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ON PROFITABILITY OF TRAILING MINING

CYRIL GRUNSPAN AND RICARDO PEREZ-MARCO

Abstract. We compute the revenue ratio of the Trail Stubborn mining strategy
in the Bitcoin network and compare its profitability to other block-withholding
strategies. We use for this martingale techniques and a classical analysis of the
hiker problem. In this strategy the attacker could find himself mining in a shorter
fork, but we prove that for some parameter values it is still profitable to not give
up. This confirms previous numerical studies.

1. Introduction

In our previous article [4] we gave a rigorous foundation for the profitability of
alternative mining strategies in the Bitcoin network [7]. As for games with repetition,
it depends on the proper analysis of the revenue and the duration over attack cycles.
More precisely, the expected revenue E[R] and expected duration E[τ ] over an attack
cycle give the “Revenue Ratio”

Γ =
E[R]

E[τ ]

This is the correct benchmark for the profitability of the strategy.

This analysis was also carried out previously by the authors in [4] to the “Selfish
Mining” (SM) strategy from [1] and in [5] to “Lead-Stubborn Mining” (LSM) and
“Equal Fork Stubborn Mining” (EFSM) strategies from [8]. In these articles we
found for these strategies the exact mathematical formula for the revenue ratios and
we compared its profitability in parameter space.

The main technique for these derivations is the application of martingale techniques
introduced in [4] that yield, using Doob’s Stopping Time Theorem, the expected du-
ration of the attack cycles. We assume in the computation of the Revenue Ratio
that there is no difficulty adjustment inside the attack cycles, or that E[τ ] is much
shorter than the period of difficulty adjustment so that its effect in the cycles can be
neglected. But, as we proved in [4], the effect of these attacks is to slow down the
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network, and it is only after a difficulty adjustment that these “block withholding
strategies” can become profitable. Then the profitability can also be read on the ap-
parent hashrate. So these rogue strategies are an exploit on the difficulty adjustment
formula and we gave in [4] an improvement proposal of the Bitcoin protocol to fix the
difficulty adjustment formula.

In this article we apply again these new techniques to another block withholding
strategy: The “Trail-Stubborn Mining” strategy from [8]. In this strategy, the block
withholder miner does not give up when the honest chain takes over some block
advantage, but instead keeps mining on top of his secret chain and only gives up if
the advantage of the honest chain reaches A ≥ 1 blocks. We talk about “A-Trail-
Stubborn Mining” strategy or TSMA in short.

We denote by b > 0 be the block reward, and τ0 the average inter-block validation
time for the total network (around 10 minutes for the Bitcoin network). We denote
by q (resp. p) the relative hashing power of the attacker (resp. honest miners) and
λ = q/p < 1. Let γ be the fraction of the honest network that the attacker attracts to
mine on top of his fork. For a miner that after a difficulty adjustment has a Revenue
Ratio Γ̃ we define his apparent hashrate q̃ by

q̃ =
Γ̃ · τ0
b

.

The apparent hashrate of a miner can also be defined after a difficulty adjustment as
the average proportion of blocks mined by the miner in the official blockchain. Our
main Theorem is:

Theorem 1 (A-Trail-Stubborn mining). Let A ≥ 1. The revenue ratio of the “A-
Trail-Stubborn mining” strategy is

Γ =

q + (1−γ)pq(p−q)
(p+pq−q2)[A+1]

((
[A− 1] + 1

p
PA(λ)
[A+1]

)
λ2 − 2√

1−4(1−γ)pq+p−q

)
1 + (1−γ)pq

p+pq−q2 (A+ 1)
(

[2]
[A+1]

− 2
A+1

) b

τ0

where [n] = 1−λn
1−λ for n ∈ N, and PA(λ) = 1−AλA−1+AλA+1−λ2A

(1−λ)3 .

After a difficulty adjustment, the apparent hashrate of the stubborn miner is

q̃ =

q + (1−γ)pq(p−q)
(p+pq−q2)[A+1]

((
[A− 1] + 1

p
PA(λ)
[A+1]

)
λ2 − 2√

1−4(1−γ)pq+p−q

)
p+pq−q
p+pq−q2 + (1−γ)pq

p+pq−q2 (A+ λ)
(

1
[A+1]

− 1
A+λ

)
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The polynomial 1 − AXA−1 + AXA+1 − X2A vanish at X = 1, as well as its two
first derivatives, hence PA(X) is a polynomial in Z[X]. Making A = 1 in Theorem
1 we get Theorem 1 of [5] as a particular case. Indeed, we have TSM1 = LSM, i.e.
1-Trail-Stubborn Mining and Lead-Stubborn Mining strategies are the same. Before
proving Theorem 1 we need to study a classical refinement of the Gambler’s Ruin
Problem: The hiker problem.

