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Null-controllability of linear hyperbolic systems in one

dimensional space

Jean-Michel Coron∗and Hoai-Minh Nguyen†

Abstract

This paper is devoted to the controllability of a general linear hyperbolic system in one space
dimension using boundary controls on one side. Under precise and generic assumptions on the
boundary conditions on the other side, we previously established the optimal time for the null
and the exact controllability for this system for a generic source term. In this work, we prove the
null-controllability for any time greater than the optimal time and for any source term. Similar
results for the exact controllability are also discussed.

Keywords. Null-controllability, hyperbolic systems, backstepping, Hilbert uniqueness method, com-
pactness.

1 Introduction and statement of the main result

Linear hyperbolic systems in one dimensional space are frequently used in modeling of many systems
such as traffic flow, heat exchangers, and fluids in open channels. The stability and boundary stabi-
lization of these hyperbolic systems have been studied intensively in the literature, see, e.g., [3] and the
references therein. In this paper, we are concerned about the optimal time for the null-controllability
using boundary controls on one side. More precisely, we consider the system

∂tw(t, x) = Σ(x)∂xw(t, x) + C(x)w(t, x) for (t, x) ∈ R+ × (0, 1). (1.1)

Here w = (w1, · · · , wn)T : R+ × (0, 1)→ Rn (n ≥ 2), Σ and C are (n× n) real matrix-valued functions
defined in [0, 1]. As usual, see e.g. [11], we assume that, may be after a linear change of variables
w → R(x)w, Σ(x) is of the form

Σ(x) = diag
(
− λ1(x), · · · ,−λk(x), λk+1(x), · · · , λn(x)

)
, (1.2)

where
− λ1(x) < · · · < −λk(x) < 0 < λk+1(x) < · · · < λk+m(x). (1.3)

Throughout the paper, we assume that

λi is Lipschitz on [0, 1] for 1 ≤ i ≤ n (= k +m) (1.4)

and
C ∈ [L∞(0, 1)]n×n. (1.5)

We are interested in the following type of boundary conditions and boundary controls. The boundary
conditions at x = 0 is given by

w−(t, 0) = Bw+(t, 0) for t ≥ 0, (1.6)

where w− = (w1, · · · , wk)T and w+ = (wk+1, · · · , wk+m)T, for some given (k×m) real, constant matrix
B, and the boundary controls at x = 1 is

w+(t, 1) = W (t) for t ≥ 0, (1.7)
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where W = (Wk+1, . . . ,Wk+m)T are controls.
Let us recall that the control system (1.1), (1.6), and (1.7) is null-controllable (resp. exactly control-

lable) at the time T > 0 if, for every initial data w0 : (0, 1)→ Rn in [L2(0, 1)]n (resp. for every initial
data w0 : (0, 1) → Rn in [L2(0, 1)]n and for every (final) state wT : (0, 1) → Rn in [L2(0, 1)]n), there
is a control W : (0, T ) → Rm in [L2(0, T )]m such that the solution of (1.1), (1.6), and (1.7) satisfying
w(0, x) = w0(x) vanishes (resp. reaches wT ) at the time T : w(T, x) = 0 (resp. w(T, x) = wT (x)).
Throughout this paper, we consider broad solutions in L2 with respect to t and x for an initial data
in L2(0, 1) as in [11, Definition 3.1]. The well-posedness for broad solutions was given in [11, Lemma
3.2]. In fact, in [11, Definition 3.1] and [11, Lemma 3.2], bounded broad solutions with respect to t and
x for an initial data in [L∞(0, 1)]n are considered, nevertheless, the extension for L2-setting is quite
straightforward (see also [4]).

Set

τi :=

∫ 1

0

1

λi(ξ)
dξ for 1 ≤ i ≤ n, (1.8)

and

Topt :=

{
max

{
τ1 + τm+1, . . . , τk + τm+k, τk+1

}
if m ≥ k,

max
{
τk+1−m + τk+1, τk+2−m + τk+2, . . . , τk + τk+m

}
if m < k.

(1.9)

In this paper, we are mainly concerned about the optimal time for the null controllability of (1.1),
(1.6), and (1.7) for k ≥ m ≥ 1. The null-controllability was known from [21] for the time τk + τk+1

without any assumption on B (see also [1, 8, 12, 13] for feedback controls using backstepping). In our
previous work [11], we established the null controllability of (1.1), (1.6), and (1.7) at the optimal time
Topt with B ∈ B defined in (1.10) below, for a generic C, i.e. for γC with γ ∈ R outside a discrete
subset of γ ∈ R. When C ≡ 0, we also show that there exists a linear time independent feedback which
yields the null-controllability at the time Topt. Similar results for the exact controllability at Topt were
also established there (see Section 3 for a discussion). The optimality of Topt even for C ≡ 0 was also
discussed in [11]. It is worth noting that there are choices of constant Σ, B, and C when m = 2 and
k ≥ 2 so that the system is not null-controllable at the time Topt [11, part 2 of Theorem 1] (see also
[21, pages 559-561]). It is easy to see that B is an open subset of the set of (real) k ×m matrices and
the Hausdorff dimension of its complement is min{k,m− 1}.

