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Abstract: A small and genetically isolated bottlenose dolphin (Tursiops truncatus) 

population that resides year-round in the Bocas del Toro Archipelago-Panama (BDT).  Photo-

identification and genetic data showed that this dolphin population is highly phylopatric and 

is formed exclusively by individuals of the “inshore form”. This study aimed to investigate 

the trophic ecology and mercury concentrations of bottlenose dolphin in BDT to assess their 

coastal habits.  We collected muscle samples (n=175) of 11 potential fish prey species, and 

skin samples from free-ranging dolphins in BDT (n=37) and La Guajira-Colombia (n=7) to 

compare isotopic niche width. Results showed that BDT dolphins have a coastal feeding 

habit, belong to the “inshore form” (δ13C= -13.05±1.89‰), and have low mercury 

concentrations (mean=1,637±1,387 ng g-1dw). However, this element is biomagnified in the 

BDT food chain, showing a marginal dolphins health risk (RQ=1.00). These results call for 

preventive dolphin conservation measures and continue monitoring the pollutant levels. 

 

Keywords: Tursiops truncatus, inshore form, Bocas del Toro, bioaccumulation, stable 

isotopes. 
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1. Introduction 

 

Bottlenose dolphins have a global distribution including tropical, subtropical and temperate 

marine waters and are opportunistic predators that inhabit a wide range of ecosystems from 

semi-open coastal environments to the open sea (Reeves et al., 2008), in which factors such 

as habitat topography and prey availability are known to influence their feeding preferences 

and foraging strategies (e.g., Smolker et al., 1997; Allen et al., 2001; Blanco et al., 2001; 

Ingram and Rogan, 2002; Duffy-Echevarría et al., 2008; Allen et al., 2011; Jiménez and 

Alava, 2013; Browning et al., 2014; Rossman et al., 2015). Given that bottlenose dolphins 

are opportunistic predator and have global distribution they are considered top predators that 

can shape the structure of aquatic communities, particularly in coastal ecosystems (Bowen, 

1997). Bottlenose dolphin populations around the world that inhabit coastal marine habitats 

consequently overlaps with human activities that results detrimental for dolphins. This is 

particularly concerning since coastal dolphin populations are generally small (less than 100 

individuals) and show high site philopatry (e.g. Fruet et al., 2014; Vermeulen and Bräger, 

2015; Barragán-Barrera et al., 2017; Bayas-Rea et al., 2018), which makes them more 

vulnerable to human activities than pelagic dolphins populations. For instance, unusual 

mortality events in coastal dolphins have been associated to exposure of high pollutant 

concentrations in the Gulf of Mexico (Damseaux et al., 2017). Many coastal bottlenose 

dolphin populations show genetic isolation and are exposed to pollutants among other threats, 

and given their global conservation status ‘least concern’, it is difficult to establish 

conservation strategies that can effectively mitigate human threats (e.g. Sellas et al., 2005; 

Parsons et al., 2006; Segura et al., 2006; Fruet et al., 2014; Vermeulen and Bräger, 2015; 

Barragán-Barrera et al., 2017; Bayas-Rea et al., 2018).  

 

Collecting information about the diet and the foraging habits of bottlenose dolphin’s 

populations is critical to establish conservation and management plans (Hernandez-Milian et 

al. 2015). The diet of dolphins has been studied primarily via stomach contents, fatty-acid 

and stable isotope analyses (e.g. Ford et al., 1998; Hooker et al., 2001; Das et al., 2003; 

Riccialdelli et al., 2010; Milmann et al., 2016). Dietary estimation indicates that coastal 

bottlenose dolphins prey on cephalopods and a variety of demersal and pelagic fish (Mead 
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and Potter, 1990; Van Waerebeek et al., 1990; Blanco et al., 2001; Gannon and Waples, 2004; 

De Pierrepont et al., 2005; Spitz et al., 2006; Milmann et al., 2016; Moura et al., 2016). 

However, bottlenose dolphin diet varied in relation to locations and habitats (coastal – 

oceanic) (e.g. Mead and Potter, 1990; 1995; Walker et al., 1999; Gannon and Waples, 2004;  

Santos et al., 2007; Hernandez-Milian et al., 2015; Milmann et al., 2016), seasons (Gannon 

and Waples, 2004), sex and reproductive status (e.g. lactating female – pregnant female), and 

age class (juveniles – adults) (e.g. Blanco et al., 2001; Gannon and Waples, 2004; Santos et 

al., 2007; Fernández et al., 2011; Hernandez-Milian et al., 2015).  

 

The application of stable isotope analysis (SIA) is a powerful tool that can determine habitat 

use, trophic position and niche width in marine mammals (Newsome et al., 2006; 2010; 

Graham et al., 2010). This approach allows for comparisons among tissues, individuals and 

species, so it has been widely used to assess the trophic ecology of marine top predators such 

as dolphins, killer whales, sperm whales, leopard seals, sharks, tunas, marlins and swordfish 

(e.g. Mendes et al., 2007; Méndez-Fernandez et al., 2012; Polo-Silva et al., 2012; 2013; Bisi 

et al., 2013; Loor-Andrade et al., 2015; Chouvelon et al., 2017; Samarra et al., 2017; Botta 

et al., 2018; Acosta-Pachón and Ortega-García, 2019).  

 

For example, the isotopic values of carbon (13C) and nitrogen (15N) provide an overall 

insight of an organism diet as it reflects the isotopic composition of prey and foraging habitat 

(DeNiro and Epstein, 1978; 1981; Newsome et al., 2006; 2010). Due to fractionation, 

consumers will likely be enriched approximately by 0-1% in 13C and 2-5% in 15N relative to 

its prey (Peterson and Fry, 1987). Consequently, values of 13C provide information 

regarding primarily production and diet composition, whereas values of 15N indicate trophic 

position. In marine top predators’ less depleted values of 13C are associated with feeding 

coastal areas, and more depleted 13C values correspond to offshore areas. Likewise, high 

values of 15N indicate that the consumer is positioned at high levels of the local food web 

(Graham et al., 2010; Newsome et al., 2010). 

 

Top predators such as bottlenose dolphins have shown high mercury (Hg) concentrations as 

the result of bioaccumulation with individual age and biomagnification processes in the food 
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webs (Fossi et al., 2012). Therefore, Hg can be used as ecological tracer to assess the trophic 

position in the food chain, since Hg variations have been associated to age, individual size, 

and trophic level (Boush and Thieleke, 1983; Power et al., 2002; Cai et al., 2007; Newsome 

et al., 2010; Kehrig et al., 2013; 2017; Marrugo-Negrete et al., 2018). Hg concentration also 

varies with location, depth, and distance to the shore (Rivers et al., 1972; Colaco et al., 2006, 

Choy et al., 2009), with higher Hg values found in coastal ecosystems largely due to the 

influence of freshwater inputs and coastal development (Strom and Graves, 2001).  

