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ABSTRACT

Recent studies show that NucS endonucleases participate in mismatch repair in 

several archaea and bacteria. However, the function of archaeal NucS endonucleases 

has not been completely clarified. Here, we describe a NucS endonuclease from the 

hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans (Tga 

NucS) that can cleave uracil (U)- and hypoxanthine (I)-containing dsDNA at 80oC. 

Biochemical evidence shows that the cleavage sites of the enzyme are at the second 

phosphodiester on the 5′- site of U or I, and at the third phosphodiester on the 5′-site 

of the opposite base of U or I, creating a double strand break with a 4-nt 5′-

overhang.The ends of the cleaved product of Tga NucS are ligatable, possessing 5′-

phosphate and 3′-hydroxyl termini, which can be utilized by DNA repair proteins or 

enzymes. Tga NucS displays a preference for U/G- and I/T-containing dsDNA over 

other pairs with U or I, suggesting that the enzyme is responsible for repair of U and I 

in DNA that arise from deamination. Biochemical characterization of cleaving U- and 

I-containing DNA by Tga NucS was also investigated. The DNA-binding results 

show that the enzyme exhibits a higher affinity for normal, U- and I-containing 

dsDNA than for normal, U- and I-containing ssDNA. Therefore, we present an 

alternative pathway for repair of deaminated bases in DNA triggered by archaeal 

NucS endonuclease in hyperthermophilic archaea. 

Keywords: Archaea; NucS endonuclease; Deamination; DNA repair
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1. Introduction

Although double-stranded DNA (dsDNA) is stable, DNA is always damaged by 

endogenous and exogenous DNA damaging agents. Replication of damaged DNA can 

lead to serious consequences for a cell if it is not repaired, such as mutation and 

eventually cell death. Thus, efficient DNA repair is essential for all forms of life. 

Deamination is a typical damage in genomic DNA of a living cell. Cytosine and 

adenine are commonly deaminated into the corresponding base analogs: uracil (U) 

and hypoxanthine (I), respectively. On one hand, a cytosine to thymine transition can 

occur because of a pre-mutagenic pairing of U with G [1]. On the other hand, an A-T 

base pair can be subsequently converted to a G-C base pair after DNA replication if 

the I in DNA is not repaired [2]. Enhanced deamination rates occur more frequently at 

high temperature under which extremophiles thrive [3]. However, genetic data 

suggest that extremophilic microbes have spontaneous mutation rates similar to those 

of E.coli [4,5]. Therefore, it is expected that these microbes would possess more 

efficient repair pathways to counteract higher rates of mutations generated by 

enhanced deamination.

Archaea have been shown to encode eukaryotic-like DNA repair proteins. 

Hence, their analysis has allowed to reveal properties of eukaryotic DNA repair 

systems [6-9]. Hyperthermophilic archaea (HA) have been shown to possess DNA 

repair proteins from nucleotide excision repair (NER) [10], base excision repair (BER) 

[11], homolohous recombination (HR) [12] and translesion synthesis [13] as observed 

in bacteria and eukaryotes. It should be noted that in archaea several proteins are 

missing in each repair pathway according to their genome content. For example, a 
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well-known mismatch repair (MMR) machinery is usually not present in archaea [14], 

suggesting that alternative DNA repair systems for repairing mismatched DNA might 

exist in HA. Therefore, a complete understanding of what DNA repair pathways are 

present in HA is definitely crucial.

Base excision repair is a key pathway present in bacteria, archaea and eukarya 

for restoring U and I in DNA [11]. HA might employ similar BER mechanism to 

remove U and I in DNA. However, if the numbers of U and I in genomic DNA 

exceed BER capability of HA, other repair pathways would help to repair enhanced 

DNA lesions created at high temperature.

Recently, an alternative excision repair (AER) has been reported as a novel 

repair pathway to restore two deaminated bases in DNA: U and I [15]. Generally, an 

AER is triggered by a specific endonuclease which introduces a nick in the strand 

containing a lesion. The recently reported P. furiosus EndoQ is efficient for U- and I-

containing dsDNA [16]. A homologous protein with P. furiosus EndoQ, 

Thermococcus kodakarensis EndoQ cleaves the first and second phosphodiester bond 

at the 5′-site of I and U bases in DNA, respectively [16]. Another endonuclease V 

(EndoV), which is ubiquitous in bacteria, archaea and eukarya, is responsible for the 

cleavage of the second phosphodiester bond located at the 3′-side of the I base [17]. 

Thus, it is reasonable to assume that both EndoQ and EndoV in HA are involved in 

repairing I lesions created after adenine deamination [18].

