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LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS

CATHERINE GOLDSTEIN

Abstract. Mathematical concepts and results have often been given a long
history, stretching far back in time. Yet recent work in the history of mathe-
matics has tended to focus on local topics, over a short term-scale, and on the
study of ephemeral configurations of mathematicians, theorems or practices.
The first part of the paper explains why this change has taken place: a renewed
interest in the connections between mathematics and society, an increased at-
tention to the variety of components and aspects of mathematical work, and a
critical outlook on historiography itself. The problems of a long-term history
are illustrated and tested using a number of episodes in the nineteenth-century
history of Hermitian forms, and finally, some open questions are proposed.

“Mathematics is the art of giving the same name to different things,” wrote
Henri Poincaré at the very beginning of the twentieth century ((Poincaré, 1908,
31)). The sentence, to be found in a chapter entitled “The future of mathematics”
seemed particularly relevant around 1900: a structural point of view and a wish
to clarify and to firmly found mathematics were then gaining ground and both
contributed to shorten chains of argument and gather together under the same
word phenomena which had until then been scattered ((Corry, 2004)). Significantly,
Poincaré’s examples included uniform convergence and the concept of group.

1. Long-term histories

But the view of mathematics encapsulated by this — that it deals somehow with
“sameness” — has also found its way into the history of mathematics. It has been
in particular a key feature (though often only implicitly) in the writing of most
long-term histories. In the popular genres of the history of π or of the Pythagorean
theorem from Antiquity to present times, is hidden the idea that, despite changes in
symbolism, despite the use or not of figures, tables or letters, despite the presence
or not of proofs, some mathematical thing is indeed the same. That, for example,
it is interesting to extract, from behind what would be then only its masks, the
computations of a certain quantity, say the ratio of a circle’s circumference to its di-
ameter, before the quantity may have been baptised π, before it has been described
as being a number or a well-defined ratio, even before any relation has been estab-
lished between it and the computation of the area of a disk. In more sophisticated
versions, by telling the story of a series of past events which have led to finally
define an object in our present, history of mathematics may convey the idea that
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2 CATHERINE GOLDSTEIN

the series of past objects associated with these events were already more or less the
same in the past, and have only been subsumed under the same name. That there is
an identity to be detected through or behind contingent disguises concerns not only
numbers or simple statements but also whole domains like algebra or statistics, or
advanced concepts like group or methods of proof. In such a history, the present of
mathematics speaks for its past on various scales: besides the present formulation
of a statement or an object, it also defines the implicit norms for mathematical
activities, for instance that they should involve proofs (even if unwritten), or that
disciplines are more or less fixed. Debates of course may have been launched and
corrections been made about the point of departure, the real origin: did Euclid’s
Elements or Babylonian tablets contain algebra, should we begin the history of
algebra only with al-Khwārizmı̄ or François Viète? But there were rarely doubts
raised about the relevance of the question itself and the linear character of the
history constructed under the key premise of an identifiable thing running all the
way long. Many would agree with André Weil that: “More often than not, what
makes [history] interesting is precisely the early occurrence of concepts and meth-
ods destined to emerge only later into the conscious mind of mathematicians; the
historian’s task is to disengage them and trace their influence or lack of influence
on subsequent developments” ((Weil, 1980, 231-232)).

There are several good reasons to adopt such a point of view. For one, it is
close to the “spontaneous history” of the working mathematician, the chronology
often given at the beginning of a mathematical article in order to motivate the
results it establishes.1 The topics of such a history are also more easily those of
primary interest to mathematicians (recent concepts or theorems, in particular).
That mathematics deals with long-lived objects may also help to consolidate its
status, at times when the importance of mathematics is questioned or the popula-
tion of students in mathematics is decreasing; that “mathematical truths have been
called eternal truths . . . [because] in very different expressions, one can recognise
the same truths,” in Hieronymus Zeuthen’s terms ((Lützen and Purkert, 1994, 17)),
guarantees a particular value for the discipline as a whole. Such a conviction may
also reinforce (or be reinforced by) Platonist views of mathematics, and as such has
been taken over by some philosophers. For instance, the philosopher of mathematics
Jacques-Paul Dubucs, after pointing out the differences between two presentations
of a proof that there are infinitely many prime numbers, one in Euclid, one modern
by Godfrey H. Hardy and Edward M. Wright, claimed that proper epistemological
investigation should focus on what is perceived as a stable and identical core and
in particular has “no reason to discriminate the two texts which propose fundamen-

tally the same proof,” emphasising his agreement on this issue with the authors of
the modern text ((Dubucs, 1991, 41)).

2. Ephemeral configurations

However, William Aspray and Philip Kitcher noticed in 1988 that “a new and
more sophisticated historiography has arisen [. . . ] This historiography measures

1The expression “spontaneous history” along with Louis Althusser’s “spontaneous philosophy”
is now often used in history and philosophy of science to designate casual remarks made by working
scientists about the past of their work (resp. their general views on mathematics), see for instance
(Rheinberger, 1994).
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events of the past against the standards of their time, not against the mathemat-
ical practices of today” ((Aspray and Kitcher, 1988, 24-25)). Indeed, innovative
approaches in the history of mathematics of the last decades have often expressed
misgivings over a cleaned-up history, based on a too-rapid identification of a concept
or a problem, and over its historiographical consequences. In Thomas Hawkins’s
words: “The challenge to the historian is to depict the origins of a mathematical
theory so as to capture the diverse ways in which the creation of that theory was
a vital part of the mathematics and mathematical perceptions of the era which
produced it” ((Hawkins, 1987)). Consequently, the focus of recent history of math-
ematics has been much more on localised issues, short-term interests and ephemeral
situations, on “the era which produced” the mathematics in question; and moreover
it has centred on diversity, differences and changes.

Confluent factors are here at stake. One has been largely advertised. It is linked
to contemporary debates in the history of science in the large and comes with the
wish to take into account social aspects of mathematics and “how they shape the
form and the content of mathematical ideas” ((Aspray and Kitcher, 1988, 25)),
while dimming the line between so-called internal history (that of concepts and
results) and external history (that of institutions or scientific politics). Given the
quantity of recent historical writing on these issues, I shall only mention a few
examples. The unification of Italian states during the nineteenth century and the
cultural Risorgimento which accompanied it favoured a flourishing of mathematics,
in particular a strong renewal of interest in geometry in all its forms, with Luigi
Cremona, Corrado Segre, Guido Castelnuovo or Eugenio Beltrami and their follow-
ers ((Bottazzini, 1994; Bottazzini and Nastasi, 2013; Casnati et al., 2016)). The
Meiji Restoration in Japan witnessed a multifaceted confrontation between the then
extremely active, traditional Japanese mathematics (wasan) and its Western coun-
terparts ((Horiuchi, 1996)). The First World War, a “war of guns and mathematics”
as one soldier described it, did not just kill hundreds of mathematicians on the bat-
tlefields, among many millions of others: it also launched entire domains on a vast
new scale, such as fluid mechanics or probability theory, and completely reconfig-
ured international mathematical exchanges (for instance fostering a development
of set theory, logic and real analysis in newly independent Poland) ((Aubin and
Goldstein, 2014)). One might also think of the variety of national circumstances
which preceded the creation of mathematical societies in the late nineteenth and
early twentieth centuries ((Parshall, 1995)) or the various reforms in mathematical
education ((Gispert and Schubring, 2011; Karp and Schubring, 2014)).

At a smaller scale, specific opportunities at specific times, putting mathemati-
cians in close contact with certain milieux, have hosted particular, sometimes unex-
pected, mathematical work, be it analysis in administrative reforms ((Brian, 1994)),
number theory in the textile industry ((Decaillot, 2002)) and in computer hardware
((De Mol and Bullynck, 2008)), or convexity in the military ((Kjeldsen, 2002)). In
such cases (and in many others studied in detail over the last decades), it is not a
question of superficial analogies or obvious applications; very often the ways these
connections were made, the concrete manner of transmission of knowledge through
personal or institutional links, the objectives pursued, are what provides impulse
to a mathematical investigation, explains the formulation it takes or the particular
balance between computations and theory it displays ((Kjeldsen, 2010; Tournès,



4 CATHERINE GOLDSTEIN

2012)). This is, by definition, ephemeral in the sense that it implies links with so-
cial situations which have their own time scale and are most certainly not “eternal
truths.”

However, another reason for this shorter-term focus has recently become even
more decisive, to wit, a more acute sensibility to the multi-layered structure of
mathematics and the need to study more carefully its variegated components. At
first sight, it seems simple enough: mathematics is most often inscribed in texts—
although ethnomathematicians also study it directly in strings or sand ((Ascher,
1991; d’Ambrosio, 2000; Petit and Vandendriessche, 2014))—, it uses words, sym-
bols and drawings, it defines or studies certain objects, it states results and justifies
them. It could seem that all we have to do is to decipher the texts and explain
the objects, the results and the proofs. Of course, that there were at times debates
among mathematicians about certain proofs or objects is well-known: even as late
as early modern times, some would not accept a proof based on an algebraically-
expressed relation and required geometric proofs in the Euclidean style, as more
solid; others dismissed proofs by contradiction or, later, non-constructive proofs; the
legitimacy of negative numbers or of functions without derivatives or of sets has been
put into question. And around 1900, how to found mathematics—on axiomatics,
on integers, or on logic—was a topic of heated controversy among mathematicians,
which in turn has been studied by historians.

But more recently, other aspects have been explored, aspects which are not nec-
essarily linked to public and noisy debates, but are part and parcel of ordinary
mathematical activities. What is or could be an object or a result, how are they
chosen or defined or justified, has changed in time; it has also been seen as depend-
ing on the place or the author. What sort of question is considered interesting,
by whom and why; which criteria are required to make an argument convincing
or a solution satisfactory, again for whom and why; all these aspects and their re-
lations are worth being studied for their own sake. Historians have, for instance,
shown that arguments in words or symbols may rely upon, or be inspired by, or
sometimes even been replaced by figures, diagrams, tables, instruments.2 That
an acceptable answer to a problem may be, at times, and for certain groups of
mathematicians, a single number, an explicit description of all the solutions, an
equation, an existence theorem, or the creation of a new concept ((Goldstein, 2001;
Chorlay, 2010; Ehrhardt, 2012)). The way various domains are defined and inter-
act, or are perceived as distinct, has also changed within mathematics, but also
between mathematics and other domains, in particular physics ((Archibald, 1989;
Gray, 1999; Schlote and Schneider, 2011)).

What are called “epistemic values,” that is the internalised criteria of what con-
stitutes good mathematics at one time, have also been studied: rigour is the most
obvious perhaps and has a complex history, but universalism or effectiveness or
generality or naturalness may appear at some moments to be even more decisive
((Mehrtens, 1990; Rowe, 1992; Schubring, 2005; Corry, 2004; Chemla et al., 2016)).
Working mathematicians have usually their own answer to these questions, but the
point here is to reconstruct the whole range of positions at a given time, in a given

2For illustrations of these different cases, see for instance (Netz, 1999; Lorenat, 2014; Mumma et
al., 2012; Campbell-Kelly et al., 2003; Durand-Richard, 2010; Tobies and Tournès, 2011; Flament
and Nabonnand, 2011). References being too numerous for exhaustivity, those given are only
illustrative.
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milieu, and to understand their effect in mathematical work. For instance, in the
dispute between Leopold Kronecker and Camille Jordan in 1874 about what we
now see as the same reduction theorem for matrices, differences in formulation
(elementary divisors on one side, canonical forms on the other), and in disciplines
(invariant theory vs group theory) were at play, but also differences in conceptions
of generality ((Brechenmacher, 2016)).

Last, but not least, the way mathematics is made public and circulates has been
proved to be both a serious constraint on its form and an essential factor in its
transmission; the organization of correspondence among mathematicians (indeed
the mere form of a mathematical letter), the creation of mathematical research
journals in the nineteenth century and their different organisation through time, the
advent of academies, seminars and conferences, teaching programs and textbooks,
for instance, have all been scrutinised ((Peiffer, 1998; Rowe, 2004; Schubring, 1985;
1985b; Ausejo and Hormigón, 1993; Verdier, 2009; Gérini, 2002; Remmert and
Schneider, 2010)). The last two aspects could also be considered as links between
mathematical developments and general cultural issues, but here the emphasis is
on the combination of these components inside mathematical texts themselves.

