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A Variational Calculus Approach to Wildfire Monitoring Using a
Low-Discrepancy Sequence-Based Deployment of Sensors

Didier Georges

Abstract— This paper deals with the estimation of the wildfire
ignition location by using a variational approach, which, to
the best of my knowledge, has never been proposed before.
Wildfires are here modeled by using two balance equations for
energy and fuel, where the fuel loss due to combustion is defined
by the fuel reaction rate. The physical coefficients of the model,
together with the initial fuel distribution, are here supposed to
be known. The use of a small number of low cost temperature
sensors constituting a sensor network distributed on the field
according to a low-discrepancy sequence is investigated which
provides some promising results for this estimation problem
considered to be very difficult in the litterature.

I. INTRODUCTION

In the context of ever-increasing climate change, the issue
of wildfire real-time monitoring is a major concern. The
litterature proposes a large number of references devoted to
the dynamics of fire propagation. [1] provides an extensive
review of physical and quasi-physical models used to repre-
sent the dynamics of wildfires. Very sophisticated physical
models based on extended irreversible thermodynamics [2]
have been proposed. Such models are very complex and
very expensive from a numerical simulation point of view,
therefore we are not very suitable for solving estimation
and data assimilation problems. Quasi-physical models based
on the level set method set governed by a Hamilton-Jacobi
equation have also been studied [3].

This paper is devoted to the early detection of a fire
ignition using a variational approach applied to a wildfire
propagation model based on two 2D coupled partial differ-
ential equations. This model offers a good trade-off between
complexity and the ability to realistically represent physical
phenomena, such as traveling heat waves [4]. A first equation
represents the transport and diffusion of temperature due
to the fuel combustion reaction, while the second equation
represents the dynamics of fuel loss. Ensemble Kalman filters
are used in the literature for wildfire estimation applications
(see [4] or [5] for instance). As far as I know, this paper
is the first attempt to use a variational approach to locate a
fire ignition. The here-proposed approach extends the work
in [7] to advection-diffusion problems in 2D. Th proposed
approach belongs to the class of optimization problems with
PDE constraints discussed in [10] and [11].

The paper is now organized as follows: Section 2 presents
the modeling of wildfires. The fire ignition estimation ap-
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proach is proposed in section 3. Section 4 discusses the
numerical method used to solve the optimal estimation
problem. Some numerical simulations of a wildfire based on
real physical chararacterics together with some preliminary
fire ignition estimation results are presented in section 5.
Some conclusions and perspectives are given in section 6.
The detailed derivation of the variational calculus approach
is given in Appendix.

II. WILDFIRE MODELING

In this paper, the model proposed in [4] is used. This
model consists in two 2D coupled partial differential equa-
tions, which define the energy balance and fuel reaction rate
for a wildfire in a ground layer of some given finite small
thickness, on a rectangular domain D = [0,Lx]× [0,Ly]:

∂tT = ∂x(k∂xT )+∂y(k∂yT )− vx∂xT − vy∂yT

+ A(Sr(T )−C(T −Ta)), (1)
∂tS = −CSSr(T ), (2)

with Arrhenius reaction rate from physical chemistry

r(T ) =
{

e−B/(T−Ta), T > Ta,
0, T ≤ Ta,

(3)

and where T (x,y, t) is the distributed temperature in the
ground layer, S(x,y, t) is the distributed mass fraction of
fuel. k is the coefficient of temperature diffusion. v =
(vx(x,y, t),vy(x,y, t)) defines the velocity field of the air,
supposed to known from meteorological data. A, B, C, CS are
some physical coefficients. Ta is the ambiant temperature. ∂t ,
∂x, and ∂y denote the partial derivatives with respect to time
t, and spatial coordinates x and y, respectively.