As a novel archaeal endonuclease, the Pyrococcus abyssi NucS (nuclease for 

ssDNA) was originally described as a protein able to cleave flap and splayed DNA 
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substrates, suggesting that it could play a potential role in NER [10, 19-20]. Recently, 

Ishino and colleagues showed that the homolog of this enzyme in T. kodakarensis is 

able to recognize mismatched DNA, thus referring the enzyme as Tko EndoMS [21]. 

Furthermore, mutational analysis of bacterial NucS homologs shows an increase of 

mutation rates, a large majority of them being transitions corroborating the role of 

these proteins in vivo suggested by in vitro studies [22-24]. In addition, a recent study 

revealed that the NucS homolog of Sulfolobus acidocaldarius is responsible for DNA 

repair of helix-distorting DNA lesions, suggesting that this endonuclease is involved 

in NER [25]. Therefore, these data suggest that NucS endonucleases may be 

associated to different mechanisms or DNA metabolism pathways.

Thermococcus gammatolerans, a hyperthermophilic archaeon with an optimal 

growth temperature of 88°C, was isolated from a hydrothermal vent located in the 

Gulf of California [26]. This archaeon is thought as the most radioresistant archaeon 

to date, fully withstanding a 5.0 kGy dose of gamma irradiation without loss of 

viability [27]. The genome of T. gammatolerans was sequenced [27], encoding a 

putative NucS endonuclease. In this work, we characterized the NucS endonuclease 

from T. gammatolerans, capable of cleaving U- and I-containing dsDNA at high 

temperature. Thus, efficient cleavage of U- and I-containing DNA by Tga NucS 

provides an alternative pathway for repair of deaminated base in DNA in 

Thermococcus cells. 

2. Materials and methods

2.1. Materials
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Materials were purchased from the following companies: dNTPs, T4 DNA 

ligase, NdeI, NotI, and Pfu DNA polymerase, Thermo Fisher Scientific (Waltham, 

MA); Quikchange XL Site-directed Mutagenesis Kit, Escherichia coli BL21 (DE3) 

pLysS cells, Transgene (Beijing, China); pET-30a (+), Novagen (Merck, Darmstadt, 

Germany); Chemicals, Amresco (WA, USA); PCR Cycle Pure Kit, Omega 

(Guangzhou, China).

2.2. DNA substrates

All the oligonucleotides used in this work were synthesized by Sangon Company 

(Shanghai, China). The sequences of all the oligonucleotides are listed in Table S1. 

The Cy3-labeled dsDNA and Hex-labeled dsDNA were prepared by mixing the 

oligonucleotides and their complementary oligonucleotides in an annealing buffer 

containing 20 mM Tris-Cl (pH 8.0) and 100 mM NaCl. The mixture was heated at 

100oC for 5 min and cooled slowly to room temperature at least 4 hours. All DNA 

substrates in this work are listed in Table S2. 

2.3. Cloning of the gene encoding Tga NucS

The TGAM_RS00670 gene encoding the NucS endonuclease of T. 

gammatolerans was amplified by Pfu DNA polymerase with the forward primer (5′-

GGG AAT TCC ATA TGC CCA AGG TTG AGC TTA GGG AG-3′, the underlined 

nucleotides represent NdeI restriction site) and the reverse primer (5′-ATA AGA ATG 

CGG CCG CAA ACA GCC TGA GCT GTC TTC C-3′, the underlined nucleotides 

represent NotI restriction site). The PCR product was digested by NdeI and NotI, and 

cloned into a pET-30a (+) vector at the same restriction sites. The sequence of the 
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recombinant plasmid was verified before it was transformed into E. coli BL21 (DE3) 

pLysS cells for expressing Tga NucS protein with a 6 x His-tag in its C-terminal.

2.4. Overexpression and purification of Tga NucS 

The expression strain E. coli BL21 (DE3) pLysS harboring the recombinant 

plasmid was cultured overnight into LB medium containing 10 μg/mL kanamycin and 

17 μg/mL chloramphenicol. The fresh culture was inoculated (1:100) into 1 L of fresh 

medium with the same concentrations of kanamycin and chloramphenicol, and 

cultured at 37oC until the OD600 reached 0.6. Then, isopropyl thiogalactoside (IPTG) 

was added at a final concentration of 0.8 mM for 12 hours to induce the expression 

from the recombinant plasmid. 