Depending on one’s own tastes, this sheer variety in the course of time may
appear fascinating or an irrelevant antiquarian interest. However, we now have
enough evidence that all these aspects may count for understanding the develop-
ment of mathematics. Mathematics weaves together objects, techniques, signs of
various kinds, justifications, professional lifestyles, epistemic ideas. Recent biogra-
phies, indeed, offer successful examples of the study of such articulations ((Parshall,
2006; Crilly, 2006; Alfonsi, 2011)). But historians have also studied these compo-
nents separately, in a comparative way, in order to display their range and their
evolution in time. These components have distinct time-scales and changes do not
occur simultaneously. Even when one is able to understand a long-term develop-
ment of one component (for instance, of mathematical publishing), its articulation
with other components is generally stable only over a shorter period. A further
difficulty is that if concepts or theorems are aspects of which the mathematician
is aware (and very much so), some of the components I mentioned are much more
implicit, or are operational at a collective, not at an individual, level; they can be
best detected and analysed for an entire group ((Goldstein, 1999)). All this explains
the interest in studying what I am calling here “configurations,” a word borrowed
from the sociologist Norbert Elias. Elias wanted to set himself apart from previous
sociological theories based on an a priori hierarchic opposition between individuals
and society, and he promoted the idea of first studying configurations formed by
interactions between persons in interdependence, at different scales, be they players
in a game or workers in an enterprise. For us, configurations organise texts and
persons, coordinating some of the components we have mentioned (we shall see
concrete examples later).

A last reason has favoured more localised studies: a critical outlook by historians
of mathematics on their own practice. Words like “discipline” or “school” have been
used in the past without further ado, in particular because they were terms inherited
from mathematicians themselves. Recent work has shown that to define and use
them more carefully gave a better grasp for describing the past. For instance, using
a characterisation of a discipline as a list of internal elements (core concepts, proof
system, etc), Norbert Schappacher and I were able to distinguish in the lineage of
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C. F. Gauss’s Disquisitiones Arithmeticae those parts which fused into a existing
discipline (his treatment of the cyclotomic equation, for instance, which had a
potent effect on the theory of equations), those parts which emancipated themselves
as autonomous disciplines with their own programmes and priorities (quadratic
forms in the middle of the nineteenth century, reciprocity laws in the theory of
number fields later), and those parts which, in the nineteenth century, were taken
over in an isolated manner by some mathematicians (primality tests).3 Caution
also applies to common descriptors of historical phenomena themselves, such as
“context” ((Ritter, 2004)), “ longue durée” ((Aubin and Dahan Dalmedico, 2002))
or “revolution” ((Gillies, 1992)). This reflexivity has also permitted historians to
find counter-examples to overly-crude hypotheses on the long-term development of
mathematics ((Goldstein and Ritter, 2003; Gilain and Guilbaud, 2015)).

Thus, in the last decades, historians have used these analyses of configurations
to deconstruct the identifications provided by mathematical works in the course of
time. Examples include statements such as the fundamental theorem of algebra
((Gilain, 1991)), Sturm’s theorem ((Sinaceur, 1991)), Fermat’s theorem that “the
area of a right-angled triangle in integers cannot be a square” ((Goldstein, 1995))
or the decomposition theorem of matrices ((Brechenmacher, 2007)); concepts like
ideals ((Edwards, 1980; 1992)) or points ((Schappacher, 2010)); or even whole
domains like Galois theory ((Ehrhardt, 2012)). As explained by André Weil, for
instance, Fermat’s 1640 statement, and even his proof, can be identified and seen
as the same as a special case of the Mordell-Weil theorem, according to which
the group of rational points of the elliptic curve defined by y2z = x3 − xz2 is
Z/2Z × Z/2Z. But we can also see this identification as a historical problem: it
requires first to reconstruct various configurations involving each of the statements,
and then to understand how they have come to be identified—in other words, to
study also the mathematical work that provided such retrospective identification.

Here, differences are obvious, but some cases are more delicate. This can be il-
lustrated by the theorem that there are exactly twenty-seven lines on a non-singular
cubic projective surface; since its statement (and proof) in 1849 by both Arthur
Cayley and George Salmon, its formulation has remained remarkably stable for
more than a century. But what changed is its association with other problems: as
shown in ((Lê, 2015)), it is for instance in tandem with the fact that there are 9
inflection points on a cubic projective plane curve and other analogous statements
that it played a decisive role for the assimilation of group-theoretical methods by
geometers before Felix Klein’s Erlangen Program; this specific configuration of ques-
tions and disciplinary issues, around the so-called “equations of geometry,” lasted
only a few years, but was a key feature in the transmission of the theorem.

In what follows, I would like to illustrate these issues with what could be de-
scribed as a minimal example: the concrete case of a rather technical and apparently
stable concept, that of an Hermitian form,4 over a short period of time, the second
half of the nineteenth century.

3(Goldstein and Schappacher, 2007), see also (Gauthier, 2009; 2010). On the issue of “school,”
see the synthesis ((Rowe, 2003)).

4For our purpose, such a form will be simply an expression of the type
∑n

i,j=1
aijxixj , with

coefficients aij in C, such that aji = aij (here, the bar designates the complex conjugation); in
particular, the diagonal coefficients aii are real numbers.
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3. Did Hermite invent Hermitian forms?

From all accounts, for instance by (Vahlen, 1900, 612-613) or (Dickson, 1919,
vol. 3, p. 269), forms of this type first publicly appear in an article authored by
Charles Hermite and it is thus legitimate to ask if Hermite indeed invented Her-
mitian forms, and how.

At the very beginning of this paper ((Hermite, 1854)), Hermite explained:

One knows how easily one can extend the most fundamental arith-
metical concepts coming from real integers to complex numbers
of the type a + b

√
−1. Thus, starting from elementary proposi-

tions concerning divisibility, one quickly reaches those deeper and
more hidden properties which rely upon the consideration of qua-
dratic forms, without changing anything essential in the principle
of methods which are proper to real numbers. In certain circum-
stances, however, this extension seems to require new principles
and one is led to follow in several different directions the analogies
between the two orders of arithmetical considerations. We would
like to offer an example to which we have been led while studying
the representation of a number as a sum of four squares.

No references were provided in this introduction, but the allusions seem rather
clear, both then and now. Carl Friedrich Gauss, searching for an extension to higher
powers of the reciprocity law for squares that he had proved in his 1801 Disqui-

sitiones Arithmeticae, launched an arithmetical study of what he called “complex
integers” (now Gaussian integers), that is “complex numbers of the type a+b

√
−1,”

with a and b ordinary integers ((Gauss, 1831/1863)). Among them he defined prime
complex numbers and units, proved the factorisation of the “complex integers” into
a product of these prime numbers (unique up to units and to the order of the fac-
tors), showed how to extend Euclidean division and congruences to these numbers:
in short, “the elementary propositions which concern divisibility.” In 1842, Peter-
Gustav Lejeune-Dirichlet began to study “those deeper and more hidden properties
which rely upon the consideration of quadratic forms,” in particular the represen-
tation of Gauss’s “complex integers” by what will come to be known as Dirichlet
forms at the end of the century, that is, quadratic forms f(x, y) = ax2+2bxy+cy2,
where the coefficients a, b, c, and eventually the values taken by the indeterminates
x and y, are also “complex integers” ((Dirichlet, 1842)).

Such a discontinuous chronology (1801–1831–1842–1854) might lead us to the
topic of Hermite’s paper, but would not be sufficient to understand Hermite’s back-
ground or point of view. First of all, Gauss’s discussion of his complex integers ap-
peared in Latin in the proceedings of the Göttingen Society of Science, with limited
distribution. But as early as 1832, Dirichlet explained Gauss’s work and completed
it in what was at the time the only important journal entirely devoted to mathe-
matics, August Leopold Crelle’s Journal für die reine und angewandte Mathematik,
created in 1826. Dirichlet, who had spent several years in Paris, was an important
go-between for mathematics: his 1832 article, written in French, was clearly aimed
at an international audience. In the same decade, he would use new tools developed
by analysts, in particular Fourier series, to complete proofs of Gauss’s statements
and revisit a number of his arithmetical results, stressing their links to various areas
of mathematics in a way that would draw greater attention to them. In 1840, for
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instance, a letter to Joseph Liouville, on the occasion of a French translation of one
of his papers, announced to the French community his current interest for “extend-
ing to quadratic forms with complex coefficients and indeterminates, that is, of the
form t + u

√
−1, the theorems which occur in the ordinary case of real integers. If

one tries in particular to obtain the number of different quadratic forms which exist
in this case for a given determinant, one arrives at this remarkable result, that the
number in question depends on the division of the lemniscate; exactly as in the case
of real forms with positive determinant, it is linked to the division of the circle”
((Dirichlet, 1840)). The lemniscate pointed to the integral

∫

dx√
1−x4

and to elliptic
functions, then at the forefront of research, and which will be soon the main topic
of interest of the young Hermite.

Then, the ten years preceding Hermite’s 1854 paper were turbulent years for
complex functions and numbers, and to a lesser extent, for quadratic forms. In
a footnote of his 1832 paper, Dirichlet announced, somehow optimistically, that
numbers of the type t+ u

√
a, for t and u integers and a an integer without square

divisors, give rise to theorems analogous to those on Gaussian integers, and with
similar proofs. In 1839 (with a French translation in Liouville’s Journal de mathé-

matiques pures et appliquées three years later), Carl Jacob Jacobi, again recalling
Gauss’s theory of complex integers, showed that a prime number p = 8n+1 can be
written as a product of four complex numbers, each of them a linear combination
with integral coefficients of powers of a given 8th-root of unity, such that the three
decompositions of p as x2 + y2, x2 + 2y2 and x2 − 2y2 be issued “from a common
source.” Announcing similar results for a prime p = 5n+1 (and 5th-roots of unity),
but with no hint of a proof, Jacobi provided the spur for decisive work by sev-
eral younger mathematicians in the 1840s. These included Gotthold Eisenstein’s
approach to complex multiplication, and Ernst Eduard Kummer’s theory of ideal
numbers (in what we call now cyclotomic rings); Kummer’s display that unique
factorization failed in general certainly crushed Dirichlet’s 1832 hopes and showed,
as Hermite pointed out in 1854, that “in certain circumstances, this extension [of
arithmetic to complex numbers] seems to require new principles.” It also included
Hermite’s own first research on quadratic forms, concerning which he wrote directly
to Jacobi from 1847 on.5 Personal relations here reinforced the circulation of the
articles; Hermite was informed of Kummer’s approach to the arithmetic of complex
numbers by the mathematician Carl Wilhelm Borchardt during the latter’s 1847
Parisian tour and he met Dirichlet and Eisenstein, among others, during his own
trip to Berlin at the beginning of the 1850s.

Hermite’s work on forms arose at least as much from his close reading of Jacobi—
that on the decomposition of primes, but also that on elliptic functions—as from
Dirichlet’s articles on complex numbers. In his letters to Jacobi on quadratic forms,
(Hermite, 1850) considered forms with any number of indeterminates and real co-
efficients (instead of the two indeterminates and integral coefficients of Gauss’s
Disquisitiones). His main theorem was to establish that there exists a (non-zero)
value of the form, when evaluated on integers, which is less than a certain bound,
depending only on the number of indeterminates and on the determinant of the
form, but not of its coefficients.6 That is:

5This is explained in more detail in (Goldstein and Schappacher, 2007, 39-51).
6It was common at the time not to distinguish explicitly among indeterminates, variables

and values; or to give general statements without a clear list of exceptions. Moreover different
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Let f(x0, x1 . . . , xn) a definite positive quadratic form with n+1 indeterminates,
real coefficients, and determinant D. Then, there exist n+ 1 integers α, β, . . ., λ,
such that

(1) 0 < f(α, β, . . . , λ) < (
4

3
)n/2 n+1

√

| D |.

