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Bayesian models use posterior predictive distributions to quantify the uncertainty of their predictions. Similarly, the point predictions of neural networks and other machine learning algorithms may be converted to predictive distributions by various bootstrap methods. The predictive performance of each algorithm can then be assessed by quantifying the performance of its predictive distribution. Previous methods for assessing such performance are relative, indicating whether certain algorithms perform better than others. This paper proposes performance measures that are absolute in the sense that they indicate whether or not an algorithm performs adequately without requiring comparisons to other algorithms. The first proposed performance measure is a predictive p value that generalizes a prior predictive p value with the prior distribution equal to the posterior distribution of previous data. The other proposed performance measures use the generalized predictive p value for each prediction to estimate the proportion of target values that are compatible with the predictive distribution. The new performance measures are illustrated by using them to evaluate the predictive performance of deep neural networks when applied to the analysis of a large housing price data set that is used as a standard in machine learning.

Today's challenges of interpreting and using big data sets create many opportunities for the development of machine learning algorithms and other methods of statistical data analysis. Examples of big data include records of customer purchases and interactions on web sites used to suggest purchases, email messages used to detect spam, and voice recordings used to interpret speech. Since 2012, deep learning algorithms in the form of deep neural networks have often dramatically outperformed more conventional machine learning algorithms, where "deep" refers to the multiplicity of hidden layers of parameters fit to data (e.g., [START_REF] Charniak | Introduction to Deep Learning[END_REF][START_REF] Krohn | Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence[END_REF][START_REF] Wani | Advances in Deep Learning[END_REF].

In spite of the successes of data science, uncertainty in classification and prediction performance measures is usually neglected. That is unfortunate since performance uncertainty can be substantial even with big data. The reason is that a data set that is large when measured by how much disk space it requires can be small in terms of its effective sample size, even without a strong dependence between variables. For example, the first large-scale studies of gene expression measured gene expression over thousands of genes-in a single individual.

An advantage of Bayesian models is that they not only make predictions but also quantify the uncertainty in those predictions. That is accomplished in the form of a posterior predictive distribution, from which error bars and utility-maximizing decisions may be derived. Ideally, non-Bayesian prediction algorithms would also generate distributions of predictions rather than a single prediction. Simple ways to generate predictive distributions from point predictions are reviewed in Section 2.

The performance of each algorithm's predictive distribution may then be measured in such a way as to discourage both suppressing the uncertainty on one hand and exaggerating it on the other hand. Previous measures of the performance of predictive distributions (e.g., [START_REF] Quiñonero-Candela | Evaluating predictive uncertainty challenge[END_REF] are comparative in the sense that they indicate whether one prediction model performs better than another. An absolute measure, by contrast, could indicate whether a predictive distribution performs adequately or whether alternative prediction models should be considered.

The difference between relative and absolute measures of predictive performance is analogous to relative and absolute measures of evidence used in hypothesis testing. In Bayesian hypothesis testing, the posterior probability that the null hypothesis is true cannot be considered without simultaneously considering the probability that the null hypothesis is false. The posterior probability of the null hypothesis depends on the Bayes factor, a comparative measure of how much the evidence favors the truth of the null hypothesis compared to how much it favors the falsity of 1 the null hypothesis. On the other hand, in null hypothesis significance testing, a sufficiently low p value indicates a problem with the null hypothesis without comparing it to other hypotheses.

The problem could be that the value of the parameter of interest differs from the null value or that the assumptions behind the statistical test are violated. How low is low enough to indicate a problem and other pragmatic issues are debated [START_REF] Benjamin | Redefine statistical significance[END_REF]. In any case, the p value is an absolute measure of the compatibility of the null hypothesis with the data in a way that the posterior probability is not. While Bayesian model selection is certainly ideal in the presence of enough information about the hyperprior distribution over the models, null hypothesis significance testing arguably plays important roles in its absence. That is largely due to the ability of a p value to test a null hypothesis without specifying distributions under alternative hypotheses.