The cells were harvested by centrifugation (5000 g) at room temperature, 

resuspended in a Ni column buffer A containing 20 mM Tris-HCl (pH 8.0), 1 mM 

dithiothreitol (DTT), 500 mM NaCl, 50 mM imidazole and 10% glycerol, and 

disrupted by ultrasonication. The soluble cell extract was heated at 70oC for 20 min to 

remove non-thermostable proteins from E.coli. After centrifugation (16000 g) at 4oC, 

the supernatant was loaded into a HisTrap FF column (GE Healthcare, Uppsala, 

Sweden) and eluted with NCGTM Chromatography System (Bio-Rad, Hercules, CA, 

USA) by a linear gradient of 50–500 mM imidazole with a Ni column buffer B 

containing 20 mM Tris-HCl (pH 8.0),1 mM DTT, 500 mM NaCl, 500 mM imidazole 

and 10% glycerol. Fractions harboring Tga NucS protein were collected and analyzed 

by migration on a 10% SDS-PAGE. The purified Tga NucS protein fractions were 

dialyzed against a storage buffer containing 50 mM Tris-HCl (pH 8.0), 1 mM DTT, 
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50% glycerol and 50 mM NaCl, and stored at -80oC. The Tga NucS protein 

concentration was quantitated by measuring the absorbance at 280 nm. The theoretical 

molar extinction coefficient of the enzyme protein is predicted to be 12950 M-1 cm-1.

2.5. Construction, overexpression and purification of Tga NucS mutant D163A

Using the wild type plasmid harboring the Tga NucS gene as a template, the site-

directed mutagenesis was performed using a Quikchange XL Site-directed 

Mutagenesis Kit to construct the D163A mutant, following manufacturer instructions. 

The residue D163 is located in the conserved motif II of Tga NucS (Fig. 1A). The 

sequences of the mutagenic primers were as following: 5′-AAG GCA CGG CAT 

AGT TGC CGT TTT GGG GGT TGA CA-3′, and 5′-TGT CAA CCC CCA AAA 

CGG CAA CTA TGC CGT GCC TT-3′. The resulting plasmids were sequenced to 

verify the presence of the single mutation. The Tga NucS mutant protein was 

overexpressed, purified and quantified, following the same protocols as described 

above.

2.6. DNA cleavage assays

The DNA cleavage activity of Tga NucS was assayed with reactions containing 

200 nM Cy3- or Hex-labeled dsDNA or ssDNA, 20 mM Tris-HCl (pH 8.0), 1 mM 

DTT, 1 mM MgCl2, 8% glycerol and Tga NucS at designated concentration. The 

reactions were performed at designated temperature for 30 min and quenched by the 

addition of 10 mM EDTA. The reaction products were analyzed after migration into a 

15% native polyacrylamide gelelectrophoresis in 0.5 x TBE (Tris-borate-EDTA). 

Alternatively, the reactions were stopped by the addition of 10 μL of stop solution 
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containing 98% formamide and 20 mM EDTA. The reaction products were heated at 

100°C for 3 min and chilled rapidly on ice for 5 min, and then separated by 

electrophoresis into a 15% denaturing polyacrylamide gel containing 8M urea in 0.5 x 

TBE. After electrophoresis, the gels were visualized with a Molecular Image analyzer, 

PharosFx System (Bio-Rad). All experiments of DNA cleavage assays were 

replicated three times.

2.7. DNA ligation assays

The cleaved products of Tga NucS were purified by a PCR Cycle Pure Kit to 

remove the enzyme protein and used as the substrates for DNA ligation reactions 

performed by T4 DNA ligase at 22oC for 2 hours. The ligation products were heated 

at 100°C for 3 min and chilled rapidly on ice for 5 min, and analyzed by denaturing 

electrophoresis and imaged with a Molecular Image analyzer (Bio-Rad). ImageQuant 

software was used for quantitative analysis. All experiments of DNA ligation assays 

were replicated three times.

2.8. Electrophoretic mobility shift assays

200 nM Cy3-labeled dsDNA or ssDNA were incubated Tga NucS with 

increasing concentrations in 20 mM Tris-HCl (pH 8.0), 1 mM DTT and 8% glycerol 

at room temperature for 10 min. Samples were analyzed by electrophoresis in a 4% 

native polyacrylamide gel in 0.1 x TBE buffer and visualized with a Molecular Image 

analyzer (Bio-Rad). ImageQuant software was used for quantitative analysis. All 

experiments of DNA binding assays were replicated three times.

3. Results
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3.1. The genome of T. gammatolerans encodes a putative NucS endonuclease

A NucS endonuclease is encoded by the genome of T. gammatolerans. Blast 

analysis showed that Tga NucS displays 87%, 85%, 86%, 25% and 25% similarity to 

the homologs from T. kodakarensis, P. furiosus, Pyrococcus abyssi, 

Mycolicibacterium smegmatis and Mycobacterium tuberculosis, respectively. As 

shown in Fig. 1A, the sequence alignment of NucS endonucleases from several 

archaea and bacteria showed that Tga NucS contains the conserved motifs (Motif I, II, 

III and IV), and motif V that plays an important role for interaction with the 

replication clamp PCNA (proliferating cell nuclear antigen), a DNA polymerase 

pocessivity in archaea and eukarya [28]. Mutational analysis of Tko EndoMS suggests 

that Motif II and Motif III are likely part of a nuclease motif [21].