Although the formulation does not make it obvious, this statement is closely
related to the classification of forms. For definite binary forms, f(x, y) = ax2 +
2bxy+cy2, with determinant D = ac−b2 and integral coefficients, Gauss’s reduction
theory stated that among all the forms arithmetically equivalent to a given form f
(that is all the forms which are derived from f by an invertible linear transformation
of the indeterminates with integral coefficients), there exists one, say F , whose first

coefficient A is less than 2
√

|D|
3

. This coefficient A = F (1, 0) is a value of F ,
and thus it is also (by linear transformation) a value at some integers of all the
equivalent forms f . For these forms, this is exactly Hermite’s main theorem for
n = 1. Hermite used his general statement to prove that if one restricts oneself to
forms with integral coefficients, the number of classes of arithmetically equivalent
forms for a given determinant is finite, and in particular that, for n = 1, 2, · · · , 6,
there is only one class of forms with | D |= 1, represented in each case by the sum
of n squares.

Classification was a key objective for Hermite: “[T]he task for number theory and
integral calculus,” he wrote to Jacobi, “[is] to penetrate into the nature of such a
multitude of entities of reason, to classify them into mutually irreducible groups, to
constitute them all individually through characteristic and elementary definitions”
((Hermite, 1850, 286)). The striking echo of a quasi-botanical project in this quote
is to be taken seriously: for Hermite and some of his contemporaries, the emphasis
on classification directly came from a view of mathematics as a natural science ((Lê
and Paumier, 2016)). “Collecting and classifying” was also a very strong incentive
for invariant theorists like Arthur Cayley ((Crilly, 2006, 193-195)), and it was not
limited to them, nor to the 1850s: in 1876, still, Leo Königsberger wrote for instance:
“It seems to me that the main task now just as for descriptive natural history
consists in gathering as much material as possible and in discovering principle by
classifying and describing this material” (File H1850(6), Staatsbibliothek zu Berlin,
Handschriftenabteilung).

Hermite’s main theorem was quite versatile: with it, for instance, Hermite simul-
taneously showed how to approximate real numbers by rationals and proved two
statements left unproved by Jacobi, that there is no complex function of one variable
with three independent periods and, as announced above, that prime numbers of
the form p = 5n+1 can be decomposed into a product of 4 linear combinations with
integral coefficients of powers of a fifth root of 1. Characteristically, the unity of
mathematics is here found in the bridges between analysis, algebra and arithmetic.
In each case, the whole point is to choose correctly a quadratic form (or sometimes
a continuous family of them) to encapsulate the phenomenon under scrutiny and
to combine inequalities provided by the theorem with integrality properties.

conventions coexisted, for instance for the definition and the sign of determinants, etc. For reasons
of space, and although these questions may be revealing and have been taken into account in
historical work, I shall not in general discuss them here.
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Hermite also adapted this construction to discuss the divisors of forms of the
type x2 +Ay2, and then, in 1854, took the natural step of testing it on the famous
theorem that every integer is the sum of four squares.

Let A be a non-zero integer (without loss of generality, one may assume that 4
does not divide A). As a preliminary step, Hermite first showed how to find integers
α and β such that α2 + β2 ≡ −1 mod (A).

He then introduced the quadratic form with 4 variables:

f(x, y, z, u) = (Ax + αz + βu)2 + (Ay − βz + αu)2 + z2 + u2,

with determinant A4. When x, y, z, u are integers, the value f(x, y, z, u) is also
an integer and, thanks to the choice of α and β, it is divisible by A. On the other
hand, Hermite’s main theorem states that there exist integers x, y, z, u such that
0 < f(x, y, z, t) < (4

3
)

3
2

4
√
A4, that is, 0 < f(x, y, z, u) < 1.54A. The only possibility

is that f(x, y, z, u) = A, which expresses A as a sum of 4 squares.
However, with classification in mind, Hermite decided to reformulate this proof:

instead of f , he considered 1

Af (the determinant of which is then 1). It can be
written, when rearranging terms, as

(2)
1

A
f(x, y, z, u) = A(x2 + y2) + 2α(zx+ yu) + 2β(xu − zy)

+
α2 + β2 + 1

A
(z2 + u2).

As said above, Hermite had already proved that, up to arithmetic equivalence,
there is only one quaternary quadratic form of determinant 1 with integral coeffi-
cients, the form X2+Y 2+Z2+U2. That is, there exist integers m,m′, · · · , n, n′, · · ·
such that the change of variables

X = mx+m′y +m′′z +m′′′u

Y = nx+ n′y + n′′z + n′′′u

Z = px+ p′y + p′′z + p′′′u

U = qx+ q′y + q′′z + q′′′u

transforms X2 + Y 2 + Z2 + U2 into the form 1

Af . By identification of the term in
x2, for instance, one obtains A = m2 + n2 + p2 + q2, as desired.

Viewing mathematics as a natural science also entailed the highlighting of specific
practices. “[My own work] would very strikingly illustrate how much observation,
divination, induction, experimental trial, and verification, causation, too [. . . ] have
to do with the work of the mathematician,” claimed James Joseph Sylvester at the
British Association for the Advancement of Science in 1869 ((Parshall, 2006)) and
Hermite himself repeated several times that “the most abstract analysis is for the
most part an observational science” ((Goldstein, 2007, 403)). Observed carefully,
the very shape of the form 1

Af(x, y, z, u) (equation 2) suggests “complex numbers.”
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At this stage, indeed, Hermite introduced a new set of indeterminates:

v = x+
√
−1y V = X +

√
−1Y

v0 = x−
√
−1y V0 = X −

√
−1Y

w = z +
√
−1u W = Z +

√
−1U

w0 = z −
√
−1u W0 = Z −

√
−1U

and restricted the type of linear transformations to be taken into account.

One can distinguish among all real transformations between the
two groups of variables x, y, z, u on one hand, and X,Y, Z, U on the
other, those which can be expressed as:

v = aV + bW

v0 = a0V0 + b0W0

w = cV + dW

v0 = c0V0 + d0W0

where a, b, c, d are arbitrary imaginary numbers and a0, b0, c0, d0
their conjugates. Thus one obtains a perfectly defined class of real
transformations.

In a modernised matrix notation, these transformations can be expressed as
special transformations with 4 real variables:









x
y
z
u









=









Re (a) − Im (a) Re (b) − Im (b)
Im (a) Re (a) Im (b) Re (b)
Re (c) − Im (c) Re (d) − Im (d)
Im (c) Re (c) Im (d) Re (d)

















X
Y
Z
U









.

These transformations, in turn, preserve specific quadratic forms that Hermite
introduced at this point (those we now call Hermitian forms):

(3) f(v, w) = Avv0 +Bvw0 +B0wv0 + Cww0

where A et C are real numbers, and B a complex number (B0 its complex conju-
gate).

If one replaces the complex variables v and w by their real and imaginary parts,
that is by real variables, one finds:

f(x, y, z, u) = A(x2 + y2) + 2Re(B)(zx+ yu) + 2 Im(B)(xu − zy) + C(z2 + u2),

of which the form (2) used to prove the theorem of four squares is indeed a proto-
type. In Hermite’s terms:

Considered with respect to the original variables x, y, z, u, these
forms are entirely real, but their study, with respect to the trans-
formations we have defined previously, essentially relies upon the
use of complex numbers. One is then led to attribute to them a
mode of existence singularly analogous to that of binary quadratic
forms, although they essentially contain four indeterminates ((Her-
mite, 1854, 346)).
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Moreover, if the linear transformations previously considered have a determinant
of complex norm 1, they leave invariant the quantity ∆ = BB0 −AC, which plays
the role of the determinant for the form (3). Hermite then undertook a classification
of these forms.

Two important features should be underlined here. The first one is the central
role played by the linear transformations, as key tools for classifications: this is the
restriction on these transformations that defined the new type of forms. In several
memoirs around 1850, Hermite and some of his contemporaries, Cayley, Borchardt,
Eisenstein, Otto Hesse, for instance, described several types of equivalence among
forms, depending on the transformations which were taken into account: either
they looked for transformations keeping a given form or function invariant, or, fix-
ing a group of transformations, they studied the forms which are left invariant by
them. The classification of forms with real coefficients (through linear transforma-
tions with real coefficients), which led to the notion of signature, belonged to the
same programme. In 1855, in a study on the transformations of Abelian functions
with 2 variables (more precisely of their periods), Hermite again introduced other
“particular forms with 4 indeterminates, where one does not use as analytical tool
the most general transformations among 4 variables, but particular transforma-
tions . . . which reproduce analogous forms” ((Hermite, 1855b, 785)). These forms
and transformations would be one of the origins of the symplectic forms and group
((Brouzet, 2004)).

This point of view, changing the group of transformations operating on the
variables in order to delineate which type of forms or functions will be studied, was
at the time tightly linked to invariant theory ((Parshall, 1989)) and its applications
were varied. It is in the context of Sturm’s theorem on the number of roots of an
algebraic equation that belong to a given domain that Hermite generalised his 1854
construction to quadratic forms with 2n “pairwise conjugate” indeterminates (again
the index 0 designates the complex conjugation),

f(x1, x2, . . . , xn, x1,0, . . . , xn,0) =
∑

i,j

ai,jxixj,0,

with ai,j and aj,i complex conjugates (thus ai,i real numbers) ((Hermite, 1855;
1856)); he called them simply “quadratic forms with conjugate imaginary indeter-
minates.”

The second feature worth stressing concerns the way mathematical objects are
introduced. Hermite’s “forms with conjugate imaginary indeterminates” were for
him quadratic forms of a specific type, not a new type of objects defined in an
ad hoc way, or by simple analogy, to accommodate complex numbers. They are
distinguished among a larger family of well-known objects because of their special
properties (here their stability under a certain group of transformations), as a new
species could have been. In Hermite’s view, coherent with that of mathematics as
a natural science, mathematicians do not, should not, create their objects: they
“meet them or discover them and study them, like physicists, chemists and zoolo-
gists” ((Hermite and Stieltjes, 1905, vol. 2, p. 398)). Hermite’s key role in a history
of Hermitian forms cannot be doubted, but its description is thus delicate. Besides
the problems raised by the word “invention” in this particular context, another issue
is directly connected to our main point, that of sameness: Alfred Clebsch in 1860
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and 1863 ((Clebsch, 1860; 1863)), Elwin Bruno Christoffel a bit later ((Christof-
fel, 1864)) also introduced, in completely different contexts, mathematical objects
close to Hermite’s one: Clebsch studied square matrices with complex entries, such
that entries symmetric with respect to the diagonal are complex conjugates (that
is, now, Hermitian matrices), Christoffel considered bilinear forms on two sets of
indeterminates, φ =

∑

[gh]ugvh and their values when ug and vg are set to be
complex conjugate numbers, under the assumption that the coefficients [gh] and
[hg] are complex conjugates. Both referred to Hermite’s 1855 article (only as an
afterthought, in 1864, for Clebsch) for specific results, but none identified his own
construction to Hermite’s one nor gave any special name to it. These various points
of view on Hermitian forms will be unified much later in the century.

The configuration about the appearance of Hermitian forms I have briefly sketched
thus includes local incentives, a series of specific mathematical themes, a collection
of objects and the disciplinary tools available to study them (here for instance
the reduction theory of forms), the state of the art on certain topics (for instance
complex numbers), but also here a new emphasis on linear transformations and a
mathematical world-view with an impact on the practice of mathematics and how
an entity is constructed and accepted. None of these components is proper to Her-
mite alone, even if their coordination may be, and they would require to be studied
as collective phenomena. Some of these components will evolve separately and at
different rates, losing their connections with the development of our forms “with
conjugate imaginary indeterminates.”

Tracing, on the other hand, the fate of this particular type of forms is not obvious.
In 1866, for instance, Cayley discussed “Hermitian matrices” and associated forms,
but they were those attached to the transformation of Abelian functions, not “our”
forms and transformations ((Cayley, 1866)). The variety of names or of notations
(for complex conjugation, in particular) also forbids us to use simple criteria or
visual display.