 

The bottlenose dolphin coastal population in the Archipelago of Bocas del Toro (BDT) in 

Panama is small (around 80 individuals) and shows high levels of genetic isolation (May-

Collado et al., 2015; Barragán-Barrera et al., 2017).  This dolphin population share a unique 

mitochondrial haplotype not found in other Caribbean bottlenose dolphin populations 

suggesting high philopatry and site fidelity (Barragán-Barrera et al., 2017). Given the high 

philopatry of BDT’s dolphins in the Archipelago, they could be used a sentinel species to 

monitor the spatial and temporal contaminants trends, like Hg (Wells et al., 2004; Reif et al., 

2015). This element has high level of toxicity and may increase the vulnerability of marine 

organisms to parasites and infectious agents (Wiener et al., 2003). High Hg concentrations 

detected in tissues of dolphins (e.g. Leonzio et al., 1992; Frodello et al., 2002; Roditi-Elasar 

et al., 2003; Aubail et al., 2013; Borrel et al., 2014) have been used to monitor long-term 

pollution in waters around the Mediterranean Sea (Fossi et al., 2012; Borrel et al., 2014; 

Shoham-Frider et al., 2016). Although Hg negative effects have not been measured directly 

on individuals, declines in the Mediterranean Sea bottlenose dolphin population have been 

attributed to pollution, so this population has considered as ‘vulnerable’ by the IUCN (Bearzi 

et al., 2012). Particularly in BDT, studies on coral and sediment quality have found moderate 

Hg levels (Guzmán and Jiménez, 1992; Guzmán and García, 2002; Berry et al., 2013). Given 

the potential negative effects of Hg on the small and highly philopatric bottlenose dolphin 

population in BDT, the main aim of this research was to study the foraging ecology and to 

determine the degree of contamination in dolphins. We also aim to test the hypothesis of 

whether bottlenose dolphin coastal habits are reflected in their isotopic signatures and THg 

concentrations. In order to test this hypothesis, we aimed to achieve the following objectives: 

a) to measure the total Hg (THg) concentration, b) stable isotope carbon (δ13C values) and 
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nitrogen (δ15N values) in muscle of prey fish species from BDT and the skin of bottlenose 

dolphins in BDT and Guajira (Colombia), and c) to compare the isotopic niche width between 

these dolphin populations. Assessing coastal habits and monitoring of Hg in these coastal 

and vulnerable bottlenose dolphins as top predators in BDT represents important 

precautionary measures to determine their potential risk health and to facilitate future 

monitoring. 

 

 

2. Materials and Methods 

 

2.1 Study area 

 

The Bocas del Toro Archipelago (BDT) is located on the Northwest Caribbean coast of 

Panama (Fig. 1). The Archipelago is home to several marine ecosystems including, seagrass, 

sandy bottom, coral reef, and mangrove forest (Guzmán and García, 2002; D’Croz et al., 

2005). Sections of the Archipelago seem to be influenced by open ocean conditions due to 

water interchange through channels between sand cays and islands (D’Croz et al., 2005). The 

inner portion of the Archipelago, the Almirante Bay, is a semi-enclosed lagoon that appears 

to have considerable influence by oceanic conditions via the Bocas del Drago channel, 

located at the northern end of the Archipelago (Guzmán et al., 2005; D’Croz et al., 2005; 

Berry et al., 2013).  At the southern end of Almirante Bay, is the Bocastorito Bay (also called 

Dolphin Bay), which is a semi-closed lagoon surrounded by mangrove forest and is 

considered to be an important nursery ground for the local bottlenose dolphin population and 

is not influenced by oceanic waters (May-Collado et al., 2012). Southern portions of the 

Archipelago are influenced by oceanic conditions, via water exchange through the Crawl Cay 

channel (Fig. 1).  The climatic conditions of the Archipelago are highly influenced in terms 

of rainfall, so dry and rainy seasons are not clearly defined (Guzmán and Guevara, 1998; 

D’Croz et al., 2005; Guzmán et al., 2005). 

 

There are two major human settlements in the region that are located in Colon Island and 

Almirante Bay; and other small settlements are scattered throughout the Archipelago. Colon 
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Island and Almirante Bay are the main source of chemical and noise pollution in BDT. 

Human impacts in the Archipelago include: overfishing, pollution, sedimentation, and vessel 

traffic (Seemann et al., 2013). During the months of high precipitation, rivers like the 

Changuinola River discharge large amounts of sediment to the semi-closed lagoon of 

Almirante Bay, which transports sediments from urban areas and banana plantations. Indeed, 

although mercury also has a natural origin in the Archipelago (Guzmán and Jiménez, 1992; 

Guzmán and García, 2002), the main industrial source is due to agricultural run-off bananas 

plantations and vessel traffic associated to their exportation in the Almirante Port (Berry et 

al., 2013). 

 

2.2 Tissue samples collection permits 

 

Tissue samples from fish and bottlenose dolphins from BDT were collected with permission 

from the Autoridad Nacional del Ambiente in Panama (ANAM; permits SC/A-11-12, SC/A-

43-12, SC/A-17-14, SE/A-101-16). Methods for remote skin biopsy collection were 

approved by the Smithsonian Tropical Research Institute IACUC (Institutional Animal Care 

and Use Committee; permits number 2011-1125-2014-06 and 2016-0203-2019-A2 to Dr. 

May-Collado). In addition, we included bottlenose dolphin tissue samples collected at La 

Guajira, located on the northeast portion of the Caribbean coast of Colombia (Fig. 1), to 

conduct niche trophic comparisons between dolphin populations. The tissue samples were 

collected under Resolution 1177 Permit for Specimen Collection of Wildlife Biodiversity 

Non-Commercial Purposes of Scientific Research; authorization granted by National 

Authority for Environmental Licenses – ANLA in Colombia to Universidad de los Andes. 