To characterize Tga NucS, we cloned its gene into a pET30a (+) expression 

vector, and overexpressed and purified the protein from E. coli. The recombinant Tga 

NucS protein was purified to near homogeneity after Ni-column affinity purification 

(Fig. 1B). The purified recombinant protein was found to have an approximate MW 

of 27 kDa (Fig. 1B), correlating with the deduced amino acid sequences. The gel 

filtration profile of the purified Tga NucS protein showed the predicted molecular 

mass of 54 kDa (Fig.S1), suggesting the protein is a homodimer in solution as 

observed for Tko EndoMS [21].

3.2. Cleavage U- and I-containing DNA by Tga NucS

To determine whether Tga NucS is able to cleave U- and I-containing DNA, the 

DNA substrates with U and I were incubated with the enzyme at various temperatures 
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(37, 60 and 80oC). Note that U-containing dsDNA contains U:G mispair since U:G 

mispair can be formed by cytosine deamination from C:G pair (Fig. 2A). As shown in 

Fig. 2B, the cleavage percentages of Tga NucS (300 nM) were measured to be 36 ± 

3.5%, 36 ± 4.2% and 91 ± 0.7% at 37, 60 and 80oC, respectively. Thus, the results 

suggest that the enzyme is capable of efficiently cleaving U-containing dsDNA at 

80oC. By contrast, the enzyme displayed very low activity on normal dsDNA (C:G) 

since little smear DNA product was observed at this three temperatures (Fig. 2B).

Although the endonucleases in E. coli would be inactivated by the heat treatment 

at 70°C for 20 min, there was still a possibility of endonuclease contamination during 

the purification of Tga NucS, thus potentially affecting our results. To rule out this 

possibility, we constructed the D163A mutant of Tga NucS. Note that residue D163 

of Tga NucS is analogus to residue D165 of Tko EndoMS, which is loacted in Motif 

II. The purification profile of Tga NucS D163A mutant are shown in Fig. S2. 

Compared to the wild type enzyme, the D163A mutant completely lost the activity to 

cleave U- and I-containing dsDNA at 100 nM and 200 nM concentrations (Fig. 3D). 

Therefore, the possibility of endonuclease contamination was ruled out, suggesting 

that Tga NucS is capable of cleaving U- and I-containing dsDNA. Furthermore, the 

D163A mutant retained 36 ± 3.5% and 12 ± 2.8% cleavage activity for cleaving U/G- 

and I/T-containing dsDNA, respectively, suggesting the residue D163 is one of key 

residues in active sites of Tga NucS.    

Considering the instability of the tested dsDNA substrate (45 bp) at 80oC, we 

proposed that Tga NucS keeps it stable at this high temperature during cleavage. To 
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prove our hypothesis, we performed the cleavage reactions of the enzyme using U-

containing and normal ssDNA as the substrates at 80oC in the presence of 50 nM, 100 

nM and 300 nM Tga NucS. Surprisingly, we found that the enzyme is almost inactive 

to both U-containing and normal ssDNA at 80oC (Fig. S3), which confirms our above 

hypothesis. Thus, Tga NucS is capable of cleaving U-containing dsDNA rather than 

U-containing ssDNA at the close physiological temperature.

High temperature can lead to increased not only cytosine deamination, but also 

adenine deamination, which leads to the formation of I base in DNA. Next, we 

investigated whether Tga NucS can cleave I-containing dsDNA. We employed I-

containing dsDNA (I:T) as the substrate since I:T mispair can be formed by adenine 

deamination of A:T pair (Fig. 2A). Under the reaction conditions as described for 

cleaving U-containing dsDNA, 28 ± 3.5%, 25 ± 2.1% and 89 ±1.4% cleavage 

percentages were observed for the enzyme to cleave I-containing dsDNA at 37, 55 

and 80oC (Fig. 2C), respectively. However, the enzyme displayed no activity for 

normal dsDNA (A:T) (Fig. 2C). Therefore, these observations suggest that Tga NucS 

can efficiently cleave I-containing dsDNA at the close physiological temperature. In 

combination, efficient cleavage of U- and I-containing dsDNA by Tga NucS at the 

close physiological temperature might provide an alternative pathway for repair U and 

I bases of DNA in Thermococcus cells.

3.3. Substrate specificity of Tga NucS

To determine the substrate specificity of Tga NucS, we employed various pairs 

of U-containing dsDNA ( U:N, N:A, T, C and G) and I-containing dsDNA (I:N) as 
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the substrates using varied enzyme concentration (100, 200 and 400 nM) (Fig. 3A). 