A technique which has recently demonstrated its effectiveness for other topics
((Goldstein, 1999; Brechenmacher, 2007; Roque, 2015)) is first to systematise the
search for relevant writings in review journals (such as the Jahrbuch über die Fort-

schritte der Mathematik), then to reconstruct their own networks of references in
order to track down how Hermitian forms circulated after 1854. Thamous, an elec-
tronic tool developed by Alain Herreman for collaboratively constructing relational
databases, was used here extensively to register cross-references and other links
between articles and to organise the corpus. For reasons of space, and with a view
to the long-term question, I shall only briefly report on some of the configurations
in which our forms occur before the First World War.

4. Picard’s and Bianchi’s groups

Both Émile Picard and Luigi Bianchi were born in 1856, at more or less the
same time as Hermitian forms. And both would be instrumental in bringing them
back center-stage, this time with a group-theoretical and geometrical apparatus.
Although some of their results are very close (even leading to some tensions), their
backgrounds are quite different. Picard is best known for his work on complex
analysis and its application to algebraic surfaces ((Houzel, 1991, 245)) and, more
generally, for extending to dimension 2 a number of results first established in
dimension 1. At the beginning of the 1880s, for instance, he proved, in parallel
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with the 1-dimensional case, that of the elliptic curve, that surfaces which can be
parametrised by Abelian functions have (under some restrictions on their singular-
ities) a geometric genus pg ≤ 1 ((Picard, 1881)).

But at the very same time and in close proximity, a great enterprise was un-
derway; Henri Poincaré had just developed his theory of “Fuchsian” and “Kleinian”
functions (now both considered particular cases of automorphic functions), that is,
meromorphic functions of one complex variable z inside a certain disk such that

(4) f(
az + b

cz + d
) = f(z),

where the Moebius transformations z → az+b
cz+d belong to a discontinuous group of in-

vertible transformations; the groups and the functions were “Fuchsian” for Poincaré
when the coefficients a, b, c, d are real. Poincaré had interpreted the Moebius trans-
formations on the unit disk (or equivalently on the upper half plane) as isometries
in a non-Euclidean, hyperbolic, geometry and he had constructed fundamental do-
mains for the Fuchsian groups. He had also shown, given a Fuchsian group, how to
construct Fuchsian functions invariant under the group and how to connect them
to the solution of differential equations ((Gray, 2000)).

Picard was at first in search of a first, analogous, example with two variables.
For this he introduced the family of curves of equation z3 = t(t− 1)(t− x)(t − y),
with x and y two real parameters, and he studied the periods of

∫

z−1dt ((Picard,
1882)). These periods, as functions of x and y, satisfy a system of partial differential
equations, which admits a basis of three independent solutions A1, A2, A3. The
functions u = A2

A1
and v = A3

A1
of the two variables x and y can be inverted, providing

Picard with what he was looking for, two uniform functions of the two variables
u, v, defined on the domain 2Re(v)+Re u2+Im(u)2 < 0. He also computed a group
of linear transformations under which his functions would remain invariant. But,
as he explained later, in order to obtain more than this one isolated example, “the
thought of a recourse to ternary quadratic forms with conjugate indeterminates
showed [him] the way out” ((Picard, 1889, 36)).

A ternary form with conjugate indeterminates, analogous to (3),

(5) f(x, y, z, x0, y0, z0) = axx0 + a′yy0 + a′′zz0 + byz0 + b0y0z

+ b′zx0 + b′0z0x+ b′′xy0 + b′′0x0y

with real coefficients a, a′, a′′, and the index 0 designating the complex conjugation,
as for Hermite, becomes becomes either ±(xx0+yy0+zz0) or ±(xx0+yy0−zz0) by
an adequate linear transformation of the indeterminates. The first case corresponds
to definite forms, the second to indefinite forms. In the 4-dimensional (real) space
defined by the two complex variables u = x

z , v = y
z , the equation f = 0 represents a

3-dimensional (real) hypersurface (for instance, the form xx0+yy0−zz0 corresponds
to the hypersphere uu0+vv0 = 1). Picard then restricted the coefficients of the form
to be “complex integers” 7 and studied the linear transformations leaving the form
invariant or, more precisely, their non-homogeneous versions operating on u and v.
If the form is definite, the group that one obtains is finite, but Picard’s hope was

7It means, for most of his work, Gaussian integers. Picard did in fact consider complex
quadratic numbers in general, but his definition of “integers” here was not correct.
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to use the groups obtained in the indefinite case as analogues of Fuchsian groups.
He had first to justify their existence and main properties ((Picard, 1882b)).

This was done by showing how the interior of the hypersurface f = 0 can be
cut into a tessellation of polyhedra, transformed one from another by an infinite
discontinuous group. The procedure corresponded geometrically to Hermite’s so-
called continuous reduction process for quadratic forms: Picard associated to the
indefinite form a 2-parameter family of definite forms, for which a well-known the-
ory of reduction existed and could be expressed as in the classical binary case by
conditions of inequalities on the coefficients of the forms. To each choice of the
parameters, that is, to each definite form in the family, Picard could associate in a
4-dimensional space a point, which belongs to a specific domain; this domain is a
fundamental polyhedron defined by the inequalities of the reduction theory, exactly
if the form is reduced. By changing the parameters continuously, the associated
definite form may cease to be reduced, but, as in the binary classical case, can be
transformed into an equivalent reduced form by a linear transformation, and corre-
spondingly the point associated to it is transformed into a point in the fundamental
polyhedron. The initial ternary indefinite form thus gave rise to an infinite discon-
tinuous group of transformations (that Picard called hyperfuchsian), associated to
the tesselation of the hypersurface. In later papers, Picard constructed hyperfuch-

sian functions defined in the interior of the hypersurface and invariant by such a
group and showed that hyperfuchsian functions corresponding to the same group
could be expressed as rational functions of three of them, linked by an algebraic
relation. Picard also developed an analogous arithmetical study of binary forms
with conjugate indeterminates, interpreting their reduction geometrically in terms
of domains on the plane limited by arcs of circles and, this way, constructed afresh
Fuchsian groups ((Picard, 1883; 1884; 1891)).

When he picked up the topic in 1890, Luigi Bianchi was coming from a quite
different background, which included number theory, group theory and some ge-
ometry, but not the analytical connections dear to Picard. Bianchi had studied
with Felix Klein in Göttingen during his European post-doctoral tour and the main
reference in his papers on the arithmetic of forms is Klein’s Vorlesungen über die

Theorie der elliptischen Modulfunctionen, completed by Robert Fricke, which had
just appeared in 1890. As (Bianchi, 1891, 313) explained it:

The geometrical method, on which Professor Klein bases the arith-
metical theory of the ordinary binary quadratic forms, may be ap-
plied with the same success on a larger scale. To prove this is
the aim of the following development which will treat in the same
way the theory of Dirichlet forms with integral complex coefficients
and indeterminates and of Hermitian forms with integral complex
coefficients and conjugate indeterminates.

Indeed, Bianchi had just studied the arithmetic of Dirichlet forms with Gaussian-
integer coefficients, in order to complete Dirichlet’s results on the number of classes
of such forms. He then proceeded to complete some points in Picard’s study of the
arithmetic of Hermitian forms, launching both an extension to forms with coeffi-
cients in any quadratic field and a detailed examination of the associated groups
of transformations and their subgroups of finite index ((Brigaglia, 2007)). In par-
ticular, Bianchi would handle forms whose coefficients are integers in quadratic
fields Q

√
−D for D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 19, displaying a good knowledge
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of Richard Dedekind’s theory of ideals. He also extended the main group of trans-
formations to include those whose determinant is any unity and, explicitly following
an idea of Fricke, those of the type z → az0+b

cz0+d (the index, as before, indicating the
complex conjugation) and he computed the corresponding fundamental polyhedra.
As announced, all along, and in particular in his synthesis published in Mathema-

tische Annalen in German, Bianchi handled side by side the arithmetic of Dirichlet
and of Hermitian forms and their geometrical interpretations, in particular the
determination of their fundamental polyhedra. The emphasis moved from a config-
uration where complex analysis plays a key role to one centered on number theory
and group theory; Hermitian forms are then number-theoretical objects parallel to
those introduced by Dirichlet.

Picard’s and Bianchi’s results were integrated by Klein and Fricke in their 1897
Vorlesungen über die Theorie der automorphen Funktionen, but through Bianchi’s
point of view. They would then be taken up and developed through different meth-
ods by a number of mathematicians in the following decades, Onorato Nicoletti,
Otto Bohler, Leonard Dickson, Georges Humbert, Gaston Julia, Hel Braun, Hua
Luogeng, and many others.

5. A theorem and three authors

The question of the finite subgroups of the linear groups returned to the forefront
as the theorem: “For any finite group of n-ary linear homogeneous transformations,
there exists an n-ary positive definite Hermitian form, say,

∑

aikxix̄k, that the
group leaves absolutely invariant.”8

For once, the date of this theorem is rather precise: July 1896! The day, on
the other hand, and the author, are another story, which illustrates the new role
of mathematical societies and seminars and their interaction with journals for the
circulation of mathematics, as well as the wider internationalization of mathematics
at the end of the nineteenth century ((Parshall, 1995)). On Monday July 20,
1896, the statement appeared in a note by Alfred Loewy presented to the French
Academy of Sciences by Picard for insertion in the Comptes rendus ((Loewy, 1896)).
Following the rule of this journal to accept only very short communications, it
consisted mainly of an announcement and contained no proofs. Two years earlier,
Loewy had obtained his thesis under Ferdinand Lindemann, with a work on the
transformation of a quadratic form into itself. In his 1896 note, Loewy first gave a
condition for a linear transformation to fix an arbitrary bilinear form with conjugate
indeterminates,

∑

aikxix
0
k, with arbitrary coefficients (the complex conjugation is

indicated here by the exponent “0”). When restricted to a “quadratic form of M.
Hermite,” in Loewy’s terms, that is, when aik = a0ki, it says that the form can be
transformed into itself only by transformations whose characteristic polynomials
have simple elementary divisors and roots of modulus 1. Loewy then stated the
above theorem, and used it in particular to complete a previous study by Picard
of the finite groups of ternary linear transformations ((Picard, 1887)). For each
such group, except one, Picard had displayed a quadratic form left invariant by the

8Note that for the authors we are discussing, a linear transformation of the group operates on
the indeterminates xi, the transformation obtained by conjugation of the coefficients operating
on the x̄i. Again, the terminology and the viewpoint vary slightly according to the authors: the
word “substitution” instead of “transformation” is still widely used (see the titles of the papers),
“homogeneous” to indicate elements of GLn(C) is sometimes omitted, etc.
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group, and Loewy provided an explicit invariant Hermitian form for the remaining
case. Following immediately after the publication of his note, there was unleashed
a flood of publications.

On August 9, Lazarus Fuchs communicated to the French Academy a note point-
ing out that what Loewy had published “without proof ” (Fuchs’s emphasis) was a
special case of his own results presented at the Berlin Academy exactly one month
earlier, on July 9 ((Fuchs, 1896)). Now Fuchs had, for quite some time, been
studying differential equations of the type:

dnω

dzn
+ q1

dn−1ω

dzn−1
+ · · ·+ qnω = 0

where the coefficients qi are uniform functions of the variable z, with a finite number
of poles. Choosing a set of n linearly independent solutions in the neighbourhood of
a singularity, the new solutions one obtained when the variable z describes a circuit
around the singularity can be expressed as the image by a linear transformation of
the original ones, and Fuchs, among others, had studied these monodromy trans-
formations, in particular their “fundamental equations” (for us, the characteristic
equations of the matrices associated to these monodromy transformations) ((Gray,
1984)). In his July presentation, Fuchs had stated that, under several assumptions
(in particular, quite unnecessarily, that the roots of at least one fundamental equa-
tion should be distinct), there exists a linear combination of a fundamental system
of solutions ωi of the differential equation

φ = A1ω1ω
′
1 +A2ω2ω

′
2 + · · ·+Anωnω

′
n

(ωi
′ being here the conjugate function), with determined real coefficients Ai, which

is unaltered by the group of monodromy. For algebraically integrable differential
equations, the group is finite and Fuchs had also used his theorem to complete
Picard’s work on ternary forms.