 

2.2.1. Dolphin skin samples collection 

 

Skin samples from free ranging bottlenose dolphins were collected using a 0.22 caliber 

modified rifle PAXARMS that fire remote biopsy darts with adjustable pressure (Krützen et 

al., 2002). Biopsy darts were shot from an approximate distance of 7–10 m from the research 

boat to the dolphins (Weller et al., 1997; Krützen et al., 2002; Fruet et al., 2016). This system 

allows the penetration of the dolphins epidermis leaving behind a small wound (Tezanos-
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Pinto and Baker, 2011), and the effect on dolphins is expected to be low because the 

polycarbonate body of the dart spreading the impact over a wide area reducing the risk of 

injury when penetrating the skin (Krützen et al., 2002; Tezanos-Pinto and Baker, 2011; Fruet 

et al., 2016). Biopsy darting is a useful methodology to sample tissue of bottlenose dolphins 

from BDT because these dolphins are very evasive to vessels, and this system allows to 

collect remote samples and identify the individuals simultaneously (Fruet et al., 2016). 

Therefore, skin biopsies were collected only if the individual dolphin was photo-identified in 

order to avoid re sampling the same individual dolphin (Krützen et al., 2002). When dolphins 

were sighted, a skin sample, photograph, and the location of the sighting were recorded. Skin 

samples were preserved in alcohol 70% and stored at -20 ºC (Amos and Hoelzel, 1991) for 

subsequent laboratory analysis. 

 

2.2.2. Fish muscle samples collection 

 

Fish samples were collected from Almirante Bay, Dolphin Bay, and one ‘Outermost’ area 

located at the southern part of the Archipelago, Cayo Coral, which is influenced by oceanic 

conditions (D’Croz et al., 2005; Guzmán et al., 2005; Berry et al., 2013). In Almirante Bay 

and Dolphin Bay fish traps were used to capture live fish, and samples from the ‘Outermost’ 

area were collected by local fishermen using fish nets. Captured live fish were euthanized by 

immersing them in ice-cold water bath (-4ºC) following Barker et al. (2002) and Blessing et 

al. (2010) protocols. The samples were later transported to the Bocas del Toro Smithsonian 

Research Station for further processing. Approximately 400 mg of dorsal white muscle was 

removed from each specimen and preserved in alcohol 70% and stored at -20 ºC for 

subsequent laboratory analyses.  

 

2.3. DNA extraction and molecular sexing 

 

To determine the sex for each individual dolphin for which a skin sample was collected, we 

extracted DNA from skin samples using the DNeasy kit (QIAGEN, Valencia, CA, USA). 

Samples were sexed following the protocol proposed by Gilson et al. (1998), conducting 

multiplex PCR to amplify the male-specific SRY gene and ZFY/ZFX genes of males and 
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females as positive controls. Electrophoresis was performed to observe the bands pattern and 

determine the sex of each individual.  

 

2.4. Stable Isotope analyses 

 

Dolphin and fish tissue samples were left on a bench to let alcohol evaporated, then were 

homogenized, and freeze-dried. Previous to isotopic analyses, 100 mg of sample was washed 

with 4 ml of cyclohexane for lipids removal (De Niro and Epstein, 1978; Méndez-Fernandez 

et al., 2012). The sample was maintained at constant agitation by 10 min and then centrifuged 

at 4,500 rpm for 5 min to discard supernatant containing lipids (Méndez-Fernandez et al., 

2012). The process was repeated three times. Next the samples were dried at 45°C in an oven 

for 48 h. A small portion of the lipid-free sample (0.2 – 0.4 mg) was weighted in a tin cup to 

conduct stable isotope analyses with a continuous flow mass spectrometer (ThermoScientific 

Delta V Advantage) coupled to an elemental analyser (Thermo Scientific Flash EA 1112). 

The isotopic measurements were expressed in parts per thousand (‰), using the delta (δ) unit 

relative to the deviation from international standard values PeeDee Belemnite Carbonate for 

δ13C and atmospheric N2 for δ15N (Méndez-Fernandez et al., 2012; Marrugo-Negrete et al., 

2018). Based on replicate measurements of internal laboratory standards, experimental 

precision (SD) was < 0.09 for δ13C and < 0.36 for δ15N.  

 

2.5. Average Trophic Level Calculation  

 

Following Hobson et al. (2002), the trophic level (TL) for each fish species was calculated 

according this equation: 

 

 

     

 

where ‘TL Reference primary consumer’ represents the trophic level of the reference primary 

consumer which was assumed as two (TL = 2). The ‘δ15N Consumer’ is the mean of nitrogen 

isotope ratio (‰) of the consumer of interest and the ‘δ15N Reference primary consumer’ 

𝑻𝑳 = 𝑇𝐿 Reference primary consumer +  
δ15N Consumer − δ15N Reference primary consumer

δ15N Enrichment between 𝑇𝐿
 , 
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represents the mean of nitrogen isotope ratio of the reference primary consumer. The ‘δ15N 

Enrichment between TL’ is the enrichment of δ15N between trophic levels, which was 

assumed as 3.4‰ because this value represents the most frequent δ15N enrichment factor in 

aquatic food webs (Lavoie et al., 2013). 

 

2.6. Isotopic niche width and Bayesian stable isotope mixing model 

 

To analyze stable isotope data in the context of isotopic niche width, we adopted the metrics 

based in a Bayesian framework (Stable Isotope Bayesian Ellipses in R: SIBER; Jackson et 

al., 2011) to compare bottlenose dolphins in BDT and La Guajira. To test the SIBER 

assumption of a multivariate normal distribution for each group, the R package mvnormtest’ 

was used (Jarek, 2015). The area of the standard ellipse (SEAC), which is an ellipse obtained 

by Bayesian inference that contains 40% of the data regardless of sample size and corrected 

for small sample sizes, was adopted to compare niche width between groups. A Bayesian 

estimate of the standard ellipse and its area (SEAB) was used to test whether a group ellipse 

is smaller or larger than the other. The convex hull area (TA), although much more sensitive 

to sample size, was also employed to compare among groups and their overlap (Layman et 

al., 2007). All these metrics were calculated using the functions implemented in the package 

Stable Isotope Bayesian Ellipses (SIBER model) in R v. 3.4.3.   

 

To estimate the proportional contribution of potential local prey sources to the bottlenose 

dolphin diet in BDT, we conducted a Bayesian stable isotope mixing model (Parnell et al., 

2013) (MixSIAR model) using the isotopic ratios of nitrogen and carbon from dolphin’s skin 

samples (consumer tissue) and fish muscle samples (dietary items). Only fish species with 

three or more specimens collected were considered in the analysis. We used as enrichment 

factors for δ13C and δ15N the values 1.5 ± 0.5‰ and 3 ± 0.3‰, respectively, which were 

calculated in a previous study by Fernández et al. (2011) for skin bottlenose dolphin tissue. 