2. The hiker problem.

We consider a hiker on [0,M ] with M ∈ N, M ≥ 2. His position is denoted by the
random process (Xn)n∈N. The transition probability from i to j are

P (i, j) = P[Xn+1 = j|Xn = i] = p1i=j−1 + q 1i=j+1

for (i, j) ∈ [1,M − 1]× [0,M ]. It is independent of n ∈ N. We make the assumption
that 0 and M are absorbing boundaries: P (0, 0) = P (M,M) = 1. The problem is
studied in [2] where it is proved that with probability 1 the hiker exits [1,M −1]. We
need more precise information.

Definition 2.1. For k ∈ {0,M} and m ∈ [0,M ], let νm,k ∈ N∪ {∞} be the stopping
time defined by

νm,k = inf{n; Xn = k|X0 = m}

We denote νm = νm,0 ∧ νm,M , i.e. νm is the stopping time for exiting [1,M − 1]
starting from m. From [2], we have νm < +∞ almost surely. The condition νm = νm,0
is equivalent to the realization of the event “the hiker exits [1,M − 1] at 1”.

Theorem 2.2. We have:

E[νm] =
M

p− q
·
(

1− λm

1− λM
− m

M

)
P[νm = νm,0] =

λm − λM

1− λM

E[νm|νm = νm,0] =
mλm − (2M −m)λM + (2M −m)λM+m −mλ2M

p(1− λ)(λm − λM)(1− λM)

The first two equations are well known classical results that can be found in [2]
p. 314 and p.317. The last equation is from [10] and is not so classical and, to be
self-contained, we give another proof in Appendix B.

Corollary 2.3. We have lim
M→∞

E[νm|νm = νm,0] = m
p−q .

Definition 2.4. We denote by L(n) (resp. R(n)) the number of steps to the left
(resp. right) realized by the hiker between t = 0 and t = n.
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In other terms, L(0) = R(0) = 0 and for n ≤ νm,

L(n) = L(n− 1) + 1X(n)=X(n−1)−1

R(n) = R(n− 1) + 1X(n)=X(n−1)+1

Note that L(n) +R(n) = n for n ≤ νm.

Corollary 2.5. We have

E[L(νm)|νm = νm,0] =
m

2
+
mλm − (2M −m)λM + (2M −m)λM+m −mλ2M

2p(1− λ)(λm − λM)(1− λM)

E[R(νm)|νm = νm,M ] =
M −m

2
+
mλm − (2M −m)λM + (2M −m)λM+m −mλ2M

2p(1− λ)(λm − λM)(1− λM)

Proof. If the hiker exits [1,M−1] at 1 (resp. M−1), then L(νm) = R(νm)+m (resp.
R(νm) = L(νm) +M −m). So we have

E[L(νm)|νm = νm,0] =
m

2
+

E[νm|νm = νm,0]

2

E[L(νm)|νm = νm,M ] =
M −m

2
+

E[νm|νm = νm,0]

2
and the result follows from Theorem 2.2. �

In particular, for m = 2 this gives:

(1) E[L(ν2)|ν2 = ν2,0] = 1 +
1

p
.
1− (M − 1)λM−2 + (M − 1)λM − λ2M−2

(1− λ)(1− λM−2)(1− λM)

3. Expected duration of the Trail-Stubborn Mining Strategy

3.1. Notations and previous results. We set, α = p
τ0
, α′ = q

τ0
and λ = q

p
< 1.

We note N and N ′ the two independent Poisson processes with parameters α and
α′ representing the number of blocks validated by the honest miners and the rogue
miner. We denote by T1, T2, . . . (resp. T ′1, T

′
2, . . .) the inter-block validation time for

the honest miners (resp. attackers).

We use some notations from [4]. In particular, for the stopping times:

(2) τ = inf{t ≥ T1; N(t) = N ′(t) + 1T1<T ′1}
and

(3) τLSM = τ + (TN(τ)+1 ∧ T ′N(τ)+1) · 1T ′1≤T1
We proved in [4] that
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(4) E[τ ] =
p

p− q
τ0, E[τLSM ] =

(
p

p− q
+ q

)
τ0, and E[N ′(τ)] = α′E[τ ] =

pq

p− q

More precisely, for n ≥ 1, we have

(5) P[N ′(τ) = n] = Cn−1(pq)
n

where Cn = 1
n+1

(
2n
n

)
denotes the n-th Catalan number, whose generating series is

C(x) = 1−
√
1−4x
2x

.

At the end of an attack cycle, the revenue of a miner following the Lead Stubborn
Mining strategy is denoted by R(τLSM).