As shown in Fig. 3B , the cleavage percentage of Tga NucS was measured to be 25 ± 

1.4, 72 ± 1.4, and 96 ± 0.7% at 100, 200 and 400 nM for U/G-containing dsDNA (Fig. 

3B), respectively. Compared with cleaving U/G-containing dsDNA, the enzyme 

displayed reduced efficiencies for cleaving U/T-containing dsDNA at lower enzyme 

concentrations (100 and 200 nM) (Fig. 3B). However, similar cleavage efficiencies 

were obtained at 400 nM for cleaving U/G- and U/T-containing dsDNA (Fig. 3B). By 

contrast, the enzyme is inactive to both U/C- and U/A-containing dsDNA (Fig. 3B). 

Therefore, efficient cleavage of U/G-containing dsDNA by Tga NucS suggest that in 

vivo the enzyme preferably removes uracils from U/G mispair in DNA that arise from 

cytosine deamination.

On the other hand, Tga NucS displayed similar efficiencies for cleaving I/T- and 

I/G-containing dsDNA at these three enzyme concentrations, but had no activity for 

cleaving I/A- and I/C-containing dsDNA (Fig. 3C). Taken together, Tga NucS 

displays high efficiencies for cleaving U/G- and I/T-containing dsDNA substrates.

3.4. Biochemical charcterization of cleaving U- and I-containing dsDNA by Tga NucS

The biochemical characteristics of cleaving U-containing dsDNA by Tga NucS 

were investigated as a function of temperature, pH, divalent cations and salt 

concentrations by using U/G-containing dsDNA as the substrates (Fig. 4A). As 

expected, the enzyme is capable of cleaving U-containing dsDNA at high temperature 

ranging from 55oC to 85oC with varied efficiencies (Fig. 4B). Maximal cleavage 

percentage (96 ± 2.1%) of the enzyme was observed at 75oC, suggesting that the 
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enzyme activity has an optimum temperature, ca. 75oC. The thermo-tolerance results 

showed that the enzyme is able to fully withstand 90oC for 30 min, and even retains a 

24 ± 3.5% activity after a pre-incubation at 100oC for 30 min (Fig. 4C), suggesting 

that Tga NucS is an extremely thermostable endonuclease. 

As shown in Fig. 4D, the enzyme cleaved U-containing dsDNA in a broad pH 

range from 6.0 to 9.0 with maximal cleavage efficiency (91~98%), similar to that of 

Tko EndoMS [21]. The DNA cleavage activity of Tga NucS is dependent a divalent 

caption, such as Mg2+, Mn2+, Fe2+, Co2+and Ni2+, among which Mg2+and Mn2+ are the 

preferred ion (~98% cleavage percentage) (Fig. 4E). Furthermore, the activity of Tga 

NucS is independent on NaCl, but is partially inhibited at NaCl concentrations 

ranging from 200 to 500 mM, and totally inhibited at 1M NaCl (Fig.4F), which is 

consistent with the observations of high salt concentration in the Thermococcales 

cells [21,29-30]. Tga NucS displays essentially similar characteristics for I-containing 

dsDNA (Fig. S4), with a few differences noticeably in terms of thermo-tolerance.

3.5. Identification of the cleavage site of Tga NucS

To clarify the position of cleavage site of Tga NucS on both strands of the U- 

and I-containing DNA, we synthesized the Cy3-labeled oligonucleotides (22 mer and 

24 mer) and the Hex-labeled (18 mer) as the DNA markers, and prepared two types of 

U- and I-containing dsDNA substrates: one labeled strand and double labeled strands 

(Figs. S5A and 5A). The cleaved products of Tga NucS were analyzed after 

electrophoresis on a denaturing polyacrylamide sequencing gel. As shown in Fig. 

S5B, the cleavage of the labeled strand of U-and I-containing DNA by Tga NucS 
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yielded 23 mer fragments, indicating that the enzyme cleaves the second phosphodi-

ester bound on the 5′ side of the damaged base (U or I). By contrast, Tko EndoMS 

cleaves mismatched DNA to form 22 mer DNA fragments [21]. Similar to Tga NucS, 

Tko EndoMS can cleave I-containing dsDNA at 55oC, however, its cleavage position 

remains unclear [21].  

Tko EndoMS is able to cleave mismatched DNA at both strands (25). Here, we 

determined whether Tga NucS can cleave U- and I-containing dsDNA at both strands.  

We employed U- and I-containing dsDNA with double labeled strands as the 

substrates to perform the cleavage reactions of the enzyme (Fig. 5A). By running a 15% 

denaturing polyacrylamide gel, we found that the two short DNA fragments were 

created by the enzyme when using double labeled strands containing U and I as the 

substrates (Fig. 5A), corresponding to 23 mer and 18 mer (Fig. 5B), suggesting that 

the enzyme is similar to Tko EndoMS, able of cleaving both strands of dsDNA [21]. 