The Bayesian stable isotope mixing model was run with a Markov Chain Monte Carlo 

method (chain length 1,000,000) using the MixSIAR package in R v. 3.4.3. (Stock and 

Semmens, 2016). 
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2.7. Mercury analyses 

 

Total mercury (THg) concentrations of tissues were determined using a solid sample atomic 

absorption spectrometer AMA-254 (Advanced Mercury Analyser-254 from Altec©) as 

described in Bustamante et al. (2006). The THg determination process in this spectrometer 

is conducted in three phases: 1) a drying phase (10 s) at 90°c to remove water from the freeze-

dried samples; 2) a decomposition phase (150 s) in which a heating process at 750°C is 

carried out to release Hg from the samples, producing Hg vapor which is transported toward 

the surface of a gold amalgamator; and 3) a measuring phase in which the amalgamator is 

heated to 800°C to release the collected Hg to the spectrophotometer, allowing Hg detection 

by atomic absorption. Duplicates of dried, homogenized tissue samples (ranging from 1 to 

10 mg) were analyzed without a chemical pre-treatment to assess mean THg concentration 

and SD for each (Aubail et al., 2013; Angel et al., 2018). Measurements were repeated at 

least two times until haying analytical differences below 10%. Following Bustamante et al. 

(2006), the analytical quality of the THg measurements in the AMA-254 was controlled using 

blanks at the beginning of each analytical session, and running analyses of certified reference 

material (CRM) TORT-2 (Lobster hepatopancreas, National Research Council of Canada) at 

the beginning and every ten analyses. The measured concentration for the CRM was 0.264 ± 

0.013 ng mg-1 (n = 50) and the recovery was thus 98%. The THg measurements were showed 

in ng g-1 on a dry weight basis (dw) and the detection limit was 0.059 ng. 

 

2.6. Calculation of trophic magnification factors 

 

Hg biomagnification was evaluated assuming a trophic chain in which bottlenose dolphins 

are at the top of the food chain, based on the relationship between THg concentrations with 

δ15N ratios on both dolphins and fish. We calculated the mean isotopic and THg composition 

and its standard deviation in skin samples of bottlenose dolphins, and in muscle samples of 

potential prey (11 fish species). To evaluate significant correlations between THg with δ15N 

ratios as evidence of trophic magnification, Shapiro–Wilk test of normality and Bartlett test 

of homogeneity of variances were used to test the assumptions of parametric tests on data. A 

log-transformation of THg data was used to meet these assumptions. Then, Pearson 
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correlation was performed to assess this relationship, and linear regression analysis was 

conducted to quantify trophic Hg magnification (Lavoie et al., 2013). Results for statistical 

analyses were carried out in R v. 3.4.3. and considered significant at p-value level of < 0.05. 

Trophic magnification factor (TMF) was assessed using the slope (β) of the regression of log-

THg, which represents the change in THg concentration per unit change in δ15N through the 

food chain (Fey et al., 2019), in the following equation:  

 

TMF = 10β 

According this model, when TMF value is > 1 there is evidence for THg accumulation (Nfon 

et al., 2009). We also evaluated the ‘Bioaccumulation factor’ (BAF) to assess Hg 

accumulation between prey and dolphins, as the ratio of Hg concentration in consumer 

(dolphin) to the Hg concentration prey (fish) (Arnot and Gobas, 2006). This relation was also 

used to calculate the ‘Biotransference factor’ (BTF) to evaluate trophic magnification, which 

provides information on Hg transference from dwarf round herring (prey) in the TL = 2 to 

fish in the TL = 3 (according to their trophic level calculated here), and to bottlenose dolphin 

(consumer) as the last trophic level (Strandberg et al., 1998; Wang, 2002; Barwick and 

Maher, 2003), as follows: 

 

 

 

 

According this model, when the BTF value is > 1 there is evidence for positive 

biomagnification, which means Hg increases at least three trophic positions in the food web 

(Strandberg et al., 1998; Barwick and Maher, 2003; Kehrig et al., 2013).  

 

2.7. Risk assessment 

 

Dolphin health risk to THg exposure via fish consumption was assessed using a Maximum 

Allowable Concentration (MAC) analysis based on the reference dose (RfD, ng g-1 dw), and 

then a risk quotient (RQ) based on this MACRfd calculated. The RfD provides a conservative 

risk assessment data as it is derived from toxicity and adjusted values from the no observable 

𝐵𝑇𝐹 =  
Hg concentration in consumer (dolphin) 

Hg concentration in prey (fish) 
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adverse effect level (NOAEL) values obtained in mammals, and therefore is generally used 

for assessing risk to human health from exposure to trace elements (Hung et al., 2006). 

MACRfd approach allows assessing the maximum Hg concentration that dolphins can tolerate 

in their prey without negative health effects, and RQ approach allows to assess the levels of 

Hg risk for dolphins (Hung et al., 2004; 2006).  

 

To calculate dolphins Hg-intake, fish Hg concentrations were converted from dry weight 

(dw) to wet weight (ww) using the following equation: 

 

Cw = Cd (100 - %H), 

 

where Cw and Cd represents dw and ww respectively, and %H is the humidity percentage 

which ranges around 80% for several fish species (Murray and Burt, 1969; Hislop et al., 

1991; Payne et al., 1999; Alonso-Fernández and Saborido-Rey, 2012). Next and following 

Hung et al. (2004; 2006), dolphins Hg-intake was calculated as follows: 

 

Hg-Intake (ng g-1 day-1)  

 

where CF represents Hg concentrations in all fish together (ng g-1 ww) which was calculated 

taking into account the contribution of each item to the dolphin diet according to SIAR model 

results. The IR is the ingestion rate per day reported for Atlantic bottlenose dolphins (kg day-

1) based on an average annual food consumption of around 2,000 kg of fish for adult dolphins 

(Kastelein et al., 2002). EF is the exposure frequency per day for one year (day year-1), 

represented as 365 days assuming BDT dolphins are exposed to Hg every day for one year 

(Hung et al., 2004). ED is the exposure duration (years), and assuming life-time Hg exposure, 

we used 45 years as estimated life-time for bottlenose dolphins (Jefferson et al., 2002). BW 

represents the body weight (kg), which is 260 kg according to the weight of Atlantic 

bottlenose dolphin individuals that showed a mean annual food consumption of 2,000 kg 

(Kastelein et al., 2002). Finally, AT is the average time (days) and represents the period in 

days in which dolphins are exposed to Hg during life-time. 