The p value concept is generalized in Section 3 to serve as an absolute measure of the predictive performance of a frequentist or Bayesian regression model, a neural network, or another machine learning algorithm. It is intended to answer the question of whether a statistical model or algorithm predicts well or not rather than the usual question of whether it predicts well relative to other methods.

Absolute performance measures are also useful when multiple methods are available. When all methods tried initially perform poorly, ranking them in terms of relative performance is of little value. Absolute measures of performance would in that case indicate that other methods should be considered. In addition, when it is advantageous to average the predictions of multiple methods, absolute measures of performance provide feedback on the performance of the average. With one generalized p value per prediction, multiple p values may be used together to generate additional measures of absolute predictive performance. Those proposed in Section 4 apply to neural networks and many other models, where the term "model" is much broader than a statistical model in the sense of a parametric family of distributions. The term prediction model refers to any mathematical construct that can make predictions about future data on the basis of data already observed. Following [START_REF] Breiman | Statistical modeling: The two cultures (with comments and a rejoinder)[END_REF], there are two broad types of prediction models: data models are mathematical expressions specifying possible distributions of data; and algorithmic models are other mathematical expressions that make predictions on the basis of data. Whereas data models are associated with parametric and nonparametric statistical inference, algorithmic models are associated with data science in general and machine learning in particular. Both data models and algorithmic models include prediction models with and those without prior distributions. The former are called Bayesian models, and all other prediction models are called prior-free models.

For example, a data model may be parametric or nonparametric, prior-free or Bayesian. Successful algorithmic models include random forests, support vector machines, prior-free neural networks, and Bayesian neural networks.

Even after deciding on a neural network of a certain structure as the type of prediction model, one must set many hyperparameters before it can fit its adaptive parameters to the data. Such A data set often used in machine learning has 13 independent variables used to predict the value of houses in an area of Boston. There is considerable uncertainty about the type of prediction model to use to predict the value of houses from the independent variables, whether the prediction model is a data model or an algorithmic model. In Section 5, the data are analyzed using three deep neural networks to illustrate the proposed measures of predictive performance.

A predictive distribution for each prediction model

Let mdl denote an integer serving as the index of a prediction model. The ith of n observations consists of y i , a value of the dependent variable, and of x i , a vector of m independent variables. Given x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ), the predictive probability density for predicting y n +1 by y n +1 on the basis of

x n +1 is f prdct mdl y n +1 ; (x , y) , x n +1 . The corresponding probability density function f prdct mdl (•; (x , y) , x n +1
) is called the model predictive distribution of mdl.

Example 1. According to data model mdl, y was drawn from a probability density function

f mdl (•| x , θ, λ mdl )
, where θ is a vector of unknown parameter values of interest and λ mdl a nuisance parameter consisting of all other relevant unknowns. If mdl is a Bayesian model, then the pair (θ, λ mdl ) has a prior distribution represented as a probability density π mdl (θ, λ mdl ). The posterior predictive distribution is the probability density function defined by

f prdct mdl y n +1 ; (x , y) , x n +1 = f mdl y n +1 | x n +1 , θ, λ mdl π mdl (θ, λ mdl | (x , y)) dθdλ mdl ,
where π mdl (θ, λ mdl | (x , y)) is the posterior probability density determined by Bayes's theorem.

Example 2. Consider the prediction y mdl,n +1 = η mdl ((x , y) , x n +1 ) of y n +1 , where η mdl is a function determined by prediction model mdl. For example, if mdl is a prior-free data model with the f mdl (•| x , θ, λ mdl ) of Example 1, then y n +1 could be predicted by its expected value as

y mdl,n +1 = η mdl ((x , y) , x n +1 ) = y ′ n +1 f mdl y ′ n +1 | x n +1 , θ (x , y) , λ mdl (x , y) d y ′ n +1 ; (1) θ (x , y) , λ mdl (x , y) = arg sup (θ,λ mdl ) f mdl (y | x , θ, λ mdl ) .
To define a model predictive distribution, generate x (b) , y (b) , the bth of B bootstrap samples by taking n independent draws, with replacement, from the observations (x 1 , y 1 ) , . . . , (x n , y n ).

