δ)−m det(γ′)mJδ(z)
wJγ′(z)

−wρ(γ′δ−1)−1G(γ′(z))ρ( det(γ
′) 0

0 1
)ρ( det(δ) 0

0 1
)−1

= det(δ)−mJδ(z)
wρ(δ)Sγ′(z)ρ(

det(δ) 0
0 1

)−1.

�

From now on, we suppose that ρ is of the first kind, of degree l and that G is of type m.
We consider the formal series (Poincaré series):

(51) Pw,m(G)(z) :=
∑

γ

Sγ(w,m;G)(z),

where the sum runs over a complete set of representatives of H\Γ. Note that this is a
matrix function.
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Remark 5.14. Our definition of Poincaré series is inspired by the one that can be found
in the book of Bruinier [6, §1.2, 1.3].

We have the next result.

Proposition 5.15. If the series Pw,m(G)(z) converges to a holomorphic function Ω →

KN×N
Σ , then it satisfies, for all z ∈ Ω and γ ∈ Γ:

Pw,m(G)(γ(z)) = det(γ)−mJγ(z)
wρ(γ)Pw,m(G)(z)ρ(

det(γ) 0
0 1

)−1.

For each column f of Pw,m(G) there exists i ∈ Z/(q − 1)Z such that

f(δ(z)) = det(δ)i−mJδ(z)
wρ(δ)f(z), ∀z ∈ Ω, δ ∈ Γ.

Proof. The first part of Lemma 5.13 implies that the sum Pw,m(G), if convergent, is well
defined, and the second part describes the functional behaviour. We note that ρ( ν 0

0 1 ) is
diagonal in GLN (Fq) and we can decompose, up to permutation of the columns of Pw,m(G):

Pw,m(G) =

q−1⊕

i=0

P(i)
w,m(G),

where P
(i)
w,m(G) : Ω → KN×ni

Σ for integers ni such that
∑

i ni = N . Then, if the series
Pw,m(G) converges, we have the modular-like behaviour

P(i)
w,m(G)(δ(z)) = det(δ)i−mJδ(z)

wρ(δ)P(i)
w,m(G), ∀z ∈ Ω, δ ∈ Γ, i = 0, . . . , q − 1.

�

In full generality (for any quasi-periodic function G), we do not have a good criterion of
convergence for the series Pw,m(G). We discuss these series for two choices of G.

We will need the next Lemma; see [17].

Lemma 5.16. There exists a complete set of representatives γc,d = ( ∗ ∗
c d ) of H\Γ in which

each matrix belongs to one of the following three types:

(1) γ0,µ = ( µ
−1 0
0 µ ) with µ ∈ F×

q ,

(2) γµ,ν = ( 0 −µ−1

µ ν ) with µ ∈ F×
q and ν ∈ Fq,

(3) γc,d = ( a bc d ), with a, b, c, d ∈ A such that ad− bc = 1, |cd| > 1, |a| < |c|, |b| < |d|.

We note that the first two sets are finite. Let us look at the corresponding sub-sums in
the series (51) defining Pw,m(G). For the first sub-sum we have, in virtue of the fact that
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G is of type m and that ρ is of degree l:

A :=
∑

µ∈F×
q

Sγ0,µ(z) =
∑

µ∈F×
q

µ−wρ(γ0,µ)
−1G(µ−2z)ρ( det(γ0,µ) 0

0 1
)

=
∑

µ∈F×
q

µ−wρ( µ
−1 0
0 µ )

−1G(µ−2z)

=
∑

µ∈F×
q

µ−wρ( µ
−1 0
0 µ )

−1µ2mρ( µ
−2 0
0 1

)G(z)ρ( µ
−2 0
0 1

)−1

=
∑

µ∈F×
q

µ2m−wρ( µ
−1 0
0 µ−1 )G(z)ρ( µ

2 0
0 1

)

= G(z)
∑

µ∈F×
q

µ2m−w+lρ( µ
2 0
0 1

).

For the second sub-sum we have:

B :=
∑

µ∈F×
q

ν∈Fq

Sγµ,ν (z) =

=
∑

µ∈F×
q

ν∈Fq

(µz + ν)−wρ(γµ,ν)
−1G

(
−µ−1

µz + ν

)

=
∑

µ∈F×
q

ν∈Fq

µ−w
(
z +

ν

µ

)−w

ρ

(
ν µ−1

−µ 0

)
(−µ2)mρ

(
−µ−2 0
0 1

)
G

(
1

z + ν
µ

)
ρ

(
−µ2 0
0 1

)

= (−1)m
∑

µ∈F×
q

µ2m−w+l
∑

ν∈Fq

(
z +

ν

µ

)−w

ρ

(
− ν
µ 1

1 0

)
G

(
1

z + ν
µ

)
ρ

(
−µ2 0
0 1

)

= (−1)m
∑

β∈Fq

(z + β)−wρ

(
−β 1
1 0

)
G

(
1

z + β

) ∑

µ∈F×
q

µ2m−w+lρ

(
−µ2 0
0 1

)
.

It is easy to see that these sums define holomorphic functions over Ω (the sums are finite).
We denote the third (infinite) sum by C so that Pw,m(G) = A+B+ C.

We study the case G = Φρ.

Proposition 5.17. If G = Φρ and w > 0, the columns of Pw,m(G) are elements of

M !
w(ρdet

i;LΣ) for i varying in Z/(q− 1)Z. If A is non-zero, the matrix function Pw,m(G)
is not identically zero.

Proof. The functional properties of the series, under the hypotheses of its convergence, are
guaranteed by Proposition 5.15. After Corollary 4.10, this function can be identified with



ON THE BEHAVIOUR AT THE CUSPS OF DRINFELD MODULAR FORMS 53

an element of GLN (T
◦(KΣ)) and therefore all the entries are entire functions, and there

exists c > 0 such that for all z ∈ Ω, ‖G(z)‖ ≤ max{c, |eC (z)|
j}, for some j ∈ Z[1p ] ∩ [0, 1[.

Let us prove that Pw,m(G) converges to an analytic function Ω → KN×N
Σ . To see this,

it suffices to check that the series defining C converges uniformly on affinoids defined by
inequalities |z| ≤ c1, |z|ℑ ≥ c2, where c1, c2 are in |C×

∞|. Let γ = ( a bc d ) be in Γ, such that
c 6= 0 and let us consider z ∈ Ω. Then:

(52) γ(z) =
a

c
−

det(γ)

c(cz + d)
.

Note that if z ∈ Ω, then |z − a| ≥ |z|ℑ for all a ∈ A. If γ is one of the matrices of the
family (3) of Lemma 5.16, then |cz + d| ≥ |c||z|ℑ ≥ |c|c2 and |ac | ≤ q−1. This means that
the series C is uniformly convergent over any affinoid as above, depending on the choice of
the constants c1, c2. This proves that Pw,m(G) defines an analytic function over Ω. Also,
note that by the above description of the sums B,C, we have that ‖B‖, ‖C‖ are bounded
for |z|ℑ bounded from below by a non-zero constant, and tend to zero as |z|ℑ →∞. Since
G is tempered, A is tempered, and so is the function Pw,m(G). From this, we derive that
if the function A is not identically zero, then Pw,m(G) does not vanish identically. It is
easy to see that the image is LΣ-valued, because this is true for Φρ; this follows from the
definition of our Poincaré series. �

With m ≥ 1, we set:

(53) S(m; ρ) := π̃−m
∑

a∈A

1

(z − a)m
ρ(Ta).

If ρ = 1 : Γ → {1} we recover the (scalar) sums Sm,Λ for the lattice Λ = π̃A (see [19, §6]
and [15, §3]). In particular, for any m ≥ 1 there exists a polynomial Gm ∈ K[X] (called
the Goss’ polynomial of order m) such that

(54) S(m;1) = Gm(u).

The polynomials Gm can be computed inductively by using the generating series:

(55)
∑

m≥1

Gm(u)X
m =

uX

1− u expC(X)

(see [15, (3.6)]). If ρ 6= 1, we do not know a satisfactory generalisation of (55).
We now study Poincaré series in the case G = S(m; ρ), with m > 0, defined in (53). We

have:

Proposition 5.18. If w > 2m and if G = S(m; ρ), the columns of Pw,m(G) are in

Sw(ρdet
−j ;LΣ) with j varying in Z/(q − 1)Z.

Proof. We need again to show that the sum defining Pw,m(G) is uniformly convergent on
any affinoid in Ω defined by |z| ≤ c1 and |z|ℑ ≥ c2 > 0, with c1, c2 ∈ |C×

∞|. For all
z ∈ Ω, ‖G(z)‖ ≤ |z|−mℑ . Hence, for all γ ∈ Γ, ‖G(γ(z))‖ ≤ |Jγ(z)|

2m/|γ(z)|mℑ and therefore,
‖Sγ(w,m;G)‖ ≤ |Jγ(z)|

2m−w . The fact that w > 2m ensures the uniform convergence
and the fact that the function is holomorphic over Ω. Since moreover, ‖G(z)‖ → 0 as
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|z| = |z|ℑ → ∞, we see that the columns of Pw,m(G) are cusp forms. Moreover, these
functions similarly take values in LΣ. �

Giving necessary conditions for the non-vanishing of Pw,m(G) is more difficult in the case
G = S(m; ρ), but there are cases in which it is possible to check that the series converge
to non-zero functions without too much work. In the case m = 1 we have:

Proposition 5.19. Let us suppose that w ≥ 3, that ρ is of degree l, that ρ(Ta) is triangular
for all a ∈ A (4) and that ∑

µ∈F×
q

µ2−w+lρ( µ
2 0
0 1

) 6= 0.

Then, if G = S(1; ρ), Pw,1(G) does not vanish identically.

Proof. In the beginning of this proof, we suppose that G is of type m. By the fact that
ρ(Ta) is triangular for a ∈ A, G is triangular. The diagonal of G is given by a vector with

entries equal to π̃−m
∑

a∈A
1

(z−a)m and since for µ ∈ F×
q , ρ(

µ2 0
0 1

) is diagonal we have that

some diagonal coefficients of A are proportional to the Goss polynomial Gm(u) of order m
in u (see [15, §3]), with non-zero factor of proportionality.

In particular, if m = 1 the Goss polynomial is just the function u and there exists an
entry of the diagonal of A which belongs to F×

q u(z). Now, we suppose that z is such that

1 < |z| < |π̃|. Then, there is a diagonal entry of A which has absolute value |π̃z|−1. Let
us consider γ = ( a bc d ) in the family (2) or in the family (3). Then, by using (52), we
see that |γ(z)| < 1. Hence, if e ∈ A \ {0}, we have |γ(z) − e| ≤ 1. this means, writing

ξ =
∑

µ∈F×
q
µ2−w+lρ(−µ

2 0
0 1

), that

B =

= (−1)mπ̃−1




∑

β∈Fq

(z + β)−w ρ

(
−β 1
1 0

) ∑

b∈A\{0}

ρ(Tb)
1

1
z+β − b

︸ ︷︷ ︸
‖·‖≤1

+
∑

β∈Fq

(z + β)1−wρ

(
−β 1
1 0

)



ξ.

For all β ∈ Fq, |z + β| = |z|, and therefore, ‖B‖ ≤ |π̃−1||z|1−w (with z in the annulus
above).

Similarly, considering now the sum over γ = ( a bc d ) in the family (3) of Lemma 5.16, we
can decompose

C = π̃−1


C0 +

∑

γ of type (3)

Jγ(z)
−wρ(γ)−1INγ(z)

−1


 ξ̃,

for some matrix ξ̃ with entries in Fq, and with ‖C0‖ ≤ |cz|
1−w ≤ |z|−w. Now, observe

that U = Jγ(z)
−wγ(z)−1 = (cz + d)1−w(az + b)−1. If a 6= 0 then |az + b|−1 ≤ |az|−1. If

4Lower or upper triangular.
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a = 0 then |az + b|−1 ≤ 1. Hence, if a 6= 0 we have |U | ≤ |c|
|a| |c|

−w|z|−w ≤ |z|−w. If a = 0,

|U | ≤ |z|1−w. All together, we see that ‖B + C‖ ≤ ‖π̃−1‖|z|1−w. Since, as seen previously,
A has coefficients on the diagonal which have absolute value equal to |π̃−1||z|−1, Pw,1(G)(z)
does not vanish identically. �

5.3.1. Example: a Poincaré series in a class introduced by Gekeler. We consider the case
N = 1, ρ = 1, G(z) = u(z) and we take w = q + 1 ≥ 3. In this case, we have the scalar
function Pq+1,1(G) which is a non-zero cusp form of weight q + 1 and type 1 (that is, a

non-zero element of Sq+1(det
−1;C∞)) and was studied by Gekeler in [15, (9.1)] as a first

example of a class of Poincaré series that he defined, and is proportional to the cusp form
h.