3.2. Description of the A-Trail-Stubborn mining strategy. At the beginning
of an attack cycle both, the rogue miner and the honest miners start mining on top
of the same common block. Then, either the first block is discovered by the honest
miners, and the attack cycle ends, or the attacker is the first one validating a block.
Then, he keeps mining secretly until he is being caught up by the honest miners.
During this period, each time the honest miners publish a new block, the rogue miner
broadcasts the part of his fork sharing the same height. Once he has been caught up,
there is a “decisive competition” to decide which fork prevails. In this competition,
the rogue miner does not withold his block. There are two cases depending on who
the winner is. Either the new block is mined on top of a block validated by the
rogue miner (by himself or by a fraction γ of the honest miners) and then the attack
cycle ends immediatly. Otherwise, the attacker has a fork which is one block behind
the official blockchain. We call this event Σ. His delay is defined as the difference
between the height of the official blockchain and his fork. Then, he keeps mining until
his delay exceeds a fixed threeshold A ≥ 1, or ends up leading the official blockchain
by one block. Then, in both cases, the cycle attack ends. The trailing mining strategy
is a repetition of these attack cycles.

3.3. Stopping time. We denote by ξ the stopping time of an attack cycle corre-
sponding to the Trail-Stubborn mining strategy (TSM). At the end of an attack
cycle the revenue of a rogue miner following TSM is denoted by R(ξ). Note that
when T ′1 < T1, there is a “decisive round” which starts at τ and ends at τLSM . So,
τLSM ≤ ξ and from 0 to τLSM the two strategies τLSM and ξ are the same.

3.4. Blocks of the rogue miner in the official blockchain. For t > 0, we denote
by Z(t) the number of blocks mined by a miner following the Trail-Stubborn Mining
strategy at t-time and present in the official blockchain. We have that t 7→ Z(t) is
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non-decreasing. Before t ≤ τ , the two strategies “Trail-Stubborn Mining Strategy”
and“Lead Stubborn Mining Strategy” are the same. So, by [5] we know that

(6) E[Z(τ)|N ′(τ) = n] = n− 1− (1− γ)n

γ

Lemma 3.1. The following conditions are equivalent to Σ:

(i) τLSM < ξ;
(ii) R(τLSM) < N ′(τLSM)b;

(iii) (T ′1 < T1)∧ (TN(τ)+1 < T ′N(τ)+1) ∧ (the (N(τ) + 1)-th honest block is found on

top of a block mined by a honest miner).

If one of these conditions is satisfied then N ′(τLSM) = N ′(τ), N(τLSM) = N(τ) + 1
and Z(τLSM) = Z(τ). We have that Σ is τLSM -measurable and P[Σ] = (1− γ)pq.

Proof. If (i) holds then T ′1 < T1 otherwise τLSM = τ = ξ = T1. Moreover, at
τLSM , at least one block mined by the rogue miner has not been recognized by the
official blockchain (otherwise, the cycle ends at τLSM and ξ = τLSM). So, R(τLSM) <
N ′(τLSM)b. If (ii) is true then 0 < N ′(τLSM). So, the miner has at least mined a
block during the attack cycle. So, T ′1 < T1 (otherwise as before τLSM = τ = ξ = T1
and N ′(τLSM) = 0)). Moreover, the rogue miner has lost the “decisive competition”.
Otherwise, we have R(τLSM) = N ′(τLSM)b. Also, by the same argument, the block
found by the honest miners during this round cannot have been validated on top of a
block mined by the rogue miner. So, we get (iii). Finally, if (iii) holds, then the rogue
miner has lost the “decisive competition”. Hence, τLSM < ξ by definition of an attack
cycle and so (i), (ii) and (iii) are equivalent. Also, if one of these conditions is satisfied,
then the rogue miner did not mine a block during the period [τ, τLSM ] whereas the
honest miner has found exactly one. So, N ′(τLSM) = N ′(τ) and N(τLSM) = N(τ)+1.
Moreover the block found by the honest miners has been found on top of an honest
block by (iii). So we have, Z(τLSM) = Z(τ). By (ii), Σ is τLSM -measurable. Moreover,
the condition {T ′1 < T1} occurs with probability q and the two last conditions of (iii)
occur with probability (1− γ)p. Therefore, we have P[Σ] = (1− γ)pq. �

3.5. Trail-mining. We consider that after a possible second phase of the attack cycle
(after τLSM), the rogue miner following TSMA will give up if his delay exceeds A with
A > 1. Note that at the beginning of this second phase, the delay of the miner is
1. So, TSM1 = LSM. Note also that in order to win, it is not enough for the miner
to catch-up the official blockchain. He needs to lead it by 1 block. So, his delay is
in between −1 and A. Therefore, he behaves as the hiker studied in Section 2 with
delay Xn − 1 and M = A+ 1.
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Proposition 3.2. We have
ξ = τLSM + σ.1Σ

where σ is the stopping time defined by

σ = inf{t ∈ R∗+; (Ñ ′(t) = Ñ(t) + 2) ∨ (Ñ(t) = Ñ ′(t) + A− 1)}

with Ñ(t) = N(t+ τLSM)−N(τLSM) and Ñ ′(t) = N ′(t+ τLSM)−N ′(τLSM).