In this work, we prove the null-controllability of (1.1), (1.6), and (1.7) for any time greater than
Topt and for m ≥ k ≥ 1 without the generic requirement. Here is the main result of our paper:

Theorem 1. Let k ≥ m ≥ 1, and set

B :=
{
B ∈ Rk×m; such that (1.11) holds for 1 ≤ i ≤ min{k,m− 1}

}
, (1.10)

where
the i× i matrix formed from the last i columns and rows of B is invertible. (1.11)

Assume that B ∈ B. The control system (1.1), (1.6), and (1.7) is null-controllable at any time T greater
than Topt.

To our knowledge, the null-controllability result of Theorem 1 in the case m < k with general m
and k is new. The sharpest known result on the time to obtain the null-controllability is τk + τk+1.
When m = k, Theorem 1 can be derived from the exact controllable result in [15] under the additional
assumption that (1.11) holds for i = k (see Section 3 for a discussion). The starting point of our analysis
is the backstepping approach. More precisely, as in [11], we make the following change of variables

u(t, x) = w(t, x)−
∫ x

0

K(x, y)w(t, y) dy.

Here the kernel K : T =
{

(x, y) ∈ (0, 1)2; 0 < y < x
}
→ Rn is chosen such that u satisfies

∂tu(t, x) = Σ(x)∂xu(t, x) + S(x)u(t, 0) for (t, x) ∈ (0, T )× (0, 1), (1.12)
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where S ∈ [L∞(0, 1)]n×n has the structure

S =

(
0k,k S−+

0m,k S++

)
, (1.13)

with
(S++)pq = 0 for 1 ≤ q ≤ p,

S−+ ∈ [L∞(0, 1)]k×m and S++ ∈ [L∞(0, 1)]k×k. Here and in what follows, 0i,j denotes the zero matrix
of size i × j for i, j ∈ N, and Mpq denotes the (p, q)-component of a matrix M . It is shown in [11,
Proposition 3.1] that the null-controllability of (1.1), (1.6), and (1.7) at the time T can be derived from
the null-controllability at the time T of (1.12) equipped the boundary condition at x = 0

u−(t, 0) = Bu+(t, 0) for t ≥ 0, (1.14)

and the boundary controls at x = 1

u+ = U(t) for t ≥ 0 where U is the control. (1.15)

To establish the null-controllability for u, we use the Hilbert uniqueness method which involves crucially
a compactness result type in Lemma 4 with its roots in [11].

The backstepping approach for the control of partial differential equations was pioneered by Miroslav
Krstic and his coauthors (see [17] for a concise introduction). The use of backstepping method to
obtain the null-controllability for hyperbolic systems in one dimension was initiated in [12] for the
case m = k = 1. This approach has been developed later on for more general m and k in [1, 8, 13].
The backstepping method is now frequently used for various control problems modeling by partial
differential equations in one dimension. For example, it has been also used to stabilize the wave
equation [16, 25, 22], the parabolic equations in [23, 24], nonlinear parabolic equations [26], and to
obtain the null-controllability of the heat equation [10]. The standard backstepping approach relies on
the Volterra transform of the second kind. It is worth noting that, in some situations, more general
transformations have to be considered as for Korteweg-de Vries equations [5], Kuramoto–Sivashinsky
equations [9], Schrödinger’s equation [7], and hyperbolic equations with internal controls [27].

The rest of the paper is organized as follows. In Section 2, we establish Theorem 1. The exact
controllability is discussed in Section 3.

2 Optimal time for the null-controllability

In this section, we study the null-controllability of (1.12) and (1.14) under the control law (1.15).
The main result of this section, which implies Theorem 1 by [11, Proposition 3.5], is:

Theorem 2. Let k ≥ m ≥ 1. System (1.12) and (1.14) under the control law (1.15) is null-controllable
at any time larger than Topt.

The rest of this section contains two sections. In the first section, we present some lemmas used in
the proof of Theorem 2. The proof of Theorem 2 is given in the second section.

2.1 Some useful lemmas

Fix T > 0. Define
FT : [L2(0, T )]m → [L2(0, 1)]n

FT (U) 7→ u(T, ·),

where u(·, ·) is the solution of the system (1.12)-(1.15) with u(t = 0, ·) = 0.

Lemma 1. We have, for v ∈ [L2(0, 1)]n,

F∗T (v) = Σ+(1)v+(·, 1) in (0, T ),
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where v(·, ·) is the unique solution of the system

∂tv(t, x) = Σ(x)∂xv(t, x) + Σ′(x)v(t, x) for (t, x) ∈ (−∞, T )× (0, 1), (2.1)

with, for t < T ,
v−(t, 1) = 0, (2.2)

Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0) +

∫ 1

0

ST
−+(x)v−(t, x) + ST

++(x)v+(t, x) dx, (2.3)

and
v(t = T, ·) = v in (0, 1). (2.4)

Throughout this paper, 〈·, ·〉 denotes the Euclidean scalar product in the Euclidean space and
〈·, ·〉L2(a,b) denotes the scalar product in L2(a, b) for a < b.