 

=  
𝐶𝐹 x 𝐼𝑅 x 𝐸𝐹 x 𝐸𝐷

𝐵𝑊 x 𝐴𝑇
 , 
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According to Hung et al. (2006), when Hg-Intake is equal to RfD, the CF is equal to MACRfD, 

as follows: 

 

 

 

 

Thus, the RfD calculated in the previous model is used in the following equation to calculate 

the MACRfD, as follows: 

 

MACRfD 

 

To assess RQ, we integrated results of exposure and dose-response assessments, using the 

following equation: 

 

 

 

 

2.8. Statistical comparisons     

 

The existence of significant differences between isotope ratios (δ13C and δ15N) and THg 

measurements in fish among the three main locations within BDT (Almirante Bay, Dolphin 

Bay, and ‘Outermost’ area), was evaluated posteriorly using Analysis of variance (ANOVA) 

and Tukey multi-comparison tests, considering significant at p-value level of < 0.05. 

Similarly, significant differences at p-value level of < 0.05 in the isotopic values and THg 

concentration with dolphins sexes was assessed using ANOVA or Kruskal-Wallis tests 

separately for each element. All these statistical analyses were performed in R v. 3.4.3. after 

test assumptions of parametric data using Shapiro–Wilk test of normality and Bartlett test of 

homogeneity of variances.  

  

 

 

𝑅𝑓𝐷 =  
𝑀𝐴𝐶𝑅𝑓𝐷 x 𝐼𝑅 x 𝐸𝐹 x 𝐸𝐷

𝐵𝑊 x 𝐴𝑇
 

𝑅𝑄 =  
Hg concentration in all prey 

𝑀𝐴𝐶𝑅𝑓𝐷 
 

=  
𝑅𝑓𝐷 x BW x AT

𝐼𝑅 𝑥 𝐸𝐹 𝑥 𝐸𝐷 
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3. Results 

A total of 175 fish and 37 dolphin tissue samples were analyzed in this study. Figure 1 shows 

the locations of collection for the 37 dolphin samples. Overall, there were 18 females (16 

adults, two juveniles) and 19 males (18 adults, one juvenile). A total of 21 species of fish 

were collected (N = 223), but only 11 species had at minimum of three sub-samples to be 

included in the analysis (N = 175; Table 1). Of these 11 species, only dwarf round herring 

(Jenkinsia lamprotaenia) was found in all sampled main locations: Almirante Bay (n = 19), 

Dolphin Bay (n = 15), and the ‘Outermost’ area (n = 16). 

 

3.1. Mercury and stable isotope of bottlenose dolphins  

 

The comparison of carbon and nitrogen isotopic signatures between tissue samples of 

dolphins revealed differences in isotopic niche between populations from BDT and La 

Guajira (Fig. 2). BDT dolphins showed a broader isotopic signature range than La Guajira 

dolphins (Fig. 2). The δ13C values for BDT dolphins ranged between -16.40‰ and -9.17‰ 

(mean = -13.11‰ ± 1.95), and the δ15N ranged between 5.76‰ and 12.77‰ (mean = 10.24‰ 

± 1.48) (Fig. 2). In contrast, La Guajira dolphins had δ13C values in a shorter range, between 

-16.44‰ and -15.26‰ (mean = -15.71‰ ± 0.41), and the δ15N also had a shorter range 

between 10.90‰ and 14.85‰ (mean = 12.30‰ ± 1.26) (Fig. 2). Regarding THg values, BDT 

dolphin values ranged between 94 and 4,627 ng g-1 dw (mean = 1,637 ± 1,387 ng g-1 dw) and 

La Guajira dolphin values ranged between 2,720 and 10,590 ng g-1 dw (mean = 5,526 ± 3,209 

ng g-1 dw) (Fig. 3). Finally, BDT dolphins did not show significant differences in THg or 

isotopic signatures between males and females (Kruskal-Wallis δ13C H = 0.01, ANOVA δ15N 

F = 0.38, Log-THg F = 0.004, all p > 0.50), which means both sexes feed on prey of the same 

or similar trophic level within the Archipelago. Because dolphins move during the day 

around the Archipelago, and dolphin were biopsied at various times of the day, we could not 

assume that the site of sampling was the site where the animals foraged. Therefore, 

comparisons among the three main locations within BDT were rendered not informative. 
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The results of the Bayesian stable isotope mixing model (MixSIAR) diet estimated suggested 

a high mean contribution of 40% by striped parrotfish (Scarus iseri) and 24% by the dwarf 

round herring (J. lamprotaenia) to the diet of BDT dolphins (Fig. 4). Other prey fish species 

contributed to less than 4% to their diet, and the blue runner (Caranx crysos), lane snapper 

(Lutjanus synagris), and the northern red snapper (Lutjanus campechanus) were the third, 

fourth and fifth prey items that contributed to their diet (4, 3 and 3%, respectively). 

Remaining fish prey species contributed to 2% to dolphins’ diet (Fig. 4). 

 

3.2. THg, δ13C and δ15N stable isotope values in fish 

 

The results showed a wide variation of THg, δ13C and δ15N values among the fish prey 

collected (see Table 1). The striped parrot fish showed the lowest THg and δ15N values (mean 

= 77 ± 14 ng g-1 dw; and mean = 7.35 ± 1.59‰, respectively) while the dwarf round herring 

showed the lowest δ13C values (-16.85‰, ± 1.58). Compared to fish, the dolphins showed 

the highest THg concentration (mean = 1,637 ± 1,387 ng g-1 dw) as well the highest δ15N 

value (mean = 10.25‰ ± 1.48).  

 

There were significant differences in the relationship between THg and isotopic signatures 

of carbon and nitrogen between locations where dwarf round herring were collected 

(ANOVA, δ13C F = 165.40, δ15N F = 26.98, Log-THg F = 9.58, all p < 0.05; Fig. 5B–C). 

The relationship between δ13C and δ15N appears to indicate that the diet of dwarf round 

herring in Almirante Bay and Dolphin Bay is based on oceanic and lower trophic level food 

items (δ13C mean = -17.91‰ ± 0.42, -17.78‰ ± 0.57, respectively; δ15N mean = 7.90‰ ± 

0.38 and 8.45‰ ± 0.44, respectively), while in ‘Outermost’ area it is based on coastal but 

higher trophic level food items (δ13C mean = -14.73‰ ± 0.71; δ15N mean = 8.88‰ ± 0.36; 

Fig. 5A). THg showed significant and lower values in dwarf round herring collected in 

Dolphin Bay in relation to ‘Outermost’ area and Dolphin Bay (mean = 83 ± 42 ng g-1 dw, 

153 ± 58 ng g-1 dw, and 196 ± 193 ng g-1 dw, respectively; p < 0.05, Tukey’s test; Fig. 5B–

C). 
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Trophic relationship, biomagnification between dolphins, and prey and risk 

assessment of adverse effects 

 

The estimated relative TL was also assessed for bottlenose dolphins and the fish species 

described in Table 1. We used the redtail parrotfish (Sparisoma chrysopterum, n = 2) as the 

reference primary consumer despite we only collected two specimens, because it showed the 

lowest δ15N values (δ15N = 5.45‰) due to their herbivorous habits (Luna and Torres, 2018). 