In particular, we have that Ñ and Ñ ′ are two independent Poisson processes with
respective parameters α and α′, and σ is independent with Σ.

Proof. The stopping time of the Trail-Stubborn Mining Strategy is the same as the
stopping time of the Lead Stubborn Mining strategy studied in [5] except when the
stubborn miner has been first mining a block, then has been caught-up by the honest
miners, and at has lost the final “competition” (when a fraction (1−γ)p of the honest
miners finds a new block on top of a honest block). We have called Σ this event. If
it occurs, then the stubborn miner keeps on mining until he catches up the honest
miners or his delay becomes too big. In this case, he needs to catch-up the honest
miners and also lead the official blockchain by 1. The start time of this possible second
round is τLSM with N ′(τLSM) = N(τLSM) − 1 and the miner will stop at τLSM + t
with N ′(t+ τLSM) = N(t+ τLSM) + 1 or N(t+ τLSM) = N ′(t+ τLSM) +A. The first
equality is equivalent to N ′(t+ τLSM)−N ′(τLSM) = N(t+ τLSM)−N(τLSM) + 2 and
the second is equivalent to N(t+τLSM)−N(τLSM) = N ′(t+τLSM)−N ′(τLSM)+A−1.
Moreover, by the strong Markov property σ is independent with τLSM . So, by Lemma
3.1, it is also independent with Σ. �

Note that the condition (Ñ ′(σ) = Ñ(σ)+2)∨ (Ñ(σ) = Ñ ′(σ)+A−1) is equivalent
to X(σ) ∈ {0, A + 1} with X(t) = N(t) − N ′(t) + 2. So we have that the miner is
a hiker on [0,M ] as studied in section 2 starting from X0 = 2 with M = A + 1. In
Appendix A we prove the following Proposition:

Proposition 3.3. We have

E[σ] =
A+ 1

p− q

(
1− λ2

1− λA+1
− 2

A+ 1

)
τ0

Proposition 3.4. We have

E[ξ]

τ0
=

p

p− q
+ q + (A+ 1) · (1− γ)pq

p− q
·
(

1− λ2

1− λA+1
− 2

A+ 1

)
Proof. By Proposition 3.2, we have

E[ξ] = E[τLSM ] + P[Σ] · E[σ]

So, we get the result using (4), Lemma 3.1 and Proposition 3.3. �
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4. Revenue ratio of the Trail-Stubborn Mining Strategy

Proposition 4.1. We have:

R(ξ) = R(τLSM)·1ξ=τLSM
+(N ′(τ)+L(ν2))b·1(ξ>τLSM )∧(ν2=ν2,0)+Z(τ)b·1(ξ>τLSM )∧(ν2=ν2,A+1)

In this Proposition L(ν2) is the number of blocks validated by the rogue miner
during the second phase of the strategy. The event (ξ > τLSM) ∧ (ν2 = ν2,0) (resp.
(ξ > τLSM) ∧ (ν2 = ν2,A+1)) means that the cycle is made of two distinct phases: in
the first one the rogue miner looses the first phase of the attack, and in the second
one he wins (resp. looses) the second phase.

Proof. IfR(τLSM) < N ′(τLSM)b, then the miner tries to catch-up the official blockchain.
He is in the position of a hiker starting from X0 = 2 and winning when ν2 = ν2,0.
Each move to the left (towards 0) corresponds to a new block mined by the stubborn
miner. So, if he succeeds (case ν2 = ν2,0), then he earns a reward (N ′(τLSM)+L(ν2))b.
If he fails (case ν2 = ν2,A+1) then he earns only Z(τLSM)b and the attack cycle ends.
Otherwise, the strategy ends at τLSM and R(ξ) = R(τLSM). The result then follows
from Lemma 3.1. �

Now we compute the expected revenue of the A-Trail-Stubborn Mining Strategy
in an attack cycle.