5.3.2. Example: cusp forms of weight 3. We consider ρ = ρ∗Σ which is of degree s = |Σ|
and Σ ⊂ N∗. Note that

ρ( ν 0
0 1 ) = Diag(ν−s, · · · , ν−n1 , ν−n0)

Hence, if s ≡ 1 (mod q − 1), w = 3, m = 1, the last entry of the diagonal of

ξ =
∑

µ∈F×
q

µ2m−w+lρ( µ
2 0
0 1

)

is
∑

µ∈F×
q
µ2m−w+l =

∑
µ∈F×

q
µ2−3+s = −1. This means that the last column P

(0)
3,1 of P3,1(G)

with G = S(1; ρ) is non-zero and P3,1(G) does not vanish identically. We deduce:

Lemma 5.20. If s = |Σ| ≡ 1 (mod q − 1), then P
(0)
3,1 ∈ S3(ρ

∗
Σ det−1;KΣ) \ {0} where P

(0)
3,1

is the last column of the matrix function P3,1(G).

If q = 2, Σ = ∅ and G = u we are back to Gekeler’s example. In general, there are
several non-zero columns in P3,1(G).

6. Differential operators on modular forms

A classical feature of modular forms for the group SL2(Z) is the existence of a large
variety of differential operators acting homogeneously on them (that is, sending sets of
modular forms to modular forms). For instance, one can mention the so-called Serre’s
derivatives, the Rankin-Cohen brackets etc. For scalar Drinfeld modular forms associated
to the characters det−m, similar structures exist and have been partially investigated (see
[7, 8]). Here we describe the natural extension of Serre’s derivatives over the Drinfeld
modular forms for a representation of the first kind. In order to justify the existence of
such operators, we need first to show that higher derivatives leave the fields of uniformisers
invariant. All along this section, we set

Dm(z
n) =

(
n

m

)
zn−m, n,m ∈ N,
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an operator which gives rise to B-linear endomorphisms of the B-algebra Hol(X → B) if
X ⊂ C∞ is an admissible open subset (e.g. X = Ω), where B is a Banach C∞-algebra as
in §3.2. Note that these operators satisfy Leibnitz’s identity

Dn(fg) =
∑

i+j=n

Di(f)Dj(g),

for f, g analytic functions.

6.1. Higher derivatives on tame series. We study the stability of T (B) ⊂ Hol(C∞ →
B), with respect to the collection of operators D = (Dn)n≥0. We state and prove three
preliminary lemmas.

Lemma 6.1. Let n = n0 + n1q + · · · + nvq
v ∈ N with n0, . . . , nv ∈ {0, . . . , q − 1}. Then,

as linear operators over the entire functions C∞ → B we have the identity

Dn = Dn0 ◦ Dn1q ◦ · · · ◦ Dnvqv ,

where the operators Dniqi mutually commute, for i = 0, . . . , r.

Proof. The family of higher derivatives D is iterative in the sense that

Dm+n =

(
m+ n

m

)
Dm ◦ Dn =

(
m+ n

n

)
Dn ◦ Dm,

for all m,n ≥ 0. The lemma follows easily by an application of Lucas’ formula. �

In the next lemma we recall that Ts(B) is the homogeneous subspace coming from the
decomposition in direct sum (27).

Lemma 6.2. If M ∈ Ts(B) is a tame monomial of depth s, then Dn(M) is a tame
polynomial, and

Dn(M) ∈
⊕

i≥0

Ts−ℓq(n)−i(q−1)(B).

Proof. For i ∈ U , U being a finite subset of N∗ of cardinality s, we consider Fq-linear
functions fi ∈ Hol(C∞ → B), so that we can write

fi =
∑

j≥0

fi,qjz
qj , fi,qj ∈ B, i ∈ U.

By Leibnitz’s formula we have for n ≥ 0:

Dn

(
∏

i∈U

fi

)
=

∑

i1+···+is=n

∏

k∈U

Dik(fk).

By Fq-linearity we have that Dk(fi) = fi if k = 0, fi,qj if k = qj with j ∈ N, and 0
otherwise. Hence, setting fi,0 := fi, we can write:

(56) Dn

(
∏

i∈U

fi

)
=

∑

i1+···+is=n
ik∈{0}∪q

N;∀k

∏

k∈U

fk,ik ,
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if the subset of indices is non-empty, and 0 otherwise, by the usual conventions on empty
sums. Since for all i, ei is Fq-linear, we deduce that for all n ≥ 0, Dn sends tame monomials
on tame polynomials. Let n be in N∗ and consider the set of decompositions of length r ≥ 1

n =

r∑

i=1

niq
i, r ∈ N, ni ∈ N∗.

Then, the q-ary expansion of n (the unique one which has the coefficients ni ∈ {0, . . . , q−1})
minimises the length r = ℓq(n). The lemma follows. �

We deduce the next result, the proof of which is left to the reader, where wmax has been
defined in (36) (recall that if f ∈ T (B) then f [i] is the projection of f on Ti(B) of (28)):

Proposition 6.3. With f =
∑

i f
[i] ∈ T (B) of depth ≤ L we have, for all n ≥ 1:

Dn(f) =
∑

L≥i≥ℓq(n)

Dn(f
[i]).

For all n ≥ 0 and for all f ∈ T ◦(B) of depth ≤ s, Dn(f) ∈ T
◦(B) is of depth ≤ s− ℓq(n)

and of weight ≤ wmax(s − ℓq(n)). The algebra T (B) is endowed with the collection of
operators D and with the operator τ . These operators satisfy the commutation rules

(57) Dnτ =

{
0 if q ∤ n

τDn
q
if q | n, n ≥ 1,

Note that the commutation rules (57) hold on Hol(C∞ → B) and easily follow from
Lemma 6.1.

We recall that the operator τ is multiplicative, in the sense that v(τ(f)) = qv(f) for all
f ∈ T (B).

Definition 6.4. The properties illustrated in the above Proposition will be synthesised
by saying that the quadruple (T (B), τ,D, v) is a compatible B[τ,D]-algebra. Alternatively,
it might be more convenient to consider a norm ‖ · ‖v associated to v and speak about a
compatible B[τ,D]-algebra (T (B), τ,D, ‖ · ‖v).

Remark 6.5. The behavior of v with respect to the action of the operator τ is multiplica-
tive. On the other hand, it is difficult to make the interaction between v and the collection
of operators D explicit.

As a simple consequence of Propositions 6.3 and 3.17 we deduce, with the terminology
of Definition 6.4, the next corollary in which we collect the simplest properties that we
need for KL where L/K is a τ -difference field extension:

Corollary 6.6. The field KL is endowed with a unique extension of the operator τ and of
the collection of operators D, and the quadruple (KL, τ,D, v) is L[τ,D]-compatible. Further,
KL carries an action of the group ( α β

0 1
), with α ∈ Fq(tΣ)((θ

−1))× and β ∈ Fq(tΣ)((θ
−1)),

given by (( α β
0 1

), f) 7→ f(αz + β), which satisfies v(f(αz + β)) = |α|v(f).

Proof. This is clear. The last property on the group action follows from Lemma 3.15. �
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6.2. Serre’s derivatives. We are ready to discuss variants of Serre’s higher derivatives
introduced in [8, §1.2.3]. Following this reference, we set, for n,w ∈ N and f ∈ Hol(Ω →
KΣ):

∂(w)n (f) := Dn(f) +
n∑

i=1

(−1)i
(
w + n− 1

i

)
Dn−i(f)Di(E),

where Dn = (−π̃)nDn and E is the normalized false Eisenstein series of weight 2 and type

1 of Gekeler, defined in [15, §8]. For instance, note that ∂
(w)
1 = D1 − wE is the analogue

of Ramanujan’s derivative introduced by Gekeler in [15, (8.5)].

Theorem 6.7. Let ρ : Γ → GLN (kΣ) be of the first kind. The operator ∂
(w)
n induces a

KΣ-linear map Mw(ρ;KΣ)→ Sw+2n(ρdet
−n;KΣ).

Proof. If f ∈ Mw(ρ;KΣ) then f can be identified with an element of K1×N
Σ which is,

thanks to Corollary 6.6, ∂
(w)
n -stable for all n,w. The same arguments of the proof of [8,

Theorem 4.1] (which holds in a wider context of Drinfeld quasi-modular forms) imply that

∂
(w)
n (f) ∈Mw+2n(ρdet

−n;KΣ). Further, it is easy to see that ∂
(w)
n (f) has entries in MΣ so

it is a cusp form. �

Note that we also have LΣ-linear maps ∂
(w)
n :Mw(ρ;LΣ)→ Sw+2n(ρdet

−n;LΣ).

7. Modular forms for the representations ρ∗Σ

In this section we give a closer look at modular forms associated with the representations
(1). We especially focus on modular forms of weight one, of which examples are given by
certain Eisenstein series which we introduce below. In Theorem 7.6 we show that they are,
up to a scalar factor, the only modular forms of weight one for ρ∗Σ. We also give some
structural properties of the vector spaces Mw(ρ

∗
Σ;KΣ). Since we consider now modular

forms with values in vector spaces over KΣ, we cannot use the techniques of specialisation
at roots of unity of §5.2.1. We are therefore forced to introduce other techniques which,
however, are hard to apply in the more general setting of representations of the first kind.

7.1. Eisenstein series. We describe Eisenstein series for the representation ρ = ρ∗Σ. These
functions provide important examples of the modular forms we consider (see also [31]). We
set, for w ∈ N∗:

E(w; ρ∗Σ) :=
∑′

(a,b)∈A

(az + b)−w
⊗

i∈Σ

(
χti(a)

χti(b)

)
,

where the sum runs over the a, b ∈ A which are not both zero. We have that E(w; ρ∗Σ) is
not identically zero if and only if w ≡ s (mod q− 1) (see [31, §5]). It is easy to see that in

this case, this series defines a holomorphic function Ω→ EN×1
Σ , where N = 2s. Further, it

is a simple exercise to show that (5) holds so that E(w; ρ∗Σ) is modular-like of weight w for
ρ∗Σ. We call E(w; ρ∗Σ) the Eisenstein series of weight w associated to ρ∗Σ. The next lemma
provides a connection with Poincaré’s series.
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Lemma 7.1. E(w; ρ∗Σ) = ζA(w;σΣ)P
(0)
w,0(Φρ∗Σ).

Here P
(0)
w,0(Φρ∗Σ) denotes the last column of the matrix valued Poincaré series Pw,0(Φρ∗Σ)

defined in (51), with G = Φρ∗Σ and:

ζA(w;σΣ) :=
∏

P

(
1−

σΣ(P )

Pw

)−1

∈ T×
Σ ∩ EΣ,

the product running over the irreducible monic polynomials of A.

Proof of Lemma 7.1. We observe that for all γ = ( ∗ ∗
c d ) the last column of

ρ∗Σ(γ)
−1Φρ∗Σ(γ(z))(

det(γ) 0
0 1

)

is equal to the last column of tρΣ(γ)Φρ∗Σ(γ(z)) which is equal to ⊗i∈Σ
(χti

(c)

χti
(d)

)
. Therefore,

the last column of Pw,0(Φρ∗Σ) is

∑

γ=( ∗ ∗
c d )

c,d∈A
relatively prime

(cz + d)−w
⊗

i∈Σ

(
χti(c)

χti(d)

)
,

and does not depend on the choice of the representatives modulo H. Observe that the
index set of the sum defining the series E(w; ρ∗Σ), A

2 \ {(0, 0)}, is equal to IA+, where I is
the set of couples (c, d) ∈ A2 with c, d relatively prime. This means that

E(w; ρ∗Σ) =
∑

a∈A+

σΣ(a)

aw

∑

(c,d)∈I

(cz + d)−w
⊗

i∈Σ

(χti(c), χti (d)) = ζA(w;σΣ)P
(0)
w,0(Φρ∗Σ).

�

7.1.1. The expansion at infinity of Eisenstein series. We expand the entries of our vector-
valued Eisenstein series along the principles of Theorem 4.14.

If |Σ| = s > 0 and N = 2s, the ordering on Σ induces a bijection Σ
ε
−→ {0, . . . , s − 1}.

This in turn defines a bijection between subsets J ⊂ Σ and integers 0 ≤ n ≤ N − 1. If
n = n0 + n12 + · · · + ns−12

s−1 is the base-2 expansion of n, the image of n is the subset
J = {j ∈ Σ : nj 6= 0} ⊂ Σ. We can write |J |Σ := n. For example, |∅|Σ = 0. Then, we can
describe in two ways an N -tuple of objects parametrized by the subsets of {1, . . . , 2s}:

f = (fJ)J⊂Σ = (fi)1≤i≤N ,

by using that the latter is (f|J |Σ+1)J⊂Σ (note how we distinguish the N∗-indexing from the
Σ-indexing). Note that the first entry is

f0 = f∅.

