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Abstract 

Designing low cost, highly-active and stable oxygen evolution reaction (OER) catalysts for Proton Exchange Membrane 

Water Electrolysers (PEMWE) anodes is an important topic for industry and academia. A possible strategy to alleviate the 

cost of the anodic catalyst consists in synthesizing nanometre-sized catalysts and dispersing them on an electron-conducting 

and highly-porous support such as SnO2 doped with hypervalent cations such as Sb(V) and Ta(V). Herein, we show the 

benefits of Sb- and Ta- doped SnO2 aerogels synthesized by a sol-gel route. Iridium oxide (IrOx) nanoparticles were 

deposited onto SnO2, SnO2:Sb and SnO2:Ta aerogel supports by chemical reduction. The effect of the dopant nature on the 

aerogel’s properties (as morphology, structure, conductivity, etc.) was investigated using a set of physical and chemical 

techniques. The electrocatalytic performance of the synthesized nanocatalysts towards the OER was also assessed in rotating 

disk electrode (RDE). Supported IrOx catalysts showed both higher specific and mass activity and stability than unsupported 

IrOx nanoparticles.  
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Introduction 

Polymer Electrode Membrane Water Electrolysers (PEMWE) are attractive devices for hydrogen production 

from sustainable and clean energy sources such as solar or wind energy.1,2 Materials challenges in these systems 

are huge, especially at the anode where the catalyst should be able to face high electrochemical potential (E > 1.6 

V vs. the standard hydrogen electrode - SHE), highly-acidic environment, presence of oxygen and moderate 

temperature (< 80 °C), and to electrocatalyze in a sustainable manner the oxygen evolution reaction (OER). 

Former studies have established that ruthenium oxide (RuO2) and iridium oxide (IrO2), two precious metals, are 

best electrocatalyzing the OER.3 However, they are presently used in the form of micrometre-sized particles, and 

typical anode loadings range between 2.0 and 4.0 mg cm-2 in present PEMWE anodes, hence a reduction of the 

Ir content would be highly desirable.4,5,6,7 One possibility to decrease the catalyst loading consists in using 

nanometre-sized Ru or Ir catalysts supported on high surface area and electron conducting supports.8,9 High 

surface area carbon blacks (CBs) is a popular and widely used support material in electrochemistry, due to its 

low cost, high specific surface area and high electrical conductivity10,11,12. However, CBs face corrosion issue at 

PEMWE anode potential, thus leading to sintering 13,14,15 and detachment of the noble-metal nanoparticles (NPs), 

and resulting in depreciated electrocatalytic performance.16,17,18,19 So far, carbon based materials displaying 

stability under the required potential for the OER have not been found.20,21,22 On the contrary, metal oxides 

feature excellent corrosion resistance and may exhibit strong interactions with the noble metal catalysts.23,24,25  

In particular, titanium based oxides have received many attention due to their interesting properties. For 

example, Wang et al. obtained an improved Ir utilization compared to the commercial Ir-black by deposition of 

metallic Ir(0) nanoparticles (NPs) on Ti4O7 without any thermal treatment.26 Chen and co-workers also 

demonstrated enhanced OER activity in acid media when using Ti4O7 as an Ir catalyst support.27 Siracusano et 

al. also obtained better performances when depositing IrO2 electrocatalysts on Ti based suboxides.28 

Tin oxide doped based materials have also shown promising stability under OER conditions, as for example 

Indium doped (ITO)29 or Antimony doped (ATO).30,31,32,33 A highly active OER catalyst consisting of IrNiOx 

supported on mesoporous ATO has been developed by the Strasser’s group. The authors reported improved OER 

activity and stability, which was accounted for by a Metal-Metal Oxide Support Interaction (MMOSI) between 

the amorphous IrOx catalyst and the supporting material.9,34 Wang and co-workers 35 also reported enhanced 

OER activity and stability of Ir catalysts supported onto ATO aerogels.36 However, Claudel et al. recently 

reported that stability of the doping element is a key issue for ATO to be implemented in PEMWE anode.19 Ta-
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doped SnO2 supports (TaTO) have been first used by Senoo et al. as a catalyst support at a proton-exchange 

membrane fuel cell (PEMFC) cathode. The authors demonstrated enhanced catalytic performance toward the 

oxygen reduction reaction (ORR) and improved corrosion resistance for Pt/SnO2:Nb vs. Pt/CB.37,38 Fabbri et al. 

