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Regimes of interactions betweenmotions on different time-
scales are investigated in the FLOSSII dataset for nocturnal
near-surface stable boundary layer (SBL) turbulence. The
nonstationary response of turbulent vertical velocity vari-
ance to non-turbulent, sub-mesoscale wind velocity variabil-
ity is analysed using the bounded variation, finite element,
vector autoregressive factor models (FEM-BV-VARX) clus-
teringmethod. Several locally stationary flow regimes are
identified with different influences of sub-meso wind veloc-
ity on the turbulent vertical velocity variance. In each flow
regime, we analysemultiple scale interactions and quantify
the amount of turbulent variability which can be statistically
explained by the individual forcing variables. The state of
anisotropy of the Reynolds stress tensor in the different
flow regimes is shown to relate to these different signatures
of scale interactions. In flow regimes dominated by sub-
mesoscale wind variability, the Reynolds stresses show a
clear preference for strongly anisotropic, one-component
stresses, which tend to correspond to periods in which the
turbulent fluxes are against themean gradient. These peri-
ods additionally show stronger persistency in their dynam-
ics, compared to periods of more isotropic stresses. The
analyses give insights on how the different topologies relate
to nonstationary turbulence triggering by sub-mesoscale
motions.
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1 | INTRODUCTION

Nocturnal and stable boundary layers (SBL) represent a challenge to numerical weather prediction (Sandu et al.,
2013; Holtslag et al., 2013). Difficulties arise due to the unsteady nature of the flow caused by the interactions of
processes on multiple scales. In strong wind conditions, mechanical forcing of turbulence is enough to overcome
buoyant damping and turbulence is generally continuous and rather well described by classical similarity theory. In
weak-wind conditions however, sporadic turbulence can be triggered by localised shear accelerations due to sub-
mesoscalemotions such as internal gravity waves, density currents, wind gusts or othermotions (Sun et al., 2004;Mahrt,
2014; Sun et al., 2015;Mortarini et al., 2017). The non-turbulent, small-scale motions take a variety of forms and are
poorly understood and not represented in models (Belušić and Güttler, 2010; Kang et al., 2015; Lang et al., 2017). Such
non-local scale interactionsmodify the characteristics of boundary layer turbulence, giving it an intermittent nature,
with a tendency to be decoupled from the surface (Acevedo et al., 2015). In this very stable regime, classical surface-
based parameterisations of turbulence fail at representing turbulence resulting from interactions with non-turbulent
unsteady flow accelerations.

Non-stationary turbulence under the influence of submesomotions has been analysed with different data analysis
methods (Mahrt et al., 2012b;Mahrt and Thomas, 2016; Cava et al., 2016;Mortarini et al., 2017). Amethod to classify
flow regimes based on the influence of submesomotions has been proposed recently using the FEM-BV-VARXmethod
(Horenko, 2010b), which provides themeans of objectively classifying non-stationary dynamics influenced by external
variables. This statistical clustering technique has proven powerful for classifying large scale atmospheric flow data, e.g.
for identifying global atmospheric circulation regimes and blockings (O’Kane et al., 2016; Risbey et al., 2015). In the case
of SBL turbulence, a combination of multiscale data filtering and FEM-BV-VARX clustering, was used by Vercauteren
and Klein (2015) and Vercauteren et al. (2016) to characterise the interactions between sub-mesoscale non-turbulent
motions and turbulence. This strategy was found to successfully identify periods in which non-turbulent motions
dominate the turbulence dynamics, corresponding to very stable periods.