The Perkins series ψ(w;σU ) defined in (4.15) are elements of OΣ, if U ⊂ Σ. We set

ψa(w;σΣ) := ψ(w;σΣ)(za),
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functions which also belong to OΣ (use Corollary 6.6). Their valuations v are positive and
we we have, for all a ∈ A+,

v(ψa(w;σΣ)) = |a|v(ψ(w;σΣ)).

The next Proposition generalizes [37, Proposition 3.7] to the case of ρ = ρ∗Σ.

Proposition 7.2. If s = |Σ| ≡ w (mod q − 1) and w > 0, then, writing E(w; ρ∗Σ) =

(EJ)I⊔J=Σ, we have:

EJ = −(−1)|J |
∑

a∈A+

σI(a)ψa(w;σJ ), J 6= Σ,(58)

EΣ = −ζA(w;σΣ)− (−1)|Σ|
∑

a∈A+

ψa(w;σΣ).(59)

In particular, if J = ∅ 6= Σ, we have that

(60) E∅ = −π̃w
∑

a∈A+

σΣ(a)Gw(ua(z)) ∈ KΣ[[u]].

Moreover, if Σ = ∅, we have, for q − 1 | n:

(61) E(w;1) = −ζA(w)− π̃
n
∑

a∈A+

Gw(ua(z)).

In all cases, we can identify E(w; ρ∗Σ) with an element of ON×1
Σ .

We deduce, in yet another way, that E(w; ρ∗Σ) ∈Mw(ρ
∗
Σ;KΣ). Additionally, we see that

it does not belong to Sw(ρ
∗
Σ;KΣ) because of the non-vanishing of ζA(w;σΣ) in (59). Note

that writing E(w; ρ∗Σ) = t(E1, . . . , EN−1, EN ), we have v(Ei) > 0 for i = 1, . . . , N − 1 and
v(EN ) = 0.

Proof of Proposition 7.2. We compute, with I ⊔ J = Σ and J 6= Σ:

EJ =
∑

a∈A\{0}

σI(a)
∑

b∈A

σJ(b)(az + b)−w

=
∑

a∈A+

∑

λ∈F×
q

σI(λa)
∑

b∈A

σJ(b)(λaz + b)−w

=
∑

λ∈F×
q

λ|I|−n
∑

a∈A+

σI(a)
∑

b∈A

σJ(b)

(
az +

b

λ

)−w

=
∑

λ∈F×
q

λ|I|+|J |−n
∑

a∈A+

σI(a)
∑

b∈A

σJ

(
b

λ

)(
az +

b

λ

)−w

= −
∑

a∈A+

σI(a)
∑

c∈A

σJ(c)(az + c)−w,
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because
∑

λ∈F×
q
λ|I|+|J |−w =

∑
λ∈F×

q
λ|Σ|−w = −1. The result now follows in the case J 6= Σ

from the fact that

ψ(n, σJ )(az) =
∑

c∈A

σJ(−c)(az + c)−w = (−1)J
∑

c∈A

σJ(c)(az + c)−w.

In the case J = Σ, the argument is similar, but with an additional sum:

EΣ =
∑

a∈A\{0}

∑

b∈A

σΣ(b)(az + b)−w +
∑

b∈A\{0}

σΣ(b)b
−w.

The first sum can be handled as above, while the second one gives:
∑

b∈A\{0}

σΣ(b)b
−w =

∑

b∈A+

σΣ(b)b
−w

∑

λ∈F×
q

λ|Σ|−w = −ζA(w;σΣ).

The identity concerning the case J = ∅ 6= Σ is clear, and the last identity, concerning the
scalar Eisenstein series, is well known; see, for instance, [15, (6.3)]. The last assertion of
the proposition is a direct consequence of Corollary 6.6 by the fact that ψa(w;σΣ) ∈ OΣ

for all a ∈ A and w ∈ N∗ and the fact that v(ψa(w;σΣ)) = |a|v(ψa(w;σΣ))→∞ as a runs
in A+. �

Thanks to Theorem 4.17 we can compute the v-valuations of the entries of E(1; ρ∗Σ)
(recall that κ has been introduced in (37)). The corresponding problem for E(w; ρ∗Σ) for
general w is at the moment unsolved.

Corollary 7.3. If |Σ| ≡ 1 (mod q − 1) and E(1; ρ∗Σ) = (EJ)J⊂Σ, we have v(EJ ) = κ(J) if

J ( Σ and v(EΣ) = 0.

For the next definition, we recall that KΣ = T ◦(KΣ)((u)).

Definition 7.4. An element f ∈ M !
w(ρ;KΣ) is said rational, if the image of f by the

embedding ιΣ of Theorem 4.14 is an element of T ◦(K(tΣ))((u))
N×1, and integral if this

image lies in T ◦(A[tΣ])[u
−1][[u]]N×1.

Note that if N = 1 and Σ = ∅, this coincides with the scalar modular forms having
u-expansions in K((u)) and A[[u]] respectively, studied in [15]. We have the simple but
important result:

Theorem 7.5. If w ≡ |Σ| (mod q − 1) then ζA(w;σΣ)
−1E(w; ρ∗Σ) is integral.

Proof. It is a direct consequence of [2, Theorem 1] and Proposition 7.2. �

7.1.2. Modular forms of weight one for ρ∗Σ. We recall that N = 2s. We have:

Theorem 7.6. Assuming that |Σ| ≡ 1 (mod q − 1), M1(ρ
∗
Σ;LΣ) is of dimension one over

LΣ, generated by the Eisenstein series E(1; ρ∗Σ).
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Proof. We note that in the case ρ = ρ∗Σ we have the following identity for the space H(ρ)
defined in §5.2.3:

H(ρ) =




0
...
0
KΣ


 .

We conclude by observing that E(1; ρ∗Σ) ∈M1(ρ
∗
Σ;LΣ)\{0} and applying Theorem 5.12. �

This yields a positive answer to [37, Problem 1.1]. By Theorem 4.19, E(1; ρ∗Σ) is an
eigenform for all the Hecke operators defined in §4.2.

Remark 7.7. One of the main motivations for the introduction of the Eisenstein series
E(w; ρ∗Σ), for which they have been initially considered in [28], is that the non-zero entry
(which is the last one, in the prescribed ordering) tends to −ζA(w;σΣ) as z ∈ Ω approaches
the cusp infinity or, in other words, it is congruent to −ζA(w;σΣ) modulo MΣ. These are
not the only Eisenstein series which enjoy this property. Another example is discussed
in this remark. We consider the Fq-algebra morphism χ : A → Fq[tΣ]

s×s (with s = |Σ|)
defined by

χ(θ) =




0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1
−P0 −P1 · · · −Ps−1



,

where P0, . . . , Ps−1 ∈ Fq[tΣ] are defined by
∏
i∈Σ(X − ti) = Xs + Ps−1X

s−1 + · · · + P0.
Then, for all a ∈ A, det(χ(a)) = σΣ(a) (see [31, §2.1]). We consider the representation of

the first kind ϕ∗
Σ = ∧sρ∗χ, of dimension N :=

(
2s
s

)
. We suppose that w ≡ s (mod q−1) and

w > 0. The last column of the Poincaré series Pw,0(Φϕ∗
Σ
) multiplied by ζA(w;σΣ) equals

E(w;ϕ∗
Σ) :=

∑

(a,b)∈A\{(0,0)}

(az + b)−w
s∧(

χ(a)

χ(b)

)
.

This defines an element of Hol(Ω → E1×N
Σ ) and a modular form in Mw(ϕ

∗
Σ;KΣ) \

Sw(ϕ
∗
Σ;KΣ). Moreover, the only entry EN of E(w;ϕ∗

Σ) which does not vanish at infin-
ity, which is the last one, satisfies

EN ≡ −ζA(w;σΣ) (mod MΣ).

In other words, −ζA(w;σΣ) is the ’constant term’ of the last entry of E(w;ϕ∗
Σ).

7.2. Structure of weak modular forms. We consider a finite non-empty subset Σ ⊂ N∗

and k ∈ Σ. We set Σ′ = Σ\{k}. We denote by ρ∗Σ′ for the tensor factor of the representation
ρ∗Σ. Hence:

(62) ρ∗Σ = ρ∗Σ′ ⊗ ρ∗tk .
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We can suppose, without loss of generality, that k = min(Σ). The natural ordering of
Σ ⊂ N∗ has to be considered to write the tensor product. We set ρ = ρ∗Σ det−m. The

structure of the KΣ-vector space M !
w(ρ;KΣ) is quite simple to describe. The main result

of this subsection is the following.

Theorem 7.8. Assuming that ρ = ρ∗Σ det−m, we have:

M !
w(ρ;KΣ) =M !

w−1(ρ;KΣ)⊗ E(1; ρ
∗
tk
) +M !

w−q(ρ;KΣ)⊗ E(q; ρ
∗
tk
).

Proof. We denote by E := E(1; ρ∗t ) the row vectorial Eisenstein series of weight 1 associated
with the representation ρ∗t . Explicitly, we have

E(1; ρ∗t ) =
∑′

a,b∈A

(az + b)−1

(
χt(a)

χt(b)

)
, n > 0.

We also set

E =

(
E

τ(E)

)
∈ Hol(Ω→ K2×2

Σ ).

Note that τ(E) = E(q; ρ∗t ). Let h = −u+ o(u) be as in §5.3.1. By [37, Theorem 3.9]:

det(E) = −π̃ζA(q;χt)h(z),

which is also equal to

−
π̃q+1h(z)

(θq − t)(θ − t)ω(t)

by the formula

(63) ζA(1;χt) =
π̃

(θ − t)ω(t)

which holds in T and can be found in [28], after application of τ . The function h does
not vanish on Ω and v(h) = 1. Since the function det(E) can vanish identically for certain
values of t with |t| > 1, the matrix function E(z)−1 belongs to Hol(Ω → T2×2) but not to
Hol(Ω → E2×2). Note that τ2(ω)−1E(z)−1 defines a function of Hol(Ω → E2×2). We are
going to generalize some aspects of the proof of [37, Theorem 3.9]. Let G be an element of
M !
w(ρ;KΣ). Then by definition for all γ ∈ Γ and z ∈ Ω, we have

G(γ(z)) = Jwγ det(γ)−mρ∗Σ(γ)G(z).

We now set E = τ2(ω(t))−1E∗, Etk the same function in the variable tk instead of t, and

(64) F := IN ′ ⊗Etk ∈ Hol(Ω→ EN×N
{k} ),

with N = 2s, s′ = s− 1, and N ′ = 2s
′
. We have:

F (γ(z)) = (1N ′ ⊗ ρtk(γ))F (z)

(
1N ′ ⊗

(
Jγ(z)

−1 0
0 Jγ(z)

−q

))
.
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Now setting G = tG and, denoting with H the row function GF , with values in K1×N
Σ , we

have:

H(γ(z)) =

= Jγ(z)
w det(γ)−mG(z)ρ−1

Σ (γ)(1N ′ ⊗ ρtk(γ))(1N ′ ⊗Etk(z)
−1)×

×

(
1N ′ ⊗

(
Jγ(z)

−1 0
0 Jγ(z)

−q

))

= det(γ)−mG(z)(ρ−1
Σ′ (γ)⊗ 12)(1N ′ ⊗Etk(z)

−1)

(
1N ′ ⊗

(
Jγ(z)

w−1 0
0 Jγ(z)

w−q

))

= det(γ)−mG(z)(1N ′ ⊗Etk(z)
−1)(ρ−1

Σ′ (γ)⊗ 12)

(
1N ′ ⊗

(
Jγ(z)

w−1 0
0 Jγ(z)

w−q

))

= det(γ)−mH(z)(ρ−1
Σ′ (γ)⊗ 12)

(
1N ′ ⊗

(
Jγ(z)

w−1 0
0 Jγ(z)

w−q

))
.