also demonstrated superior ORR activity of Pt NPs deposited on Ta-, Nb- and W-doped SnO2 relative to 

Pt/glassy carbon.39 Uchida et al. reported improved utilization of Ir atoms in Ir/TaTO catalysts used at a 

PEMWE anode.40  

Herein, SnO2 (TO), SnO2:Ta (TaTO) and SnO2:Sb (ATO) aerogels with three-dimensional texture, amenable 

morphology, and tuneable electronic conductivity (via doping) were synthesized, decorated with partially 

oxidized iridium oxide (IrOx) NPs and tested in simulated PEMWE electrolyser conditions. 

2. Experimental 

2.1 Synthesis and preparation of the alkoxide precursor (Sn(OiPr)4) 

A tin metal alkoxide precursor (Sn(OiPr)4) was first prepared using the procedure described in Thomas et al.41 In 

brief, 3.7 mL of tin tetrachloride (SnCl4) were added into a 500 mL dry reactor flask under inert atmosphere with 

50 mL of previously dried and degassed heptane. After 10 minutes of stirring at room temperature, a solution of 

17 mL of diethylamine dissolved in 20 mL of dried heptane was added by using a syringe in order to keep the 

inert atmosphere, and then the reaction was kept under stirring for 2 hours. After that, a 17 mL solution of tert-

butanol dissolved in 70 mL of dried heptane was added to the reactor and kept under stirring for 72 hours. The 

product was then filtered inside an inert atmosphere glove box and the filtrate was washed several times with 

heptane. 30 mL of dried isopropanol were added to the filtrate, and the reaction was kept under stirring and inert 

atmosphere for 24 hours more. Finally the solution was evaporated under vacuum in order to eliminate non 

desirable by-products and solvents, and the obtained alkoxide was re-diluted with the desired amount of 

isopropanol in order to obtain a solution of Sn(OiPr)4  at 10% mass in volume (total yield = 40%).  

2.2 Aerogels preparation by the sol-gel route 

Doped and un-doped TO aerogels with high surface area were synthetized by the sol-gel method, previously 

reported by our group,37 using alkoxide precursors.  Two solutions (A & B) were prepared. Solution A, 

consisting of tin isopropoxide (Sn(OiPr)4) dissolved in isopropanol and the corresponding amount of the 

antimony alkoxide precursor as doping element (Ta(OiPr)5 or (Sb(OiPr)3, Across Organics), were mixed under 

magnetic stirring. Solution B, consisting of nitric acid (Alfa Aesar, 2M) as the sol-gel reaction catalyst (Cat/Sn = 

0.072) and water (H2O/Sn = 3.06 mol/mol) were diluted in isopropanol and mixed under magnetic stirring. 
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Solution B was then slowly added into solution A and a gel formed after a few minutes. Then the gels were 

covered with 10 mL of isopropanol (to prevent drying), and aged for 72 hours at room temperature before being 

washed with isopropanol three times a day for three days. Once washed, the resulting gels were dried under CO2 

in supercritical conditions (80 bars, 40 °C) to obtain amorphous aerogels. After calcination under air at 600°C, 

the ATO aerogels turned blue, while TaTO aerogels remained white. 

2.3 Deposition of IrOx nanoparticles by chemical reduction 

IrOx NPs were deposited onto the aerogel supports using the procedure previously described by Wang et al.36 In 

brief: 1.17 g of cetyltrimethylammonium bromide (CTAB, Merck Millipore), 0.095 g of as-prepared TO, ATO 

or TaTO aerogel and 0.075 g of the Ir precursor (IrCl3, Sigma Aldrich) were dispersed in a 120 mL anhydrous 

ethanol solution (VWR Chemicals) and magnetically stirred for 4 hours under an argon (Ar) atmosphere. To 

reduce Ir3+ ions, 0.114 g of sodium borohydride (NaBH4, Sigma Aldrich) were dissolved in 50 mL of anhydrous 

ethanol, and the resulting solution was added slowly to the first reaction suspension under vigorous stirring and 

Ar atmosphere. The reaction mixture was kept for 4 hours until the reduction reaction completed. Afterwards, 

the suspension containing Ir/TO-based support was centrifuged and rinsed with ample amounts of pure ethanol 

and deionized water to remove CTAB and the residual non-reduced IrCl3. Finally, the synthesized catalyst was 

dried overnight at 80°C under air atmosphere. The nominal Ir loading was 30 wt. %. 