Felix Klein took the opportunity of the annual meeting of the Deutsche Mathe-
matiker-Vereinigung, from September 21 to September 26, in Frankfurt to present
a one-page paper which added another author and another filiation to the theo-
rem ((Klein, 1896)). First of all, Klein recalled his own 1875 work ((Klein, 1875))
where he had explained how to interpret a finite group of complex linear transfor-
mations on two variables as a group of real quaternary collineations of the ellipsoid,
x2 + y2 + z2 − w2 = 0; and that this group necessarily fixes a point within the el-
lipsoid, thus providing a finite group of (real) rotations around a fixed point. This
was the basis of his own classification, for the binary case. The ternary case he
attributed not only to Picard, but also to Hermann Valentiner. Valentiner, who
after a thesis on space curves had gone to work for a Danish insurance company,
while still contributing to mathematics, had indeed published in 1889 a book on
the classification of finite binary and ternary groups of linear transformations (in-
cluding the now-called Valentiner group) ((Valentiner, 1889)). Then, after a nod
to Loewy’s note, Klein devoted the remainder of his presentation to another proof
that Eliakim Hastings Moore, from Chicago, had communicated to him: For any
Hermitian definite form, the sum of its transformations by the (finitely) many el-
ements of the group is still a Hermitian definite form and it is fixed by the group.
In the written version of his communication, Klein added that Moore had indeed
spoken about his theorem at a mathematical meeting in Chicago on July 10 (with
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a written version published locally on July 24)!9 He also alluded to Fuchs’s work
without more details (given the past tensions between Fuchs and Klein, one may
think that this vague recognition was not completely satisfactory to Fuchs ((Gray,
1984))).

Both Moore and Loewy published an extended version of their respective work in
1898, in the same issue of the Mathematischen Annalen, of which Klein was editor-
in-chief. Both men analysed the literature, and in particular underlined Fuchs’s
superfluous condition to refute his claim to the theorem (Loewy emphasising that,
above all, the definite character of the invariant form was never even alluded to by
Fuchs). Still their viewpoints were quite different, as can already been inferred from
the proofs themselves and their backgrounds. Moore attributed to “the analytic
phrasing in terms of binary groups of Klein’s invariant point” (in Klein’s 1875 paper)
his own discovery of the universal invariant Hermitian form ((Moore, 1898)). After
he had proved the existence of this form, he proceeded to deduce from it the theorem
that a n-linear homogeneous transformation of finite order p can be written with
adequate new variables as the multiplication by pth-roots of unity, a theorem for
which he quoted no less than five other proofs. One of these, included just after his
own paper in Mathematische Annalen, was due to his Chicago colleague Heinrich
Maschke ((Maschke, 1898)); during this period, Maschke also worked on the theory
of groups of linear transformations and he had even delivered a survey lecture at the
Chicago Mathematical Club in May 1897. He would soon use Moore’s theorem to
study quaternary groups of transformations ((Parshall and Rowe, 1994, 396-401)),
before extending these results to his now celebrated statement on the representation
of finite groups ((Hawkins, 2013, 512)).

Loewy (who developed his work even further in his 1898 Habilitation at the
Albert-Ludwigs-Universität in Freiburg) focussed not on the finite groups, but on
bilinear forms ((Loewy, 1898)); his aim was the study of the transformation of a
bilinear form with conjugate complex variables (with non-zero determinant) into
itself, in direct continuation of the theme of his thesis. His framework and his
main reference is Georg Frobenius’s work, to which he borrowed in particular his
symbolic methods ((Frobenius, 1878)). Such a symbolism, although not linked to
a matricial setting, would allow him for instance to characterise a Hermitian form
S by the equation S̄′ = S (the bar now designates the complex conjugation, the
prime the transpose). In the last part of his paper, Loewy also addressed the issue
of a reduction theory for Hermitian forms in n variables. It provided him with
information on the characteristic polynomial of the linear transformations fixing a
given Hermitian form, thus generalising a theorem of (Frobenius, 1883). Although
their name was not yet set, the bilinear and the quadratic viewpoints have thus
merged and Hermitian forms have become at the end of the nineteenth century a
familiar object in the nascent area of linear algebra.

6. Hermitian forms as geometric objects

As seen in Picard’s work, Hermitian forms have been connected to a geometric
setting already in the 1880s. But it is in the framework defined by Corrado Segre

9Archives of the Math Club, Box 1, folder 2, p.66; see ((Parshall and Rowe, 1994, 399)) for
the Chicago environment of this theorem and a slightly different datation. On the argument, see
((Hawkins, 2013, 511-512)); it is remarkable to us that Klein felt it necessary to explain that such
a procedure would not necessarily work if the group was infinite.
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who, in 1890, opened new vistas in complex geometry, that they will take a key
place as geometric objects ((Segre, 1890; 1890b)). A starting point for Segre was
Karl Von Staudt’s project “to make the geometry of position an autonomous science,
which does not need measure” ((Staudt, 1847)). Instead of using cross-ratios, as
his predecessors had done, von Staudt based his geometry only on the concept
of harmonicity (corresponding to the case where the cross-ratio is -1), which he
defined by a purely geometric construction. Two geometric entities whose respective
elements are put into correspondence are then said to be projectively related if the
elements of the second entity corresponding to a harmonic set of elements of the
first entity are also an harmonic set. A key concept was that of two entities in
involution: for instance, two projectively related ranges of points on the same line
are said to be in involution if the corresponding point of a point A′ corresponding
to a point A is the point A itself; in modern terms, it means of course that the
transformation from the first range of points to the second is of order 2, but for
von Staudt, to be projectively related or to be in involution were relations between
geometric entities ; there were no transformations, as mathematical objects per se.
For some involutory relations, there exists fixed (real) elements, for others none.
For instance, any line through a point O inside a circle—let us remind that in this
projective setting, a “circle” is simply a projective line—cuts the circle in two points
A and A′ ; the “sheaf” of all these lines, in von Staudt’s terminology, defines an
involutory relation between all the points A of the circle and their corresponding
points A′. This relation has no fixed point. On the other hand, if the point O is
outside the circle, the analogous relation has two fixed points, that is, the points
of contact with the circle of the two tangents passing through O. In order “to
give to projective geometry the same generality as analysis,” von Staudt found
it necessary to include imaginary (that is, complex) points into geometry, but:
“Where, everybody asks, is the imaginary point when one abstracts oneself from
the system of coordinates?” ((Staudt, 1847)). His first solution was to associate to
an involutory situation on a real projective line with no real fixed points a pair of

conjugate imaginary points; a few years later, he refined it, distinguishing between
the two conjugates by taking into account an additional direction, restricted himself
to projective relations leaving the direction invariant and thus extended all his
constructions and incidence relations to complex points ((Nabonnand, 2008)).

Despite the uncompromising austerity of von Staudt’s treatise and the complete
absence of figures, the reception of this approach was particularly good as a pre-
requisite for courses in technical drawings and in engineering schools, as advocated
in particular by Carl Culman and Theodor Reye at Zürich’s Polytechnikum (the
future ETH) ((Scholz, 1989)):

But still the engineer, and everybody else who wishes to become
familiar with his ideas, must continually exert his power of imagi-
nation in order actually to see the object intended to be represented
by the lines of a drawing which is not at all intelligible to the unini-
tiated. [. . . ] One principal object of geometrical study appears to
me to be the exercise and the development of the power of imagi-
nation in the student, and I believe that this object is best attained
in the way in which Von Staudt proceeds,

wrote Reye at the beginning of his own introduction to projective geometry ((Reye,
1866)). The topic gained a particular popularity in Italy after the Risorgimento,



20 CATHERINE GOLDSTEIN

where the teaching of geometry was favoured both for national and epistemolog-
ical reasons, while engineering training responded to the needs of modernization
((Bottazzini, 1994)). From Luigi Cremona’s Elementi di geometria projettiva and
Antonio Favaro’s Lezioni di statica grafica in 1873 to Achille Sannia’s Lezioni di

Geometria Proiettiva (1891) to Francesco Severi ’s Geometria projettiva (1904),
courses blossomed in Turin, Padua, Bologna, Rome or Palermo ((Capecchi and
Ruta, 2014)). In Turin, Corrado Segre, besides his own lectures on projective ge-
ometry,10 significantly organised the translation into Italian of both von Staudt’s
Geometry of position and Klein’s Erlangen program, by Mario Pieri (1889) and
Gino Fano (1890) respectively. A decisive change with respect to von Staudt’s
work is that, for Segre (as for Klein), a projectivity is a transformation (e.g. a
collineation, a homography), a mathematical object, and not only a way of relating
entities. In complex geometry, projectivities preserve harmonic relations, but the
reciprocal is false, for instance the complex conjugation is not a projectivity. While
von Staudt had chosen to restrict the relations he considered, Segre introduced what
he called anti-projectivities, as well as their 2- or 3-dimensional companions (an-
ticollineations, antipolarities,. . . ) and studied projectivities and anti-projectivities
alike. Analytically, a projectivity in dimension 1 corresponds to a homography

z → z′ =
αz + β

γz + δ

while an anti-projectivity corresponds to :

z → z′ =
αz̄ + β

γz̄ + δ

with α, β, γ, δ complex numbers such that αδ − βγ 6= 0 (the bar indicates the
complex conjugation).

It is then easy to see that, if one puts z = x
y , the equation giving the fixed points

of such an antiprojectivity is of the type:

F (x, y) = axx̄+ bxȳ + b̄x̄y + cyȳ = 0

Similarly, antipolarities are associated to forms with 4 variables. One recognises
the forms that, in Segre’s words, “have also already been introduced in number
theory thanks to M. Hermite, M. Picard and others,” that is, again, Hermitian
forms ((Brigaglia, 2016, 275)). Segre explained in a letter to Adolf Hurwitz in
June 1894: “I study there, among the other hyperalgebraic entities, those that I
call hyperconic, hyperquadric [i.e. the locus of F (x1, x2, x3, x4) = 0], etc. which
are analytically represented by the equations of Hermite; and thus they give the
geometric equivalent of the forms of Hermite” ((Brigaglia, 2016)).

According to Klein’s Erlangen program, the group of projective and antipro-
jective transformations which fix, say, an hyperquadric, defines a geometry, and
it is also possible to apply Cayley’s idea, as extended by Klein, of using a (hy-
per)quadric to define a metric on this projective complex space. This was done
almost simultaneously and independently by both Guido Fubini and Eduard Study.
Fubini had been a student of Ulisse Dini and Luigi Bianchi at Pisa and Bianchi
included results from Fubini’s thesis on Clifford parallelism in his celebrated 1902
book Lezioni di geometria differenziale. A year later, Fubini, then in Catania,

10His lecture notes are available on the beautiful website devoted to him by Livia Giaccardi,
http://www.corradosegre.unito.it/I21_30.php see in particular Quadreno 22.
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turned to Hermitian forms ((Accademia delle Scienze, 1982)). Starting from the
interpretation of the group of linear transformations leaving invariant a quadratic
form as a group of space motions, he was seeking an analogous construction for
Hermitian forms. Fubini considered an Hermitian form algebraically equivalent to
x1x

0
1 + x2x

0
2 + · · · + xn−1x

0
n−1 − xnx

0
n (here again the exponent 0 indicates the

complex conjugation) and the associated group transforming a “hypervariety” of
the type

∑n−1

1
uiu

0
i − 1 = 0 into itself. For two points, u and ū (the bar here does

not designate the complex conjugation), he introduced the quantity

(6) Ruū =
(
∑n−1

1
uiū

0
1 − 1)(

∑n−1

1
u0
i ū1 − 1)

(
∑n−1

1
uiu0

1 − 1)(
∑n−1

1
ū0
i ū1 − 1)

− 1.