In the above computation, we have observed the distributive property of the mixed product
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (for matrices A,B,C,D). This identity that we have
found,

H(γ(z)) = det(γ)−mH(z)(ρ−1
Σ′ (γ)⊗ 12)

(
1N ′ ⊗

(
Jγ(z)

w−1 0
0 Jγ(z)

w−q

))

means the following. The column holomorphic function H := t
H , with values in KN×1

Σ

can be written as H = H1 ⊙ H2 with both H1 and H2 columns of size N ′ = 2Σ
′
,

where the symbol ⊙ is defined, if a = t(a1, . . . , aN ′) and b = t(b1, . . . , bN ′), by a ⊙ b =
(a1, b1, a2, b2, . . . , aN ′ , bN ′). Then, both H1,H2 are separately weak modular forms for
ρ∗Σ′ det

−m, with values in KΣ and the weights are respectively w − 1 and w − q. �

We have:

Theorem 7.9. The following equality of KΣ-vector spaces holds, for any w ∈ Z, m ∈
Z/(q − 1)Z and finite Σ ⊂ N∗:
(65)

M !
w(ρ

∗
Σ det−m;KΣ) =

⊕

I⊔J=Σ

(
⊗

i∈I

E(1; ρ∗ti)

)
⊗


⊗

j∈J

E(q; ρ∗ti)


M !

w−|I|−q|J |(det
−m;KΣ).

Denoting by M !(det•;KΣ) the Z × Z/(q − 1)Z-graded B-algebra of scalar weak KΣ-
valued Drinfeld modular forms for Γ of any weight and type, and settingM !(ρ∗Σ det•;KΣ) =

⊕w,mM
!
w(ρ

∗
Σ det−m;KΣ), which is a graded module over M !(ρ∅;KΣ), we obtain:

Corollary 7.10. The KΣ-vector space M !(ρ∗Σ det•;KΣ) is a graded free M !(det•;KΣ)-
module of rank N = 2s.

Observe that further, the generators of this module are explicitly described in Theorem
7.9. Denoting by M !(ρ∗Σ;KΣ) = ⊕w∈ZM

!
w(ρ

∗
Σ;KΣ) the sub-module of M !(det•;KΣ) of
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weak modular forms for ρ∗Σ and setting M !(ρ∅;KΣ) = ⊕wM
!
w(ρ∅;KΣ), We also deduce the

following corollary:

Corollary 7.11. The KΣ-vector space M !(ρ∗Σ;KΣ) is a graded free M !(ρ∅;KΣ)-module of
rank N .

Proof of Theorem 7.9. We deduce from Theorem 7.8, by induction on |Σ|, that a weaker
version of (65) holds, with

∑
in place of

⊕
. It remains to show that the sum is a direct

sum. For this, it suffices to show that the N = 2s functions ⊗i∈IE(1; ρ
∗
ti)⊗

⊗
j∈J E(q; ρ

∗
tj ),

for I ⊔ J = Σ, which define elements of ON×1
Σ are linearly independent over the field

KΣ((u)). Note indeed that M !
w−|I|−q|J |(det

−m;KΣ) →֒ KΣ((u)) because all the elements of

the space on the left are A-periodic and tempered.
Let a, b be two elements of KΣ. We write a ≈ b if v(a) = v(b) (note that if a = 0 and

a ≈ b then b = 0) and we extend the definition to vectors and matrices whose entries are
all in K× by saying that (ai,j) ≈ (bi,j) if for all i, j, v(ai,j) = v(bi,j). Then by Proposition

7.2, we have E(1; ρ∗ti) ≈
(u
1

)
and E(q; ρ∗ti) ≈

(uq
1

)
. Hence, up to permutation of rows and

columns, we have the ≈-equivalence of N ×N -matrices in ON×N
Σ :

N :=

(
⊗

i∈I

E(1; ρ∗ti )

)
⊗


⊗

j∈J

E(q; ρ∗tj )



I⊔J=Σ

≈

(
uq u
1 1

)⊗s

.

The anti-diagonal of the matrix on the right is equal to (1, u)⊗s (up to reordering). This
corresponds to a unique monomial which minimises the v-valuation in the series expansion
of the determinant of N . We deduce that det(N ) ≈ uas , where (as)s≥1 is the sequence
defined, inductively, by a1 = 1 and as = 2as−1+2s−1 for s > 1. The matrix N is therefore
non-singular, and the functions ⊗i∈IE(1; ρ

∗
ti ) ⊗

⊗
j∈J E(q; ρ

∗
tj ) for I ⊔ J = Σ are linearly

independent over KΣ((u)), from which the result follows. �

7.3. Strongly regular modular forms. We keep considering a finite non-empty subset
Σ ⊂ N∗ of cardinality s, the representation ρ = ρ∗Σ, k := max(Σ). We will discuss quite a
restricted but useful class of modular forms which have a particularly simple behaviour at
infinity.

Definition 7.12. A tempered ρ∗Σ-quasi-periodic holomorphic function

G : Ω→ KN×1
Σ

is called strongly regular at infinity if

(
u−1 0
0 1

)⊗s

G(z) ∈ ON×1
Σ .
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Note, with Diag denoting a diagonal matrix, that

(
u−1 0
0 1

)⊗2

= Diag(u−2, u−1, u−1, 1)

(
u−1 0
0 1

)⊗3

= Diag(u−3, u−2, u−2, u−1, u−2, u−1, u−1, 1).

Note also that writing

(66)

(
u−1 0
0 1

)⊗s

= Diag(u−s, . . . , u−n1 , u−n0),

and letting s tend to infinity, an integer sequence (ni)i≥0 is defined and coincides with the
so-called one’s-counting sequence, that is, the sequence which gives the number of one’s in
the binary expansion of i. We need the next Lemma, where we use the sequence introduced
in (66) and the notation ⊙ introduced in the course of the proof of Theorem 7.8.

Lemma 7.13. We have (ni)i≥0 = (n2i)i≥0 ⊙ (n2i+1 + 1)i≥0.

Proof. Straightforward computation of the carry over in binary addition when we add one
to an integer. �

The above serves to make the next definition.

Definition 7.14. A weak modular form G ∈ M !
w(ρ

∗
Σ det−m;KΣ) is said strongly regular

(of weight w) if it is strongly regular at infinity after definition 7.12.

The KΣ-vector spaces of strongly regular modular forms have quite a simple structure
which can be described essentially by adapting the proof of Theorem 7.8; see Theorem
7.15. Also, regarding the Definition 7.12 of strongly regular functions, if we want to use
the indexation of the components of G, G = (GJ)I⊔J=Σ (so that the first entry G∅ has a
u-expansion) we then get that the above condition is equivalent to

(67) GJ (z)u−|I| ∈ OΣ, ∀I, J such that I ⊔ J = Σ.

We denote byM †
w(ρ∗Σ det−m;KΣ) the KΣ-sub-vector space of M

!
w(ρ

∗
Σ det−m;KΣ) generated

by the strongly regular modular forms of weight w for ρ∗Σ det−m (with values in KΣ).

Examples of strongly regular modular forms. Any scalar Drinfeld modular form is strongly

regular. In fact, we haveM †
w(det

−m;KΣ) =Mw(det
−m;KΣ) for all w,m. From Proposition

7.2 we immediately see that E(1; ρ∗t ) ∈ M
†
1 (ρ

∗
t ;K) and E(q; ρ∗t ) ∈ M

†
q (ρ∗t ;K). In particu-

lar, after Theorem 7.9 and Corollary 7.10, the generators of the module M !(ρ∗Σ det•;KΣ)
described in the statements are all strongly regular modular forms.
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7.3.1. Structure of strongly regular modular forms. We shall prove:

Theorem 7.15. The following equality of KΣ-vector spaces holds, for any w ∈ Z, m ∈
Z/(q − 1)Z, finite Σ ⊂ N∗:

(68) M †
w(ρ

∗
Σ det−m;KΣ) =

⊕

I⊔J=Σ

(
⊗

i∈I

E(1; ρ∗ti)

)
⊗


⊗

j∈J

E(q; ρ∗tj )


Mw−i−qj(det

−m;KΣ).

The direct sum M †(ρ∗Σ det•;KΣ) := ⊕w,mM
†
w(ρ∗Σ det−m;KΣ) is a graded module over

the graded algebra M(det•;KΣ) of scalar Drinfeld modular forms Ω → KΣ of any power
of the determinant character. We immediately deduce:

Corollary 7.16. the M(det•;KΣ)-module M †(ρ∗Σ det•;KΣ) is free of rank N generated by
the functions (⊗i∈IE(1; ρ

∗
ti))⊗ (⊗j∈JE(q; ρ

∗
tj )), for I, J ⊂ Σ such that I ⊔ J = Σ.

After the work of Marks and Mason [24] and Bantay and Gannon [5] in the setting of
complex vector-valued modular forms, this is expected. These authors prove that vector
spaces of vector valued modular forms for SL2(Z) associated to an indecomposable finite
dimensional complex representation of this group (and satisfying some additional mild
technical conditions) all are free of the dimension that of the representation.

Similarly, we have, writing M(1;KΣ) for the graded algebra of scalar Drinfeld modu-
lar forms for Γ (it is equal to the graded algebra KΣ[g,∆] see [15, Corollary (6.5)]) and
M †(ρ∗Σ;KΣ) the M(1;KΣ)-module of strongly regular modular forms for ρ∗Σ:

Corollary 7.17. The graded M(1;KΣ)-module M †(ρ∗Σ;KΣ) is free of rank N = 2s.

We can take in the above result the generators of Corollary 7.16.

Proof of Theorem 7.15. It is easily seen that the left-hand side of (68) is contained in
the right-hand side and we have to prove the reverse inclusion. Corollary 7.9 ensures the
equality of the corresponding KΣ-vector spaces of weak modular forms (“when † is replaced

with !”). This means that if G ∈M †
w(ρ∗Σ det−m;KΣ), then

G ∈M !
w(ρ

∗
Σ det−m;KΣ) =

⊕

I⊔J=Σ

(
⊗

i∈I

E(1; ρ∗ti)

)
⊗


⊗

j∈J

E(q; ρ∗tj )


M !

w−i−qj(det
−m;KΣ).

All we need to prove is that the coefficients occurring in the various spaces of scalar weak
modular formsM !

w−i−qj(det
−m;KΣ) are in fact Drinfeld modular forms (regular at infinity).

To see this it suffices to show that

G ∈Mw−1(ρ
∗
Σ′ det−m;KΣ)⊗ E(1; ρ

∗
tk
) +Mw−q(ρ

∗
Σ′ det−m;KΣ)⊗ E(q; ρ

∗
tk
),

where k is an integer such that k < min(Σ′) with Σ = Σ′ ⊔ {k}. A simple induction will
then allow to complete the proof.

Lemma 7.13 implies that for all s ≥ 1, writing
(
u−1 0
0 1

)⊗s

= Diag(Us),
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then

(69) Us = u−1Us−1 ⊙ Us−1.

Now, we set G = G1 ⊙G2 with G = tG an element of M †
w(ρ∗Σ det−m;KΣ). We know by

the proof of Theorem 7.8 that

H = H1 ⊙H2 = GF

(with F as in (64)) is such that

H1 =
t
H1 ∈M

!
w−1(ρ

∗
Σ′ det−m;KΣ), and H2 =

t
H2 ∈M

!
w−q(ρ

∗
Σ′ det−m;KΣ).

It remains to prove that H1 and H2 are both strongly regular. We have to show that

Hj(z)Diag(Us−1) ∈ O1×N ′

Σ , j = 1, 2.

By hypothesis, we know that the entries of G(z)Diag(Us) are in OΣ. Explicitly, the entries
of u(z)−1

G1(z)Diag(Us−1) and of G2(z)Diag(Us−1) are in OΣ. We recall the relation
a ≈ b, for elements of K×

Σ , and its extension to matrices with non-zero entries. We note
that H1,H2 are given, explicitly, by the formulas:

H1 =
−G1τ(e2) +G2τ(e1)

π̃ζA(q;χtk )h
, H2 =

G1e2 −G2e1
π̃ζA(q;χtk)h

,

where E =
(e1
e2

)
(5). By the well-known u-expansion h = −u + o(u) (which tells us that

v(h) = 1 and h ≈ u), we thus have

uH1 ≈ −G1τ(e2) +G2τ(e1), uH2 ≈ G1e2 −G2e1.

We first study H1. We have:

H1 Diag(Us−1) ≈ u−1(−G1τ(e2) +G2τ(e1))Diag(Us−1)

≈ −u−1
G1Diag(Us−1)τ(e2) +G2 Diag(Us−1)u

−1τ(e1).

Now, by hypothesis u−1
G1Diag(Us−1) ∈ O1×N ′

Σ , while v(τ(e2)) = 0, from which we deduce

that u−1
G1 Diag(Us−1)τ(e2) ∈ O1×N ′

Σ . On the other hand, we have that τ(e1) ≈ u
q. hence,

we have that G2 Diag(Us−1)u
−1τ(e1) ≈ G2 Diag(Us−1)u

q−1 ∈M1×N ′

Σ ⊂ O1×N ′

Σ . Therefore
all entries of H1Diag(Us−1) are in OΣ and H1 is strongly regular.