Proposition 4.2. We have

E[R(ξ)]

b
=

(
p+ pq − q2

p− q

)
q + (1− γ)pq ·

·

[(
1 +

1

p
· 1− AλA−1 + AλA+1 − λ2A

(1− λ)(1− λA−1)(1− λA+1)

)
λ2 − λA+1

1− λA+1
− 2p√

1− 4(1− γ)pq + p− q
1− λ2

1− λA+1

]

Proof. Consider the events, for n ∈ N, En = {N ′(τ) = n}, F = {R(τLSM) =
N ′(τLSM)b} and G = {ν2 = ν2,0}. From [4] and [5] we have

P[En] = p1n=0 + (pq)nCn−11n>0

P[G] =
λ2 − λA+1

1− λA+1

and for n > 0,

P[En ∩ F ] = P[En](q + γp)

Note also that

• If E0 occurs then R(ξ) = 0.
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• If En ∩F occurs (with n > 0) then R(ξ) = (n+ 1)b with probability q
q+γp

and

R(ξ) = nb with probability γp
q+γp

.

• If En ∩ F̄ ∩ Ḡ occurs then R(ξ) = Z(τ)b.
• If En ∩ F̄ ∩G occurs then R(ξ) = (n+ L(ν2))b.

So, by conditioning on E0, En∩F,En∩ F̄ ∩G,En∩ F̄ ∩ Ḡ and using (6) and Corollary
2.5 together with

∑
n>0 P[En] = 1 we have:

E[R(ξ)]

b
= 0 · P[E0] +

∑
n>0

((n+ 1)q + nγp)P[En]

+
∑
n>0

(
n− 1− (1− γ)n

γ

)
(1− γ)p

1− λ2

1− λA+1
P[En]

+
∑
n>0

(n+ E[L(ν2)|ν2 = ν2,0]) (1− γ)p
λ2 − λA+1

1− λA+1
P[En]

= E[N ′(τ)] +
(1− γ)p

γ

1− λ2

1− λA+1
(1− γ)pq C((1− γ)pq)

+

(
q − (1− γ)p

γ

1− λ2

1− λA+1
+ (1− γ)pE[L(ν2)|ν2 = ν2,0]

λ2 − λA+1

1− λA+1

)
(1− P[E0])

=

(
p

p− q
+ q

)
q − (1− γ)pq

1− λ2

1− λA+1

[1− (1− γ)pC((1− γ)pq)]

γ

+ (1− γ)pqE[L(ν2)|ν2 = ν2,0]
λ2 − λA+1

1− λA+1

Moreover for q > 0, we have

1− (1− γ)pC((1− γ)pq) = 1−
1−

√
1− 4(1− γ)pq

2q

=

√
1− 4(1− γ)pq − (p− q)

2q

=
1− 4pq + 4γpq − (p2 − 2pq + q2)

2q
[√

1− 4(1− γ)pq + p− q
]

=
2pγ√

1− 4(1− γ)pq + p− q
and we get the result using (1). �

Proposition 3.4 and Proposition 4.2 give the revenue ratio of the strategy and the
first part of Theorem 1.
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5. Difficulty adjustment

Proposition 5.1. We have

E[N(ξ) ∨N ′(ξ)] =
pq + p− q
p− q

+
(1− γ)pq

p− q

(
(Ap+ q)

1− λ2

1− λA+1
− 1

)
Proof. We keep the same notations as in the proof of Proposition 4.2. Note that

• If E0 occurs, then N(ξ) ∨N ′(ξ) = 1.
• If En ∩ F occurs (n > 0), then N(ξ) ∨N ′(ξ) = n+ 1.
• If En ∩ F̄ ∩G occurs (n > 0), then N(ξ) ∨N ′(ξ) = n+ L(ν2).
• If En ∩ F̄ ∩ Ḡ occurs (n > 0), then N(ξ) ∨N ′(ξ) = N(ξ) = n+ 1 +R(ν2).

So, by conditioning as before and using Corollary 2.5, we get

E[N(ξ) ∨N ′(ξ)] = 1 · P[E0] +
∑
n>0

(n+ 1)(q + γp)P[En]

+
∑
n>0

(
n+ 1 +

1

2
E[ν2|ν2 = ν2,0]

)
(1− γ)pP[En]P[ν2 = ν2,0]

+
∑
n>0

(
n+ 1 +

A+ 1

2
− 1 +

1

2
E[ν2|ν2 = ν2,A+1]

)
(1− γ)pP[En]P[ν2 = ν2,A+1]

= P[E0] +
∑
n>0

(n+ 1)P[En] +
∑
n>0

(
A+ 1

2
− 1

)
(1− γ)pP[En]P[ν2 = ν2,A+1]

+
∑
n>0

(1− γ)pP[En]
E[ν2]