The bootstrap samples x (1) , y (1) , . . . , x (B) , y (B ) in turn generate the bootstrap predictions

y (1) mdl,n +1 , . . . , y (B )
mdl,n +1 , where y

(b) mdl,n +1 = η mdl x (b) , y (b) , x n +1 .
In parametric bootstrapping (e.g., [START_REF] Harris | Predictive fit for natural exponential families[END_REF], the bootstrap predictions then estimate the parameter values of another distribution. The probability density function fitted to the bootstrap predictions, called the bootstrap predictive distribution, is then used as f prdct mdl (•; (x , y) , x n +1 ). A simple case is N µ mdl , σ 2 mdl , the normal distribution that has a mean of µ mdl , the sample mean of the bootstrap predictions, and a variance equal to σ 2 mdl , the usual unbiased estimate of the variance of the bootstrap predictions. When considered as a point prediction, µ mdl is an example of what [START_REF] Breiman | Bagging predictors[END_REF] 1) , y (1) , . . . , x (B) , y (B) results in the B trained models η mdl x (1) , y (1) , • , . . . , η mdl x (B ) , y (B ) , • . Applying them to

x n +1 yields y In some cases, parametric bootstrap predictive distributions and nonparametric bootstrap predictive distributions (e.g., [START_REF] Fushiki | Nonparametric bootstrap prediction[END_REF] have the frequentist properties needed to qualify as predictive confidence distributions [START_REF] Schweder | Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions[END_REF]. For other ways to generate a predictive confidence distribution as f prdct mdl (•; (x , y) , x n +1 ), see [START_REF] Shen | Prediction with confidence -a general framework for predictive inference[END_REF]. The predic-tive likelihood methods described in [START_REF] Eklund | Forecast combination and model averaging using predictive measures[END_REF] might also be used to generate

f prdct mdl (•; (x , y) , x n +1 ).
For concision, this paper presents y as continuous. Applying the proposed framework to discrete dependent variables would require using a probability mass function as f prdct mdl (•; (x , y) , x n +1 ) and approximating integrals by sums.

P values for assessing predictive performance

Consider a data model mdl with the f mdl (•| x , θ, λ mdl ) of Example 1. Recall that for testing the null hypothesis that θ = θ H 0 , an observed test statistic T (y, θ H 0 ) and its random counterpart

T (Y , θ H 0 ) together define the p value p mdl ((x , y) , θ H 0 ) = Prob Y ∼f mdl (•| x ,θH 0 ,λ mdl ) (T (Y , θ H 0 ) ≥ T (y, θ H 0 )) .
Analogously, for checking a more general prediction model mdl by testing the null hypothesis that the data-generating distribution is the model predictive distribution f prdct mdl (•; (x , y) , x n +1 ), a measure of data-model discrepancy D x n +1 , y n +1 , mdl and its random counterpart D ((x n +1 , Y n +1 ) , mdl) together define the model predictive p value

p x n +1 , y n +1 , mdl = Prob Y n +1∼f prdct mdl (•;(x ,y),x n +1) D ((x n +1 , Y n +1 ) , mdl) ≥ D x n +1 , y n +1 , mdl . (2) 
Example 4. With Example 1's posterior predictive distribution as f prdct mdl (•; (x , y) , x n +1 ), the model predictive p value reduces to a special case of the Bayesian p value defined by equation (2.28) of [START_REF] Carlin | Bayes and Empirical Bayes Methods for Data Analysis[END_REF]. That is closely related to two other Bayesian p values. First, in considering the posterior distribution π mdl (•| (x , y)) from the analysis of (x , y) as the prior distribution for predicting y n +1 from x n +1 , we thereby consider f prdct mdl (•; (x , y) , x n +1 ) as a prior predictive distribution. From that viewpoint, p x n +1 , y n +1 , mdl is a prior predictive p value; see Ghosh et al. (2006, §6.5). Second, when "predicting" the observed y instead of y n +1 , the Bayesian "p value" p ((x , y) , mdl) is instead a posterior predictive p value (Carlin and Louis, 2000, (2.27)). Since the same data in that case are used for the model predictive distribution and the value "predicted," posterior predictive p values require calibration [START_REF] Hjort | Post-processing posterior predictive p values[END_REF].