Let us now deal with H2. Similarly, we have that

H2 Diag(Us−1) ≈ u−1(G1e2 −G2e1)Diag(Us−1)

≈ u−1
G1 Diag(Us−1)e2 −G2Diag(Us−1)u

−1e1.

Since v(e2) = 0, we have that the term u−1
G1Diag(Us−1)e2 has all the entries in OΣ.

Moreover, e1 ≈ u so that all the entries of G2Diag(Us−1)u
−1e1 are in OΣ by the hypothesis

on G2. Hence, H2Diag(Us−1) ∈ O1×N ′

Σ and H2 is strongly regular. This completes the
proof of the Theorem. �

5The reader will not mix these functions with the functions ei of §3.
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7.4. Some structural properties of modular forms. In contrast with that of strongly
regular modular forms, the structure of the vector spaces Mw(ρ

∗
Σ det−m;KΣ) is more diffi-

cult to describe. In this subsection, we give some properties of them. The first result we
want to discuss is Lemma 7.19. To prove it we need the next result (where N = 2s and
s = |Σ|).

Lemma 7.18. Let α = t(α1, . . . , αN ) ∈ KN×1
Σ be such that ρ∗Σ(Ta)α = α for all a ∈ A.

Then, α1 = · · · = αN−1 = 0.

In particular, we have ρδ(0) = 1 in Theorem 5.12.

Proof of Lemma 7.18. We proceed by induction on s ≥ 0. If s = 0, case of Σ = ∅, there is
nothing to prove. Assume now that s > 0 and write Σ = {k} ⊔ Σ′ with k < min(Σ′) and
s′ = |Σ′| ≥ 0. We have

ρ∗Σ = ρ∗Σ′ ⊗ ρ∗tk =

(
ρ∗Σ′ 0

−χtk(·)ρ
∗
Σ′ ρ∗Σ′

)
.

We also decompose α = β ⊕ γ, with β, γ ∈ KN ′×1
Σ (and N ′ = 2s

′
). Then, we have two

families of relations. The first one is

ρ∗Σ′(Ta)β = β, ∀a ∈ A,

and the second one is

ρ∗Σ′(Ta)γ − χtk(a)ρ
∗
Σ′(Ta)β = γ, ∀a ∈ A.

By induction, we have two cases: either (1) β = 0, or (2) β = t(0, . . . , 0, β) with β 6= 0. If
we are in the first case, we deduce from the second family of relations and induction that
γ = t(0, . . . , 0, ∗) and the lemma is proved. It remains to show that the second case cannot
hold. But let us assume by contradiction that for all a ∈ A,

(ρ∗Σ′ − IN ′)γ = χtk(a)
t(0, . . . , 0, β), ∀a ∈ A.

We denote by ρa1, . . . , ρ
a
N ′ the entries of the last row of ρ∗Σ′(a). These are monomials in the

elements χti(a) with i ∈ Σ′. We also write γ1, . . . , γN ′ for the entries of γ. At the level of
the bottom entry, we have:

ρa1γ1 + · · ·+ ρaN ′−1γN ′−1 = χtk(a)β, ∀a ∈ A.

Since we have supposed that β 6= 0, we have maxi{‖γi‖} = ‖β‖ 6= 0. Rescaling, we can
suppose that maxi{‖γi‖} = ‖β‖ = 1. Reducing modulo the maximal ideal of the valuation
we see that γ1, . . . , γN ′−1, β ∈ Facq (tΣ) are such that

ρa1γ1 + · · ·+ ρaN ′−1γN ′−1 = χtk(a)β, ∀a ∈ A,

with the right-hand side which does not vanish identically if a 6= 0. Let ζ = (ζi : i ∈ Σ′) ∈

(Facq )s
′
be such that the following is well defined:

δ := β|ti=ζi,∀i∈Σ′ ∈ Facq (tk)
×.
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such a vector of elements ζ exists, by the hypothesis that β is non-zero. There exists

a ∈ A+ such that a(ζi) = 0 for all i ∈ Σ′ and therefore χti(a)ti=ζi = 0 and ρaj |ti=ζi,∀i∈Σ′ = 0

for all j. This means that χtk(a)δ = 0 but this is in contradiction with the injectivity of
χtk . Hence, β = 0 is the only possible case and we are done. �

We deduce:

Lemma 7.19. If f = (f1, . . . , fN ) is a modular form for ρ∗Σ, then we can identify f1, . . . , fN−1

with elements of MΣ and fN with an element of OΣ.

Proof. We have f ∈ ON×1
Σ . In particular, there exists α ∈ KN×1

Σ such that f ≡ α

(mod MN×1). But note that for all a ∈ A, f(z + a) = ρ∗Σf(z) for all z ∈ Ω so that
α = ρ∗Σ(Ta)α for all a ∈ A. Lemma 7.18 allows to conclude. �

7.4.1. Link between regular and strongly regular forms. We begin with some tools to handle
the representations ρΣ and ρ∗Σ. We order the columns of ρΣ(γ) from ∅ to Σ along the total
order described in §7.1.1, and we order the rows from Σ to ∅ along the opposite of this
order. Let M = (MI,J)I,J⊂Σ ∈ B

N×N be a matrix with entries in some ring B, with rows
and columns indexed as above (the first index always refers to rows). Since the opposite
order of the inclusion order on the subsets of Σ is obtained by computing complementaries
I 7→ Ic := Σ \ I, we have the following transposition rule:

(70) tM = (MJc,Ic)I,J⊂Σ ∈ B
N×N .

Now we write with a ∈ A:

ρΣ(Ta) = (ρI,J(Ta))I,J⊂Σ ∈ Fq(tΣ)
N×N ,

and we do similarly for ρ∗Σ(Ta) = (ρ∗I,J(Ta))I,J⊂Σ. For U ⊂ Σ, we recall the semi-character

σU =
∏
i∈U χti . An elementary computation, the fact that the inverse of ρti(Ta) is ρti(T−a),

and an application of (70), lead to:

Lemma 7.20. For I, J ⊂ Σ, we have:

ρI,J(Ta) =

{
0 if I ∪ J ( Σ

σI∩J(a) if I ∪ J = Σ
, ρ∗I,J(Ta) =

{
0 if J ∩ I 6= ∅

(−1)|(J∪I)
c|σ(J∪I)c(a) if J ∩ I = ∅

.

Note that ρΣ(Ta) is symmetric with respect to the anti-diagonal (we can switch I, J) and
that the entries in the diagonal are all equal to 1 because these are the entries indexed by
I, J with I ⊔J = Σ. The coefficient of ρΣ(Ta) in the upper-right corner is equal to σΣ(a) =∏
i∈Σ χti(a). We deduce the explicit expression of the coefficients of Φρ∗Σ = (ΦI,J)I,J in

term of Perkins’ series. In particular, since the function κ is strictly decreasing, we have
the following property. If I, J ⊂ Σ with I ∩ J = ∅ and I ∪ J 6= Σ (not corresponding to a
diagonal coefficient), then

(71) v(ΦI,J) ≥ κ(I)− 1.

We set ρ = ρ∗Σ det−m. The above properties can be used to prove:

Lemma 7.21. Let f = t(f I) be a ρ-quasi-periodic function with ιΣ(f) ∈ OΣ. Then, if
I ( Σ, v(f I) ≥ κ(I).
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Proof. By the proof of Proposition 4.13, we have

f = Φρg

where g = t(gI) ∈ KΣ[[u]]
N×1. Since the entries of Φρ are in T ◦(KΣ) (valuations in

] − 1, 0] ∪ {∞}) we see, inductively, that gI ∈ uKΣ[[u]] if I ( Σ (while gΣ ∈ KΣ[[u]]) and
(71) allows to conclude. �

This generalises Corollary 7.3 and, quantitatively, it strengthens Lemma 7.19.
We come back to Σ be a finite subset of N∗ with s > 0 elements. Let r ≥ 0 be the unique

integer such that r(q − 1) + 1 ≤ s ≤ (r + 1)(q − 1). We have the elementary result:

Lemma 7.22. If I ( Σ then qrκ(I) ≥ |I|.

Proof. A simple computation suffices to justify this result; it is left to the reader. �

We deduce:

Theorem 7.23. Let f ∈Mw(ρ
∗
Σ det−m;KΣ). Then, τ r(f) ∈M †

wqr(ρ
∗
Σ det−m;KΣ).

Proof. Thanks to the alternative condition for strong regularity (67) and Lemma 7.21, the
property is verified taking into account the elementary inequality of Lemma 7.22. �

Note that if s = 1, every Drinfeld modular form for ρ∗t is strongly regular, which is
a restatement of Theorem 3.9 of [37]. It is clear that a strongly regular function is also
regular. We have

M †
w(ρ

∗
Σ det−m;KΣ) ⊂Mw(ρ

∗
Σ det−m;KΣ) ⊂M

!
w(ρ

∗
Σ det−m;KΣ),

and the inclusions are in general strict. However, as an immediate consequence of Theorem
7.23, we have:

Corollary 7.24. If s = |Σ| < q, then M †
w(ρ∗Σ det−m;KΣ) = Mw(ρ

∗
Σ det−m;KΣ). For any

s, Mw(ρ
∗
Σ det−m;KΣ) is of finite dimension over KΣ.

In particular, one can check that, in the above hypotheses,

(72) E(s; ρ∗Σ) =
⊗

i∈Σ

E(1; ρ∗ti ).

In fact, the formula 72 holds also for s = q.

7.4.2. Non-existence of negative weight modular forms. We deduce the next result which
asserts, in particular, that there are no non-zero modular forms of negative weight:

Corollary 7.25. We have Mw(ρ
∗
Σ det−m;KΣ) = {0} for w < 0, for w = 0 and m 6= 0, or

for w = 0 and Σ 6= ∅.

Proof. Note that M †
w(ρ∗Σ det−m;KΣ) = {0} if w < 0. Hence we obtain the first assertion,

combining with Theorem 7.23. The other properties are easy. �
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8. Harmonic relations and Eisenstein series

In this section we move to a different and perhaps quite independent aspect of our work.
In [32] we highlighted an algebra structure on multiple zeta series in the Tate algebras TΣ

(or more precisely, in EΣ ⊂ TΣ) generalizing Thakur’s multiple zeta values (see for example
[1, 44]). We will see, in this section, that this algebra structure is in some sense ubiquitous
in the theory of the Eisenstein series that we develop in the present paper. In particular,
it is an important source of explicit relations connecting such functions.

The results of this section will cover various aspects of a harmonic product formula
(Theorem 8.2 and complements) generalizing [32, Theorems 2.3, 3.1]. We recall that, as
usual, Σ denotes a non-empty finite subset of N∗ of cardinality s. Let L/Fq be a field
extension. We consider:

(1) Injective Fq-linear maps δi : A→ L, for i ∈ Σ.
(2) For αi,j ∈ N (i ∈ Σ and j = 1, . . . , r), maps σj : A → L defined by σj(a) :=∏

i∈Σ δi(a)
αi,j . We shall refer to such maps as to semi-characters A→ L.

(3) Another injective Fq-linear map γ : A → L (we adopt the notation γa for the
evaluation of γ in a ∈ A).

We consider a semi-character σ =
∏
i∈Σ δ

αi

i with linear maps δi, i ∈ Σ. A factorization

of σ is a decomposition in product of semi-characters σ = ψφ with ψ =
∏
i∈Σ δ

βi
i and

φ =
∏
i∈Σ δ

γi
i and with βi + γi = αi for all i ∈ Σ. It is obvious that we have only finitely

many such factorizations.
Together with the objects that we have introduced so far, we consider, for integers

ni ∈ N∗ with i = 1, . . . , r (admissible) composition arrays (6)

(73) C :=

(
σ1 · · · σr
n1 · · · nr

)
.

Sometimes, when r = 1, we write (n;σ) instead of
(σ
n

)
. If C = ( 1 ··· 1

n1 ··· nr
) we abridge it to

C = (n1, . . . , nr). For a composition array as in (73), we introduce the twisted power sum

Sd(C) :=
∑

d1>···>dr≥0
a1,...,ar∈A+

degθ(ai)=di,∀i=1,...,r

σ1(a1) · · · σr(ar)

γn1
a1 · · · γ

nr
ar

∈ L.

These twisted power sums generalize the classical power sums as in Thakur’s [43], as well
as the twisted power sums of [36]. We shall show the following simple generalization of [32,
Theorem 3.1]:

6The attribute admissible indicates the fact that ni > 0 for all i. In this paper, we do not study the
more general case in which ni ∈ Z.
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Theorem 8.1. Let σ, ψ be two semi-characters and m,n two positive integers. For any
α, β semi-characters and i, j ∈ N∗ there is an element fα,β,i,j ∈ Fp such that, for all d ≥ 0,

Sd

(
σ
m

)
Sd

(
ψ
n

)
− Sd

(
σψ

m+ n

)
=

∑

αβ=σψ
i+j=m+n

fα,β,i,jSd

(
α β
i j

)
.