Proof. We have

〈U,F∗T v〉L2(0,T ) =〈FTU, v〉L2(0,1) = 〈u(T, ·), v(T, ·)〉L2(0,1)

=

∫ T

0

∂t〈u(t, ·), v(t, ·)〉L2(0,1) dt

=

∫ T

0

〈∂tu(t, ·), v(t, ·)〉L2(0,1) + 〈u(t, ·), ∂tv(t, ·)〉L2(0,1) dt

=

∫ T

0

∫ 1

0

〈Σ(x)∂xu(t, x) + S(x)u(t, 0), v(t, x)〉+ 〈u(t, ·), ∂tv(t, ·)〉 dx dt by (1.12).

An integration by parts yields∫ T

0

∫ 1

0

〈Σ(x)∂xu(t, x), v(t, x)〉 dx dt =

∫ T

0

∫ 1

0

−〈Σ′(x)v(t, x) + Σ(x)∂xv(t, x), u(t, x)〉 dt

+

∫ T

0

〈u(t, 1),Σ(1)v(t, 1)〉 −
∫ T

0

〈u(t, 0),Σ(0)v(t, 0)〉 dt.

Using the conditions on u at x = 0 and x = 1 (see (1.14) and (1.15)), and (2.2), we have

∫ T

0

〈u(t, 1),Σ(1)v(t, 1)〉 −
∫ T

0

〈u(t, 0),Σ(0)v(t, 0)〉 dt =

∫ T

0

〈Σ+v+, u+〉(t, 1) dt

−
∫ T

0

〈BTΣ−v− + Σ+v+, u+〉(t, 0) dt.

We then obtain

〈U,F∗T v〉 =

∫ T

0

∫ 1

0

〈S(x)u(t, 0), v(t, x)〉+

∫ T

0

〈Σ+v+, u+〉(t, 1) dt

−
∫ T

0

〈BTΣ−v− + Σ+v+, u+〉(t, 0) dt.

Using the boundary condition (2.3), we obtain

〈U,F∗T v〉L2(0,T ) =

∫ T

0

〈Σ+v+, u+〉(t, 1) dt,

which implies the conclusion.
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Similarly, we have the following result whose proof is omitted.

Lemma 2. Let T > 0 and u0 ∈ [L2(0, 1)]n. Assume that u is the unique solution of (1.12) and (1.14)
with u(t = 0, ·) = u0 and u+(·, 0) = 0 for t > 0. Then, for v ∈ L2(0, 1), we have∫ 1

0

〈u(T, x), v(x)〉 dx =

∫ 1

0

〈u0(x), v(0, x)〉 dx,

where v(·, ·) is the solution of (2.1)-(2.4).

Combining Lemma 1 and Lemma 2, making a translation in time, and applying the Hilbert unique-
ness method (see e.g. [6, Chapter 2]), we obtain

Lemma 3. Let T > 0. System (1.12)-(1.15) is null controllable at the time T if and only if, for some
positive constant C, ∫ 0

−T
|v+(t, 1)|2 dt ≥ C

∫ 1

0

|v(−T, x)|2 dx ∀ v ∈ [L2(0, 1)]n, (2.5)

where v(·, ·) is the unique solution of the system

∂tv(t, x) = Σ(x)∂xv(t, x) + Σ′(x)v(t, x) for (t, x) ∈ (−∞, 0)× (0, 1), (2.6)

with, t < 0,
v−(t, 1) = 0, (2.7)

Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0) +

∫ 1

0

ST
−+(x)v−(t, x) + ST

++(x)v+(t, x) dx, (2.8)

and
v(t = 0, ·) = v in (0, 1). (2.9)

Finally, we establish a compactness type result which is one of the key ingredients in the proof of
Theorem 2.

Lemma 4. Let k ≥ m ≥ 1, B ∈ B, and T ≥ Topt. Assume that (vN ) be a sequence of solutions of
(2.6)-(2.8) (with vN (0, ·) in [L2(0, 1)]n) such that

sup
N
‖vN (−T, ·)‖L2(0,1) < +∞, (2.10)

lim
N→+∞

‖vN,+(·, 1)‖L2(−T,0) = 0. (2.11)

We have, up to a subsequence,
vN (−T, ·) converges in L2(0, 1), (2.12)

and the limit V ∈ [L2(0, 1)]n satisfies the equation

V = KV, (2.13)

for some compact operator K from [L2(0, 1)]n into itself. Moreover, K depends only on Σ, S, and B;
in particular, K is independent of T .