This is invariant under the group of transformations, real and equal to 0 within
the hypervariety only when the two points coincide; it was thus legitimate to call
it a (pseudo)-distance between the two points. (Fubini, 1903) used it primarily
with arithmetical and analytical applications in view, but he then also refined his
construction in order to interpret the Hermitian form as a metric for a complex
space ((Fubini, 1904)).

While Fubini refered mostly to Picard, Poincaré and Klein-Fricke, Study’s idea
was to develop this study within the framework defined by Segre. Study had worked
before on invariant theory and quaternions and had just published in 1903 a book
on Geometrie der Dynamen, using biquaternions and geometrical tools to study
mechanical forces ((Hartwich, 2005)). He had an extensive program about the
complex realm and in an article published in Mathematische Annalen ((Study,
1905)), he also defined Hermitian metrics and distances.

From a ternary indefinite Hermitian form, (xx) = x1x1−x2x2−x3x3 for instance
(here the bar does designate the complex conjugation), Study, following Segre’s
concepts if not his terminology, defined a “Hermitian point-complex” by (xx) = 0
(this is Segre’s iperconica) and the inside of the point-complex by the condition
(xx) > 0 (by the very definition of a Hermitian form, its values are real). He was
then able to define a hyperbolic Hermitian metric and the (real) distance of two
points inside the point-complex. Under an adequate normalization, the distance
between two points x and y is

(x, y) = 2 cosh−1

√

(xy)(xy)
√

(xx)
√

(yy)
,

Study showing then that the distance between two points is the length of the
geodesics linking them. He also developed the case of an elliptic Hermitian metric,
based this time on a definite Hermitian form. This setting would then be developed
by Julian Coolidge, Wilhelm Blaschke and of course Erich Kähler, Jan Schouten
and Élie Cartan in the 1920s and 1930s.

7. Open questions: back to long-term histories

As we have seen, while in the 1850s, what will be called Hermitian forms were
a subcategory of quadratic forms, they became later a category parallel to that of
quadratic forms—and still later the encompassing category of those quadratic forms
which are a particular case (those with complex conjugation reducing to identity).
Alternatively, it may be tempting to summarise the history of Hermitian forms, of
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which we have just sketched some key episodes, as a thread from number-theoretical
objects to algebraic ones to geometric ones. However, one would obviously lose sev-
eral components we have met — be they pedagogical settings, or epistemological
views, putting observations and classifications together at the core of mathematical
activities, or disciplinary structures. In the configuration which allows Hermitian
forms to appear as geometric objects, there appears the renewal of Italian mathe-
matics after the unification of the country, a new program for a geometry as general
as analysis, a concern for the representation of complex numbers by real objects,
and an emphasis on transformations. If close reading is required to display how
these components were articulated, the question is still open of their extent, both
in time and in scope, and of their precise role in the dynamics of the changes.

The difficulty is hardly reduced if one focuses on components which are obviously
relevant, for instance here, the issue of geometrisations: several types of geometries
occurred (projective, non Euclidean, differential) and they played several roles, from
supporting intuition to providing a concrete existence to groups. As Fubini ((Fubini,
1904, 2)) explained, for instance, “the introduction of [his] new metric is something
totally different from a simply formal thing. It allows us to have recourse to the
intuition and the procedures of geometry to solve an algebraic question”. Moreover,
geometry did not go unchallenged: Valentiner remarked at the beginning of his book
on finite groups of transformations that while Klein had already handled the binary
case, he, Valentiner, was going to do it again, but this time purely algebraically, in
order to free it from geometrical considerations ((Valentiner, 1889, 5)). The relation
between geometry and classification programmes was established in Segre’s case,
according to his former student and colleague Alessandro ((Terracini, 1926)); it
was however still an open question whether to connect it or not with more general
views on mathematics as a science, as was the case for Hermite or Cayley ((Lê and
Paumier, 2016)).

Besides these questions about specific components, an important range of open
questions concerns the links which may be used to relate the various episodes and
components, in particular those which can help us to understand how information
or results were circulating. An obvious type of link, which has been used to delin-
eate preceding configurations, are cross-references among articles. They indicate in
particular the role played by Picard in the 1880s to put Hermitian forms back into
the centre of the stage. One might also think of Cayley’s definition of a metric in a
projective space, linked to his work on invariants in the 1860s, and which will be,
in a form mainly mediated by Klein, a model for the formulas used in the complex
case at the end of the century.

Conflicts of priority often gave rise to such cross-references, but they were, at
least in our case, particularly ephemeral. Issues were very soon settled in the
literature: there will be a “Fubini-Study” metric, the theorem on the invariance
of a Hermitian form by a finite group of linear transformations will be attributed
to all the authors we have discussed above ((Meyer, 1899, 341), (Miller et al.,
1916, 209)). Yet locating and studying such configurations remains of interest, as
they help us reveal more decisive aspects: such as, for instance, the confluence of
different approaches set in motion to describe the finite subgroups of GLn(C), or the
problems raised by the extension of geometry to the complex realm, or the role of
Klein as a intermediary between Göttingen, Italy and the United States ((Parshall
and Rowe, 1994; Casnati et al., 2016)). That persons from different branches of
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mathematics could agree was even interpreted by some as a sign of modernity.
Francesco Brioschi commented for instance in 1889: “The characteristic note of
modern progress in mathematical studies can be recognised in the contribution that
each special theory—that of functions, of substitutions, of forms, of transcendents,
geometrical theories and so on—brings to the study of problems, where in other
times only one seemed necessary” ((Archibald, 2011, 375)).

However, transmissions may also operate without explicit bibliographical indica-
tions, through correspondence or, as we have seen, through communications at the
meetings of a mathematical society or via publication in a given journal (the role of
Mathematische Annalen is here particularly interesting). Certain links functioned
on a much larger scale and to pinpoint them concretely is more delicate: how a new
object in mathematics is validated or how the new ideas of linear algebra irrigated
a variety of topics during the second half of the nineteenth century are but two
examples.

Further, breaks or discontinuities should also be studied more closely. This is
particularly important because most theories in the dynamics of history of science
rely on the issue of breaks (from Thomas Kuhn’s scientific revolutions to Imre
Lakatos’s research programmes) and do not seem to be appropriate in the case
of mathematics. It may happen that different aspects change simultaneously and
there have been some attempts to speak in this case of a “revolution” ((Gillies,
1992)). Very often however the changes are not simultaneous ((Gilain and Guil-
baud, 2015)). While indifference is of course the most obvious cause of decline,
rediscovery or recycling into another theory are quite frequent in modern times and
the circumstances of such a rebirth are often puzzling. We have only a few studies
of such phenomena: that of invariant theory, dead ((Fisher, 1966)), but then born
again, “like an Arabian phoenix arising from its ashes” ((Rota, 2001)). Or that
of the “theory of order” that Louis Poinsot, inspired by the relations among roots
of unity, promoted at the beginning of the century ((Boucard, 2011)), and which
disappeared and reappeared several times (still attached to Poinsot’s name), in
the theory of equations, but also in ornamental architecture ((Boucard and Eckes,
2015)), intersecting the long-term changes in the theory of tactics, a field which
mixed what we would now describe as combinatorics and group theory ((Ehrhardt,
2015))). In examples ranging from Descartes’s curves to Fourier series, Alain (Her-
reman, 2013) analysed how concepts which had already appeared informally in
mathematics receive, in what he calls “inaugural texts,” a formal definition and a
name, thus acquiring, so to speak, mathematical citizenship; but such a general
study of a specific type of discontinuity, operating here in particular at a semiotic
level, remains exceptional.

It may sometimes be necessary to change one’s scale of observation in order
to understand a discontinuity. A striking testimony is given by Max Born’s 1914
study of the diamond ((Born, 1914)). Born used a determinant with complex
elements, such that two elements symmetrical with respect to the main diagonal are
complex conjugates, commented that the determinant is “real despite its complex
appearance” and acknowledged in a footnote that it thus derived from a Hermitian
form. As well-known, Born would remember this again a decade later, offering to
Hermitian forms and matrices a spectacular role in the new quantum theory ((Born
and Jordan, 1925)). In the 1850s, the program of classification and reduction of
equations and forms had generated various concepts: characteristic polynomials
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and their roots, which we have met several times, linear transformations or matrices
((Hawkins, 1977; 1987; Brechenmacher, 2010; Hawkins, 2013)). That the “secular
equation” which describes the long-term perturbations of planetary motion is our
characteristic polynomial for a symmetric matrix and has only real roots had indeed
interesting physical applications; it was an incentive to work on the complex case
for (Clebsch, 1860) and (Christoffel, 1864), whom I have mentioned above. Secular
equations again appeared in a physical environment in Born’s paper, but without
explicit link to these previous works. The connections between Born and Jacob
Rosanes, who studied the transformation of quadratic forms in the 1870s and 1880s,
are on the other hand well attested ((Mehra and Rechenberg, 1982, 119)) and
Born also quoted more recent algebraic papers: this suggests a wider, less specific,
relevant algebraic environment in which matrices and forms were now available
independently of the narrow topic of the secular equation or of its other avatars.

In general history, following Fernand Braudel’s suggestion to take into account
not only the short-term events of political life, but also phenomena deployed over
a more extended period of time, be they economic trends or even geological trans-
formations, the “long term” has come to mean a time of immobility with respect
to human actions. This is not the case in mathematics. A long term thread, based
on a simple retrospective identification of concepts, or results, would be a snare.
There is no easy line from Hermite to Picard to Moore and Study to Born. Long
term histories thus require us to study not only local configurations but also the
various ways in which they are, or not, connected. The links we have mentioned,
whatever be their duration in time or the scale at which they operate, are con-
structed through the “art” of mathematicians; and this may be true also of the
discontinuities. Insofar as they involve the work of mathematicians, they are—or
should be—a primary concern for the history of mathematics.

References

Accademia delle Scienze (ed.) 1982. Celebrazione del centenario della nascita di Guido Fubini e
Francesco Severi: Torino, 8-10 Ottobre, 1979, Accademia delle Scienze, Torino.
Alfonsi, Liliane. 2011. Étienne Bézout (1730-1783), mathématicien des Lumières, L’Harmattan,
Paris. MR2537663
Archibald, Tom. 1989. Physics as a constraint on mathematical research: the case of poten-
tial theory and electrodynamics, 1840-1880, The History of Modern Mathematics, pp. 28–75.
MR1037808

. 2011. Differential Equations and Algebraic Transcendents, Revue d’histoire des mathé-
matiques 17 (2), 373–401. MR2883520
Ascher, Marcia. 1991. Ethnomathematics: A Multicultural View of Mathematical Ideas,
Brooks/Cole Publishing, Pacific Grove. MR1095781
Aspray, William and Philip Kitcher (eds.) 1988. History and Philosophy of Modern Mathematics,
University of Minnesota Press, Minneapolis. MR0945464
Aubin, David and Amy Dahan Dalmedico. 2002. Writing the History of Dynamical Systems and
Chaos: Longue Durée and Revolution, Disciplines and Cultures, Historia Mathematica 29, 1–67.
MR1917131
Aubin, David and Catherine Goldstein (eds.) 2014. A War of Guns and Mathematics: Math-
ematical Practices and Communities in France and Its Western Allies around World War I,
American Mathematical Society, Providence, R.I. MR3308762
Ausejo, Elena and Mariano Hormigón (eds.) 1993. Messengers of Mathematics: European Math-
ematical Journals (1800-1946), Siglo XXI de España Editores, Madrid. MR1485780
Bianchi, Luigi. 1891. Geometrische Darstellung der Gruppen linearer Substitutionen mit ganzen
complexen Coefficienten nebst Anwendungen auf die Zahlentheorie, Mathematische Annalen 38,
313–333. MR1510677



LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS 25

. 1892. Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici
immaginari, Mathematische Annalen 40, 332–412. MR1510727
Born, Max. 1914. Zum Raumgittertheorie des Diamanten, Annalen der Physik 44, 605–642.
Born, Max and Pascual Jordan. 1925. Zur Quantenmechanik, Zeitschrift für Physik 34(1), 858–
888.
Bottazzini, Umberto. 1994. Va’ pensiero: Immagini della matematica nell’Italia dell’Ottocento,
Il Mulino, Bologna. MR1789608
Bottazzini, Umberto and Pietro Nastasi. 2013. La patria ci vuole eroi: Matematici e vita politica
nell’Italia del Risorgimento, Zanichelli, Bologna. MR3379930
Boucard, Jenny. 2011. Louis Poinsot et la théorie de l’ordre : un chaînon manquant entre Gauss
et Galois ?, Revue d’histoire des mathématiques 17, no. 1, 41–138. MR2849160
Boucard, Jenny and Christophe Eckes. 2015. La théorie de l’ordre de Poinsot à Bourgoin :
mathématiques, philosophie, art ornemental, Revue de synthèse 136, 403–447. MR3441484
Brechenmacher, Frédéric. 2007. L’identité algébrique d’une pratique portée par la discussion sur
l’équation à l’aide de laquelle on détermine les inégalités séculaires des planètes (1766–1874),
Sciences et Techniques en Perspective 1, 5–85.