Example 5. Let F mdl denote the cumulative distribution function of f prdct mdl (•; (x , y) , x n +1 ). A sim-1q x n +1 , y n +1 , mdl , where q x n +1 , y n +1 , mdl = 2 min F mdl y n +1 , 1 -F mdl y n +1 .

Whereas

F mdl y n +1 = y n +1 -∞ f prdct mdl y ′ n +1 ; (x , y) , x n +1 d y ′ n +1
and 1 -F mdl y n +1 are one-sided predictive p values, q x n +1 , y n +1 , mdl is a two-sided predictive p value for checking mdl. Plugging that D x n +1 , y n +1 , mdl into equation ( 2) yields

p x n +1 , y n +1 , mdl = Prob Y n +1∼f prdct mdl (•;(x ,y),x n +1) 1 -q ((x n +1 , Y n +1 ) , mdl) ≥ 1 -q x n +1 , y n +1 , mdl = Prob Y n +1∼f prdct mdl (•;(x ,y),x n +1) q ((x n +1 , Y n +1 ) , mdl) ≤ q x n +1 , y n +1 , mdl = q x n +1 , y n +1 , mdl ,
with the last step following from the fact that q

((x n +1 , Y n +1 ) , mdl) ∼ U (0, 1) if Y n +1 ∼ f prdct mdl (•; (x , y) , x n +1 )
, where U (0, 1) is the standard uniform distribution.

4 Measures of predictive performance based on multiple predictions

Relative predictive performance based on multiple predictions

Just as testing θ = θ H 0 can be informative even when θ cannot be exactly equal to θ H 0 [START_REF] Cox | The role of significance tests[END_REF], checking mdl on the basis of a single model predictive p value can be informative even though it is known that y n +1 was not drawn from f prdct mdl (•; (x , y) , x n +1 ). However, a model predictive p value from checking mdl given a number n prdct of predicted values may be worthless as a measure of absolute performance since it is guaranteed to generate very small model predictive p values whenever n prdct is sufficiently large. On the other hand, such a p value may serve as a measure of the performance of a prediction model relative to other prediction models. Alternatively, model predictive p values may empower the fiducial averaging of prediction models in analogy with Bickel (2018)'s use of prior predictive p values for the fiducial averaging of Bayesian models.

There are two ways to generate a model predictive p value p x prdct , y prdct , mdl on the basis of mdl's performance in predicting y prdct = y n +1 , . . . , y n + n prdct given x prdct = (x n +1 , . . . , x n + n prdct ) after fitting its parameters to (x , y):

1. First, such a model predictive p value may be defined by replacing x n +1 , y n +1 , and Y n +1 with x prdct , y prdct , and Y prdct in equation ( 2), where Y prdct is the random n prdct -vector of a model predictive distribution f prdct mdl •; (x , y) , x prdct .

2. The second way is to combine equation (2)'s model predictive p values

p x n +1 , y n +1 , mdl , . . . , p x n + n prdct , y n + n prdct , mdl (3) 
that are generated individually from predicting y n +1 given x n +1 , predicting y n +2 given

x n +2 , etc. Each of the methods of p value combination listed by [START_REF] Folks | 6 combination of independent tests[END_REF] and [START_REF] Singh | Combining information from independent sources through confidence distributions[END_REF] would generate a different p x prdct , y prdct , mdl . For example, Fisher's method of combining p value has stood the test of time.

Absolute predictive performance based on multiple predictions

The model predictive p values (3) can also generate absolute measures of predictive performance.

Let p (i, mdl) = p x n +i , y n +i , mdl for i = 1, . . . , n prdct . As an idealization, suppose some proportion π 0 of the n prdct predicted data points were drawn from f prdct mdl (•; (x , y) , x n +i ) for i = 1, . . . , n prdct . Then an estimate of π 0 could serve as a measure of how well mdl predicts without necessarily comparing its performance to that of other prediction models.