Proof. Denote, for 1 ≤ ` ≤ m,
VN,` = (vN,k−m+`+1, · · · , vN,k)T,

WN,` = (vN,k+1, · · · , vN,k+`)T,

and set, for 0 ≤ ` ≤ m− 1,
ρ` = −(T − τk+`+1),

D̂`+1 =
{

(t, s) : t ∈ (ρ`+1, ρ`); ρm−1 ≤ s ≤ t
}
,
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and
D`+1 =

{
(t, s) : t ∈ (ρ`+1, ρ`); t ≤ s ≤ ρ0

}
,

with the convention ρm = −T .
Note that vN,−(·, 0) = 0 for t ∈ (ρm, ρm−1).
• We are first concerned about the time interval (ρ1, ρ0) and x = 0. Using (2.11) and the charac-

teristic method one gets that, for k + 2 ≤ j ≤ k +m,

vN,j(t, ·)→ 0 in L2(0, 1) for t ∈ (ρ1, ρ0) (2.14)

and
vN,j(·, 0)→ 0 in L2(ρ1, ρ0). (2.15)

Recall that, for t ∈ (−T, 0),

Σ+(0)vN,+(t, 0) = −BTΣ−(0)vN,−(t, 0) +

∫ 1

0

ST
−+(x)vN,−(t, x) + ST

++(x)vN,+(t, x) dx, (2.16)

and note, since vN,−(·, 1) = 0 in (−T, 0), that, in (0, 1),

vN,j(t, ·) = 0 for t ∈ (ρ1, ρ0), for 1 ≤ j ≤ k −m+ 1. (2.17)

First, consider the last (m − 1) equations of (2.16) for t ∈ (ρ1, ρ0). Using (1.11) with i = m − 1,
and (2.17), and viewing vN,j(·, 0) in (ρ1, ρ0) and vN,j(t, ·) in (0, 1) for k+ 2 ≤ j ≤ k+m as parameters,
we obtain

VN,1(t, 0) =

∫ t

ρm−1

G1(t, s)VN,1(s, 0) ds+

∫ ρ0

t

H1(t, s)WN,1(s) ds+ FN,1(t) in (ρ1, ρ0),

for some G1 ∈
[
L∞(D̂1)

](m−1)×(m−1)
and H1 ∈

[
L∞(D1)

](m−1)×1
which depends only on Σ, B, and S,

and for some FN,1 ∈ [L2(ρ1, ρ0)]m−1,which depends only on Σ, B, and S, and vN,j(·, t) and vN,j(t, ·)
for t ∈ (ρ1, ρ0), and for k + 2 ≤ j ≤ k +m. Moreover, by (2.14) and (2.15),

FN,1 → 0 in L2(ρ1, ρ0) as N → +∞.

Next consider the first equation of (2.16) for t ∈ (ρ1, ρ0). Using the fact (ST
++)1q = 0 for 1 ≤ q ≤ m

by (1.13), and applying the characteristic method, we have

WN,1(t, 0) = Q1VN,1(t, 0) +

∫ t

ρm−1

L1(t, s)VN,1(s, 0) ds,

for some constant Q1 ∈ R1×(m−1), and for some L1 ∈
[
L∞(D̂1)

]1×(m−1)
both depending only on Σ, B,

and S.
• Generally, let 1 ≤ ` ≤ m, and consider the time interval (ρ`, ρ`−1) and x = 0. As N → +∞, since,

‖vN (·, 1)‖L2(−T,0) → 0,

it follows that, for k + `+ 1 ≤ j ≤ k +m,

vN,j(t, ·)→ 0 in L2(0, 1) for t ∈ (ρ`, ρ`−1) (2.18)

and
vN,j(·, 0)→ 0 in L2(ρ`, ρ`−1). (2.19)

Note that, in (0, 1),
vN,j(t, ·) = 0 for t ∈ (ρ`, ρ`−1) for 1 ≤ j ≤ k −m+ `. (2.20)

Consider the last (m− `) equations of system (2.16) for t ∈ (ρ`, ρ`−1). Using (1.11) with i = m− `,
and (2.20), and viewing vN,j(·, 0) in (ρ`, ρ`−1) and vN,j(t, ·) in (0, 1) for k + ` + 1 ≤ j ≤ k + m as
parameters, we obtain, for t ∈ (ρ`, ρ`−1),

VN,`(t, 0) =

∫ t

ρm−1

G`(t, s)VN,`(s, 0) ds+

∫ ρ0

t

H`(t, s)WN,`(s) ds+ FN,`(t), (2.21)
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for some G` ∈
[
L∞(D̂`)

](m−`)×(m−`)
and H` ∈

[
L∞(D`)

](m−`)×`
which depends only on Σ, B, and S,

and for some FN,` ∈ [L2(ρ`, ρ`−1)]m−` which depends only on Σ, B, and S, and vN,j(·, 0) and vN,j(t, ·)
for t ∈ (ρ`, ρ`−1), and for k + `+ 1 ≤ j ≤ k +m. Moreover, by (2.18) and (2.19), we have

FN,` → 0 in L2(ρ`, ρ`−1) as N → +∞.