2.4 Materials Characterization 

X-ray diffraction (XRD) analyses were performed using an X’Pert pro-Philips diffractometer (Cu Kα of λ = 

1.5405 Å), operating at 45 kV and 30 mA. Data were collected from 20° to 90° in 2-θ mode with a Pixcel 

counter. The crystallites size was determined using the Debye-Scherrer method and the (111) diffraction peak.  

The morphology of the synthesized aerogels was determined using a Supra 40 scanning electron microscope 

(SEM) equipped with a Gemini column, and operated at 3.00 kV. Samples were deposited onto adhesive 

conducting carbon tapes and coated with a 7 nm thick platinum layer, using a Quorum (Q150 T).  

Transmission electron, microscopy (TEM) measurements were performed using a JEOL 2010 operated at 200 

kV (point-to-point resolution of 0.19 nm). 

Nitrogen sorption analyses were performed with a Micromeritics ASAP 2020. Before analyses, samples were 

degassed for 120 min at 100 °C and 10 μm Hg. For specific surface area determination, the Brunauer-Emmett-

Teller (BET) model was applied. The pore size distributions were determined by applying the Barret-Joyner-

Halenda (BJH) method to the desorption branch of the isotherms. The t-plot construction using Harkins-Jura 
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correlation was used for microporosity assessment. We assumed that the calcined samples were mechanically 

strong enough to withstand the pressure applied during the measurement. 

The bulk chemical compositions of the samples was determined by Energy Dispersive X-ray Spectroscopy 

(EDX) during SEM observations with a Philips XL30 operated at 15 kV. 

Insights into the near-surface chemical composition were obtained by X-ray Photoelectron Spectroscopy (XPS) 

using a Thermo Scientific K-Alpha system. The spectrometer was equipped with a monochromatic Al Kα source 

and a low energy flood-gun for charge compensation. The ellipsoid spot size is about 350 µm x 700 µm.  

The electronic conductivity of the synthesized aerogels was determined with a homemade conductivity cell, 

made up of two copper electrodes (S = 0.785 cm²) surrounded with a Teflon ring. Approximatively 100 mg of 

sample were introduced between these two electrodes (see Figure 1). A potentiostat was used to apply a current 

of 100, 150, 250 and 400 mA and the voltage was measured for each current. The homemade conductivity cell 

was placed in a press and measurements were made at room temperature with 1 ton of pressure. The conductivity 

(σ, S/cm) was calculated with the formula σ = (e.I/U.Selectrode) where “e” is the thickness of the sample (cm), “I” 

the applied current (mA), “Selectrode” the surface of the electrode (cm2) and “U” the measured voltage (mV). 

 

Figure 1: Homemade conductivity cell picture assembled (left) and disassembled (right) 

The electrochemical measurements were performed with an Autolab PGSTAT20 potentiostat and a rotating disk 

electrode (RDE). Inks were prepared by mixing a given mass of the synthesized catalysts, a 5 wt. % Nafion® 

solution, isopropanol and ultrapure water. An aliquot of 10 µL of the catalyst suspension was deposited on the 

working electrode (glassy carbon disk, geometric area: 0.196 cm²) by spin coating, targeting a final loading of 20 

µgIr cm-²geom. The counter electrode was a Pt foil and the reference electrode a Reversible Hydrogen Electrode 

(RHE). The OER evaluation tests were performed in N2-saturated 0.05 M H2SO4 using a rotating speed of 1600 
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revolutions per minute (rpm). The sequence test described in Table 1 was used for electrochemical 

characterization and determination of the OER activity. 

 

Table 1. Sequence used for electrochemical characterizations 

Sequence 

Number 

Starting Potential (V 

vs. RHE) 

Potential range 

(V vs. RHE) 

Sweep rate (mV s-1) N° Cycles Purpose 

1 1.0 1.0 – 1.6 5 3 OER pre-test 

2 OCP 0.0 – 1.6 20 10 

Electrochemical 

conditioning 

3 1.0 1.0 – 1.6 5 3 

OER activity 

evaluation 

4 Chronopotentiometry at 1 mA.cm-2 for 24 hours Stability test 

 

The current obtained at 1.51 V (η = 0.28V) in the last sequence step, was normalized either by the mass of Ir 

initially deposited on the electrode (jmass) or by the anodic charge measured between 0.40 and 1.40 V vs. RHE, 

which is known to be proportional to the amount of Ir oxide (jspec).42,43  

3. Results and discussion 

3.1 Aerogels characterization 

Antimony-doped (ATO), Tantalum-doped (TaTO) and un-doped (TO) tin oxide aerogels were prepared by the 

sol-gel route described in the Experimental Section.  