In the theorem, the sum is on the factorizations of the semi-character σψ and the de-
compositions n+m = i+ j, so there are only finitely many terms in it.

Further, let us assume that: (1) L is endowed with a valuation ν : L → Q ∪ {∞}, it is
complete for this valuation, (2) that ν(δi,j(a)) ∈ {0,∞} for all i, j and a ∈ A, and (3) that,
moreover, γ−1

a → 0 as a runs in A (for the valuation). Then, the series

(74) fA(C) :=
∑

d≥0

Sd(C)

converges in L for any composition array C as in (73). Let n be a positive integer, and
let σ : A → L be a semi-character such that ν is trivial over its image. We denote
by Fσn the Fp-sub-vector space of L generated by the elements fA(

σ1 ··· σr
n1 ··· nr ) with r > 0,∏

i σi = σ,
∑

i ni = n (with ni > 0 for all i). We also set F∗
0 := Fp. We consider the sum

F :=
∑

n,σ F
σ
n . The above result can be used, in a lengthy but straightforward way very

similar to that of [32], to prove the next result.

Theorem 8.2. For all m,n > 0 and σ, ψ semi-characters, We have that FσmF
ψ
n ⊂ F

σψ
m+n,

and the Fp-vector space F is an Fp-algebra.

Before going further, we shall give the two main examples of the above settings that will
be considered in this paper (actually, we will mainly consider the second one, described in
§8.2).

8.1. Multiple zeta values. We consider variables tΣ = {ti : i ∈ Σ} and the field L =

KΣ := K̂(tΣ)v∞ obtained by completing K(tΣ) with respect to the Gauss valuation ν
extending the valuation v∞ of K. We consider further the injective Fq-algebra morphisms
δi(a) := χti(a) for all i ∈ Σ to build our semi-characters. Finally, we choose γ the identity
map, so that for all a ∈ A, γa = a ∈ L. Then, we are in the settings of [32]. In the notations
of ibid., we have ζA(C) = fA(C) for any C as in (73). In fact, these elements belong, more
precisely, to EΣ ⊂ KΣ. If we consider the particular case of composition arrays C as in (73)
such that the semi-characters σi are all equal to the trivial semi-character 1, then it is easy
to see that the series ζA(C) ∈ K∞ are the multiple zeta values of Thakur (the reader can
find more in the papers [1, 44], but the literature is more ample).

8.2. A-periodic multiple sums. We generalise the viewpoint of Chen in [10] in connec-
tion with analogues of multiple Eisenstein series in the Drinfeldian settings. We use the
same variables tΣ of the example 1 above, and the same semi-characters. However, we
choose this time

γa := eC(az), a ∈ A.
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This choice leads us to work in the field L = K(tΣ)((u)) which is complete for the valuation
ν = v, giving the order at u = 0 of a formal power series of u. In this case, for C as in (73),
we set ϕA(C) = fA(C). Explicitly:

ϕA(C) =
∑

d1>···>dr≥0
a1,...,ar∈A+

degθ(ai)=di,∀i=1,...,r

σ1(a1) · · · σr(ar)u
n1
a1 · · · u

nr
ar ∈ L,

with ua = eC(az)
−1, which defines a formal series of C∞[[u]], converging for u in a non-

empty disk of radius ≤ 1 containing 0. In fact, we can go a step further by considering
semi-characters σ̃ of the type:

σ̃(a) = an0
∏

i∈N∗

χti(a)
ni , a ∈ A,

with ni ∈ N for all i and ni = 0 for all but finitely many i. Extending the admissible
composition arrays C in (73) in the obvious way it is easy to see that the series ϕA(C) are
convergent for the valuation v.

Remark 8.3. We will see in §5 how these sums can be, in certain cases, related to the
first entries of modular forms with values in the modules E1×2s

Σ . For instance, observe
that if |Σ| ≡ n (mod q − 1) and n > 0, then, by the results of §7.1 and more particularly,
Proposition 7.2, ϕA(n;σΣ) occurs in the first entry of an Eisenstein series E(n; ρ∗Σ). This
brings back to a generalisation of formulas first observed by Gekeler. For instance, in our
notation, [15, Formula (6.3)] rewrites as

E(k;1) = −ζA(k)− π̃
k
∑

i

c
(k)
i ϕA(i;1),

where q − 1 | k, E(k;1) =
∑′

a,b(az + b)−k is the Eisenstein series of weight k, and the

coefficients c
(k)
i are those of the k-th Goss’ polynomial Gk(X) =

∑
i c

(k)
i Xi ∈ K[X] asso-

ciated to the discrete A-module π̃A of C∞ [15, §3]. A more explicit example is given by
the series ϕA(1;χt), which has been also discussed in [28, 37] (with different notations).
Note that after Proposition 7.2, the first entry of E(1;χt) is −π̃ϕA(1;χt). This is related to
the sequence of extremal quasi-modular forms (xk)k≥0 introduced in [8], where the initial
explicit elements are x0 = −E, x1 = −Eg − h, in the notations of [15], and where E is
the normalized false Eisenstein series of weight 2 already used in §6.7, which is a quasi-
modular form in the sense of [7]. It is easy to see that, for all u ∈ C∞ with |u| small
enough, f := ϕA(1;χt) defines an entire function of the variable t. Then, τk(f)t=θ = −xk
for all k ∈ N. If k = 0, we deduce Gekeler’s series expansion [15, p. 686]:

(75) E =
∑

a∈A+

aua,

while taking f
t=θqk

for k ≥ 1 we get Petrov’s sequence of Hecke eigenforms Fk =
∑

a∈A+ aq
k
ua

of weight qk + 1 and type 1, notably the initial values F1 = h and F2 = hgq (see [40, §3.2]
and the proof of Theorem 3.6 ibid.).
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8.3. Existence of the harmonic product. We prove Theorem 8.1. We will use the
methods of [32, §3.1.2 and §3.1.3]. The following result can be found there.

Proposition 8.4. Let Σ be a finite subset of N∗. Consider U, V such that U ⊔V = Σ. Let
L/Fq be a field extension and let us suppose that xi (i ∈ Σ) are elements of L and let z be
an element of L \ Fq. Then, the following formula holds:

∑

µ,ν∈F2
q\∆

∏
i∈U (xi + µ)

∏
j∈V (xj + ν)

(z + µ)(z + ν)
= −

∑

I⊔J=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

∑

µ∈Fq

∏
k∈I(xk + µ)

(z + µ)
.

With appropriate choices of the set Σ, of the subsets U, V , of the elements xi and z and
applying some power of an endomorphism of L which is Fq(xi : i ∈ Σ)-linear and which
sends z to zq, and specialization of some xi to z, we deduce:

Corollary 8.5. Considering a finite set Σ ⊂ N∗, a partition Σ = U ⊔V , a positive integer
N and a composition N = α+ β, for all 1 ≤ k ≤ N and I ⊂ Σ, there exists cI,k ∈ Fp such
that

∑

µ,ν∈F2
q\∆

∏
i∈U (xi + µ)

∏
j∈V (xj + ν)

(z + µ)α(z + ν)β
=

∑

k=1,...,N
I⊂Σ

cI,k
∑

µ∈Fq

∏
i∈I(xi + µ)

(z + µ)k
.

We can now prove the Theorem 8.1. We recall that we have denoted by A+(d) the
set of monic polynomials of degree d in A. We also denote by A+(< d) the set of monic
polynomials of A which have degree < d. For n ∈ A+(d) and m ∈ A+(< d), we write

Sn,m = {(n+ µm,n+ ν);µ, ν ∈ Fq, µ 6= ν} ⊂ A+(d)×A+(d) \∆,

where ∆ is the diagonal of A+(d) × A+(d). Similarly, we define for n ∈ A+(d) and m ∈
A+(< d):

S′
n,m = {(n + µm,m);µ ∈ Fq} ⊂ A

+(d) ×A+(< d).

From [32, Lemmas 3.10 and 3.11] (see also Thakur’s [44]), we deduce that the sets Sn,m
determine a partition of A+(d) × A+(d) \ ∆ and the sets S′

n,m determine a partition of

A+(d)×A+(< d). Moreover, S′
n,m = S′

n′,m′ if and only if Sn,m = Sn′,m′ .

Now, let us choose d > 0. We write σψ =
∏
i∈Σ δi with δi an injective Fq-linear map

A → L for all i ∈ Σ (there can be repetitions), and σ =
∏
i∈U δi, ψ =

∏
i∈V δi with

U ⊔ V = Σ. We have:

Sd

(
σ
α

)
Sd

(
ψ
β

)
− Sd

(
σψ
N

)
=

=
∑

(a,b)∈A+(d)×A+(d)\∆

σ(a)ψ(b)

γαa γ
β
b

=
∑

(m,n)∈U

∑

(a,b)∈Sm,n

σ(a)ψ(b)

γαa γ
β
b

.
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We focus on the sub-sum corresponding to the choice of a set Sm,n. We want now to
compute:

∑

(a,b)∈Sm,n

σ(a)ψ(b)

γαa γ
β
b

=

=
∑

(µ,ν)∈F2
q\∆

σ(n + µm)ψ(n+ νm)

γαn+µmγ
β
n+νm

=
∑

(µ,ν)∈F2
q\∆

∏
i∈U δi(n+ µm)

∏
j∈V δi(n+ νm)

(γn + µγm)α(γn + νγm)β

=
σ(m)ψ(m)

γNm

∑

(µ,ν)∈F2
q\∆

∏
i∈U

(
δi(n)
δi(m) + µ

)∏
j∈V

(
δj(n)
δj(m) + ν

)

(
γn
γm

+ µ
)α (

γn
γm

+ ν
)β .

Note that we have used the Fq-linearity of δi for all i ∈ Σ so that δi(n+µm) = δi(n)+µδi(m)
and the injectivity, to divide by δi(m) which needs to be non-zero. Similarly, we have used
the Fq-linearity of the map a 7→ γa and the fact that γn + λγm does not vanish, because
n,m, in the above computation, have distinct degrees. Applying the Corollary 8.5 with

xi =
δi(n)
δi(m) for i ∈ Σ and z = γn

γm
which does not belong to Fq, we obtain the identity:

∑

(a,b)∈Sm,n

σ(a)ψ(b)

γαa γ
β
b

=

= σ(m)ψ(m)γ−Nm
∑

I⊂Σ
k=1,...,N

cI,k
∑

µ∈Fq

∏
i∈I

(
δi(n)
δi(m) + µ

)

(
γn
γm

+ µ
)k

=
∑

I⊔J=Σ
k=1,...,N

cI,k
∑

µ∈Fq

∏
i∈I δi(n+ µm)

∏
j∈J δj(m)

γkn+µmγ
N−k
m

.

The latter, is a sum over S′
m,n. In view of our previous observations, this concludes our

proof of Theorem 8.2. The deduction of Theorem 8.2 from Theorem 8.1 is standard and
we omit it. If we choose δi = χti for i ∈ Σ and γa = eC(az), and we follow closely the
above proof of Theorem 8.2 in conjonction with [32, Theorem 3.1], we deduce the following
explicit result that will be used later, with σΣ =

∏
i∈Σ χti and γa = eC(az) for a ∈ A \ {0}.
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Theorem 8.6. The following formula holds, for all Σ ⊂ N∗ and U ⊔ V = Σ:

fA

(
σU
1

)
fA

(
σV
1

)
− fA

(
σΣ
2

)
=

fA

(
σU σV
1 1

)
+ fA

(
σV σU
1 1

)
−

∑

I⊔J=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

fA

(
σI σJ
1 1

)
.

9. Some conjectures

In our general setting we do not have explicit formulas for the dimensions of the LΣ-
vector spaces Mw(ρ

∗
Σ,LΣ). One of the reasons is that an essential tool is still missing:

a valence formula. This is due to the particular kind of functions we are dealing with;
analytic functions from a rigid analytic space with values in Banach algebras which are
not necessarily affinoid. Waiting the time in which such tools will be available, we give
here some conjectures which allow to produce examples of relations which can be in certain
cases individually verified by explicit computations.

This section provides perspectives suggested by numerical investigations we did for mod-
ular forms associated to the representations ρ∗Σ. Conjectures 9.1, 9.2 and 9.9 together
provide a collection of (sometimes provable) identities between our Eisenstein series, intro-
duced in §7.1.