The formation with 23 mer product of Tga NucS suggest that the enzyme cleaves the 

second phosphodiester bound on the 5′-side of the U or I base, as observed above. The 

formation with 18 mer product of Tga NucS showed that the enzyme cleaves the third 

phosphodiester on the 5′-side of the opposite base of the U and I base in the 

complementary strand. Taken together, Tga NucS cleaves damaged dsDNA on both 

strands to generate a double strand break with a 4-nt 5′-overhang, which is distinct 

from Tko EndoMS that cleaves DNA to form a 5-nt 5′-overhang [21].  

To investigate whether reaction temperature changes the position of the cleavage 

site of the enzyme, we performed the DNA cleavage reactions at 55oC using the 
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enzyme with high concentration (800 nM) because the enzyme has the reduced 

activity at this temperature (Fig. 2A), found that there was no change of cleavage site 

of the enzyme (Fig. S6). Therefore, reaction temperature has no effect in the position 

of the cleavage sites of Tga NucS.

3.6. Re-ligation of the cleaved products of Tga NucS

To investigate whether Tga NucS cleaves dsDNA to produce a 5′-phosphate and 

3′-hydroxyl termini, we performed re-ligation of the cleaved products of this 

endonuclease by T4 DNA ligase using U/G and I/T-containing dsDNA as the 

cleavage substrates (Fig. 5C). As shown in Fig. 5D, 88 ± 8.4% of the U-containing 

dsDNA substrate was cleaved by Tga NucS before ligation. After ligation by T4 DNA 

ligase, the cleavage efficiency was reduced to be 28 ± 3.5%, suggesting that the 

cleaved product of the enzyme can be ligated. Similar, the cleaved product of I-

containing dsDNA catalyzed by the enzyme was also ligated due to the decreased 

cleavage efficiency from 94% to 43% (Fig. 5D). Therefore, the enzyme cleaves U- 

and I-containing dsDNA on both strands to produce ligatable cohesive ends. 

3.7. Binding of U- and I-containing DNA by Tga NucS 

Next, we incubated normal, U- and I-containing dsDNA with Tga NucS to 

investigate whether the enzyme binds to DNA as normal, U- and I-containing ssDNA 

and dsDNA as the substrates (Fig. 6A). As shown in Figs. 6B and 6C, Tga NucS can 

bind to normal ssDNA and dsDNA with varied efficiencies, although the enzyme 

cannot cleave normal ssDNA and dsDNA at 80oC. The enzyme had higher 

efficiencies for binding normal dsDNA than for binding normal ssDNA. 
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Interestingly, we found that Tga NucS had 41 ± 3.5% and 87 ± 7.8% binding 

efficiencies for U-containing dsDNA at 1000 and 2000 nM (Fig. 6B), respectively. 

Similar binding efficiencies of the enzyme were observed for normal dsDNA. 

Furthermore, the U-containing ssDNA was also bound by the enzyme with clearly 

reduced binding efficiencies, suggesting that Tga NucS exhibits the preference for 

binding normal and U-containing dsDNA over normal and U-containing ssDNA. 

Likewise, Tga NucS displays higher binding efficiencies for normal and I-containing 

dsDNA than normal and I-containing ssDNA (Fig. 6C). Overall, these observations 

suggest that Tga NucS is able to efficiently bind to U- and I-containing dsDNA.

4. Discussion

In this work, we demonstrate a novel function of the NucS endonuclease from T. 

gammatolerans which can recognize and cleave DNA with deaminated bases (uracil 

and hypoxanthine) at 80oC (Fig. 2), which is close to the physiological temperature of 

its host. By contrast, the enzyme is almost inactive to U- and I-containing ssDNA at 

80oC. Interestingly, the two bands were observed in Figs. 2-4, suggesting that this 

endonuclease can cleave the substrate at two sites under the optimal reaction 

conditions, such as at high concentration (400 nM), high temperature (80oC), pH 8.0 

and 9.0, Mg2+ and Mn2+. Since T. gammatolerans possesses double stranded genomic 

DNA, efficient cleavage of U- and I-containing dsDNA by Tga NucS provides an 

alternative pathway for repair of uacils and hypoxanines in DNA. 

Despite 86% similarity, Tga NucS displays varied functions with Tko EndoMS. 