Structure and morphology of aerogels 

The morphology and the structure of the as-prepared aerogels were characterized by SEM, nitrogen sorption 

measurements and XRD. Figure 2a shows the characteristic XRD peaks, (110), (101), (200), (211), (200), of the 

rutile structure of TO. No peak corresponding to Sb or Ta phases (SnO, or M, MO, M2O3, M2O5 with M = Sb or 

Ta) was found, indicating that the dopant atoms substituted Sn atoms or are inserted randomly in the rutile 

network. Moreover, as shown in Table 2, the “a” and “c” lattice parameters of TaTO or ATO aerogels are 
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unchanged compared to pure TO, suggesting no deformation of the rutile cell of TO. The XRD patterns 

displayed in Figure 2a and the crystallite sizes evaluated using the Debye-Scherer equation (Table 2) 

nevertheless show that the doped aerogels are less crystalline and feature smaller crystallites than the pure TO  

material. SEM images displayed in Figure 2(c-e) show that aerogels feature an airy morphology lying on a 

three-dimensional network composed of interconnected primary particles with size comprised between 15 and 20 

nm (Table 2). This morphology is similar to that of carbon and SnO2 based aerogels previously synthesized by 

our group.44 The agglomeration of the primary particles leads to pores of different sizes: micropores (< 2 nm), 

mesopores (2 < size < 50 nm) and macropores (50 nm).  

 

Figure 2: X-ray diffraction patterns (a), pore size distribution (b), SEM images (Magnification of the images = 50000 X) and 

associated primary particle size distributions (c) for pure and doped SnO2 aerogels (Red bars in (a) correspond to the pattern 

of the rutile structure of tin oxide 45 JCPDS 14-1445). 

The mean crystallite size and the mean primary particle size determined by SEM (150 particles were analysed 

using Image J) are displayed in Table 2. For the doped samples, we observed that the primary particle size 

systematically exceeds the crystallite size, suggesting that the aerogel is polycrystalline. Importantly, we also 

noticed that large and small particles co-exist inside the TaTO aerogel (Figure 2d). Local EDX analyses 
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indicated that the large particles are depleted in Ta, and such domains are believed to be responsible of the 

higher degree of crystallinity of TaTO vs. ATO. In contrast, the crystallite and particle sizes are similar for the 

un-doped aerogels (Figure 2e), suggesting a monocrystalline material.  

Table 2. “a” and “c” lattice parameters and crystallite size determined by XRD and primary particles size (SEM) of doped 

and un-doped samples. 

Sample 
a // c lattice 

parameters (nm) 

Crystallite size 

(nm) 
Primary particle size (nm) 

TO 4.7 // 3.2 23.0 22.1 ± 5.1 

ATO 4.7 // 3.2 5.1 16.3 ± 2.8 

TaTO 4.7 // 3.2 8.2 15.4 ± 4.1 

 

Nitrogen sorption measurements were performed (Figure 2b and Table 3) to determine the textural properties of 

the synthesized aerogels. All measured isotherms indicated mesoporous materials, and this was confirmed by the 

specific surface area values (Table 3) and the pore size distributions (PSD, Figure 2b) calculated based on the 

BET and BJH models, respectively. The presence of mesoporosity is key to efficiently deposit IrOx NPs within 

the aerogel and thus ensure higher mass activity towards the OER. Figure 2b reveals a multimodal pore size 

distribution centred at 20 and 40 nm for all synthesized aerogels. However, due to smaller primary particles, 

higher specific surface area was measured for the doped aerogels.  

 

Table 3. Nitrogen sorption measurement results for doped and pure SnO2 aerogels. 