Bottlenose dolphins and the French grunt (Haemulon flavolineatum) showed the highest TL 

(3.40) while the striped parrotfish (S. iseri), the yellow fin mojarra (G. cinereus), and the 

dwarf round herring showed the lowest TL values (2.56, 2.79, and 2.86, respectively).  

 

Figure 6 shows the relationship between THg with δ15N for bottlenose dolphins and all fish 

expected to form the BDT’ dolphin food chain. The Pearson’s correlation coefficients 

showed significant positive correlations between THg and δ15N (r = 0.54; p < 0.05), and the 

β coefficient from linear regression showed a magnitude of 0.60. Using this β coefficient in 

the TMF equation, result showed a value of 3.98 (TMF > 1).  

Figure 7 represents a hypothesized trophic chain for BDT dolphins, with dolphins as top 

predators in the Archipelago, and potential prey located in two trophic positions (TL 2 and 

3) according to the TL calculated in Table 1. The Figure 7 shows BAF values between 

members of the trophic chain; values higher than one, are represented by black arrows. To 

evaluate the biomagnification among three trophic levels (BTF), we conducted comparisons 

between the dwarf round herring in TL = 2 (TL = 2.86), other fish including the foureye 

butterflyfish (Chaetodon capistratus), the northern red snapper (L. campechanus), blue 

runner (C. crysos), the white grunt (Haemulon plumieri), and the French grunt (H. 

flavolineatum) as TL = 3 (TL= 3.14-3.41), and dolphins as next trophic level (top predator). 

The dwarf round herring was used as a reference primary consumer in this trophic chain 

because it is widely distributed in the Archipelago (it was present in the three main locations 

within BDT) and is known to be part of the diet of several pelagic fish species in the 

Caribbean (Friedlander and Beets, 1997). The BTF calculated between the dwarf round 

herring and fish from third TL are presented in blue arrows on Figure 7; all these BTF also 

showed values higher than one. 
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Table 2 summarizes the values used into equations to calculate the risk assessment of 

bottlenose dolphins in BDT. The table also includes the RfD and MACRfD values calculated 

here. RQ analyses based on MACRfD showed a value of one (RQ = 1.00). 

 

4. Discussion 

 

This study provides the first description of feeding ecology using stable isotopes and THg 

biomagnification process of bottlenose dolphins from the Archipelago of Bocas del Toro 

(BDT, Panama). Our results support previous findings based on genetic evidence that this 

bottlenose dolphin population is an ‘inshore form’ with significant geographical isolation 

(Barragán-Barrera et al., 2017), and highlights the vulnerability of this population to human 

activities (May-Collado et al., 2015; Sitar et al., 2016). 

 

4.1. Stable isotope composition of bottlenose dolphins  

 

The carbon isotope ratio (δ13C) is an indicator of the feeding habitat of an organism 

(Newsome et al., 2006; 2010; Graham et al., 2010). In BDT, the range of δ13C values (-16.40 

to -9.17‰) indicated that bottlenose dolphins have a wide feeding niche. By contrast, 

dolphins in La Guajira (Colombia) showed a much narrower range of carbon values and with 

lower values of δ13C (-16.44 to -15.26‰) (Fig. 2). The differences in isotopic niche wide 

indicated that dolphin prey species are acquiring carbon by sources unique to each location. 

La Guajira coast is characterized by considerable seasonal variation in productivity which 

affects prey availability, and consequently dolphin presence (Gordon, 1967; Müller-Karger 

et al., 1989; Andrade et al., 2003; Andrade and Barton, 2005; Lonin et al., 2010; Paramo et 

al., 2011; Farías-Curtidor and Barragán-Barrera et al., 2017; Barragán-Barrera et al., 2019). 

Bottlenose dolphins in La Guajira do not appear to be resident to the area, and recent genetic 

findings identify them as ‘worldwide distributed form’ (Duarte et al., 2018), which do not 

show residency to inshore areas (Tezanos-Pinto et al., 2009).  
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Differences between coastal and oceanic habitat are reflected in their δ13C values, with higher 

values representing coastal habitats and lower values in oceanic habitat (Schell et al., 1998; 

Burton and Koch, 1999; Das et al., 2003; Newsome et al., 2010). The values of dolphin skin 

samples at La Guajira were more depleted in 13C than those reported for the BDT dolphins, 

but were similar to values reported from other offshore bottlenose dolphins (e.g. Díaz-

Gamboa, 2003; Segura et al., 2006). This corroborates that dolphins at La Guajira prefer to 

forage in oceanic habitats, which is consistent with their genetic designation of the 

‘worldwide distributed form’. In contrast, the BDT bottlenose dolphins showed δ13C values 

similar to other coastal populations (e.g. Segura et al., 2006; Barros et al., 2010), indicating 

that they consume prey from coastal areas. The skin stable isotope δ13C values also indicate 

that the BDT dolphins fed on prey with several carbon sources. This region consists of several 

productive coastal ecosystems including coral reefs, mangroves, and seagrass beds (Guzmán 

and García, 2002; D’Croz et al., 2005; Guzmán et al., 2005). Coastal primary producers such 

as macroalgae and seagrasses show elevated δ13C values (Peterson and Fry, 1987). 

Consequently, the mutton snapper (Lutjanus analis) and the yellow fin mojarra (G. cinereus), 

which can be found in shallow coastal ecosystem (such as coral reefs, mangroves, and 

seagrass beds), had the highest mean δ13C values (-11.84‰ and -11.85‰, respectively) 

(Allen, 1985; Bussing, 1995). In contrast, the dwarf round herring, which is one of the most 

common and more widely distributed fish in the Archipelago, showed the lowest δ13C value 

(mean = -16.85‰). This result may be explained by their nocturnal feeding behavior, in 

which dwarf round herring usually inhabits inshore areas during the day (Friedlander and 

Beets, 1997), but feed on zooplankton during the night in offshore areas (Radakov and Silva, 

1974; Friedlander and Beets, 1997). Dwarf round herrings consume a 13C-depleted diet, since 

offshore primary producers (phytoplankton) have low δ13C values, and consequently provide 

a low carbon oceanic food sources for their coastal predator such a bottlenose dolphins. 