Next consider the first ` equations of (2.16) for t ∈ (ρ`, ρ`−1). We have

WN,`(t, 0) = Q`VN,`(t, 0) +

∫ t

ρm−1

L`(t, s)VN,`(s, 0) ds+

∫ ρ0

t

M`(t, s)WN,`(s, 0) ds. (2.22)

for some constant Q` ∈ R`×(m−`), for some L` ∈
[
L∞(D̂`)

]`×(m−`)
and M` ∈

[
L∞(D`)

]`×`
, all depend-

ing only on Σ, B, and S. In the case ` = m, (2.21) is irrelevant and (2.22) is understood in the sense
that the first two terms in the RHS are 0.

We have

i) vN,−(−T, ·) = 0 in (0, 1);

ii) the information of vN,+(−T, ·) in (0, 1) is encoded by the information of vN,k+1(·, 0) on (ρm, ρ0),
of vN,k+2(·, 0) on (ρm, ρ1), . . . , of vN,k+m(·, 0) on (ρm, ρm−1), by the characteristic method;

iii) Using (2.21) for ` = m−1, one can solve VN,m−1 as a function of WN,m−1 and FN,m−1. Continue
the process with ` = m− 2, then with ` = m− 3, . . . , and finally with ` = 1. Noting that

vN,k−m+`+1(·, 0) = 0 in (ρm−1, ρ`),

one can solve
VN,1(·, 0) ∈ L2(ρm−1, ρ0)× · · · × L2(ρm−1, ρm−2)

as a function of WN,1 ∈ L2(ρm, ρ0)×· · ·×L2(ρm, ρm−1) and FN,j with j = 1, . . . ,m, and one has

VN,1(·, 0) = K1WN,1(·, 0) + gN .

where gN ∈ L2(ρm−1, ρ0) × · · · × L2(ρm−1, ρm−2) converges to 0 in the corresponding L2-norm
and K1 is a compact operator depending only on Σ, S and B.

The conclusion now follows from (2.22). The proof is complete.

2.2 Proof of Theorem 2

The arguments are in the spirit of [2] (see also [20]). For T > Topt, set

YT :=
{
V ∈ L2(0, 1) : V is the limit in L2(0, 1) of some subsequence of solutions

(
vN (−T, ·)

)
of (2.6)-(2.8) such that (2.10) and (2.11) hold

}
. (2.23)

It is clear that YT is a vectorial space. Moreover, by (2.13) and the compact property of K, we have

dimYT ≤ C, (2.24)

for some positive constant C independent of T .
We next show that

YT2
⊂ YT1

for Topt < T1 < T2. (2.25)

Indeed, let V ∈ YT2
. There exists a sequence of solutions (vN ) of (2.6)-(2.8) such that{

vN (−T, ·)→ V in L2(0, 1),

limN→+∞ ‖vN,+(·, 1)‖L2(−T2,0) = 0.
(2.26)
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By considering the sequence vN (· − τ, ·) with τ = T2 − T1, we derive that V ∈ YT1
.

By Lemma 3, to obtain the null-controllability at the time T > Topt, it suffices to prove (2.5) by
contradiction. Assume that there exists a sequence of solutions (vN ) of (2.6)-(2.8) such that

N

∫ 0

−T
|vN,+(t, 1)|2 dt ≤

∫ 1

0

|vN (−T, x)|2 dx = 1. (2.27)

By (2.12), up to a subsequence, vN (−T, ·) converges in L2(0, 1) to a limit V . It is clear that ‖V ‖L2(0,1) =
1; in particular, V 6= 0. Consequently,

YT 6= {0}. (2.28)

By (2.24), (2.25), and (2.28), there exist Topt < T1 < T2 < T such that

dimYT1 = dimYT2 6= 0.

We claim that, for V ∈ YT1 ,

Σ∂xV + Σ′V is an element in YT1
. (2.29)

Indeed, since YT1
= YT2

, by the definition of YT2
, there exists a sequence of solutions (vN ) of (2.6)-(2.8)

such that {
limN→+∞ ‖vN,+(·, 1)‖L2(−T,0) = 0,

V = limN→+∞ vN (−T2, ·) in L2(0, 1).
(2.30)

Using (2.25), one may assume that T2 − T1 is small. We claim that, for t ∈ (−T2, T1],

sup
n
‖vN (−t, ·)‖L2(0,1) < +∞. (2.31)

Noting that Σ and Σ′ are diagonal, we have, by the characteristic method, for t ∈ (−T2,−Topt)

vN,−(t, ·) = 0 in (0, 1). (2.32)

Using the characteristic method again, we also have, for t ∈ (−T2,−T1],

‖vN,+(t, ·)‖L2(0,1) ≤ C
(
‖vN,+(−T2, ·)‖L2(0,1) + ‖vN,+(·, 1)‖L2(−T2,t)

)
. (2.33)

We derive from (2.30) that
sup
n
‖vN,+(t, ·)‖L2(0,1) < +∞. (2.34)

Combining (2.32) and (2.34) yields (2.31).
Using (2.12), without loss of generality, one may assume that

vN (−T1, ·)→ V̂ in L2(0, 1) for some V̂ ∈ L2(0, 1).