As an additional effect on the structure of turbulence, stable temperature stratification results in a strong attenua-
tion of the vertical turbulent motions by buoyancy forces, while shear forcing exerts a straining action. The combination
of these effects can lead to strongly anisotropic turbulence (Smyth andMoum, 2000). Turbulence anisotropy leads to
additional difficulties in parameterising turbulence, and Stiperski andCalaf (2018) have recently given a newperspective
on the failure of traditional similarity scaling by relating it to the topology of the Reynolds stress tensor, based on obser-
vational evidence. Anisotropy of the energy-containing scales is quantified using the anisotropy stress tensor and the
structure of the tensor can be conveniently represented using two invariants (Lumley, 1978). Based on the eigenvalues
of the anisotropy tensor, one can classify turbulence according to three limiting states (Pope, 2000). The one-component
limiting state describes a flowwhere one eigenvalue ismuch larger than the other two (sometimes referred to as rod-like
turbulence), while the two-component limit has two directions with equal magnitude (and is sometimes referred to as
pancake-like turbulence) and all three directions have equal magnitude in the three component, isotropic limit. Stiperski
and Calaf (2018) showed that while close to isotropic and close to two-component axisymmetric stresses agreedwell
with existing SBL scaling relationships, one-component axisymmetric stresses deviated strongly from similarity scaling.
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Delineating isotropic from one or two-component cases appeared possible by using a combination of the wind speed
and the turbulent kinetic energy (TKE), but differentiating between the one- and two-component cases themselves
appearedmore difficult. The delineation based on thewind speed and TKE is the approach taken by the Hockey Stick
Transition (HOST) framework (Sun et al., 2015), based on the observation that turbulence shows two distinct behaviours
depending on the wind speed. The lowwind speed part of the HOST framework corresponds to intermittent turbulence
where the TKE is quasi-invariant with themeanwind speed, and where the Reynolds stress tensor is highly anisotropic
(Stiperski and Calaf, 2018). This regime is also characterised by the presence of myriads of anisotropic sub-mesoscale
motions which act as trigger for turbulence. The combination of multiple scale analysis of turbulence and statistical
clustering proposed by Vercauteren and Klein (2015) and Vercauteren et al. (2016) allows to identify flow regimes in
which scales interact differently, and the regimesmay correspond to different states of anisotropy.

The forcing of turbulence bywave-like non-turbulent motions typically occurs on scales just above the turbulent
scales. In the Kolmogorov view of turbulence, the cascade of energy from large to small scales is accompanied by a
loss of information about the geometry of the large scales. The unsteady forcingmay result in non-equilibrated, highly
anisotropic turbulence as indicated bymultiscale decompositions in Vercauteren et al. (2016). According to the theory,
highly anisotropic turbulence should tend to equilibrate to quasi-isotropic states at the small scales (Pope, 2000). The
dynamical evolution of large scale anisotropic structures towards isotropy is however a subject of research, which
can be studied based on the anisotropy tensor structure. Choi and Lumley (2001) showed experimental evidence that
the rate of return to isotropy depends on the initial topological state and is very slow for cigar-shaped, axisymmetric
turbulence at a high Reynolds number. Their analyses also showed that the turbulence trajectories to isotropy are
nonlinear. Brugger et al. (2018) analysed the route to isotropy based on atmospheric measurements in the surface layer
for canopy flows and highlighted a large influence of thermal stratification. Their analyses showed that trajectories in
the phase space (for decreasing scales) defined by the anisotropy invariants deviate from those of return-to-isotropy
known for homogeneous turbulence. In stably stratified conditions, the influence of anisotropic sub-mesoscale motions
probably affects the turbulence anisotropy dynamics and this topic deserves investigation.

A way to investigate the dynamical evolution of turbulence depending on its initial topology is to consider the
dynamics in the anisotropy phase space defined by the invariants of the anisotropy tensor. Lucarini et al. (2016) recently
developed indicators that proved able to quantify the persistence of dynamics in phase space as well as the local
dimension of the dynamics and applied them in the context of climate dynamics (Faranda et al., 2017a;Messori et al.,
2017). Quantifying the persistence of the turbulent states depending on their topology informs us on how constrained
or not the dynamical evolution of turbulence is in a given starting state of anisotropy. Quantifying the dimension of the
dynamics at each point of the anisotropy phase space additionally enables us to investigate the existence of preferred
directions of the evolution of turbulent states of anisotropy.

In this work wewill focus on following questions: Do flow regimes separated according to their scale interactions
properties correspond to unique states of anisotropy? How persistent are different states of anisotropy and is there
a preferred trajectory in the anisotropy phase space in stably stratified conditions? Wewill address these questions
based on turbulencemeasurements from the Fluxes Over Snow Surfaces II campaign (FLOSSII).

2 | METHODS
2.1 | Dataset
The analysis is based on turbulence data collected during the Fluxes Over Snow Surfacess II (FLOSSII) experiment that
was conducted from 20November 2002 to 4 April 2003 over a locally flat grass surface south ofWalden, Colorado,
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USA, in the ArapahoNationalWildlife Refuge (Mahrt and Vickers, 2005). The surface was often covered by a thin snow
layer during the field program. The turbulence is measured by a tower collecting data at 1, 2, 5, 10, 15, 20 and 30mwith
Campbell CSAT3 sonic anemometers. The data set was quality controlled and segments of instrument problems and
meteorologically impossible values were eliminated (LarryMahrt, personal communication).