9.1. A conjecture for zeta values in Tate algebras. We first discuss a conjecture
dealing with zeta values in Tate algebras (8); for a little while we switch our attention to
this setting. Recall from the introduction that q = pe with e > 0. Hence τ = µe where µ
is the Fp-linear automorphism of C∞ given by c 7→ cp for c ∈ C∞, which can be extended
Fp(tΣ)-linearly to KΣ for any finite set Σ. We introduce the following Fp-algebra

I := Fp

[
µm(ζA(1, χti)) :

i ∈ N∗

m ∈ Z

]
⊂
⋃

k≥0

Fp[ti : i ∈ N∗][[θ
− 1

pk ]].

We set ζA(0) := 1. The Fp-algebra I is thus generated by all the µ-twists (negative or
positive) of the functions ζA(1, χti) for i ∈ Σ. It is very important to allow negative
values for m, and for this reason this Fp-algebra carries a structure of inversive µ-difference
algebra.

Conjecture 9.1. For all n ∈ N∗ and Σ ⊂ N∗ such that |Σ| ≡ n (mod q − 1) we have a
unique expansion

(76) ζA(n;σΣ) =
∑

0≤k≤n
k≡0 (mod q−1)

ζA(k)ηk, ηk ∈ I.

Recall that in our conventions, ζA(k) = ζA(k;1). We are going to give some examples of
relations along the predictions of this conjecture. Note that the factors ηk need not to lie in
Fp[ti : i ∈ N∗]((1θ )). However, there exists l ∈ N such that µl(ηk) ∈ Fp[ti : i ∈ N∗]((1θ )) for
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all k ≡ 0 (mod q−1) in the range 0 ≤ k ≤ n and all the terms involved are products of zeta
values. Since µl(ζA(k;σΣ)) = ζA(kp

l;σΣ), the identity (76) is equivalent to an algebraic
identity of zeta values as in (8) defined over Fp. We recall that Thakur conjectures in [44,
§5.3] that the only Fp-relations among his multiple zeta values in K∞ are those which come
from the harmonic product.

Conjecture 9.2. The only Fp-algebraic relations in I are those coming from the harmonic
product.

A more general conjecture, encompassing Thakur’s and the above, can be stated but lies
far outside the purposes of the present text and we will not mention it. After Conjecture
9.2, all the algebraic relations defined over Fp between the elements ζA(n;σΣ) with n ≡ |Σ|
(mod q − 1) can be derived from the harmonic product and for each zeta value ζA(n;σΣ)
it should be possible to derive explicit formulas like in (76) by using the harmonic product
of Theorem 8.6 (or in [32]). However, carrying this program might be very difficult in
practice due to the combinatorial computations involved. The challenge is to introduce
other techniques to tackle it. We produce some isolated evidences to give more credibility
to it.

9.1.1. Some evidences of truth. The first example we give is a formula which holds with
n = q + 1. It is very easy to prove by a direct application of Theorem 8.6.

Lemma 9.3. The following formula holds:
(77)
ζA(q + 1, σΣ) = ζA(1, χt1)ζA(q, χt2) + ζA(q, χt1)ζA(1, χt2)− ζA(q − 1)ζA(1, χt1)ζA(1, χt2).

Proof. We have the following formulas, where Σ = {1, 2}, and where we also observe the
formula ζ(1;χt1)ζA(1;χt2) = ζA(2;σΣ):

ζA(1, χt1)ζA(q, χt2) = ζA

(
σΣ
q + 1

)
+ ζA

(
σΣ 1

2 q − 1

)
+ ζA

(
χt2 χt1
2 q − 1

)

ζA(1, χt2)ζA(q, χt1) = ζA

(
σΣ
q + 1

)
+ ζA

(
σΣ 1

2 q − 1

)
+ ζA

(
χt1 χt2
2 q − 1

)

ζA(q − 1)ζA(2, σΣ) = ζA

(
σΣ
q + 1

)
+ 2ζA

(
σΣ 1

2 q − 1

)
− ζA

(
χt2 χt1
2 q − 1

)
−

−ζA

(
χt1 χt2
2 q − 1

)
.

The formula (77) follows easily. �

Next, we focus on the case n = 1 so that we can now suppose that |Σ| = m(q − 1) + 1
with m ≥ 0. We know from [2, 4] that

(78) ζA(1;σΣ) =
(−1)mπ̃BΣ

ωΣ
, |Σ| ≡ 1 (mod q − 1), |Σ| > 1,
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where BΣ ∈ A[tΣ] (B stands for ’Bernoulli’) is a monic polynomial in θ of degree m − 1
when m ≥ 1 and ωΣ =

∏
i∈Σ ω(ti) ∈ T×

Σ . If m = 0, the conjecture is clearly verified thanks
to the formula (63). If m = 1 then BΣ = 1 by [4, Corollary 7.3] so that

ζA(1, σΣ) = τ−1

(
∏

i∈Σ

ζA(1, χti)

)
∈ I

confirming Conjecture 9.1 also in this case.
To describe the case m = 2 (so that |Σ| = 2q − 1) we shall introduce the notation

L
(m)
U := τm

(
∏

i∈U

ζA(1, χti)

)
,

for U ⊂ Σ. Then it is possible to show the following explicit formula:

ζA(1, σΣ) =
∑

Σ=U1⊔U2

|U1|=q−1
|U2|=q

L
(−1)
U1
L
(−2)
U2

,

where ⊔ denotes disjoint union. Now, recall that the right-hand side is equal to
π̃B∗

Σ
ωΣ

, with

B∗
Σ = −

∑

U2⊂Σ
|U2|=q

∏

i∈U2

(ti − θ
1
q ),

while the left-hand side is easily seen to be equal to π̃BΣ
ωΣ

, with

BΣ = θ −
∑

V⊂Σ
|V |=q

∏

i∈V

ti = −eq(ti − θ
1
q : i ∈ Σ)

(with en denoting here the n-th elementary symmetric polynomial), and it is easy to see

that BΣ = B∗
Σ (all the terms defined over Fp[θ

1
q ] but not over Fp[θ] cancel. The latter

formula in the case m = 2 suggests the following:

Conjecture 9.4. For all m ≥ 0 and for all q large enough depending on m, the following
formula holds:

(79) ζA(1;σΣ) =
∑

U1⊔···⊔Um=Σ
q−1|U1|+···+q−m|Um|=1

L
(−1)
U1
· · · L

(−m)
Um

.

Although Conjecture 9.2 predicts that such formulas can all be derived from the harmonic
product, the above conjecture has been verified by Ngo Dac for m = 1, 2, 3, 4 in [12] with
a method which does not use the harmonic product. In this range of values for m, the
formula holds regardless the value of q.

Finally, we give a last explicit formula which illustrate the case n = 2.
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Lemma 9.5. The following formula holds:

(80)
∑

U⊔V=Σ
|U |≡1 (mod q−1)
|V |≡1 (mod q−1)

ζA

(
σU
1

)
ζA

(
σV
1

)
= 2ζA

(
σΣ
2

)
.

If the characteristic p of Fq is not equal to 2, (80) yields yet another evidence for Conjec-
ture 9.1. If p = 2, the formula does not give any expression of ζA(2;σΣ). However, in this
case, ζA(2;σΣ) = µ(ζA(1;σΣ)) and Conjecture 9.4 provides a different formula to express,
after nested applications of the endomorphism µ, ζA(2;σΣ) in terms of elements ζA(1;χti).

Proof of Lemma 9.5. We set m = α(q − 1) + 2 and n = α(q − 1) + 1, for α ≥ 0. We claim
that

∑

k≡0 (mod q−1)
0<k≤α

(
n

k

)
≡ 0 (mod p),(81)

∑

k≡1 (mod q−1)
0≤k≤α

(
m

k

)
≡ 2 (mod p).(82)

To see this we consider more generally N ∈ N and we write N = α(q − 1) + l with α ≥ 0
and 0 ≤ l ≤ q − 2. Let λ, µ be in Fq. Then,

(λ+ µ)l = (λ+ µ)N =
N∑

r=0

(
N

r

)
λrµN−r =

q−2∑

r0=0

λr0µν(r0)
∑

r≡r0 (mod q−1)
0≤r≤N

(
N

r

)

︸ ︷︷ ︸
=:βr0

,

where ν(r0) is the unique integer in {0, . . . , q − 2} such that l − r0 ≡ ν(r0) (mod q − 1).
Setting further λ = 1, we have the polynomial

P (X) = (X + 1)l −

q−2∑

r0=0

βr0X
ν(r0) ∈ Fp[X],

which vanishes identically over Fq, and has degree ≤ q−2. This implies that it is identically
zero. Taking N = m = α(q − 1) + 2 we have l = 2 and computing the coefficient of X in
P , we deduce (81). Taking N = n = α(q − 1) + 1 and computing the constant term of P ,
we deduce (82). This shows the claim. We can complete the proof of formula 80. We use
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Theorem 8.6, which tells us that if U ⊔ V = Σ with |U | ≡ |V | ≡ 1 (mod q − 1),

ζA

(
σU
1

)
ζA

(
σV
1

)
− ζA

(
σΣ
2

)
=

ζA

(
σU σV
1 1

)
+ ζA

(
σV σU
1 1

)
−

∑

I⊔J=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

ζA

(
σI σJ
1 1

)
.

We sum these identities over all such partitions Σ = U ⊔ V . First of all, the number of
such partitions is equal to

α∑

k=0

(
s

k(q − 1) + 1

)

which is congruent to 2 modulo p by (81). Let

f : P(Σ)2 → L

be any map with values in a field L of characteristic p, where P(Σ) is the set of subsets of
Σ. Then,

∑

U⊔V=Σ
|U |≡1 (mod q−1)




∑

I⊔J=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

f(I, J)− f(U, V )− f(V,U)




=

=
∑

U⊔V=Σ
|U |≡1 (mod q−1)

∑

I⊔J=Σ
|J |≡1 (mod q−1)
J(U or J(V

f(I, J)

=
∑

I⊔J=Σ
|J |≡1 (mod q−1)

f(I, J)
∑

U⊔V=Σ
|U |≡1 (mod q−1)
U)J or V )J

1,

which vanishes by (82). Observing that we can choose f(I, J) = ζA(
σI σJ
1 1 ) terminates the

proof. �

9.1.2. More about Conjecture 9.4. We conclude this sub-section with some complements
about Conjecture 9.4. It is not hard to show that it is equivalent to the following:

Conjecture 9.6. Assuming that m ≥ 2 and that q is large enough, depending on m, we
have the formula

ζA(1, σΣ) =

m−2∑

r=0

∑

U⊔V ⊔Σ′=Σ
|V |=q−r−1

|U |=rq

τ−1(ζA(1, σΣ′))L
(−2)
U L

(−1)
V .
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The interest of Conjecture 9.6 is that it can be considered in parallel with analogue
classical formulas by Euler. We recall that the well-known Riccati’s differential equation
f ′ = −1 − f2 satisfied by the cotangent function f(x) = cot(x) implies, via the formula
−πx

2 cot(πx) =
∑

i≥0 ζ(2i)x
2i:

(
n+

1

2

)
ζ(2n) =

n−1∑

i=1

ζ(2i)ζ(2n − 2i), n > 1.

Note that the coefficients in the quadratic expression on the right-hand side are all equal
to 1.

Conjecture 9.4 implies nice formulas for the polynomials BΣ ∈ A[tΣ] (when |Σ| > q.
Indeed, observe that for all m ≥ 1,

(83) τ−m((θ − t)ω)−1 = (t− θ
1

qm−1 ) · · · (t− θ
1
q )ω−1.

Hence,

τ−m(ζA(1, χt)) = −
π̃

1
qm (t− θ

1
qm−1 ) · · · (t− θ

1
q )

ω
, m ≥ 1.

Setting b∗m := (t − θ
1

qm−1 ) · · · (t − θ
1
q ) (again for m ≥ 1) and B∗

m(tΣ) =
∏
i∈Σ b

∗
m(ti), we

thus have:

Conjecture 9.7. The following formula holds.

BΣ = (−1)m−1
∑

U1⊔···⊔Um=Σ
q−1|U1|+···+q−m|Um|=1

B∗
1(tU1

) · · ·B∗
m(tUm

).

Similarly, Conjecture 9.6 is equivalent to the following.

Conjecture 9.8. The following formula holds, for |Σ| = m(q − 1) + 1 with m ≥ 2.

BΣ =

m−2∑

r=0

(−1)r+1
∑

U⊔V ⊔Σ′=Σ
|U |=qr

|V |=q−r−1
|Σ′|=(m−r−1)(q−1)+1

τ−1(BΣ′)
∏

i∈U⊔Σ′

(ti − θ
1
q ).