. 2010. Une histoire de l’universalité des matrices mathématiques, Revue de synthèse 131,
no. 4, 569–603. MR3109581

. 2016. Algebraic Generality versus Arithmetic Generality in the Controversy between C.
Jordan and L. Kronecker (1874), The Oxford Handbook of Generality in Mathematics and the
Sciences, pp. 433–467. MR3617469
Brian, Éric. 1994. La Mesure de l’État: administrateurs et géomètres au XVIIIe siècle, Albin
Michel, Paris.
Brigaglia, Aldo. 2007. An Overview of Italian Arithmetic after the Disquisitiones Arithmeti-
cae, The Shaping of Arithmetic after C. G. Gauss’s Disquisitiones Arithmeticae, pp. 431–452.
MR2308291

. 2016. Segre and the foundations of geometry: From complex projective geometry to dual
numbers, From Classical to Modern Algebraic Geometry, pp. 265–288.
Brouzet, Robert. 2004. La double origine du groupe symplectique, Expositiones mathematicae
22-1, 55–82. MR2166969
Campbell-Kelly, Martin, Mary Croarken, Raymond Flood, and Eleanor Robson (eds.) 2003. The
History of Mathematical Tables: from Sumer to Spreadsheets, Oxford University Press, Oxford.
MR2070861
Capecchi, Danilo and Giuseppe Ruta. 2014. Strength of Materials and Theory of Elasticity in
19th Century Italy, Springer, Cham. MR3289169
Casnati, Gianfranco, Alberto Conte, Letterio Gatto, Livia Giacardi, Marina Marchisio, and
Alessandro Verra (eds.) 2016. From Classical to Modern Algebraic Geometry: Corrado Segre’s
Mastership and Legacy, Birkhäuser, Basel.
Cayley, Arthur. 1866. A supplementary memoir on the theory of matrices, Philosophical Trans-
actions of the Royal Society of London 156, 25–35.
Chemla, Karine (ed.) 2012. The history of mathematical proof in ancient traditions, Cambridge
University Press, Cambridge. MR3410211
Chemla, Karine, Renaud Chorlay, and David Rabouin (eds.) 2016. The Oxford Handbook of
Generality in Mathematics and the Sciences, Oxford University Press, Oxford. MR3588273
Chorlay, Renaud. 2010. From Problems to Structures: The Cousin Problems and the Emergence
of the Sheaf Concept, Archive for History of Exact Sciences 64(1), 1–73. MR2570308
Christoffel, Elwin Bruno. 1864. Verallgemeinerung einiger Theoreme des Herrn Weierstrass,
Journal für die reine und angewandte Mathematik 63, 255–272. MR1579267
Clebsch, Alfred. 1860. Theorie der circularpolarisirenden Medien, Journal für die reine und ange-
wandte Mathematik 57, 319–358. MR1579134

. 1863. Ueber eine Classe von Gleichungen, welche nur reelle Wurzeln besitzen, Journal
für die reine und angewandte Mathematik 62, 232–245. MR1579241
Corry, Leo. 2004. Modern Algebra and the Rise of Mathematical Structures, 2nd ed., Birkhäuser,
Basel. MR2033171
Crilly, Tony. 2006. Arthur Cayley, Mathematician Laureate of the Victorian Age, Johns Hopkins
University Press, Baltimore. MR2284396
d’Ambrosio, Ubiratan. 2000. Historiographical Proposal for Non-Western Mathematics, Mathe-
matics Across Cultures: The History of Non-Western Mathematics, pp. 79–92. MR1805676



26 CATHERINE GOLDSTEIN

De Mol, Liesbeth and Maarten Bullynck. 2008. A week-end off. The first extensive number-
theoretical computation on the ENIAC, Computability in Europe 2008. Logic and Theory of
Algorithms, pp. 158–168. MR2507014
Decaillot, Anne-Marie. 2002. Géométrie des tissus. Mosaïques. Échiquiers. Mathématiques
curieuses et utiles, Revue d’histoire des mathématiques 8, 145–206. MR2016133
Dickson, Leonard Eugene. 1919. History of the theory of numbers, Carnegie Institution, Wash-
ington.
Dirichlet, Johann Peter Gustav Lejeune. 1832. Démonstration d’une propriété analogue à loi
de réciprocité qui existe entre deux nombres premiers quelconques, Journal für die reine und
angewandte Mathematik 24, 379–389. MR1577918

. 1840. Sur la théorie des nombres, Journal de mathématiques pures et appliquées 5, 72–
74.

. 1842. Recherches sur les formes quadratiques à coefficients et à indéterminées complexes,
Journal für die reine und angewandte Mathematik 24, 291–371.
Dubucs, Jacques-Paul. 1991. La fabrique de la preuve, Espaces-Temps 47-1, 37–51.
Durand-Richard, Marie José. 2010. Planimeters and integraphs in the 19th century: Before the
differential analyser, Nuncius 21, 101–124.
Edwards, Harold. 1980. The Genesis of Ideal Theory, Archive for History of Exact Sciences 23,
371–378. MR0608312

. 1992. Mathematical Ideas, Ideals and Ideology, Mathematical Intelligencer 14, 6–19.
MR1160701
Ehrhardt, Caroline. 2012. Itinéraire d’un texte mathématique: les réélaborations d’un mémoire
d’Evariste Galois au dix-neuvième siècle, Hermann, Paris. MR2537664

. 2015. Tactics: In search of a long-term mathematical project (1844-1896), Historia
Mathematica 42-4, 436–467. MR3421866
Epple, Moritz. 1999. Die Entstehung der Knotentheorie: Kontexte und Konstruktionen einer
modernen mathematischen Theorie, Vieweg/Springer, Braunschweig. MR1716305
Fisher, Charles. 1966. The Death of a Mathematical Theory: A Study in the Sociology of Knowl-
edge, Archive for History of Exact Sciences 3, 137–159. MR0202546
Flament, Dominique and Philippe Nabonnand (eds.) 2011. Justifier en mathématiques, MSH,
Paris.
Frobenius, Georg. 1878. Ueber lineare Substitutionen und bilineare Formen, Journal für die reine
und angewandte Mathematik 84, 1–63.

. 1883. Ueber die principale Transformation der Thetafunctionen mehrerer Variablen,
Journal für die reine und angewandte Mathematik 95, 264–296. MR1579982
Fubini, Guido. 1903. Sulla teoria delle forme quadratiche hermitiane e dei sistemi di tali forme,
Atti della Accademia gioenia di scienze naturali in Catania 17. 4.

. 1904. Sulle metriche definite da una forma hermitiana, Atti del Reale Istituto veneto
di scienze, lettere ed arti 63 (2), 501–513.
Fuchs, Lazarus. 1896. Ueber eine Klasse linearer homogener Differentialgleichungen, Sitzungs-
berichte der königlich-preußischen Akademie der Wissenschaften zu Berlin, 753–769.
Gauss, Carl Friedrich. 1831/1863. Theoria residuorum biquadraticorum. commentatio secunda,
Werke, pp. 95–148.
Gauthier, Sébastien. 2009. La géométrie dans la géométrie des nombres : histoire de discipline ou
histoire de pratiques à partir des exemples de Minkowski, Mordell et Davenport, Revue d’histoire
des mathématiques 15(2), 183–230. MR2667778

. 2010. How to Define the Geometry of Numbers as a Discipline, Oberwolfach Reports
12, 618–620.
Gérini, Christian. 2002. Les Annales de Gergonne : apport scientifique et épistémologique dans
l’histoire des mathématiques, Septentrion, Villeneuve d’Ascq.
Gilain, Christian. 1991. Sur l’histoire du théorème fondamental de l’algèbre : théorie des équations
et calcul intégral, Archive for History of Exact Sciences 42, 91–136. MR1118462
Gilain, Christian and Alexandre Guilbaud (eds.) 2015. Sciences mathématiques 1750–1850 :
continuités et ruptures, CNRS, Paris. MR3702024
Gillies, Donald (ed.) 1992. Revolutions in Mathematics, Oxford University Press, Oxford.
MR1192351



LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS 27

Gispert, Hélène and Gert Schubring. 2011. Societal, Structural, and Conceptual Changes in
Mathematics Teaching: Reform Processes in France and Germany over the Twentieth Century
and the International Dynamics, Science in Context 24(1), 73–106. MR2770673
Goldstein, Catherine. 1995. Un théorème de Fermat et ses lecteurs, Presses universitaires de
Vincennes, Saint-Denis. MR1351497

. 1999. Sur la question des méthodes quantitatives en histoire des mathématiques: le cas
de la théorie des nombres en france (1870–1914), Acta historiae rerum naturalium nec non
technicarum 28, 187–214.

. 2001. L’expérience des nombres de B. Frenicle de Bessy, Revue de synthèse 2-3-4, 425–
454.

. 2007. The Hermitian Form of Reading the D. A., The Shaping of Arithmetic after C.
G. Gauss’s Disquisitiones Arithmeticae, pp. 375–410. MR2308289
Goldstein, Catherine and Jim Ritter. 2003. The Varieties of Unity: Sounding unified theories
(1920–1930), Revisiting the foundations of relativistic physics, pp. 93–149.
Goldstein, Catherine and Norbert Schappacher. 2007. A Book in Search of a Discipline, The
Shaping of Arithmetic after C. G. Gauss’s Disquisitiones Arithmeticae, pp. 3–65. MR2308277
Gray, Jeremy. 1984. Fuchs and the Theory of Differential Equations, Bulletin of the American
Mathematical Society 10(1), 1–26. MR0722855

(ed.) 1999. The Symbolic Universe: Geometry and Physics, 1890-1930, Oxford University
Press, Oxford. MR1750737

. 2000. Linear Differential Equations and Group Theory from Riemann to Poincaré,
Birkhäuser, Basel. MR1751835
Hartwich, Yvonne. 2005. Eduard Study (1862-1930): Ein mathematischer Mephistopheles im
geometrischen Gärtchen, Doktorat.
Hawkins, Thomas. 1977. Weierstrass and the Theory of Matrices, Archive for the History of
Exact Sciences 17(2), 119–163. MR0528299

. 1987. Cayley’s Counting Problem and the Representation of Lie Algebras, Proceedings
of the International Congress of Mathematicians, August 3-11, 1986, pp. 1642–1656. MR0934361

. 2013. The Mathematics of Frobenius in Context : a journey through 18th to 20th century
mathematics, Springer, New York. MR3099749
Hermite, Charles. 1850. Extraits de lettres à m. jacobi sur différents objects de la théorie des
nombres, Journal für die reine und angewandte Mathematik 40, 261–315. MR1578698-1578699

. 1854. Sur la théorie des formes quadratiques (second mémoire), Journal für die reine
und angewandte Mathematik 47, 340–368. MR1578872

. 1855a. Remarque sur un théorème de M. Cauchy, Comptes rendus hebdomadaires des
séances de l’Académie des sciences 41, 181–183.