Some boundary and initial conditions have also to be
defined to ensure the well-posedness of the problem. Neu-
mann’s boundary conditions are used in this paper:

∂xT (0,y, t) = ∂xT (Lx,y, t) = 0,∀y ∈ [0,Ly], (4)
∂yT (x,0, t) = ∂yT (x,Ly, t) = 0,∀x ∈ [0,Lx], (5)

T (x,y,0) = T0(x,y), S(x,y,0) = S0(x,y), ∀(x,y) ∈ D. (6)

The interest of this model lies in the fact it is able to simulate
heat travelling waves in a realistic way.

It is also convenient to introduce nondimensional variables
and dimensionless coefficients. The following changes of
variables

T̃ =
T −Ta

B
, ṽ =

Bv
A
, x̃ =

x
k1/2B1/2A−1/2 ,

ỹ =
y

k1/2B1/2A−1/2 , t̃ =
At
B

(7)



transform (1)-(2) into the nondimensional form

∂t̃ T̃ = ∂x̃x̃T̃ +∂ỹỹT̃ − ṽx∂x̃T̃ − ṽy∂ỹT̃

+ S̃e−1/T̃ −λ T̃ , (8)

∂t̃ S̃ = −β S̃e−1/T̃ , T̃ > 0, (9)

with the following two dimensionless coefficients

λ =CB, β =
BCS

A
. (10)

In what follows, the tildes will be removed for the ease of
notation.

III. OPTIMAL ESTIMATION PROBLEM

The objective of this paper is to explore the feasibility of
an early detection and location of fire ignition from a limited
number of temperature measurements apart from sensors
deployed in the field. A network of low cost temperature
sensors is assumed to be deployable in the field. As these
sensors can be exposed to very high temperatures during
a fire, the risk of sensor dysfunctioning is here taken into
account. Here it is assumed that the initial fuel distribution
S(x,y,0) is known from an a priori mapping of the field.
Coefficients β and λ are also assumed to be known from
the knowledge of previous wildfire occurences with the same
fuel characteristics.

A. Formulation

The fire ignition estimation will consist in finding the
initial distributed temperature in domain D. This can be
formulated as solving the optimal least-square optimization
problem defined for Ns sensors and on time interval [0,Tf ]
by

min
T (x,y,0)∈D

J(T0) = min
T (x,y,0)∈D

1
2

Ns

∑
i=1

∫ Tf

0
(yi(t)− ym

i (t))
2dt

+
α

2

∫ Lx

0

∫ Ly

0
T (x,y,0)2dxdy, (11)

subject to

∂tT = ∂xxT +∂yyT − vx∂xT − vy∂yT

+ Se−1/T −λT, (12)
∂tS = −βSe−1/T , T > 0, (13)

where the measurement operator for each sensor i is given
by

yi(t) = ψ(ȳi
s(t))ȳ

i
s(t), (14)

with ȳi
s(t) =

∫ Lx

0

∫ Ly

0
∆(x − xi

s,y − yi
s)T (x,y, t)dxdy, and

where pair (xi
s,y

i
s) denotes the spatial coordinates of sensor

i in the reference frame. ∆ defines the measurement charac-
teristic of the sensor (this is the Dirac function in case of
measurement at a very specific point of the domain). ∆ is
here chosen as a Gaussian kernel that provides adjustable
local averaging of the temperature. Function ψ(.) represents

the confidence in measurement related to possible sensor dys-
functioning, which is decreasing when the local temperature
at the vicinity of the sensor increases, and is here defined by

ψ(y) =
1

1+ eK(y−Tf )
(15)

where Tf denotes the threshold temperature at which the
confidence value is equal to 0.5. When ψ(y) is equal to one,
measurement y is considered as fully reliable. When ψ(y)
is equal to zero, the measurement is not taken into account
at all. K > 0 is used to tune the measurement confidence
according to the sensor resistance to fire. In this paper, it is
supposed that the sensors are still operating after exposure
to the high temperature induced by the fire, that is a rather
strong assumption. A true (but more complex) failure model
should be considered in practice.