Let v̂ be the unique solution of the system

∂tv̂(t, x) = Σ(x)∂xv̂(t, x) + Σ′(x)v̂(t, x) for (t, x) ∈ (−∞,−T1)× (0, 1), (2.35)

with, for t < −T1,
v−(t, 1) = 0, (2.36)

Σ+(0)v̂+(t, 0) = −BTΣ−(0)v̂−(t, 0) +

∫ 1

0

ST
−+(x)v̂−(t, x) + ST

++(x)v̂+(t, x) dx, (2.37)

and
v̂(t = −T1, ·) = V̂ . (2.38)

One then has, for τ < −T1,
vN → v̂ in C0

(
[−τ,−T1];L2(0, 1)

)
. (2.39)
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In particular, by (2.25), we have

v̂(t, ·) ∈ YT1
for t ∈ [−T2,−T1) (2.40)

and
V = v(−T2, ·) in (0, 1).

Since, in the distributional sense and hence in YT1
,

∂tv̂(−T2, ·) = lim
ε→0+

1

ε

[
v̂(−T2 + ε, ·)− v̂(−T2, ·)

]
,

and, for ε > 0 small,
1

ε

[
v̂(−T2 + ε, x)− v̂(−T2, x)

]
∈ YT1

by (2.40),

one derives that
Σ∂xv̂(−T2, ·) + Σ′v̂(−T2, ·) ∈ YT1 ,

which implies (2.29).
Recall that YT1

is real and of finite dimension. Consider its natural extension as a complex vectorial
space and still denote its extension by YT1 . Define

A : YT1 → YT1

V 7→ Σ∂xV + Σ′V.

From the definition of YT1 , it is clear that, for V ∈ YT1 ,

V−(1) = 0 (2.41)

and

Σ+(0)V+(0) = −BTΣ−(0)V−(0) +

∫ 1

0

ST
−+(x)V−(x) + ST

++(x)V+(x) dx. (2.42)

Since YT1
6= {0} and YT1

is of finite dimension, there exists λ ∈ C and V ∈ YT1
\ {0} such that

AV = λV.

Set
v(t, x) = eλtV (x) in (−∞, 0)× (0, 1).

Using (2.41) and (2.42), one can verify that v(t, x) satisfies (2.6)-(2.8). Using (2.41) and applying the
characteristic method, one deduce that

v−(t, ·) = 0 for t < 0. (2.43)

From (2.8), we then obtain

Σ+(0)v+(t, 0) =

∫ 1

0

ST
++(x)v+(t, x) dx. (2.44)

Using the structure of S++, we then have

vk+1(t, 0) = 0 for t < 0.

By the characteristic method, this in turn implies that, for t < −τk+1.

vk+1(t, ·) = 0 in (0, 1)

Similarly, we have, for t < −τk+1 − τk+2,

vk+2(t, ·) = 0 in (0, 1)

. . . , and for t < −τk+1 − · · · − τk+m,

vk+m(t, ·) = 0 in (0, 1).

Then v(t, ·) = 0 in (0, 1) for t < −τk+1 − · · · − τk+m. It follows that V = 0 which contradicts the fact
V 6= 0. Thus (2.5) holds and the null-controllability is valid for T > Topt.
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3 Optimal time for the exact controllability

This section is on the exact controllability of (1.1), (1.6), and (1.7) for m ≥ k ≥ 1. We give a new
short proof, in the spirit of the one of Theorem 1, of the following result due to Hu and Olive [15].

Theorem 3. Assume that m ≥ k ≥ 1. Set

Be :=
{
B ∈ Rk×m; such that (1.11) holds for 1 ≤ i ≤ k

}
,

Assume that B ∈ Be. The control system (1.1), (1.6), and (1.7) is exactly controllable at any time T
greater than Topt.

The exact controllability of (1.1), (1.6), and (1.7) for m ≥ k has been investigated intensively in
the literature. When m = k under a similar condition, the exact controllability was considered in [21,
Theorem 3.2]. In the quasilinear case with m ≥ k, the exact controllability was derived in [19, Theorem
3.2] (see also [18]) for m ≥ k and for the time τk + τk+1 under a condition which is equivalent to the
fact that (1.11) holds for 1 ≤ i ≤ k. The result was improved when C = 0 in [14] when the time of
control is max{τk+1, τk + τm+1} involving backstepping. The exact controllablility of (1.1), (1.6), and
(1.7) at the time Topt was recently established in [11] for a generic C, i.e., for γC with γ ∈ R outside a
discrete subset of γ ∈ R using the backstepping approach. The generic condition of C is not required
for C with small L∞-norm by the same approach. It is worth noting that Be is an open subset of the
set of (real) k×m matrices and the Hausdorff dimension of its complement is k. The generic condition
is then removed recently in [15] by a different approach.

In this section, we show how to adapt the approach for Theorem 1 to derive Theorem 3. As in the
study of the null-controllability, it suffices, by [11, Proposition 3.1], to establish

Theorem 4. Let m ≥ k ≥ 1. System (1.12)-(1.14) under the control law (1.15) is exactly controllable
at any time larger than Topt.