The following analysis is based on night-time data, taken between 18:00 and 7:00, Local Standard Time. The
period is selected because the surface sensible heat flux averaged over all nights is negative during this time. Flow
regime identification based on the FEM-BV-VARX clusteringmethodology (see Section 2.3) ideally requires continuous
data, however the dataset will consist of continuous night-time data separated by gaps during the day. In order to
maximise continuity of the dataset, nights with data gaps longer than 80minutes (12 nights) as well as nights with wind
flowing persistently through themeasurement tower for periods longer than 5minutes (51 nights) were removed from
the analysis. The resulting 68 nights left for analysis have data gaps shorter than 1 minute and are deemed mostly
uncontaminated. The short gaps are linearly interpolated. The 60Hz raw data are rotated into themeanwind direction
based on 30minutes average using Double Rotation.

The flow characteristics of the FLOSSII dataset were analysed byMahrt (2011), showing complex nonstationary
relationships between turbulence and sub-mesoscale wind velocity that will be analysedwith the objective FEM-BV-
VARX classification strategy here. Analyses of non-turbulent structures identified as sub-mesoscale motions by the
Turbulent Event Detection (TED) method (Kang et al., 2015) revealed the presence of complex structures affecting the
turbulent dynamics.

2.2 | Extracting scales of motion
Themultiresolution flux decomposition (MRD) (Vickers andMahrt, 2003) and other wavelet analysis tools have been
successfully used to analyse SBL scale-wise properties of flux. TheMRD can be used to assess the amount of flux that
is due to eddies of a certain size, thereby providing a way to identify a cospectral gap scale. The gap scale is usually
identified as the scale at which the flux crosses the zero-line and indicates the appropriate averaging period needed to
separate contributions of non-turbulent sub-mesoscales of motion from turbulent fluxes. TheMRD analyses of the
nocturnal FLOSSII data show that the cospectral gap scale depends on the flow regime (this topic will be discussed
in Section 3.1 and is illustrated in Fig. 4), but that scales smaller than approximately 1 minute mainly correspond to
turbulent fluxes. We therefore define the turbulent vertical velocity fluctuations as σw =

√
w ′w ′, wherew is the vertical

wind velocity component, the overbar denotes an averaging period of 1minute and the prime denotes deviations from
the average. A sub-mesoscale meanwind speed is defined as:

Vsmeso =

√
u2s + v

2
s , (1)

where us and vs are the streamwise and lateral velocity components on sub-mesoscales. In the definition of the sub-
mesoscale fluctuations φs = φ − [φ], the overbar denotes a 1-min averaging time and the square brackets denote a
30-min averaging time, such that these fluctuations represent the deviations of the 1-min sub-record averages from
the 30-min average. These definitions of turbulent vertical velocity fluctuations and sub-mesoscale wind velocity
fluctuations are used to analyse the non-stationary interactions between submesomotions and turbulence. This choice
of timescales is identical to the choicemade by Vercauteren and Klein (2015) and Vercauteren et al. (2016) to analyse
scale interactions in the SnoHATS dataset of SBL turbulence.
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2.3 | Clustering flow regimes

TheFiniteElement, BoundedVariation, VectorAuto-RegressivewitheXternal factors (FEM-BV-VARX)method (Horenko,
2010a,b) relates an observed variable of interest at a discrete-time t ( in our context σw (t )) to the past history of ob-
servations (σw (t − pτ), where p ∈ Ú>0 and τ is the discrete-time unit step equal to the inverse sampling frequency).
Influences from external forcing variables can also be considered. When using the FEM-BV-VARXmethod, we assume
that the evolution in time of the turbulent mixing can be approximated by a locally stationary statistical process (VARX)
that is influenced by the horizontal wind speed at specified sub-mesoscales of motion. Themethod is thus applied to
identify different SBL flow regimes, based on the interactions of different scales of motion. The VARXmodel relates the
dynamics of σw (t ) to the external factorsVsmeso (t − pτ), and the relationship is modulated by a set of time-dependent
parametersΘ(t ). The VARXmodel in our application takes the following form:

σw (t ) = µ(t ) + B0(t )Vsmeso (t ) + B1(t )Vsmeso (t − τ) + · · · + Bp (t )Vsmeso (t − pτ) + C (t )ε(t ) , (2)

where the process σw (t ) is the time evolution of the vertical velocity variancemeasured at one location; the external
factor is the time evolution of the streamwise velocity on our previously defined sub-mesoscalesVsmeso (Eq. 1). εt is a
noise process with zero expectation, the parametersΘ(t ) = (µ(t ),B(t ),C (t )) are time- dependentmatrix coefficients
for the process and p is thememory depth of the external factor. Themodel assumes a linear relationship between σw
andVsmeso , which was shown to be appropriate byMahrt (2011), based on the FLOSSII dataset and by Vercauteren
and Klein (2015) for the SnoHATS dataset. Both analyses however highlighted that the linear dependence of σw on the
sub-mesoscale wind speed is not always constant. The turbulence relates to different scales of motions in a complex,
non-stationary way andwe use the FEM-BV-VARX clusteringmethod to disentangle the different relationships. Since
our interest lies mainly in characterizing scale interactions, we do not consider an autoregressive part in themodel (2).
The number of statistical processes corresponds to the number of clusters. The assumption of local stationarity of the
statistical process is enforced by setting a persistence parameterCp , which defines themaximum allowed number of
transitions between K different statistical processes (corresponding to different values of thematrix coefficientsΘ(t )).
The cluster states are indicated by a cluster affiliation function, which is calculated by the procedure. The reader is
referred toHorenko (2010b) for information regarding theminimisation procedure used to solve the clustering problem.
More detailed explanations on the application of the classification scheme to SBL turbulence is given in Vercauteren
and Klein (2015). User defined parameters and their choice are discussed in the results section 3.1.

2.4 | Anisotropy of the Reynolds stress tensor

The forces imposed on themean flow by the turbulent fluctuations are quantified using the Reynolds stress tensor

u′
i
u′
j
=

©­­­«
u′1u
′
1 u′1u

′
2 u′1u

′
3

u′2u
′
1 u′2u

′
2 u′2u

′
3

u′3u
′
1 u′3u

′
2 u′3u

′
3

ª®®®¬ , (3)

where u′
i
denotes velocity fluctuations and the overbar represents time average, i.e. u′

i
= ui − ui . The anisotropic

components of the tensor effectively transportmomentum, while the isotropic or diagonal components can be absorbed
in a modifiedmean pressure (Pope, 2000). A way to characterise anisotropy of turbulence is to use symmetric, traceless
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tensors whose elements vanish in isotropic flows. The anisotropy tensor

ai j =
uiu j

2k
− δi j

3
, k =

uiui
2
, (4)

in which δ is the Kronecker delta and summation over repeated indices is implied, satisfies this condition and was
introduced by Lumley (1978) to describe the evolution of turbulence towards isotropy in homogeneous, anisotropic
flows. Its two independent principal invariants (I I = ai j aj i , I I I = ai j ai n aj n ) quantify the level of anisotropy of turbulent
quantities and thus give it a simple graphical representation on a plane, initially proposed by Lumley andNewman (1977).
A functional relationship between I I and I I I further defines a bounded region - the Lumley triangle - on the plane of
the invariants in which all physically realisable turbulence is found. As an equivalent alternative to the Lumley triangle,
a Barycentric Lumley map based on a linear domain that equally weighs the different limiting states of anisotropy
simplifies the graphical interpretation of anisotropy of turbulence, avoiding nonlinear distortions (Banerjee et al., 2009).
The limiting states are placed at x1C = (1, 0), x2C = (0, 0), and x3C = (1/2,

√
3/2), and any anisotropy state is located as a

point (xB , yB ) in this phase space such that the convex linear combination holds (see Fig. 1)

xB = C1C x1C + C2C x2C + C3C x3C = C1C +
1

2
C3C , (5)

yB = C1C y1C + C2C y2C + C3C y3C =

√
3

2
C3C . (6)

The corresponding weights (C1C ,C2C ,C3C ) are entirely determined by the eigenvalues of the normalised Reynolds
stress anisotropy tensor, such thatC1C = λI − λI I ,C2C = 2(λI I − λI I I ), andC3C = 3λI I I + 1.