Fig 1 shows an example of ψ for K = 1 and Tf = 1.5:
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Fig. 1. Function ψ(y).

ym
i (t) is the measured data provided by sensor i. Finally

α represents a regularization coefficient.

B. Low-Discrepancy Sequence Deployment of the Sensors

The use of low-discrepancy sequences such as the ones
proposed by Halton, Sobol, Faure (see [6] for instance) to
generate learning sequences is investigated in this paper.

Such sequences have been proposed to solve the problem
of optimally choosing M samples xi in a hypercube C =
[0,1]n to ”minimize holes” in the sense of the best possible
approximation of integrals:

| 1
M

M

∑
i=1

f (xi)−
∫

C
f (x)dx| ≤V ( f )

log(M)n

M
(16)

V ( f ) is the variation of f in the sense of Hardy & Krause.
This approach usually provides better approximation re-

sults than other approaches based on random sequences for
n≤ 20.

Fig. 6 shows the distribution of 25 sensors on a square
domain according to Sobol’s sequence.



C. Necessary Conditions for Optimality

In order to derive the first-order necessary conditions
for optimality fo this problem, a Lagrangian formulation is
introduced:

L(T,S, p1, p2) =
1
2

Ns

∑
i=1

∫ Tf

0
(yi(t)− ym

i (t))
2dt

+
α

2

∫ Lx

0

∫ Ly

0
T (x,y,0)2dxdy

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
p1(x,y, t)[∂tT −∂xxT −∂yyT

+vx∂xT + vy∂yT −Se−1/T +λT ]dxdydt

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
p2(x,y, t)[∂tS+βSe−1/T ]dxdydt (17)

with boundary and initial conditions

∂xT (x,y, t) = ∂yT (x,y, t) = 0,∀(x,y) ∈ ∂D, (18)
T (x,y,0) = T0(x,y), S(x,y,0) = S0(x,y), ∀(x,y) in D, (19)

where p1(x,y, t) and p2(x,y, t) are the so-called Lagrange
multipliers also called adjoint variables.

If a solution to this optimization problem exists and
provided that this solution has sufficient regularity, then the
optimality conditions can be derived as follows:

∂tT = ∂xxT +∂yyT − vx∂xT − vy∂yT + S̃e−1/T −λT, (20)
∂xT (x,y, t) = ∂yT (x,y, t) = 0,∀(x,y) ∈ ∂D, (21)

∂tS =−βSe−1/T , (22)
S(x,y,0) = S0(x,y), ∀(x,y) in D, (23)

Ns

∑
i=1

∆(x− xi
s,y− yi

s)[ȳ
i
s− ym

i ]

×[ψ(ȳi
s)+

dψ

dy
(ȳi

s)ȳ
i
s]

−∂t p1−∂xx p1−∂yy p1− p1
S

T 2 e−1/T

+λ p1 + p2
βS
T 2 e−1/T = 0, (24)

vx p1(0,y, t)+∂x p1(0,y, t) = 0,
vx p1(Lx,y, t)+∂x p1(Lx,y, t) = 0,∀y ∈ [0,Ly],

vy p1(x,0, t)+∂y p1(x,0, t) = 0,
vy p1(x,Ly, t)+∂y p1(x,Ly, t) = 0,∀x ∈ [0,Lx],

∀t ∈ [0,Tf ], (25)

−∂t p2− p1e−1/T + p2βe−1/T = 0, (26)
p1(x,y,Tf ) = p2(x,y,Tf ) = 0, ∀(x,y) ∈ D, ∀t ∈ [0,Tf ], (27)

αT (x,y,0)− p1(x,y,0) = 0,∀(x,y) ∈ D. (28)

(20)-(23) define the dynamics of the estimated system. (24)-
(27) represent the adjoint system well defined by boundary
and terminal time conditions. (28) is the fact that the gradient
of the cost function of optimization problem (11) has to be
equal to zero at optimality.