Sample 
Specific surface 

area BET (m2 g-1) 

PSD  

(BJH, nm) 

Pore volume  

(BJH, cm3 g-1) 

µ-pore volume 

(BJH, cm3 g-1) 

TO 41.1 20 — 30 — 40 0.059 0.4 x 10
-2

 

ATO 76.9 20 — 25 — 35 0.295 0.9 x 10
-2

 

TaTO 74.6 20 — 25 — 40 0.293 0.1 x 10
-2
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Aerogel chemical composition 

It is well-established that the electronic conductivity strongly depends on the nature and the content of the 

doping element as well as the homogeneity of doping 37,46,47,48,49,50,51. During the synthesis of the TO-based 

aerogels, elements may segregate during the sol-gel process or during the calcination step. To determine the 

homogeneity of doping in ATO and TaTO aerogels, the bulk and the near-surface chemical compositions were 

determined by EDX and XPS, respectively. Some difficulties arised to quantify the Sb content by XPS, as the 

most intense peak of Sb (Sb 3d5) is located at the same binding energy than the O 1s peak (≈ 530 eV). To avoid 

interferences, the Sb content was determined using the less intense Sb 3d3 peak at ca. 540 eV (Figure 3). For 

determination of the near-surface composition of TaTO, the Ta 4d5 and Ta 4d3 peaks were used. 

 

Figure 3. XPS spectra focusing on Sb3d (left) and Ta 3d5/3d3 (right) 

According to EDX measurements (Table 4), the bulk concentration of the doping element was 12 at. % for ATO 

and 14 at. % for TaTO (nominal value 10 at. %). The near-surface Sb content in ATO measured by XPS was 

found notably higher than the bulk concentration (15 at. % vs 12 at. %), in agreement with former results.37 

Similarly, the Ta concentration was found higher in the near-surface region of the aerogel than in the bulk (16 at. 

% vs 14 at. %). Despite results obtained by EDX and XPS should be regarded semi-quantitative, we believe that 

the observed trend is significant. Surface and near-surface enrichment by the doping element can be attributed to 

interatomic diffusion during the calcination step. Different kinetics of hydrolysis or condensation of the used 

precursors, represent another possibility to account for these results. Segregation of the doping element 

represents a significant pitfall in terms of electronic conductivity and can be mitigated, for example by selecting 

other sol-gel precursors with similar hydrolysis/condensation kinetics than those of the Sn precursor. 
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Table 4. Bulk and near-surface chemical composition of the as-prepared aerogels determined by EDX and XPS analyses. 

Sample 
Dopant/(Dopant + Sn)  

EDX (at.%) 

Dopant/(Dopant  + Sn) 

XPS (at.%) 

TO - - 

ATO 11.8 ± 2.5 14.9 ± 0.1 

TaTO 14.0 ± 1.9 16.1 ± 0.4 

 

Electronic conductivity measurements 

As seen in Table 5, Ta is much less efficient than Sb to enhance the electronic conductivity of the TO aerogels. 

Indeed, while a four orders of magnitude enhancement was reached with 12 at. % of Sb, a modest 3-fold 

enhancement of the electronic conductivity was achieved upon doping the TO aerogel with 14 at. % of Ta, in 

agreement with former reports in the literature. Despite optimal doping rates depend on the nature of the 

element,39 we purposely kept similar values for ATO and TaTO so as not to impact the morphology of the 

support and allow a straightforward comparison between the different samples. 

Table 5. Aerogels conductivity determined by resistance measurements obtained with an applied pressure of 1 ton. 

Sample Conductivity (S cm-1) 

TO 5 x 10-4 

ATO 8.2 x 10-2 

TaTO 17 x 10-4 

The electronic conductivity is also known to depend on both the charge carriers’ concentration and their 

mobility, the latter being notably influenced by grain and domain boundaries.48 Since ATO and TaTO samples 

synthesized in this study feature similar particle sizes, we believe that the density of grain boundaries is similar 

for both materials. Hence, the higher conductivity observed for ATO most likely results from a higher charge 
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carrier’s density, in agreement with former claim of  Bruneaux et al.52 This may be rationalized by considering 

different possible oxidation states for Sb. As already discussed 37, the valency of the doping element will 

determine the concentration of oxygen vacancies hence the electronic conductivity. 

3.2 IrOx/Aerogel characterization 

IrOx NPs were deposited onto the different aerogels using a chemical route (see section 2.4 of Experimental for 

details). As revealed by Figure 4, these IrOx NPs feature a face-centred cubic structure. Because the synthesis 

was performed at low temperature and in air-free atmosphere, we did not observe typical reflections of IrO2.  