Following Stiperski and Calaf (2018), we define three regions in the Barycentric Lumleymap that correspond to
anisotropy states close to each of the three pure limiting states. These regions are determined as kite-shaped regions of
the Barycentric map illustrated in Figure 1. The limiting lines for each kite were chosen to cover 70% of the sides of the
equilateral triangle. Anisotropy states falling within each of the limiting regions will be denoted as pure anisotropy states.

30%

70%

one component

two component

three component

0 1/2 1
0

√
3/6

√
3/2

xB

yB

F IGURE 1 Definition of the anisotropy states in the barycentric map.

2.5 | Persistence and dimension of dynamical states of anisotropy
The Lumley triangle or its barycentric map counterpart define a bounded region in a phase space spanned by the two
principal invariants of the Reynolds stress anisotropy tensor. All physically realisable turbulence states are foundwithin
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this triangle. In themathematical field of dynamical systems, the geometrical set hosting all the trajectories of a system
is defined as the attractor (Eckmann and Ruelle, 1985). Knowledge of the attractor informs on how often and for how
long the trajectories of the system visit each region of the phase space and for how long the trajectory stays in the
neighbourhood of each point. The behaviour of the system is entirely known if one can define those properties for each
point of the attractor. In our set up, we do not dispose of the knowledge of the entire attractor, but we can reconstruct
important information on the dynamics via a projection on xB and yB . This subset of the attractor is a special Poincaré
section because of its physical importance. In a similar fashion as in Faranda et al. (2017b), we will study the dynamical
properties of such Poincaré section and try to infer physical information on turbulence.

Our dynamical observables therefore consist of piecewise continuous trajectories of the turbulence anisotropy
states defined by (xB (t ), yB (t )), and the Poincaré recurrence theorem enables the analysis of properties of the attracting
dynamics based on time series. The Poincaré recurrence theorem essentially states that certain dynamical systems,
such as those bound to a finite volume, will after some time return to a state very close to the initial state. The time to
return to an initial state depends on its location in phase space, and naturally on the required degree of closeness. A
point (xB (t ), yB (t )) in a timeseries of the invariants of the anisotropy tensor corresponds to a point in the attractor (the
barycentric map or some part of it), and states whose distance to (xB (t ), yB (t )) is small are the neighbours of that point
or state. The density of points around each state, locally in space and time, defines a local dimension of the dynamics. In
the barycentricmap, the phase-space is the plane defined by the Poincaré section xB and yB and is thus two-dimensional.
However if some states of anisotropy are visited less than others, locally the dimension of the Poincaré sectionmay be
smaller than two. If a trajectory leaves the neighbourhood of an initial state of anisotropy very fast, the persistence of
the state will be small. If on the contrary the trajectory remains in the neighbourhood of the initial state for some time,
the anisotropy state is more persistent.

Lucarini et al. (2016) recently proposed amethodology to estimate the persistence and local dimension of dynamical
states based on timeseries of dynamical observables, combining the Poincaré recurrence theorem with theory of
extreme value statistics. In their framework, points on the attractor are characterized by parameters of extreme value
probability distributions. For a given initial point ζ on a chaotic attractor, the probability of a dynamical trajectory x (t ) to
return within a spherical neighbourhood of the initial point has been shown to follow a generalized Pareto distribution
(Moreira Freitas et al., 2010), which is a standard distribution in extreme value statistics and is a modified exponential
law. The time series in this context is the distance between ζ and the other observations along the trajectory

g (x (t )) = − log (δ(x (t ), ζ)) , (7)

where δ(x , y ) is a distance function between two points (e.g. the Euclidean distance). Taking the logarithm increases the
discrimination of small values of δ(x , y ) and large values of g (x (t )) correspond to small distances from the point ζ. The
probability of logarithmic returns in the neighbourhood around ζ can then be expressed as

P (g (x (t )) > q , ζ) ' exp
[
− x − µ(ζ)

σ(ζ)

]
, (8)

and the parameters of the exponential law µ and σ depend on the point ζ. The local dimension of the dynamics around
the point ζ is finally given by (see Lucarini et al. (2016) for proofs and numerical verifications, and Faranda et al. (2017a)
for an application to climate dynamics)

d (ζ) = 1

σ(ζ) (9)
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In equation (8), q is an exceedance threshold, and is linked to the radius ε of the spherical neighbourhood of ζ via
q = g−1(ε) = exp(−ε). In other words, requiring the trajectory to fall within a sphere around the point ζ is equivalent to
requiring the series of g (x (t )) to be over the threshold q , which can be simply set as a percentile of the series itself.