2

= E[N ′(τ)] + 1 + (1− γ)pq

((
A+ 1

2
− 1

)
P[ν2 = ν2,A+1] +

E[ν2]

2

)
=
pq + p− q
p− q

+
(1− γ)pq

p− q
((Ap+ q)P[ν2 = ν2,A+1]− 1)

�

Theorem 5.2. The parameter δ updating the difficulty of the A-trail stubborn mining
strategy is given by

δ =

p+pq−q2
p−q + (A+ 1) · (1−γ)pq

p−q ·
(

1−λ2
1−λA+1 − 2

A+1

)
pq+p−q
p−q + (1−γ)pq

p−q ((Ap+ q) 1−λ2
1−λA+1 − 1)

Proof. From [4] we have that δ = E[ξ]
E[N(ξ)∨N ′(ξ)] ·

1
τ0

. �
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5.1. Observations. We denote by q̃A the long-term apparent hashrate of the A-Trail-
Stubborn-mining strategy. As we have already observed, the lead-stubborn mining
strategy LSM is a particular case of the A-Trail-Stubborn-mining strategy with A = 1
(in tis case, there is no possible second phase of the attack after τLSM). We note that
Theorem 1 yields one of the results of [5]: if we choose A = 1 in Theorem 1, we
get Theorem 1 of [5]. In Figure 1 below, we compare q̃LSM (the long-term apparent
hashrate of the strategy LSM) with Max{q̃A ; A ≥ 2}. Depending on (q, γ), this
shows when a second phase of the attack increases the efficiency of the strategy LSM.
In general, when γ is small, TSM is an amelioration of LSM.

Figure 1. LSM vs A-Trail-Stubborn Mining strategy for A ≥ 2

For γ greater than 20%, TSM with A = 2 dominates all other trailing strategies
whatever q is. See Figure 2.

Also, if γ = 0, then

q̃TSM =

(
p+pq−q2
p−q

)
q + pq

[(
1 + 1

p
· 1−AλA−1+AλA+1−λ2A
(1−λ)(1−λA−1)(1−λA+1)

)
λ2−λA+1

1−λA+1 − p
p−q

1−λ2
1−λA+1

]
1 + pq

p−q

(
(Ap+ q) 1−λ2

1−λA+1

)
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On the other hand, when γ = 0, the apparent hashrate after a difficulty adjustment

for the selfish mining strategy is q̃SM = pq2+(p−q)(q+pq2−p2q)
p2q+p−q . It turns out that for

γ = 0,

lim
q→ 1

2

q̃TSM = 1− 1

A+ 1
< 1 = lim

q→ 1
2

q̃SM

Hence, when q → 1
2

and γ � 1, SM dominates all TSM strategies.

Figure 2. A-Trail-Stubborn Mining strategy for A = 2, 3, 4, 5, 6, 7
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6. Mixed strategies.

6.1. Weight of a mining strategy. We consider a miner mining according to a
strategy τ .

Definition 6.1. The weight of a mining strategy is the average number of official
blocks mined during an attack cycle. It is denoted by the greek letter µ.

Note that if the strategy leads to a difficulty adjustment D, then we have: µ = E[τ ]
τ0D

.

6.2. Apparent hashrate of a mixed strategy. We consider now a miner imple-
menting a mixed strategy. He starts mining according to strategy 1, then at the end
of an attack cycle, he decides to follow another strategy 2, and so on until he comes
back to strategy 1 after implementing n of different strategies. Thus the attack cycle
is a given pattern of attack cycles of different strategies.

We denote by Γ1,Γ2, . . . , R1, R2, . . . τ1, τ2, . . . Γ̃1, Γ̃2, . . . D1, D2 . . . µ1, µ2, . . . the rev-
enue ratio, revenue, duration time, long-term apparent hashrate, difficulty adjustment
and weight over an attack cycle of strategy 1, 2, . . .. We denote by Γ, R, τ, Γ̃, D and
µ, the revenue ratio, revenue, duration time, long-term apparent hashrate, difficulty
adjustment and weight after an attack cycle of the mixed strategy.

Theorem 6.2. We have that (D, Γ̃) is barycenter of (D1, Γ̃1), (D2, Γ̃2), . . . weighted
by µ1, µ2, . . ..