 

Figure 4. X-ray diffractograms of Ir NPs (black), Ir/TO (blue), Ir/ATO (dark red) and Ir/TaTO (yellow). Red bars correspond 

to the rutile structure of pure TO and green color ones correspond to Ir(0) pattern.46, 53 

 

TEM images of unsupported and aerogel-supported IrOx NPs are displayed in Figure 5. The IrOx particle and 

crystallite sizes were similar for the aerogels-supported IrOx NPs, reflecting the fact that agglomerate-free single 

crystalline nanoparticles were deposited onto the TO-based aerogels (Table 6). On the contrary, the particle and 

crystallite size strongly differed for the un-supported IrOx NPs, providing evidence of a highly polycrystalline 

material.  

 

EDX and XPS analyses were used to gain insights into the weight fraction (wt. %) and the valency of Ir atoms in 

each catalyst (Table 7). The  Ir wt. % determined by EDX was close to the nominal value (30 wt.%), thus 
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reflecting that the vast majority of the IrCl3 salt was reduced and deposited on each support material. For Ir 

detection, the peak at 9.17 eV (IrLα emission) was selected, due to the overlapping of the peak at 1.98 eV with 

the Pt loading signal.  

Table 6. Crystallite and particle sizes of unsupported and supported IrOx nanocatalysts. 

Sample 
IrOx crystallite size 

(nm)  

IrOx particle size 

(nm)  

Unsupported IrOx 

NPs 

8.9 1.8 ± 0.4 

IrOx/TO 1.6 1.8 ± 0.4 

IrOx/ATO 1.9 1.7 ± 0.4 

IrOx/TaTO 1.9 1.7 ± 0.3 

 

 

 

Figure 5. TEM images of (a) IrOx NPs, (b) IrOx/ TO, (c) IrOx/ ATO and (d) IrOx/TaTO and associated IrOx particle size 

distribution. 
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Figure 6. Detailed Ir 4f spectra of (a) IrOx NPs, (b) IrOx/TO, (c) IrOx/ATO and (d) IrOx/TaTO catalysts, showing the 

contribution of each Ir species. 

Table 7. Bulk and surface chemical composition of the IrOx/TO-based aerogels determined by EDX and XPS measurements. 

Sample 

Ir wt.%  

(EDX) 

Ir wt.% 

(XPS) 

Ir(0) at.% 

60.8 eV (4f7/2) 

IrO2 at.% 

61.6 eV (4f7/2) 

IrClx at.% 

62.9 eV (4f7/2) 

Unsupported 

IrOx NPs 

96.3 ± 2.4* 96.6 ± 2.5* 53.6 ± 5.9 42.6 ± 3.9 3.8 ± 1.4 

IrOx/TO 30 ± 1.3 30 ± 0.5 41.2  ± 4.0 49.9 ± 5.6 8.9 ± 2.4 

IrOx/ATO 29 ± 1.5 22 ± 0.3 42.7 ± 1.9 50.4 ± 1.9 6.9 ± 2.2 

IrOx/TaTO 33 ± 2.0 32 ± 0.9 41.9 ± 2.6 49.6  ± 2.5 8.6  ± 1.4 

*complement to 100% with O and possibly Cl and/or C 
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Table 7 also shows that the IrOx nanocatalysts are composed of both metallic Ir and Ir oxide in approximately 

the same amount. This was no surprise as nanocatalysts are prone to formation of an amorphous IrOx layer (with 

x < 2) resulting from oxidation in air. The Ir4f peak was fitted using the parameters and the line shapes proposed 

by Freakley et al.54 Three contributions were considered: metallic Ir(0), IrO2 and IrCl3. As shown in Table 7, the 

unsupported IrOx NPs featured a higher Ir metallic content than the aerogel-supported IrOx nanocatalysts. This 

higher metallic content mostly is a consequence of the larger particle size observed for this material. Regarding 

the deposited nanocatalysts over the TO aerogels, all IrOx NPs present similar particle and crystallite sizes 

(Table 6), and similar metallic and oxide contributions, suggesting a crystalline metallic core and an amorphous 

oxide layer on the surface.  

3.3 Electrocatalytic activity towards the OER and stability in acidic electrolyte 

Finally, the OER activity of the four prepared catalysts was assessed using the protocol described in the 

experimental section. Conditioning of the electrodes was first carried out by performing a series of 10 cyclic 

voltammogram (CV) between 0.0 and 1.6 V vs. RHE and another of 3 CV cycles between 1.0 and 1.6 V. A 24 

hour chronopotentiometry at 1 mA cm-2 was used to determine the stability of each catalyst under OER 

conditions.  