9.2. Realisations of an algebra of multiple zeta values. We now state another con-
jecture which allows, in combination with Conjectures 9.1 and 9.2, to describe what we can
expect for the relations between Eisenstein series E(n; ρ∗Σ) of §7.1. As we said already, this
is useful because we do not know yet how to compute the dimensions of the spacesMw(ρ

∗
Σ).

Returning to the setting of §8 we now write Zζ for the Fp-algebra F =
∑

n,σ Fn,σ where

Fn,σ is the Fp-subvector space of Fp[ti : i ∈ N][[1θ ]] (with the Gauss norm ‖ · ‖ extending
| · |) generated by the sums fA(C) of (74) in the settings of §8.1 modified so that the semi-
characters σ involved in the compositions arrays (73) are maps from A to Fq[ti : i ∈ N]
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defined by

(84) σ(a) =
∏

i∈N

χti(a)
ni , a ∈ A,

with ni ∈ N and ni = 0 for all but finitely many i ∈ N (so the variable t0 is allowed). In
this case we prefer to write ζA(C) instead of fA(C). The algebra Zζ is the Fp-algebra of
the multiple zeta values (in Tate algebras). Additionally, it is not difficult to show that Zζ
is graded by n and σ.

Similarly, we write Zϕ for the Fp algebra F =
∑

n,σ Fn,σ where Fn,σ is this time the

Fp-subvector space of Fp[θ][ti : i ∈ N∗][[u]] (with the v-valuation) generated by the sums
fA(C) of (8.2) modified alongs the settings of §8.2 where additionally, the composition
arrays include semi-characters σ̃ : A→ A[ti : i ∈ N∗] such as:

(85) σ̃(a) = an0
∏

i∈N∗

χti(a)
ni , a ∈ A,

with ni ∈ N∗ satisfying conditions similar to those of (84) (so this time the variable t0 is
excluded, but the variable θ is included). We have said that Zζ and Zϕ are Fp-algebras;
this of course follows from Theorem 8.2. However, we do not know how to prove that Zϕ
is graded by the vector spaces Fn,σ like Zζ . The algebra Zζ is the algebra of A-periodic
multiple sums. Note the Fq[ti : i ∈ N∗]-linear map Fq[ti : i ∈ N] → A[ti : i ∈ N∗] defined
by t0 7→ θ induces a map on semi-characters associating σ as in (84) to σ̃ as in (85) and
therefore induces a correspondence ζA(C)↔ ϕA(C). We can state our conjecture:

Conjecture 9.9. The correspondence ζ ↔ ϕ induces an isomorphism of Fp-algebras Zζ ∼=
Zϕ.

Conjecture 9.9 describes the algebras Zζ and Zϕ, hypothetically, as distinct realisations
of a single Fp-algebra. In fact, infinitely many such conjectural realisations of this Fp-
algebra should exist (the reader can imagine them by just replacing the Carlitz exponential
in the definition of the uniformiser u by analytic families of exponential functions for more
general Drinfeld A-modules), but we only focus on these two in this text. Conjecture 9.9
implies that Zϕ is graded, just because it is known that Zζ is. Moreover, all the identities
for multiple zeta values in Zζ of §9.1 (conjectural or proved) transfer to analogue identities
for multiple A-periodic sums, many of which can be proved directly (e.g. Lemmas 9.3 and
9.5).

9.3. Identities for modular forms. We need the following:

Lemma 9.10. For all Σ the representations ρΣ, ρ
∗
Σ are irreducible over the vector space

Fq(tΣ)
1×N .

Proof. This can be easily deduced from the arguments in [31]. �

In particular, for any I ⊂ Σ, the map Mw(ρ;LΣ)→ HolKΣ
(Ω→ LΣ) defined by f 7→ f I

(projection on the I-th coordinate) for ρ = ρΣ or ρ = ρ∗Σ is injective. This allows us to
deduce identities for modular forms by using the harmonic product structure introduced
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in §8. To illustrate it with an example we choose k ∈ Σ and we write Σ′ := Σ \ {k}. For
all s = 1, . . . , q and Σ = {1, . . . , s}, the harmonic product formula of Theorem 8.6 yields
inductively

ϕA(s− 1, σΣ′)ϕA(1, χtk ) = ϕA(s, σΣ),

which implies (72). This formula can also be written more explicitely in the following way:

∏

i∈Σ


∑

a∈A+

χti(a)ua


 =

∑

a∈A+

σΣ(a)u
s
a.

9.3.1. Serre’s derivatives of Eisenstein series. We return to the operators ∂
(w)
n (f) intro-

duced in §6.7. We suppose that Σ ⊂ N∗ is such that s = |Σ| ≡ 1 (mod q−1) and we study
the u-expansion of the first entry (indexed by ∅) of

∂
(1)
1 (E(1; ρ∗Σ)) ∈ S3(ρ

∗
Σ det−1;KΣ).

By Proposition 7.2, the first entry of E(1; ρ∗Σ) is equal to −π̃ϕA(1;σΣ). We compute, by
setting Σ′ = Σ ⊔ {0}:

∂
(1)
1 (fA(1;σΣ)) =

=
∑

a∈A+

σΣ(a)au
2
a −

∑

a∈A+

aua
∑

b∈A+

σΣ(b)ub

= −[ϕA(1;χt0)ϕA(1;σΣ)− ϕA(2;σΣ′)]t0=θ.

Hence:

Lemma 9.11. We have the formula:

∂
(1)
1 (fA(1;σΣ)) =




∑

I⊔J=Σ′

|J |≡1 (mod q−1)
J={0} or J⊂Σ′

ϕA

(
σI σJ
1 1

)
− ϕA

(
χt0 σΣ
1 1

)
− ϕA

(
σΣ χt0
1 1

)




t0=θ

.

Proof. This follows directly from Theorem 8.6 (we interpret Serre’s derivatives in terms of
specialisations of the harmonic relations of §8). �

In particular we have:

Lemma 9.12. If s = |Σ| ≤ q − 1, then ∂
(s)
1 (E(s; ρ∗Σ)) = 0.

We propose, if s = |Σ| ≡ 1 (mod q − 1):

Conjecture 9.13. The form ∂
(1)
1 (E(1;σΣ)) and the last entry of P3,1(G) are proportional

with a proportionality factor in L×
Σ.

In the conjecture, G is as in Proposition 5.19. Similarly, the forms ∂
(q−1)
1 (g) and h are

proportional. Additionally, it is plausible that in the case s = q, ∂
(q−1)
n (E(1;σΣ)) 6= 0 for

n = 1, . . . , q − 2.
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9.4. Identities for Eisenstein series. We suppose that |Σ| ≡ 2 (mod q − 1) and we
write s = |Σ| = α(q − 1) + 2, α ∈ N. We have:

Lemma 9.14. The following formula holds:
∑

U⊔V=Σ
|U |≡1 (mod q−1)
|V |≡1 (mod q−1)

E(1;ϕU )⊗ E(1;ϕV ) = 2E(2;ϕΣ).

Proof. This is a simple combination of Lemma 9.5 and Lemma 9.10. �

As a complement of Lemma 9.14 we propose the following conjecture.

Conjecture 9.15. The forms E(1; ρ∗U ) ⊗ E(1; ρ
∗
V ), for U ⊔ V = Σ and |U | ≡ |V | ≡ 1

(mod q − 1) generate the module M2(ρ
∗
Σ;KΣ).

The identity for Eisenstein series of Lemma 9.14 is defined over Fp. However, in general,
there are identities between Eisenstein series which are not defined over Fp. Here is an
explicit and instructive example. We use Σ = {1, 2} and we suppose that q > 2.

Lemma 9.16. The following identity holds:

E(q + 1; ρ∗Σ) = E(1; ρ
∗
t1)⊗ E(q; ρ

∗
t2) + E(q; ρ

∗
t1)⊗ E(1; ρ

∗
t2) + (θq − θ)−1gE(1, ρ∗t1)⊗ E(1, ρ

∗
t2).

Proof. We note that since q > 2, E(2, ρ∗Σ) = E(1, ρ
∗
t1)⊗ E(1, ρ

∗
t2) by (72). The first coordi-

nates of the modular forms E(q+1;ϕΣ), E(1;ϕt1)⊗E(q;ϕt2), E(q;ϕt1)⊗E(1;ϕt2), gE(2, ϕΣ)
are given by the following A-expansions (where Gn(X) denotes the n-th Goss polynomial
[15, §(3.4)]):

X :=
∑

a∈A+

σΣ(a)Gq+1(ua),

Y1 :=


∑

a∈A+

χt1(a)ua




∑

b∈A+

χt2(b)u
q
b


 = ϕA(1, χt1)ϕA(q, χt2),

Y2 :=


∑

a∈A+

χt2(a)ua




∑

b∈A+

χt1(b)u
q
b


 = ϕA(q, χt1)ϕA(q, χt1),

Z :=


1− (θq − θ)

∑

a∈A+

uq−1
a




∑

a∈A+

σΣ(a)u
2
a


 = (1− (θq − θ)ϕA(q − 1))ϕA(2, σΣ).

Note that Y1,Y2 ∈ F
σΣ
q+1 so they are homogeneous for the hypothetical graduation of Zϕ =

⊕n,σF
σ
n . On the other side, we have X and Z which are not homogeneous. Note indeed

that if Gn(X) denotes the n-th Goss polynomial (see [15, §(3.4)]), a simple computation
yields Gq+1(X) = Xq+1 + (θq − θ)−1X2. Hence

X = (θq − θ)−1ϕA(2;σΣ) + ϕA(q + 1;σΣ)
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which is not homogeneous for the weights of multiple A-periodic sums. By Conjecture
9.9, if the elements X ,Y1,Y2 and Z are linearly dependent, a linear dependence relation
must come from two homogeneous ones, more precisely one in FσΣq+1 and another one in

FσΣ2 , both defined over Fp. Through Conjecture 9.9 we see that these relations are indeed
derived from (77) and the identity ϕA(2;σΣ) = ϕA(1;χt1)ϕA(1;χt2). �

The coefficient (θq − θ)−1 in the formula of the lemma is therefore determined by the
coefficient of X2 in the Goss’ polynomial Gq+1(X).

We end this work with a conjectural formula which can be derived from Conjecture 9.4.
We set, with |Σ| = s = m(q − 1) + 1:

E
(m)
U := τm

(
⊗

i∈U

E(1; ρ∗ti)

)
,

for U ⊂ Σ. Note that this needs not to represent a holomorphic function Ω → LN×1
Σ for

N ≥ 1 if m < 0.

Conjecture 9.17. For all m ≥ 0 and for all q large enough depending on m, the following
formula holds:

(86) E(1; ρ∗Σ) =
∑

U1⊔···⊔Um=Σ
q−1|U1|+···+q−m|Um|=1

E
(−1)
U1
⊗ · · · ⊗ E

(−m)
Um

.

We note that (86) expresses the analytic function E(1; ρ∗Σ) as a combination of non-
analytic functions if s ≥ 2q − 1. Clearly, Conjectures 9.4 and 9.9 imply Conjecture 9.17
(and the latter implies Conjecture 9.4). The cases s = 1, q are obviously verified, see (72).
The case s = 2q − 1 is at the moment still unsolved. The author was only able to see that
the u-expansions of the ∅-coordinates of both sides in (86) agree up to a certain order but
this is not enough to conclude.
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[9] S. Bosch, U. Güntzer & R. Remmert. Non-Archimedean Analysis. Grundlehren der mathematischen
Wissenschaften, Vol. 261.

[10] H.-J. Chen. On shuffle of double Eisenstein series in positive characteristic. J. de Théorie des Nombres
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(2004).
[15] E.-U. Gekeler. On the coefficients of Drinfeld modular forms. Invent. Math. 93, No.3, 667-700 (1988).
[16] E.-U. Gekeler. On the zeroes of Goss polynomials. Trans. of the Amer. Math. Soc. (2012).
[17] L. Gerritzen & M. van der Put. Schottky Groups and Mumford Curves. LNM 817. Springer Berlin

Heidelberg, 1980.
[18] D. Goss. The algebraist’s upper half-plane. Bulletin of the Amer. Math. J. Vol. 2. No. 3. 1980.
[19] D. Goss. π-adic Eisenstein series for Function Fields. Compositio Math. 41, pp. 3-38 (1980).
[20] D. Goss. Modular forms for Fr[T ], J. Reine Angew. Math. 317, pp. 16–39 ( 1980).
[21] D. Goss. Basic Structures of Function Field Arithmetic. Springer Verlag, Berlin, (1996).
[22] M. Knopp & G. Mason. Vector valued modular forms and Poincaré series. Illinois Journal of Math-
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