The literature has many complex methods for estimating the proportion of null hypotheses that are true on the basis of a vector of p values (e.g., [START_REF] Nguyen | On estimating the proportion of true null hypotheses for false discovery rate controlling procedures in exploratory dna microarray studies[END_REF][START_REF] Broberg | A comparative review of estimates of the proportion unchanged genes and the false discovery rate[END_REF][START_REF] Langaas | Estimating the proportion of true null hypotheses, with application to dna microarray data[END_REF][START_REF] Lai | A statistical method for estimating the proportion of differentially expressed genes[END_REF][START_REF] Lai | A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data[END_REF][START_REF] Jin | Estimating the null and the proportion of nonnull effects in large-scale multiple comparisons[END_REF][START_REF] Jiang | Estimating the proportion of true null hypotheses for multiple comparisons[END_REF][START_REF] Cai | Optimal rates of convergence for estimating the null density and proportion of nonnull effects in large-scale multiple testing[END_REF]. While they could be used to estimate π 0 with p (1, mdl) , . . . , p n prdct , mdl as the vector of p values and with

f prdct mdl (•; (x , y) , x n +1 ) , . . . , f prdct mdl (•; (x , y) , x n + n prdct )
as the null hypothesis distributions, two simpler approaches suffice for the purpose of measuring predictive performance. They begin by estimating the ith prediction's achieved nonlocal false discovery rate (NFDR) by

NFDR (i, mdl) = min p (i, mdl) n prdct # n prdct j=1 (p (j, mdl) ≤ p (i, mdl))
, 1 , the denominator of which tells how many of the n prdct model predictive p values are less than or equal to p (i, mdl).

Next, let (i) denote the index of the ith smallest NFDR (i, mdl), thereby ordering the estimates by NFDR ((1) , mdl) ≤ • • • ≤ NFDR n prdct , mdl . The bias in NFDR (i, mdl) as an estimate of the local false discovery rate (LFDR) may be corrected by either of these two LFDR estimates [START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF]Bickel, 2020, chapter 6):

CFDR ((i) , mdl) = i k=1 1 i -k + 1 NFDR ((i) , mdl) ; (4) RFDR ((i) , mdl) =        NFDR (([1.6i]) , mdl) if [1.6i] ≤ n prdct 1 if [1.6i] > n prdct , (5) 
where the square brackets indicate rounding to the nearest integer. Those two LFDR estimates are called the corrected false discovery rate (CFDR) and the re-ranked false discovery rate (RFDR).

Since the LFDR of a null hypothesis is a posterior probability that the null hypothesis is true, the expected value of the LFDR of a randomly selected null hypothesis is a posterior expected value of the proportion of null hypotheses that are true. That suggests estimating π 0 by 

The housing data

The data analyzed are from the Boston Standard Metropolitan Statistical Area in 1970 (Belsley et al., 1980, App. 4A). Each observation in the data set consists of the values of 13 scalar independent variables and 1 dependent variable, the logarithm of the median value of the houses occupied by In the data analysis of Section 5.3, the entire TrainingData set was used as (x , y) to train each neural network. In the notation of Example 3, the trained models are η 10 ((x , y) , •), η 8 ((x , y) , •), and η 5 ((x , y) , •) for Net 10, Net 8, and Net 5. The entire TestData set was used as the x prdct , y prdct of Section 4 to assess the performance of the model predictive distribution generated by each neural network. are more interpretable as absolute measures of performance, according to these considerations:

Assessing each neural network's predictive performance

1. All three of the combined p values are low enough to reject the joint null hypothesis (that all 168 predictions come from the predictive distributions of the neural networks) at the α = 10 -5 level of statistical significance. As that joint null hypothesis is of little relevance, the combined p value of a neural network only serves as a measure of performance relative to that of the other neural networks.

2. By contrast, for each neural network considered without comparison to other neural networks, the farther its π CFDR 0 or π RFDR 0 is from 1, the more room there is for improving its predictive performance.