As a consequence of Lemma 1, by the Hilbert uniqueness principle, see, e.g., [6, Chapter 2], we have

Lemma 5. Let T > 0. System (1.12)-(1.15) is exactly controllable at the time T if and only if, for
some positive constant C,∫ 0

−T
|v+(t, 1)|2 dt ≥ C

∫ 1

0

|v(0, x)|2 dx ∀ v ∈ [L2(0, 1)]n, (3.1)

for all solution v(·, ·) of (2.6)-(2.8).

As a variant of Lemma 4, we establish

Lemma 6. Let m ≥ k ≥ 1, B ∈ Be, and T ≥ Topt. Assume that (vN ) be a sequence of solutions of
(2.6)-(2.8) such that

sup
N
‖vN (0, ·)‖L2(0,1) < +∞, and lim

N→+∞
‖vN,+(·, 1)‖L2(0,T ) = 0. (3.2)

We have, up to a subsequence,
vN (0, ·) converges in L2(0, 1), (3.3)

and the limit V ∈ [L2(0, 1)]n satisfies the equation

V = KeV, (3.4)

for some compact operator Ke from [L2(0, 1)]n into itself. Moreover, Ke depends only on Σ, S, and B;
in particular, Ke is independent of T .

Proof. Since limN→+∞ ‖vN,+(·, 1)‖L2(0,T ) = 0 and T ≥ Topt, it follows from the characteristic method
that, for t ∈ (−T + τk+1, 0],

‖vN,+(t, ·)‖L2(0,1) → 0 as N → +∞. (3.5)
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By the characteristic method, we also have, for 1 ≤ j ≤ k,

‖vN,j(t, ·)‖L2(0,1) = 0 for t ∈ (−T,−τj). (3.6)

Recall that, for t ≤ 0,

Σ+(0)vN,+(t, 0) = −BTΣ−(0)vN,−(t, 0) +

∫ 1

0

ST
−+(x)vN,−(t, x) + ST

++(x)vN,+(t, x) dx. (3.7)

Denote, for 1 ≤ j ≤ k,
V eN,j = (vN,j , · · · , vN,k)T,

W e
N,j = (vN,k+1, · · · , vN,m+j−1)T,

and set, for 1 ≤ j ≤ k,

D̂ej :=
{

(t, s) : t ∈ (−τj ,−τj−1); t ≤ s ≤ 0
}
,

and
Dej :=

{
(t, s) : t ∈ (−τj ,−τj−1);−τk ≤ s ≤ t

}
,

with the convention τ0 = 0. When m = k and j = 1, W e
N,1 is irrelevant.

For 1 ≤ j ≤ k, consider t ∈ (−τj ,−τj−1) and x = 0. First, consider the last (k− j + 1) equations of
(3.7) for t ∈ (−τj ,−τj−1). Using (3.6) and (1.11) with i = k− j+ 1, and viewing vN,`(t, ·) for x ∈ (0, 1)
and vN,`(·, 0) for t ∈ (−τj ,−τj−1) for m+ j ≤ ` ≤ k +m as parameters, we have, for t ∈ (−τj ,−τj−1),

V eN,j(t, 0) =

∫ t

−τk
Gej(t, s)V

e
N,j(s, 0) ds+

∫ 0

t

He
j (t, s)W e

N,j(s, 0) ds+ F eN,j(t), (3.8)

for some Gej ∈ [L∞(D̂ej )](k−j+1)×(k−j+1) and He
j ∈ [L∞(Dej )](k−j+1)×(m−k+j−1) and which depends

only on Σ, S, and B, and for some F eN,j ∈ [L2(−τj ,−τj−1)]k−j+1, which depends only on Σ, S, and B,
and vN,+. Moreover, by (3.5) and (3.6),

F eN,j → 0 in L2(−τj ,−τj−1) as N → +∞. (3.9)

When k = m and j = 1, the second term in the RHS of (3.8) is understood by 0.
Next, consider the first (m− k + j − 1) equations of (3.7) for t ∈ (−τj , τj−1). We have

W e
N,j(t, 0) = QejV

e
N,j(t, 0) +

∫ t

−τk
Lej(t, s)V

e
N,j(s, 0) ds+

∫ 0

t

Me
` (t, s)W e

N,j(s, 0) ds. (3.10)

for some constant Qej ∈ R(m−k+j−1)×(k−j+1), for some Lej ∈ [L∞(Dej )](m−k+j−1)×(k−j+1), and for some

Me
j ∈ [L∞(D̂j)](m−k+j−1)×(m−k+j−1), all depending only on Σ, B, and S. When k = m and j = 1,

(3.10) is irrelevant.
Using (3.9) with j = 1, one can solve W e

N,1 as a function of V eN,1 and F eN,1 (if m = k, then this is
irrelevant). Continue the process with j = 2, then j = 3, . . . , finally with j = k. Noting that

vN,m+j−1(·, 0)→ 0 in L2(τj−1, 0),

considering it as a parameters, and using (3.9), one can solve

W e
N,k ∈ [L2(−τk, 0)]m−k × L2(−τk,−τ1)× · · · × L2(−τk,−τk−1)

as a function of V eN,k ∈ L2(−τ1, 0)× · · · × L2(−τk, 0), and F eN,j with j = 1, . . . , k, and one has