Proof. The number µ of official blocks mined after a whole attack cycle of the mixed
strategy is µ = µ1 + µ2 + . . . + µn. Moreover, E[τ ] = E[τ1] + E[τ2] + . . . + E[τn].
Therefore,

D =
n∑
i=0

E[τi]
τ0Di

µ
Di =

n∑
i=0

µi
µ
Di

Similarly, we have

Γ̃ = ΓD =
E[R]

E[τ ]
D =

∑n
i=1 E[Ri]

E[τ ]
D =

1

µ

n∑
i=1

E[Ri]

=
1

µ

n∑
i=1

ΓiE[τi] =
1

µ

n∑
i=1

Γ̃i
E[τi]

Di

=
1

µ

n∑
i=1

µiΓ̃i

�

Corollary 6.3. We have Γ̃ ≤ max(Γ̃1, Γ̃2, . . . ,Γn) with equality if and only if the
strategy is not mixed.

Therefore, there is no advantage in implementing mixed strategies.
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7. Comparison with other strategies

We compare Trailing-Stubborn Mining strategies with A = 2, 3, 4 and other strate-
gies HM, SM, LSM and EFSM studied in [5]. We observe that LSM is the dominant
strategy in a very thin region between SM, EFSM and TSM2. Below to the right
(but for γ not too small), the dominant strategy is TSM3. The strategy TSM4 is
dominant in a very little domain with q ≈ 0.5 and γ ≈ 5%. For γ less than 5% and
large q (but less than 0.5), LSM is the dominant strategy confirming the observation
at the end of section 5.

Figure 3. TSM with A = 2, 3, 4 vs other strategies (HM, SM, LSM, EFSM)
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Appendix A. Poisson processes and random walk.

Let N and N ′ be two independent Poisson processes with parameters α and α′

starting at 0: N(0) = N ′(0) = 0. For n,m, j,M ∈ N, with m ≤ j ≤M , let

S̄n = inf{t ∈ R+;N(t) +N ′(t) ≥ n}
Xn = (N −N ′)(S̄n)

τ ′ = inf{t ∈ R+;N ′(t)−N(t) = m}
τ ′′ = inf{t ∈ R+;N(t)−N ′(t) = M −m}
τ = τ ′ ∧ τ ′′

νm,j = inf{i ∈ N; Xi = j −m}
νm = νm,0 ∧ νm,M

Theorem A.1. We have that (Xn)n∈N is a random walk with a probability p = α
α+α′

(resp. q = α′

α+α′
) to move to the right (resp. left). Moreover, if τ0 = 1

α+α′
, we have

P[τ = τ ′] = P[νm = νm,0] =
λm − λM

1− λM
E[τ ]

τ0
= E[νm] =

M

p− q

(
1− λm

1− λM
− m

M

)
Proof. For n ∈ N, we have Xn+1 = Xn ± 1 and P[Xn+1 = Xn + 1] = p. So, (Xn)n∈N
is a random walk. The two events {τ = τ ′} and {νm = νm,0} are equal. So, they
have the same probability. The computation of P[νm = νm,0] can be found in several
places. See for example [2] p. 314. Using Doob’s theorem, we have proved in [4] that
N(τ), N ′(τ), τ ∈ L1, E[N(τ)] = αE[τ ] and E[N ′(τ)] = α′E[τ ]. We also have:

E[N ′(τ)] = E[N ′(τ)|τ = τ ′]P[τ = τ ′] + E[N ′(τ)|τ = τ ′′]P[τ = τ ′′]

= (m+ E[N(τ)|τ = τ ′])P[τ = τ ′] + (m−M + E[N(τ)|τ = τ ′′])P[τ = τ ′′]

= mP[τ = τ ′] + (m−M)P[τ = τ ′′] + E[N(τ)]

So, we get

(α− α′)E[τ ] = (M −m)P[τ = τ ′′]−mP[τ = τ ′]

Therefore,

E[τ ]

τ0
=

1

p− q
((M −m)P[τ = τ ′′]−mP[τ = τ ′]) =

M

p− q

(
P[τ = τ ′′]− m

M

)
and we get the result. See also [2] p. 317. �
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Appendix B. Proof of a result of F. Stern.

We prove the last equation of Theorem 2.2 that is a result of F. Stern (see [10]).

An auxiliary sequence. We study first the sequence (un)n≥0.

Definition B.1. Let (un)n≥0 be the sequence defined by induction by u0 = 1 and for
n ≥ 1,

un = λ
1− λn

1− λn+2
un−1 +

1

p

1− λn+1

1− λn+2

The computation of u1 and u2 gives

u0 + u1
2

=
1

1− pq
u1 + u2

2
=

1

1− 2pq

Let l be the solution to l = λl + 1
p
, that is l = 1

p−q > 1, and we have

l − un = λ
1− λn

1− λn+2
(l − un−1) +

2

p

λn+1

1− λn+2

≤ λ(l − un−1) +
2

p

λn+1

1− λ
Then, by induction, we have

0 ≤ l − un ≤ λn(l − u0) +
2n

p− q
λn+1

and therefore

lim
n→∞

un =
1

p− q

We have a closed-form formula for un and its partial sums.