The results, displayed in Figure 7, show a 5-fold and nearly 10-fold enhancement of the mass activity towards 

the OER on the aerogel-supported IrOx NPs compared to unsupported IrOx NPs at 1.51 V and 1.58 V, 

respectively. We related this to the effect of the IrOx crystallite. Indeed, the size of the IrOx NPs is much smaller 

for supported than for unsupported catalysts, hence much higher density of sites is available to the reaction and 

faster OER kinetics result according to Butler-Volmer equation.The stability of the IrOx NPs was also enhanced 

by the presence of the aerogel support, as the lifespan of the materials was improved from 1 hour for 

unsupported IrOx NPs up to 17 hours for the IrOx/TO catalyst (Figure 7.c and Table 8). Again, this is due to the 

smaller IrOx NP size. Indeed, due to smaller density of catalytic sites, the unsupported IrOx NPS are subjected to 

a higher overpotential during the chronopotentiometry (in order to be able to provide the requested current 

density), hence the lower durability observed. 

Finally, we noticed that despite the different electronic conductivity of their supports (Table 5), similar 

geometric, mass and specific activities towards the OER were measured for the three aerogel-supported IrOx 

catalysts. Even more surprising, IrOx/TO was found to be the best-performing material. These results may 

however be rationalized by considering that, in RDE configuration, a very thin film of catalyst covers a glassy 

carbon disk with high electron-conductivity. As supported IrOx/TO-based aerogel and carbon Fermi levels align 

upon contact, different OER activity are unlikely to translate when OER activities are determined in RDE 
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configuration. However, the situation will be very different for ca. 150-200-fold thicker PEMWE anodes, in 

which the electronic conductance of TO-based aerogels will be determined by their intrinsic conductivity, the 

resistance of their contacts, and the volume density of the latter. In that frame, it was no surprise to note that the 

time during which a current density of 1 mA cm-2 could be sustained (a cut-off voltage of 2 V was used) was 

almost not dependent of the nature of aerogel (Table 8). We thus conclude that quantifying the impact of the 

nature of the TO-based aerogel (undoped vs. Sb or Ta doped SnO2) is hardly possible in RDE configuration.  

 

 

Figure 7.  Electrocatalytic performance and durability of the as-prepared catalysts: (a) geometric activity (b) mass activity (c) 

stability at 1 mA/cm² and (d) mass activity comparison at an overpotential of 0.28 V. All measurements were performed at 

25°C in N2-saturated 0.05 M H2SO4 using a potential sweep rate of 5 mV s-1 and a rotation rate of 1600 rpm. The Ir loading 

was 20 µg cm-2 for all electrodes (3.9 µg Ir per RDE tip). 
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Table 8. Stability tests results for the synthesized catalysts (24 hour chronopotentiometry using a constant current density of 

1 mA cm-2 and a cut-off voltage of 2.0 V. 

Sample 
Durability (@ 1 mA cm-2)  

Unsupported IrOx NPs 1.0 ± 0.5 h 

IrOx/TO 17.0 ± 2.5 h 

IrOx/ATO 16.0 ± 1.0 h 

IrOx/TaTO 14.5 ± 2.0 h 

 

4. Conclusion 

In conclusion, we showed that supporting IrOx nanoparticles on tin oxide aerogels allows enhancing their OER 

activity and stability. Despite very different electronic conductivity, the OER mass and specific activities of IrOx 

nanoparticles deposited onto tin oxide-based aerogels were found similar in thin-film electrode configuration. 

This is in agreement with the recent results obtained by the group of professor Uchida on different types of tin 

dioxide support. On top of a better OER activity, all aerogel supported IrOx based catalysts also exhibited 

enhanced durability compared to unsupported IrOx nanoparticles.  

Also, since the morphology of tin dioxide based aerogels (TO, ATO and TaTO) is very similar to that of 

previously developed carbon aerogels, it is reasonable to think that the same fluid management benefits can be 

expected in real PEMWE device than we did observe in PEMFC. Considering the promising results reported in 

this study, we now aim at assessing their performance and durability in membrane electrodes assembly (MEA) 

where the impact of the support’s electronic conductivity is key. Specific studies will also be carried out in order 

to optimize the doping element concentration as well as the Ir loading. 
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