. 1855b. Sur la théorie de la transformation des fonctions abéliennes, Comptes rendus
hebdomadaires des séances de l’Académie des sciences 40, 249–254, 304–309, 365–369, 427–431,
485–489, 536–541, 704–707, 784–787.

. 1856. Sur le nombre des racines d’une équation algébrique comprises entre des limites
données, Journal für die reine und angewandte Mathematik 52, 39–51. MR1578969
Hermite, Charles and Thomas Stieltjes. 1905. Correspondance, Gauthier-Villars, Paris.
Herreman, Alain. 2013. L’inauguration des séries trigonométriques dans la Théorie analytique
de la chaleur de Fourier et dans la controverse des cordes vibrantes, Revue d’histoire des math-
ématiques 19(2), 151–243. MR3215889
Horiuchi, Annick. 1996. Sur la recomposition du paysage mathématique japonais au début de
l’époque meiji, Mathematical Europe: history, myth, identity, pp. 247–268. MR1770130
Houzel, Christian. 1991. Aux origines de la géométrie algébrique : les travaux de Picard sur les
surfaces (1884-1905), La France mathématique, pp. 243–276.
Karp, Alexander and Gert Schubring (eds.) 2014. Handbook on the History of Mathematics
Education, Springer, New York.
Kjeldsen, Tinne Hoff. 2002. Different motivations and goals in the historical development of
the theory of systems of linear inequalities, Archive for History of Exact Sciences 56, 469–538.
MR1940044

. 2010. History of convexity and mathematical programming: Connections and relation-
ships in two episodes of research in pure and applied mathematics of the 20th century, Pro-
ceedings of the International Congress of Mathematicians, Hyderabad 2010, pp. 3233–3257.
MR2828013



28 CATHERINE GOLDSTEIN

Klein, Felix. 1875. Ueber binäre Formen mit linearen Transformationen in sich selbst, Mathe-
matische Annalen 9, 183–208. MR1509857

. 1896. Über einen Satz aus der Theorie der endlichen (discontinuirlichen) Gruppen lin-
earer Substitutionen beliebig vieler Veränderlicher, Jahresbericht der Deutschen Mathematiker-
Vereinigung 5, 57.
Lê, François. 2015. Geometrical Equations: Forgotten Premises of Felix Klein’s Erlanger Pro-
gramm, Historia Mathematica 42(3), 315–342. MR3366874
Lê, François and Anne-Sandrine Paumier (eds.) 2016. La classification comme pratique scien-
tifique. Special issue of Cahiers François Viète, ser. 3, vol. 1.
Loewy, Alfred. 1896. Sur les formes quadratiques définies à indéterminées conjuguées de m.
hermite, Comptes rendus hebdomadaires des séances de l’Académie des sciences 123, 168–171.

. 1898. Ueber bilineare Formen mit conjugirt imaginären Variabeln, Mathematische An-
nalen 50, 557–576. MR1511015
Lorenat, Jemma. 2014. Figures real, imagined and missing in Poncelet, Plücker, and Gergonne,
Historia Mathematica 42(2), 155–192. MR3324608
Lützen, Jesper and Walter Purkert. 1994. Conflicting Tendancies in the Historiography of Math-
ematics: Zeuthen vs Cantor, The History of Modern Mathematics, pp. 1–42. MR1282499
Maschke, Heinrich. 1898. Die Reduction linearer homogener Substitutionen von endlicher Periode
auf ihre kanonische Form, Mathematische Annalen 50, 220–224. MR1510992
Mehra, Jagdish and Helmut Rechenberg. 1982. The Historical Development of Quantum Theory,
vol. 3: The Formulation of Matrix Mechanics and Its Modifications, 1925-1926, Springer, New
York, Heidelberg, Berlin. MR0678922
Mehrtens, Herbert. 1990. Moderne Sprache Mathematik, Suhrkamp, Frankfurt. MR1090540
Meyer, Franz. 1899. Invariantentheorie, Encyklopädie der mathematischen Wissenschaften,
pp. 320–403.
Miller, George A., Hans F. Blichfeldt, and Leonard E. Dickson. 1916. Theory and Applications
of Finite Groups, John Wiley and Chapmann & Hall, New York and London. MR0123600
Moore, Eliakim Hastings. 1898. An Universal Invariant for Finite Groups of Linear Substitu-
tions: with Application in the Theory of the Canonical Form of a Linear Substitution of Finite
Period, Mathematische Annalen 50, 213–219. MR1510991
Mumma, John, Marco Panza, and Gabriel Sandu (eds.) 2012. Diagrams in Mathematics: History
and Philosophy. Special issue of Synthese, vol. 186-1. MR2935327
Nabonnand, Philippe. 2008. La théorie des würfe de von staudt: une irruption de ’algèbre dans
la géométrie pure., Archive for History of Exact Sciences 62-3, 201–242. MR2395382
Netz, Reviel. 1999. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive
History, Cambridge University Press, Cambridge. MR1683176
Parshall, Karen. 1989. Toward a History of Nineteenth-Century Invariant Theory, The History
of Modern Mathematics, pp. 157–206. MR1037799

. 1995. Mathematics in National Contexts (1875–1900): An International Overview, Pro-
ceedings of the International Congress of Mathematicians: Zürich, August 3-11, 1994, pp. 1581–
1591. MR1404061

. 2006. John Sylvester, Jewish Mathematician of a Victorian World, Johns Hopkins Uni-
versity Press, Baltimore. MR2216541
Parshall, Karen and David Rowe. 1994. The Emergence of the American Mathematical Research
Community 1876-1900, AMS and LMS, Providence (R.I.) MR1290994
Peiffer, Jeanne. 1998. Faire des mathématiques par lettres, Revue d’histoire des mathématiques
4, 143–157. MR1664081
Petit, Cécile and Éric Vandendriessche. 2014. Introduction: ethnologie et ethno-mathématiques,
de quelques expressions d’une rencontre, Ethnographiques.org 29.
Picard, Emile. 1881. Sur un théorème relatif aux surfaces pour lesquelles les coordonnées d’un
point quelconque s’expriment par des fonctions abéliennes de deux paramètres, Mathematische
Annalen 19, 569–577. MR1510144

. 1882a. Sur certaines fonctions uniformes de deux variables, et sur un groupe de sub-
stitutions linéaires, Comptes rendus hebdomadaires des séances de l’Académie des sciences 94,
579–582.

. 1882b. Sur certaines formes quadratiques et sur quelques groupes discontinus, Comptes
rendus hebdomadaires des séances de l’Académie des sciences 95, 763–766.



LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS 29

. 1883. Sur une classe de groupes discontinus de substitutions linéaires et sur les fonctions
de deux variables indépendantes restant invariables par ces substitutions, Acta Mathematica 1,
297–321. MR1554586

. 1884. Mémoire sur les formes quadratiques binaires indéfinies à indéterminées con-
juguées, Annales scientifiques de l’Ecole normale supérieure 1, 9–54. MR1508733

. 1887. Remarque sur les groupes linéaires d’ordre fini à trois variables, Bulletin de la
Société mathématique de France 15, 152–156. MR1504015

. 1889. Notice sur les travaux scientifiques, Gauthier-Villars, Paris.

. 1891. Sur les formes quadratiques à indééterminées conjuguées, Mathematische Annalen
39, 142–144. MR1510698
Poincaré, Henri. 1908. Science et méthode, Flammarion, Paris.
Remmert, Volker and Ute Schneider. 2010. Eine Disziplin und ihre Verleger: Disziplinenkul-
tur und Publikationswesen der Mathematik in Deutschland, 1871–1949, Transcript, Bielefeld.
MR2574246
Reye, Theodor. 1866. Geometrie der lage, Carl Rümpler, Hannover.
Rheinberger, Hans-Jörg. 1994. Experimental Systems: Historiality, Narration, and Deconstruc-
tion, Science in Context 7(1), 65–81.
Ritter, Jim. 2004. Reading Strasbourg 368: A Thrice-Told Tale, History of Science, History of
Text, pp. 177–200. MR2145206
Roque, Tatiana. 2015. L’originalité de poincaré en mécanique céleste: pratique des solutions péri-
odiques dans un réseau de textes, Revue d’histoire des mathématiques 21, 41–109. MR3346975
Rota, Gian-Carlo. 2001. What is invariant theory, really?, Algebraic Combinatorics and Com-
puter Science, pp. 41–56.
Rowe, David (ed.) 1992. David Hilbert: Natur und Erkenntniss, Birkhäuser, Basel.

. 2003. Mathematical Schools, Communities, and Networks, The Cambridge History of
Science, pp. 113–132. MR1990318

. 2004. Making Mathematics in an Oral Culture: Göttingen in the Era of Klein and
Hilbert, Science in Context 17, 44–50. MR2089302
Schappacher, Norbert. 2010. Rewriting points, Proceedings of the International Congress of Math-
ematicians, Hyderabad 2010, pp. 3258–3291. MR2828014
Schlote, Karl-Heinz and Martina Schneider (eds.) 2011. Mathematics meets physics: A contri-
bution to their interaction in the 19th and the first half of the 20th century, Harri Deutsch,
Frankfurt-am-Main. MR3098095
Scholz, Erhard. 1989. Symmetrie Gruppe Dualität: Zur Beziehung zwischen theoretischer Math-
ematik und Anwendungen in Kristallographie und Baustatik des 19. Jahrhunderts, Birkhäuser,
Basel. MR1027381
Schubring, Gert. 1985a. Das mathematische Seminar der Universität Münster, 1831/1875 bis
1951, Sudhoffs Archiv 69, 154–191. MR0841239

. 1985b. Die Entwicklung des mathematischen Seminars der Universität Bonn, 1864-
1929, Jahresbericht der deutschen Mathematiker-Vereinigung 87, 139–163. MR0818121

. 2005. Conflicts Between Generalization, Rigor, and Intuition: Number Concepts Un-
derlying the Development of Analysis in 17th-19th Century France and Germany, Springer, New
York. MR2144499
Segre, Corrado. 1890a. Un nuovo campo di ricerche geometriche, Atti della Reale Accademia
delle Scienze di Torino 25, 276–301, 430–457, 592–612.

. 1890b. Un nuovo campo di ricerche geometriche, Atti della Reale Accademia delle
Scienze di Torino 26, 35–71.
Sinaceur, Hourya. 1991. Corps et modèles, Vrin, Paris.
Staudt, Karl von. 1847. Geometrie der lage, Bauer and Raspe, Nürnberg.
Study, Eduard. 1905. Kürzeste Wege im komplexen Gebiet, Mathematische Annalen 60, 321–
378. MR1511309
Terracini, Alessandro. 1926. Corrado Segre (1863–1924), Jahresbericht der DMV 35, 209–250.
Tobies, Renate and Dominique Tournès (eds.) 2011. History of Numerical and Graphical Tables.
Oberwolfach Reports, vol. 8, pp. 639-689. MR2849510
Tournès, Dominique. 2012. Diagrams in the theory of differential equations (eighteenth to nine-
teenth centuries), Synthese 186, 257–288. MR2935337
Vahlen, Karl Theodor. 1900. Arithmetische Theorie der Formen, Encyklopädie der mathematis-
chen Wissenschaften, pp. 581–634.



30 CATHERINE GOLDSTEIN

Valentiner, Hermann. 1889. De endelige Transformations-gruppers Theori, Bianco Lunos, Copen-
hagen.
Verdier, Norbert. 2009. Le Journal de Liouville et la presse de son temps : une entreprise d’édition
et de circulation des mathématiques au XIXème siècle (1824–1885), Thèse de doctorat.
Weil, André. 1980. History of mathematics: why and how, Proceedings of the International Con-
gress of Mathematicians 1978, pp. 227–236. MR0562610

CNRS, Institut de mathématiques de Jussieu-Paris Rive Gauche, Sorbonne Univer-

sité, Univ. Paris Diderot, Case 247, 4 place Jussieu, 75252 Paris Cedex, France

E-mail address: catherine.goldstein@imj-prg.fr