The details of the derivation are given in the appendix.

IV. NUMERICAL METHOD

In order to solve necessary conditions (20)-(27), many
methods, such as the quasi-Newton method [8], can be used.
All the available descent methods rely on the computation
of the gradient of the cost function.

To compute the gradient of cost function (11) given by
(28), the discretization of both T (x,y, t), S(x,y, t), p1(x,y, t),
and p2(x,y, t) is performed on a space-time grid (xi,y j, tl).
The procedure is the following:

Suppose that an estimate of initial temperature distribu-
tion T (xi,y j,0) on spatial grid (xi,y j), obtained at a given
iteration:

• Solve PDEs (20) and (22) with conditions (21) and (23)
by using finite-difference approximations of the spatial
partial differential operators (using the so-called method
of lines) on spatial grid (xi,y j), with a time integration
performed forward in time on the time grid (tl).

• Solve adjoint PDEs (24) and (26) with conditions (25)
and (27) by using the same finite-difference approxi-
mations on spatial grid (xi,y j), with a time integration
performed backward in time, since only terminal time
conditions given by (27) are available.

• Compute the gradient αT (xi,y j,0)− p1(xi,y j,0) on spa-
tial grid (xi,y j).

Here a simple gradient descent method with a randomly cho-
sen initial estimate of the temperature has been successfully
used to get the results presented in what follows.

V. NUMERICAL RESULTS

Throughout this section, the physical coefficients val-
ues were the ones given in [4]: A = 1.8793× 102(K/s)
B = 5.5849 × 104(K), C = 4.8372 × 10−5(1/K), CS =
1.625−1(1/s), k = 2.136× 10−1(m2/sK3), ambient temper-
ature Ta = 300(K), and ignition temperature Tc = 1200(K).
The wind velocities are assumed to be equal to zero. All
the simulations were performed using nondimensionnal rep-
resentation (8)-(9).

A. Simulation of the Wildfire Model

All the simulations were carried out in domain D =
[0,Lx]× [0,Ly], with Lx = Ly = 650, which correspond to
a square of 500 meters on each side, that may constitute
an elementary cell of a larger field to be monitored. The fire
model was implemented by central finite differences in space.
The spatial grid size was 80× 80. The initial temperature
T0(x,y) on the domain was given by a gaussian distribution

of the form T0(x,y) = Tce−
‖(x,y)−(xi ,yi)‖2

2σ2 + Ta, where (xi =
400,yi = 350) denote the coordinates of the ignition location
in the reference frame. The distribution of fuel is uniform
except for a fuel break (a road or a river) which was
introduced as depicted in Fig. 2. Fig. 3 shows the initial
gaussian distribution of the temperature. Fig. 4 and Fig. 5
present the fuel consumption and the temperature distribution
at t = 670.
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Fig. 2. Fire ignition location with a fuel break.
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Fig. 3. Initial temperature distribution.
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Fig. 4. Fuel consumption (in dark blue) at t = 670.
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Fig. 5. Temperature distribution at t = 670.

B. Estimation of Fire Ignition

In this section, the use of 25 ground temperature sensors
deployed according to a Sobol’s low discrepancy sequence
is investigated. Fig. 6 shows the corresponding location of
the sensors in the domain.