For reference, the last panel of Figure 1 displays log 10 p x prdct , y prdct , mdl , π CFDR 0 , and π RFDR 0 for a simulated case of π 0 = 1. The bottom of each plot provides "log 10 p," the base-10 logarithm of the combined p value using Fisher's method ( §4.1) followed by two estimates of the proportion of observations consistent with the predictive distribution: "CFDR" is π CFDR 0 , the average of the 168 CFDRs; and "RFDR" is π RFDR 0 , the average of the 168 RFDRs ( §4.2). In the three plots labeled by "Net," each predictive p value corresponds to an observation from the test data set of Section 5.2. Each number followed by "Net" above a plot identifies a neural network by its value of a hyperparameter, as explained in Section 5.1. The plot labeled "100% true null hypotheses" serves as a control for reference. It is the empirical distribution function of 168 independent variates of U (0, 1), for that is the distribution of a p value under the truth of a null hypothesis. The graphical method is essentially that of [START_REF] Schweder | Plots of P-values to evaluate many tests simultaneously[END_REF].

  hyperparameters include the distributions of random initial parameter values and the number of layers of adaptive parameters in the network. Each combination of hyperparameter values corresponds to a different prediction model. Models of different types and of different hyperparameter values may be assessed for predictive performance according to the proposed measures.

  calls a "bagging predictor." Many variations of parametric bootstrapping are possible. Here is one: Example 3. As an alternative to the MLE-based approach of equation (1), let y mdl,n +1 = η mdl ((x , y) , x n +1 ) denote the prediction of y n +1 according to a neural network or another an algorithmic model. In this context, (x , y) is called the training set to distinguish it from x n +1 , y n +1 , called the validation set or test set, depending on whether or not it is used to select another algorithmic model for additional predictions. With (x , y) fixed, the function η mdl ((x , y) , •) is then considered to be a trained model. Training the model on the bootstrap samples x (

  +1 as the bootstrap predictions of y n +1 . The bootstrap predictive distribution used as f prdct mdl (•; (x , y) , x n +1 ) is the probability density function of N y mdl,n +1 , σ 2 mdl . That is not a special case of the bootstrap predictive distributions of Example 2, which would have µ mdl in place of y mdl,n +1 .

  the means of CFDR ((1) , mdl) , . . . , CFDR n prdct , mdl and of RFDR ((1) , mdl) , . . . , RFDR n prdct , mdl .5 Application to deep neural networks5.1 The deep neural networksNet 10 will refer to the neural network that is defined on https://reference.wolfram.com/ language/tutorial/NeuralNetworksRegression.html (accessed 18 October 2019) by the codeNetChain[{LinearLayer[15],BatchNormalizationLayer[], ElementwiseLayer[Ramp],LinearLayer[10],BatchNormalizationLayer[],ElementwiseLayer[Ramp],LinearLayer[1]},"Input"->13,"Output"->"Scalar"] in the language of[START_REF] Research | [END_REF]. It is 7 layers deep. Its second linear layer has an output of 10 numbers, which is why it is called Net 10. Net 8 and Net 5 are exactly the same except for their values of that hyperparameter; their second linear layers have outputs of 8 and 5 numbers, respectively.

  owners.[START_REF] Research | [END_REF] divides the data into a TrainingData set of 338 observations and a TestData set of 168 observations associated with its command ExampleData[{"MachineLearning", "BostonHomes"}]. The data are also available as boston_housing in the Keras Python deep learning library according to https://keras.io/datasets/ (accessed 18 October 2019), which cites StatLib as its source.

  Recall that the three neural networks used to analyze the data of Section 5.2 are labeled Net 10, Net 8, and Net 5, where the number is the value of a hyperparameter explained in Section 5.1. The bootstrap method of Example 3 was used to generate the model predictive distributions, and the measure of discrepancy proposed in Example 5 was used to determine the model predictive p values. The empirical distributions of the model predictive p values are plotted in Figure 1.

Figure 1

 1 Figure 1 also reports three measures of predictive performance for each neural network:

Figure 1 :

 1 Figure 1: Each plot is the empirical distribution function of 168 model predictive p values.The bottom of each plot provides "log 10 p," the base-10 logarithm of the combined p value using Fisher's method ( §4.1) followed by two estimates of the proportion of observations consistent with the predictive distribution: "CFDR" is π CFDR
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