Proposition B.2. For (m,n,M) ∈ N3 with 2 ≤M and 1 ≤ m ≤M − 1, we have :

un =
1− (2n+ 3)λn+1 + (2n+ 3)λn+2 − λ2n+3

p(1− λ)(1− λn+1)(1− λn+2)
(7)

M−2∑
i=M−1−m

ui =
mλm − (2M −m)λM + (2M −m)λM+m −mλ2M

p(1− λ)(λm − λM)(1− λM)
(8)

Proof. We have that the right hand side of (7) equals to 1 when n = 0 and satisfies
the induction from Definition B.1 when n ∈ N∗. Hence, by induction, we get (7) for
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all n. Therefore, equation (8) is true for m = 1 and any M ≥ 2. Then equation (8)
follows by induction on m using (7). �

Corollary B.3. Let M ∈ N with M > 2. We have

uM−3 + uM−2
2

=
1

p
· 1− (M − 1)λM−2 + (M − 1)λM − λ2M−2

(1− λ)(1− λM−2)(1− λM)

Proof of the last equation in Theorem 2.2.

Note that for any t ∈ N and i ∈ [0,M − 1]

P[νm = νm,0|Xt = i] = P[νi = νi,0] =
λi − λM

1− λM
is independent of t and m. Therefore, for any t ∈ N and i ∈ [1,M − 1],

P[(Xt+1 = i± 1)|(Xt = i) ∧ (νm = νm,0)] =
P[(Xt+1 = i± 1) ∧ (νm = νm,0)|Xt = i]

P[νm = νm,0|Xt = i]

= P[(Xt+1 = i± 1)|Xt = i] · P[νm = νm,0|Xt+1 = i± 1]

P[νm = νm,0|Xt = i]

is also independent of t and m. Let

P̃(i, i± 1) = P[(Xt+1 = i± 1)|(Xt = i) ∧ (νm = νm,0)]

More precisely, we have

(9) P̃(i, i+ 1) = p · λ
i+1 − λM

λi − λM
and

(10) P̃(i, i− 1) = q · λ
i−1 − λM

λi − λM

We recognize in P̃ the h-Doob transform of P with

h(i, j) =
λj − λM

λi − λM

i.e., P̃ (i, j) = P (i, j)h(i, j). We check that

(11) P̃(i, i+ 1) + P̃(i, i− 1) = 1

and

(12) P̃(M − 1,M − 2) = P̃(0, 0) = 1

The probability P̃ is the probability P twisted by the condition that the hiker exits
[1,M − 1] at 1. In particular, we have for all m ∈ [0,M ]

(13) E[νm|νm = νm,0] = Ẽ[νm,0] = Ẽ[νm]
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where Ẽ is the expectation taken for the probability P̃.

We define for i ∈ [0,M − 1],

vi,M = Ẽ[νi]

and for i6=0

(14) αi,M = vi,M − vi−1,M
Since v0,M = 0, we have

(15) vi,M = α1,M + . . .+ αi,M

All these quantities depend on M since νm = νm,0 ∧ νm,M . Note that by (12), we
have,

(16) αM−1,M = 1

Moreover, by (11) and the Markov property, we have

vi,M = P̃(i, i− 1) · (1 + vi−1,M) + P̃(i, i+ 1) · (1 + vi+1,M)

= P̃(i, i− 1) · vi−1,M + P̃(i, i+ 1) · (vi,M + αi+1,M) + 1

So,

P̃(i, i− 1) · vi,M = P̃(i, i− 1) · vi−1,M + P̃(i, i+ 1) · αi+1,M + 1

and

(17) αi,M =
P̃(i, i+ 1)

P̃(i, i− 1)
αi+1,M +

1

P̃(i, i− 1)

Hence we can compute αi,M by induction on i from i = M − 1 to i = 1 with the
help of (9), (10) and (16). We get also vi,M by (15). Explicitly, set ui,M = αM−1−i,M .
Then, u0,M = 1 and

ui,M =
P̃(M − i− 1,M − i)

P̃(M − i− 1,M − i− 2)
ui−1,M +

1

P̃(M − i− 1,M − i− 2)

=
p · λM−i−λM

λM−i−1−λM

q · λM−i−2−λM
λM−i−1−λM

ui−1,M +
1

q · λM−i−2−λM
λM−i−1−λM

= λ
1− λi

1− λi+2
ui−1,M +

1

p

1− λi+1

1− λi+2

Therefore ui,M = ui does not depend on M . Then we have by (15)

Ẽ[νm] =
M−2∑

i=M−1−m

ui

and the result then follows from (8).
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