Firstly, Tga NucS cleaves U- and I-containing dsDNA on both strands to produce a 
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double strand break with a 4-nt 5′-overhang (Fig. 5), and not a 5-nt 5′-overhang as 

observed for Tko EndoMS on mismatched dsDNA substrate [21]. Furthermore, Tga 

NucS displays a better activity for cleaving U- and I-containing dsDNA at 80oC than 

at 55oC (Fig. 2). By contrast, Tko EndoMS exhibits higher efficiencies for cleaving 

mismatch DNA substrates at 55oC than at 80oC. Taken together, Tga NucS exhibits 

several biochemical properties distinct from Tko EndoMS that led us to propose that 

Tga NucS might be involved in deaminated base repair at the physiological 

temperature of its host.

T. gammatolerans cells are thought to contain enhanced levels of uracil in 

genomic DNA that may originate from increased cytosine deamination [26]. Genomic 

sequence of T. gammatolerans encodes 2 putative UDGs [27]. Although these UDGs 

have not been characterized, they might be capable of repairing uracil in DNA in T. 

gammatolerans cells. However, if the uracil levels in the genomic DNA of T. 

gammatolerans exceed repair capability of these UDGs, an alternative repair pathway 

would be required. P. furiosus EndoQ can nick U-containing dsDNA, triggering an 

alternative pathway for repair of uracil in DNA. Herein, Tga NucS can recognize and 

cleave U-containing dsDNA at the close physiological temperature of its host, 

providing a novel alternative eexcision repair for removal of enhanced uracils in HA. 

Currently, hypoxanthine of DNA is recognized by EndoV, a ubiquitous enzyme 

in bacteria, archaea and eukarya. After nicking by EndoV, another endonuclease or 3′-

5′ exonuclease would be needed to process DNA at the 5′ upstream of the 

hypoxanthine in the DNA or degrade the DNA strand to remove thehypoxanthine. For 
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instance, P. furiosus EndoQ can nick I-containing DNA at the 3′ upstream of the I 

nucleotide, suggesting that the endonuclease is involved in I-containing DNA repair 

[16,29]. However, the detailed pathways for repairing hypoxanthine in DNA of 

archaea remains poorly understood. Similar to other HA, T. gammatolerans encodes a 

putative EndoV [27], which might be capable of repairing hypoxanthine, as well as a 

putative EndoQ (TGAM_0434) homologous to Pfu EndoQ [27], suggesting that these 

enzymes may be involved in hypoxanthine repair in T. gammatolerans. In this study, 

we revealed that Tga NucS can also participate in I-containing DNA repair by 

cleaving both strands with an hypoxanthine, providing a novel alternative pathway to 

remove hypoxanthine in HA. 

Tga NucS is able to cleave both strands of U- and I- containing dsDNA, yielding 

double strand breaks. Since they are extremely severe to the archaeal cells, the 

generated DSBs need to be further repaired by HR. Luckily, the T. gammatolerans 

genome encodes the proteins of HR, which are conserved in bacteria and euarya. 

Furthermore, the ends of cleaved DNA product of Tga NucS possess 5′-phosphate and 

3′-hydroxyl termini (Fig.6), which can be utilized by the proteins in HR. It has been 

proposed that T. kodakarensis cells and other euryarchaea contain multiple copies of 

genomic DNA (7-19 copies per cell) [30], which would be favorable for efficient HR. 

Many euryarchaea, such as Thermococcus, are highly polyploid [31], which would be 

advantageous for efficient HR, whereas the crenarchaea have eukaryal-like monoploid 

and diploid stages [32]. Taken together, efficient HR in T. gammatolerans cells would 

be expected to process a double strand break created by U- and I- containing DNA 
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cleavage of Tga NucS.

Like in T. kodakarensis, the Tga NucS CDS (NCBI gene ID: 7988711) in T. 

gammatolerans genome [27], starts a few nucleotides downstream the end of the 

RadA CDS (NCBI gene ID: 7988710), suggesting that they may belong to the same 

operon. RadA protein is conserved in bacteria and archaea [33-36], and as Rad51 in 

eukarya [37]. The co-expression of the Tga NucS and RadA would favor repair of 

double-strand breaks created by the enzyme. 

In summary, we present important evidence that Tga NucS is capable of 

recognizing and cleaving U- and I-containing dsDNA at the close physiological 

temperature of its host, thus providing an novel alternative pathway for repair of 

damaged bases in DNA that arise from deamination. The U- and I-containing dsDNA 

would be recognized and cleaved by Tga NucS at both strands surrounding the lesion 

position, yielding a double strand break with cohesive ends with a 4-nt 5′-overhang 

that might be repaired by HR. Overall, NucS appears as a key protein for repairing 

deaminated bases in DNA in hyperthermophilic Thermococcus species that thrive in 

high temperature environment.  

Supplementary data

Supplementary data are available at DNA Repair online.
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Figure legends

Fig. 1. The genome of T. gammatolerans encodes a putative NucS endonuclease. A. 

Partial amino acid alignment of NucS endonucleases from euryarchaea and bacteria. 