Estimation horizon Tf was equal to 670 (corresponding to
1990s). Regularization coefficient α was equal to 1. Confi-
dence function φ was defined with K = 1 and failure temper-
ature Tf = 1.5 (corresponding to 1800K). The gradient de-
scent algorithm was initialized using a randomly distributed
temperature. Fig. 7 shows the estimated initial temperature
distribution of the real initial temperature distribution given
in Fig.3. The algorithm provides a fairly accurate estimate
of the location with relative quadratic error less than. Fig.
8 shows the estimated temperature distribution at t = 670
after the fire ignition. A quite accurate estimate of the heat
wave can be obtained (compare with the reference solution
given in Fig. 5). The average CPU time needed to solve the
estimation problem is 50s on a computer equipped with a
Intel Core I7. The choice of the regularization coefficient
appears to be quite critical to get good results. A too high
value of this coefficient leads to the algorithm being stuck
at an inappropriate local minimum, while a too small value
prevents the gradient method to properly converge. The
results also are quite sensitive to the algorithm initialization
what seems confirm the ill-posedness of this fire estimation
problem.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper a preliminary investigation of the use of
an infinite-dimensional optimal estimation approach using
low cost temperature sensors deployed according a low-
discrepancy sequence has been carried out. The simulations
results demonstrate promising results of the proposed ap-
proach. Further work needs to be done to address theoretical
issues such as regularity of the solution and differentiabil-
ity of the objective function, and to analyze whether the



0 100 200 300 400 500 600

x

0

100

200

300

400

500

600

y
Sensor locations and fire ignition location

Fig. 6. 25-Sensor location and fire ignition location (red cross).

0 100 200 300 400 500 600

x

0

100

200

300

400

500

600

y

Estimated Initial Temperature

Fig. 7. Estimated fire ignition.
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Fig. 8. Estimated temperature distribution at t = 670.

heuristic placement of sensors according to a low discrepancy
sequence has real optimality properties in terms of observ-
ability or whether it is better to use a optimal sensor location
approach similar to the one proposed in [9] for instance.

VII. APPENDIX

In order to derive necessary conditions for optimality (20)-
(28), and according to the fundamental theorem of Calculus
of Variations, the Gateaux derivative of cost function of prob-
lem (11) with respect to initial temperature T0 in direction
δT0 has to be equal to zero

lim
ε→0

J(T0 + εδT0)− J(T0)

ε
= 0, (29)

or, equivalently, the derivatives of Lagrangian (17) with
respect to T and S in directions δT and δS, respectively,
have to be equal to zero. The computation of these directional
derivatives will lead to the derivation of necessary conditions
(20)-(28).

Five integrations by parts of the Lagrangian function
have to be performed (one with respect to time, and two
consecutive ones with respect to each state coordinate x and
y), leading, after easy but quite lengthy calculations, to the
following expression of the Lagrangian:

L(T,S, p1, p2) =
1
2

Ns

∑
i=1

∫ Tf

0
(yi(t)− ym

i (t))
2dt

+
α

2

∫ Lx

0

∫ Ly

0
T (x,y,0)2dxdy

+
∫ Lx

0

∫ Ly

0
[p1(x,y,Tf )T (x,y,Tf )

−p1(x,y,0)T (x,y,0)]dxdy

+
∫ Tf

0

∫ Ly

0
[(vx p1(Lx,y, t)+∂x p1(Lx,y, t))T (Lx,y, t)

−(vx p1(0,y, t)+∂x p1(0,y, t))T (0,y, t)]dydt

+
∫ Tf

0

∫ Lx

0
[(vy p1(x,Ly, t)+∂y p1(x,Ly, t))T (x,Ly, t)

−(vy p1(x,0, t)+∂y p1(x,0, t))T (x,0, t)]dxdt

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
[(−∂t p1− vx∂x p1− vy∂y p1

−∂xx p1−∂yy p1)T − p1Se−1/T + p1λT ]dxdydt

+
∫ Lx

0

∫ Ly

0
[p2(x,y,Tf )S(x,y,Tf )

−p2(x,y,0)T (x,y,0)]dxdy

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
[−∂t p2S+ p2βSe−1/T ]dxdydt (30)

The directional derivatives of Lagrangian (30) with respect
to T and S in directions δT (x,y, t), δT (x,y,0), δT (x,y,Tf ),
δT (0,y, t), δT (Lx,y, t), δT (x,0, t), δT (x,Ly, t), δS(x,y, t),
and δS(x,y,Tf ) are now computed and set equal to zero:



• Derivative in direction δT (x,y, t):

Ns

∑
i=1

∫ Tf

0

∫ Lx

0

∫ Ly

0
∆(x− xi

s,y− yi
s)[ȳ

i
s− ym

i ]

×[ψ(ȳi
s)+

dψ

dy
(ȳi

s)ȳ
i
s]δT dxdydt

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
[(−∂t p1− vx∂x p1− vy∂y p1

−∂xx p1−∂yy p1)δT − p1(δSe−1/T +
S

T 2 e−1/T
δT )

+p1λδT ]dxdydt

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
p2

βS
T 2 e−1/T

δT dxdydt = 0,

∀δT (x,y, t), (31)

which leads to first adjoint PDE (24) by collecting all
the terms under the integrals.

• Derivative in direction δT (x,y,0):∫ Lx

0

∫ Ly

0
[αT (x,y, t)− p1(x,y,0]δT (x,y,0)dxdy = 0,

∀δT (x,y,0), (32)

which leads to condition (28) and gives the expression
of the gradient of the cost function.

• Derivative in direction δT (x,y,Tf ):∫ Lx

0

∫ Ly

0
p1(x,y,Tf )δT (x,y,Tf )dxdy = 0,

∀δT (x,y,Tf ), (33)

which leads to terminal time condition p1(x,y,Tf ) = 0
in (27).

• Derivative in direction δT (0,y, t):

−
∫ Tf

0

∫ Ly

0
(vx p1(0,y, t)+∂x p1(0,y, t))

×δT (0,y, t)dydt = 0,∀δT (0,y, t), (34)

leading to adjoint boundary condition vx p1(0,y, t) +
∂x p1(0,y, t) = 0 in (25).

• Derivative in direction δT (Lx,y, t):∫ Tf

0

∫ Ly

0
(vx p1(Lx,y, t)+∂x p1(Lx,y, t))

×δT (Lx,y, t)dydt = 0,∀δT (Lx,y, t), (35)

leading to adjoint boundary condition vx p1(Lx,y, t) +
∂x p1(Lx,y, t) = 0 in (25).

• Derivative in direction δT (x,0, t):

−
∫ Tf

0

∫ Lx

0
(vy p1(x,0, t)+∂y p1(x,0, t))

×δT (x,0, t)dxdt = 0,∀δT (x,0, t), (36)

leading to adjoint boundary condition vy p1(x,0, t) +
∂y p1(x,0, t) = 0 in (25).

• Derivative in direction δT (x,Ly, t):∫ Tf

0

∫ Lx

0
(vy p1(x,Ly, t)+∂y p1(x,Ly, t))

×δT (x,Ly, t)dxdt = 0,∀δT (x,Ly, t), (37)

leading to adjoint boundary condition vy p1(x,Ly, t) +
∂y p1(x,Ly, t) = 0 in (25).

• Derivative in direction δS(x,y, t):

−
∫ Tf

0

∫ Lx

0

∫ Ly

0
p1e−1/T

δSdxdydt

+
∫ Tf

0

∫ Lx

0

∫ Ly

0
[−∂t p2 + p2βe−1/T ]δSdxdydt = 0,

∀δS(x,y, t), (38)

leading to second adjoint PDE (26), after collecting the
terms under the integrals.

• Derivative in direction δT (x,y,Tf ):∫ Lx

0

∫ Ly

0
p2(x,y,Tf )δS(x,y,Tf )dxdy = 0,

∀δS(x,y,Tf ), (39)

which leads to terminal time condition p2(x,y,Tf ) = 0
in (27).

Finally system PDEs (20) and (22) governing the wildfire
dynamics with their boundary and initial conditions (21) and
(23) complete the set of first-order necessary conditions for
optimality. The initial distribution of temperature T (x,y,0),
which is the main optimization variable, is obtained from the
stationary condition of the gradient of the cost function (28).
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