Additionally, it has been suggested that nutrient inputs via river plume can increase carbon 

sources within BDT (Seemann et al., 2013). A previous work showed the lowest δ13C isotope 

ratios of the particulate organic carbon in Almirante Bay (mean = -20.7‰ ± 0.5) (Seemann 

et al., 2013), and the dwarf round herring also showed more depleted 13C values in Almirante 

Bay than in Dolphin Bay and the ‘Outermost’ area. Since Almirante Bay is a semi-enclosed 

lagoon with low nutrient influence from the Changuinola River runoff, and because 
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productive marine ecosystems in this area have been affected by human activities (Seemann 

et al., 2013), low primary production may reflect low δ13C values. 

 

The present study revealed that the dwarf round herring is one of the most important prey in 

the diet of BDT bottlenose dolphins despite that the Archipelago offers a broad array of 

potential prey. These findings agree with the stomach content of one dead female found in 

Dolphin Bay, while this study was conducted on July 27, 2012. The female contained a large 

number of unidentified sardines. Besides the dwarf round herring, the other species that more 

contribute to the diet of these dolphins is the striped parrotfish. The stable isotope δ15N 

indicated that the BDT bottlenose dolphins feed on prey at a low trophic level. The dwarf 

round herring and the striped parrotfish are species that are located at 2.86 and 2.56 trophic 

level, respectively. In contrast, the δ15N values of La Guajira bottlenose dolphins indicate 

that they feed on prey at a higher trophic level, suggesting their diet consist primarily of 

pelagic species. 

 

The great availability of herrings in the Archipelago appears to be an important reliable food 

source for females and males dolphins in BDT, since no significant differences between 

isotopic signatures and sex were detected. This predictable prey item may explain why 

dolphins remain in the area, despite the intensity of interactions with dolphin-watching boats. 

A study by Kassamali-Fox et al. (2015) found that boats affected the dolphin foraging and 

social behavior, by switching to avoidance behaviors. The number of boats during interacting 

predicted the likelihood of these dolphins to return to these behaviors. However, given the 

availability of herring in the area and despite the presence of vessels, it is likely that dolphins 

are able to forage on their favorite prey.  

 

4.2. Hg concentrations 

 

The BDT dolphins showed lower concentrations of THg in comparison to the dolphins at La 

Guajira and other bottlenose dolphin populations, such as the Indian River Lagoon and the 

Everglades in Florida, USA (THg mean = 7,000 and THg mean = 9,314 ng g-1 dw, 

respectively) (Stavros et al., 2007; Damseaux et al., 2017), and the Mediterranean Sea (THg 
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= 5,700 ng g-1 dw) (Aubail et al., 2013), where also other delphinid species show higher THg 

concentrations in their skin (e.g. Striped dolphin, Stenella coeruleoalba, THg mean = 3,000 

ng g-1 dw; Aubail et al., 2013). Nevertheless, THg levels reported here were similar to 

concentrations reported for bottlenose dolphins in Charleston in South Carolina, USA (THg 

mean = 1,700 ng g-1 dw) (Stavros et al., 2007), and for other delphinid species in the 

Mediterranean Sea (e.g. Common dolphin, Delphinus delphis, THg mean = 1,700 ng g-1 dw; 

Harbour porpoise, Phocoena phocoena, THg mean = 1,600 ng g-1 dw; Aubail et al., 2013) 

and in Sub-Antarctic waters (e.g. Commerson’s dolphin, Cephalorhynchus commersonii, 

THg mean = 1,380 ng g-1 dw; Cáceres-Saez et al., 2015) (see Table 3). Many coastal areas 

are influenced by several anthropogenic activities that may increment the Hg concentrations 

in these marine environments and thus on dolphin’s prey and subsequently in their tissues 

(Evans and Crumley, 2005). However, the influence of prey may not be necessarily a 

reflection of the level of anthropogenic contamination, but differences in prey sources. For 

example, pelagic fish Hg concentrations have been shown to increase with increasing median 

depth of occurrence (Monteiro et al., 1996; Choy et al., 2009), so pelagic prey can reflect 

higher Hg concentrations than none polluted coastal areas. Following this, La Guajira 

dolphins appear to feed on a narrow prey selection items of pelagic habits, resulting in higher 

concentrations of THg than the coastal bottlenose dolphins of BDT.  

 

Dolphins in BDT feed primarily on prey at low trophic levels with low concentration of Hg. 

The Hg low concentrations could be also related to the dominance of juvenile fish in the 

Archipelago, which reflect lower Hg concentrations compare to bigger ones as a consequence 

of bioaccumulation of Hg with age (Boush and Thieleke, 1983; Marrugo-Negrete et al., 

2018). The abundance of juvenile fish in areas such as Almirante Bay is a result of dramatic 

decrease of larger predatory fish due to overfishing (Seemann et al., 2013). Previous works 

have reported Hg concentrations in corals and sediments in the Archipelago (Guzmán and 

Jiménez, 1992; Guzmán and García, 2002; Berry et al., 2013; Seemann et al., 2013). Because 

of their fish diet, dolphins may be bioaccumulating and magnificating THg through their 

prey, as suggested by the positive significant correlation between Hg concentrations with 

δ15N. Figure 7 shows the predicted Hg biotransference from low trophic level prey to the top 

of the chain where dolphins have the highest THg concentrations among all collected 
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specimens. Hg biomagnification processes have been reported in other dolphin populations, 

for example in the coastal waters of Brazil, the Atlantic spotted dolphin (Stenella frontalis) 

and the Guiana dolphin (Sotalia guanensis) (Kehrig et al., 2013; 2017). A potential concern 

about Hg exposure is that it can be quickly assimilated by their diet and accumulated in 

dolphin tissues throughout their life (Kehrig et al., 2013) resulting in long-term health risks 

for dolphins. Dolphin health can be used a proxy of the health of the marine environment and 

thus as a wakeup call of Hg exposure to humans (Reif et al., 2015). 

 

4.2. Health risk 

 

The results from the RQ based on the MACRfD indicate there is a potential health risk for both 

females and males dolphins in BDT due to Hg bioaccumulation through their diet. According 

to Hung et al. (2006), an RQ < 1 do not represent health risk. However, our analysis resulted 

in a value of RQ =1, which indicates a marginal health risk (Hung et al., 2004). Given the 

conservation status of this population, this result should be taken as an important factor 

affecting the long-term health condition of this population. As described before, dolphins in 

BDT show high site fidelity and Hg bioaccumulates through an animal’s lifespan. 

Considering this, Hg could be a major health threat for calves, taking account that 

reproductive females can pass Hg from their tissues during gestation and through their milk 

(Frodello et al., 2002), exposing calves to premature mortality (Romero et al., 2016). 