Tga: Thermococcus gammatolerans (NCBI reference sequence: WP_015857754.1); 

Tko: Thermococcus kodakarensis (NCBI reference sequence: WP_011250849.1); 

Pfu: Pyrococcus furiosus (NCBI reference sequence: WP_014835498.1); Pab: 

Pyrococcus abyssi (PDB: 2VLD_B); Msm: Mycolicibacterium smegmatis (NCBI 

reference sequence: WP_003896320.1); Mtu: Mycobacterium tuberculosis (GenBank: 

SIP67590.1). The conserved amino acid residues are bolded. B. The overexpression 

and purification of the recombinant Tga NucS protein.

Fig. 2. Cleavage of U- and I-containing DNA by Tga NucS. A. The sequences of 

oligonucleotide duplex substrates (45 bp) containing normal, U or I base. B. The 

normal dsDNA (C:G) and U-containing dsDNA (U:G) (200 nM) cleavage reactions 
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of the enzyme (300 nM) were performed at 37, 60 and 80oC for 30 min, respectively. 

C. The normal dsDNA (A:T) and U-containing dsDNA (I:T) (200 nM) cleavage 

reactions of the enzyme (300 nM) were performed at 37, 60 and 80oC for 30 min, 

respectively. The cleaved products were analyzed by a denaturing 

polyacrylamidegel.CK: the reaction without the enzyme.

Fig. 3. Substrate specificity of Tga NucS. A. The sequences of oligonucleotide duplex 

substrates (45 bp) containing normal, U or I base. B. The U-containing dsDNA (U:G, 

U:C, U:T and U:A) cleavage reactions of the enzyme with varied concentrations (100, 

200 and 400 nM) were performed at 80oC for 30 min. C. The I-containing dsDNA 

(I:T, I:A, I:G and I:C) cleavage reactions of the enzyme with varied concentrations 

(100, 200 and 400 nM) were performed at 80oC for 30 min. D. The U-containing 

dsDNA (U:G) and I-containing dsDNA (I:T) cleavage reactions of the D163A mutant 

with varied concentrations (100, 200 and 400 nM) were performed at 80oC for 30 

min. The cleaved products were analyzed by running a denaturing polyacrylamide 

gel. CK: the reaction without the enzyme.

Fig. 4. Biochemical properties of U-containing dsDNA cleavage of Tga NucS. A. The 

sequences of oligonucleotide duplex substrates (45 bp) containing the U base. B. The 

optimal temperature of the enzyme activity; C. The thermo-tolerance of the enzyme; 

D. The optimal pH of the enzyme activity; E. The effects of divalent cations on the 

enzyme activity; F. the effect of NaCl on the enzyme activity. The U-containing 

dsDNA cleavage reactions were performed at 80oC. The cleaved products were 

analyzed by a denaturing polyacrylamide gel. CK in panels B, D and F, andCK1 in 
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panels C and E: the reaction without the enzyme; CK2 in panel C: the reaction with 

unheated enzyme; CK2 in panel D: the reaction without a divalent cation.

Fig. 5. Cleavage site and re-ligation of the cleaved products of Tga NucS. A. The 

sequences of oligonucleotide duplex substrate (45 bp) containing a uracil or 

hypoxanthinebase. The 5′- Cy3-labeled strand containing U or I and the 5′- Hex-

labeled complementary strand were annealed to create the U- and I- containing 

dsDNA substrates. B. The substrates were used in DNA cleavage reactions of the 

enzyme at 80oC for 30 min. The cleaved products were analyzed by a denaturing 

polyacrylamide gel. Lane 1: the DNA markers (24 mer, 22 mer and 18 mer); lane 2: 

the reaction without the enzyme; lane 3: U-containing dsDNA cleavage; lane 4: I-

containing dsDNA cleavage. C. The sequences of oligonucleotide duplex substrates 

(45 bp) containing normal, U or I base. D. The DNA cleavage reactions of the enzyme 

using U-and I- containing DNA as the substrates were performed at 80oC for 30 min. 

The cleaved products were purified and ligated by T4 DNA ligase at 22oC. The 

ligated products were analyzed by running a denaturing polyacrylamide gel.

Fig. 6. DNA binding assays of Tga NucS. A. The sequences of oligonucleotide 

duplex substrates (45 bp) containing normal, U or I base. B. The normal and U-

containing ssDNA and dsDNA substrates were incubated with the enzyme with 

various concentrations (500, 1000 and 2000 nM) at room temperature for 10 min. C. 

The normal and I-containing ssDNA and dsDNA substrates were incubated with the 

enzyme with various concentrations (500, 1000 and 2000 nM) at room temperature 

for 10 min. The retarded DNA products were analyzed by a native polyacrylamide 
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gel. CK: the binding reaction without the enzyme. 
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