V eN,k = Ke1W e
N,k + geN .

where geN ∈ L2(−τ1, 0) × · · · × L2(−τk, 0) converges to 0 in the corresponding L2-norm and Ke1 is a
compact operator depending only on Σ, S and B. The conclusion now follows from (3.8) after noting
that the information of vN,−(0, ·) is encoded by the information of vN,1(·, 0) on (−τ1, 0), of vN,2(·, 0)
on (−τ2, 0), . . . , of vN,k(·, 0) on (−τk, 0), by the characteristic method.
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We are ready to give the

Proof of Theorem 4. The proof of Theorem 4 is similar to the one Theorem 3. For T > Topt, set

Y eT :=
{
V ∈ L2(0, 1) : V is the limit in L2(0, 1) of some subsequence of solutions

(
vN (0, ·)

)
of (2.6)-(2.8) such that (3.2) holds

}
. (3.11)

As in Theorem 2, Y eT is a vectorial space of finite dimension and there exist Topt < T1 < T2 < T such
that

dimY eT1
= dimY eT2

.

Fix such T1 and T2. By Lemma 5, it suffices to prove (3.1) by contradiction. Assume that (3.1) does
not hold. Then, as in the proof Theorem 2, there exist λ ∈ C and V ∈ Y eT1

\ {0} such that

Σ∂xV + Σ′V = λV.

Set
v(t, x) = eλtV (x) in (−∞, 0)× (0, 1). (3.12)

As in the proof of Theorem 2, one can verify that v(·, ·) satisfies (2.6)-(2.8). Applying the characteristic
method, one deduce that

v−(t, ·) = 0 for t < −τk. (3.13)

As in the proof of Theorem 2, we also have

v(t, ·) = 0 in (0, 1) for t < −τk − τk+1 − · · · − τk+m. (3.14)

It follows that V = 0 which contradicts the fact V 6= 0. Thus (3.1) holds and the exact-controllability
is valid for T > Topt.

Remark 1. Theorem 3 can be also deduced from Theorem 1. Indeed, consider first the case m = k.
By making a change of variables

w̃(t, x) = w(T − t, x) for t ∈ (0, T ), x ∈ (0, 1).

Then
w̃−(t, 0) = B̃−1w̃+(t, 0),

with w̃−(t, ·) = (w2k, . . . , wk+1)T(T − t, ·), and w̃+(t, ·) = (wk, . . . , w1)T(T − t, ·), and B̃ij = Bpq with

p = k − i and q = k − j. Note that the i × i matrix formed from the first i columns and rows of B̃ is
invertible. Using Gaussian elimination method, one can find (k × k) matrices T1, . . . , TN such that

TN . . . T1B̃ = U,

where U is a (k× k) upper triangular matrix, and Ti (1 ≤ i ≤ N) is the matrix given by the operation
which replaces a row p by itself plus a multiple of a row q for some 1 ≤ q < p ≤ N . It follows that

B̃−1 = U−1TN . . . T1.

One can check that U−1 is an invertible, upper triangular matrix and TN . . . T1 is an invertible, lower
triangular matrix. It follows that the i × i matrix formed from the last i columns and rows of B̃−1

is the product of the matrix formed from the last i columns and rows of U−1 and the matrix formed
from the last i columns and rows of TN . . . T1. Therefore, B̃−1 ∈ B. One can also check that the
exact controllability of the system for w(·, ·) at the time T is equivalent to the null-controllability of
the system for w̃(·, ·) at the same time and the conclusion of Theorem 3 follows from Theorem 1. The
case m > k can be obtained from the case m = k as follows. Consider ŵ(·, ·) the solution of the system

∂tŵ = Σ̂(x)∂xŵ(t, x) + Ĉ(x)ŵ(t, x),
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ŵ−(t, 0) = B̂ŵ+(t, 0), and ŵ+(t, 1) are controls.

Here
Σ̂ = diag(−λ̂1, . . . ,−λ̂m, λ̂m+1, . . . λ̂2m),

with λ̂j = −(1+m−k−j)ε−1 for 1 ≤ j ≤ m−k with positive small ε, λ̂j = λj−(m−k) ifm−k+1 ≤ j ≤ m,

and λ̂j+m = λj+k for 1 ≤ j ≤ m,

Ĉ(x) =

(
0m−k,m−k 0m−k,n

0n,m−k C(x)

)
,

and

B̂ =

(
Im−k 0m−k,m

0m−k,m B

)
,

where I` denotes the identity matrix of size `× ` for ` ≥ 1. Recall that 0i,j denotes the zero matrix of
size i× j for i, j, ` ≥ 1. Then the exact controllability of w at the time T can be derived from the exact
controllability of ŵ at the same time. One then can deduce the conclusion of Theorem 3 from the case
m = k using Theorem 1 by noting that the optimal time for the system of ŵ converges to the optimal
time for the system of w as ε→ 0+.
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