Furthermore, the Archipelago and particularly Dolphin Bay, where dwarf round herring 

showed the highest THg concentrations, is surrounded by mangrove forest, an ecosystem that 

is known to retain Hg making it available as methyl-Hg in water sediments to aquatic 

environments (Miskimmin et al., 1992; Barkay et al., 1997; Kannan et al., 1998; Evans et al., 

2001; Silva et al., 2003; Bergamaschi et al., 2012; Dameaux et al., 2017). The high Hg 

concentrations in dolphins living in South Florida, for example, have been attributed to this 

intrinsic characteristic of the mangrove forest (Dameaux et al., 2017).  

 

This study provides evidence that the BDT dolphin population is at risk. In addition to being 

genetically isolated (Barragán-Barrera et al., 2017) and under significant pressure due to boat 

traffic (May-Collado and Wartzok, 2008, May-Collado and Quiñones-Lebrón, 2014; May-
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Collado et al., 2015), this dolphin population is showing signs of Hg bioaccumulation.  The 

stable isotope analysis confirmed that this population belongs to the ‘inshore form’, they 

consume a wide selection coastal prey items, similar to what has been reported in other 

coastal dolphin populations (e.g. Segura et al., 2006; Barros et al., 2010). The majority of the 

dolphin coastal prey items in the BDT are at low trophic level or are juvenile stage, and thus 

showed low concentrations of Hg. The risk assessment, trophic magnification and 

biotransference models showed that the Hg magnification process could be a cause of 

concern. Hg accumulates fast in tissues of species of high trophic level, and once in high 

concentrations, it is toxic, and it may causes cancer (Béland et al., 1993; Martineau et al., 

1994), immunotoxicity (Desforges et al., 2016), neurotoxicity (Krey et al., 2015), reduction 

in antibody concentration (Reif et al., 2015), and damage on the endocrine, hematopoietic, 

hepatic and renal systems (Bossart, 2011; Schwacke et al., 2002; Correa et al., 2014; Reif et 

al., 2015). Given the high site fidelity of dolphin to BDT, it is likely that lactating females 

may be transferring Hg through their milk to their newborns, and potentially affecting the 

calf development and survival. Further studies are needed to continue monitoring the Hg 

exposure and transfer from mother to calf in this inshore dolphin population, and monitoring 

Hg in biota in order to provide some insights on temporal trends in BDT as well.  
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Fig. 1. Location of common bottlenose dolphins (Tursiops truncatus) sampled in Bocas del 

Toro, Panama and La Guajira, Colombia in the Caribbean. The map of Bocas del Toro 

bottom left shows the three main locations where fish were collected, including Almirante 

Bay (green), Dolphin Bay (blue), and the ‘Outermost’ area (yellow).  
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Fig. 2. Carbon (δ13C) and nitrogen (δ15N) isotope values (‰) for Bocas del Toro, Panama 

(purple) and La Guajira, Colombia (blue) bottlenose dolphins (Tursiops truncatus) 

representing the niche trophic widths. Solid lines indicate standard ellipses areas corrected 

for small sample sizes (SEAc) and the convex hull area (TA) by dotted line.  
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Fig. 3. Stable isotope values (‰) in relation to total mercury THg (ng g-1 dw) of bottlenose 

dolphins (Tursiops truncatus) in Bocas del Toro, Panama (star) and La Guajira, Colombia 

(square). Carbon (A, δ13C) and nitrogen (B, δ15N).  
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Fig. 4. Posterior estimates of bottlenose dolphins (Tursiops truncatus) diet in Bocas del 

Toro, Panama according to MixSIAR Bayesian stable isotope mixing model. Median diet 

proportions (%) of each source are: blue runner Caranx crysos (CcR, 4.4%), horse-eye jack 

Caranx latus (CL, 2.6%), foureye butterflyfish Chaetodon capistratus (CcP, 2.4%), yellow 

fin mojarra Gerres cinereus (GC, 2.6%), French grunt Haemulon flavolineatum (HF, 

2.2%), white grunt Haemulon plumieri (HP, 2.4%), dwarf round herring Jenkinsia 

lamprotaenia (JL, 23.9%), mutton snapper Lutjanus analis (LA 2.4%), northern red 

snapper Lutjanus campechanus (LC, 3.3%), lane snapper Lutjanus synagris (LS, 3.3%), 

and striped parrotfish Scarus iseri (SI, 39.7%).
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Fig. 5. Mean ± SD carbon and nitrogen isotopic signatures (‰) and THg concentrations (ng g-1 dw) of dwarf round herring from three 

main locations within the Bocas del Toro Archipelago, Panama (triangle: Almirante Bay, circle: Dolphin Bay, square: ‘Outermost’ 

area). In (A) is represented relationship between carbon (δ13C) and nitrogen (δ15N) stable isotope values; in (B) and (C) is represented 

relationship between THg with δ13C and δ15N values, respectively.
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Fig. 6. Relationship between nitrogen isotopic ratio (δ15N in ‰), and THg concentrations 

(ng g-1 dw) in bottlenose dolphins (Tursiops truncatus) and 11 fish species that compose a 

trophic chain in Bocas del Toro, Panama.
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Fig. 7. Bioaccumulation factor (BAF) and biotransference factor (BTF) of THg through a 

trophic chain representation in Bocas del Toro, Panama with bottlenose dolphins (Tursiops 

truncatus) as top predator. Indicated numbers on black arrows refer to BAT among all fish 

and bottlenose dolphins. Indicated number on blue arrows refer to BFT between the dwarf 

round herring (Jenkinsia lamprotaenia) as prey in second trophic level (TL = 2), fish from 

third trophic level (TL = 3) and dolphins as last trophic level.
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Table 1. Stable isotope ratios (δ13C and δ15N in ‰), total mercury (THg in ng g-1 dw) concentration and trophic level (TL) of 

bottlenose dolphins, Tursiops truncatus, and potential prey fish species collected in Bocas del Toro, Panama. 
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Table 2. Summarized values used in the risk assessment of bottlenose dolphins (Tursiops 

truncatus) in Bocas del Toro, Panama based on Hung et al. calculations (2004; 2006). 
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Table 3. Total mercury (THg) skin concentrations (ng g-1 dw) of free ranging bottlenose dolphins (Tursiops truncatus), Commerson’s 

dolphin (Cephalorhynchus commersonii), common dolphin (Delphinus delphis), harbour porpoise (Phocoena phocoena), and striped 

dolphin (Stenella coeruleoalba) reported in the literature. Data are shown as sample location, sample year, sample number (n), THg 

mean ± standard deviation, and the study reference. 

 

 

 