The quantification of the persistence of the state ζ follows rather intuitively: the longer the dynamical trajectory
stays in the spherical neighbourhood of the point ζ, the more persitent is the dynamics in this state. This residence time
can be computed by introducing a further parameter θ in the probability distribution (8), known as extremal index:

P (g (x (t )) > q , ζ) ' exp
[
−θ

(
x − µ(ζ)
σ(ζ)

)]
, (10)

This parameter θ can be interpreted as the inverse of the mean residence time within the spherical neighbourhood
of ζ. From (10) it follows that 0 < θ < 1, where low values correspond to high persistence of the trajectory in the
neighbourhood of ζ, while values close to 1 imply that the trajectory immediately leaves the sphere (Lucarini et al.,
2016).

3 | RESULTS AND DISCUSSION
3.1 | Scale interaction properties in classified flow regimes
Weuse the FEM-BV-VARX framework to classify flow regimes in the FLOSSII turbulence data. The turbulence data
under consideration in Eq. (2) is the vertical velocity variance σw (defined in Section 2.2) and the external factor is the
sub-mesoscale wind velocityVsmeso (Eq. 1). The clustering analysis is performed based on the data collected from the
height of twometers. This choice ensures that the data are within the boundary layer, which can be very shallow in
strongly stable conditions. Investigations of the height dependence of flow regimes is left for future work. Here instead,
the scale interaction properties will be analysed at different heights assuming that the regime affiliation is the same for
all heights.

User defined parameters of the framework include themaximummemory depth p for the forcing variableVsmeso ,
the number of possible distinct VARXmodels or cluster states K and the persistence parameterCp , which limits the
number of transitions between the states. Thememory depth defines howmany past states of the external factorVsmeso
are used in themodel in Eq. (2). Themaximummemory lag that we use in this model is determined by a priori calculation
of the partial autocorrelation function (pacf) for the variableVsmeso (Brockwell and Davis, 2002). The correlation
between the time series drops on average after a fewminutes, and is set to p = 6 (based on the average pacf over 68
nights). To determine the optimum number of K andCp , multiple models are fitted for varied values of the parameters
K andCp .

In the clustering analysis of Vercauteren and Klein (2015), the optimal model parameters were chosen as the
minimisers of theAkaike InformationCriterion. However for the FLOSSII dataset, theAIC exhibits asymptotic behaviour
towards zero for all models in the investigated parameter space (K = 2, 3, 4, 5, 7 andCp = [2, 302]) and cannot be used as
a selection criteria. Instead, the optimal model parameters are selected as those that minimise the correlation between
the signal σw and themodel residuals εt , while maximising the amount of variance of the signal explained by themodel.
By observing the change of these two quantities over the parameter space, we found that increasing the parameters
beyond K = 3 andCp = 150 did not reduce the correlation in the residuals and did not increase themodelled variance.
Thus the choice of K = 3 andCp = 150 is considered as an optimal model. The amount of variance of σw (t ) explained by
the VARXmodel in the three clusters is 0.8%, 3% and 9.5%.

However, analysis of themodel residuals showed that the error distribution in the cluster corresponding to the
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largest explained variance was not Gaussian. This cluster has themost interaction between sub-mesoscales and vertical
velocity fluctuations as shown by the larger explained variance and we want to classify the dynamical interactions
more accurately. Therefore, we select the time series in this specific cluster and classify it with the FEM-BV-VARX
methodology further into two distinct clusters. This strategy leads to error distributions that are closer to normally
distributed in the two subsequent clusters. The reasonwhy this two-step procedure is helpful to the regime classification
can be understood in the followingway. The clustering procedure is based onminimising the euclidean distance between
the data and the statistical model, under the constraint that the number of transitions between cluster states are
bounded (Horenko, 2010a). Since a large part of the FLOSSII data show little dynamical interactions between σw and
Vsmeso (with 0.8% resp. 3% explained variance), the mean part of the statistical model (µ(t ) in (2)) has the strongest
effect in the overall distanceminimisation. Indeed, inspection of the data classified in three clusters show that those
correspond in large part to different mean values of σw . The periods of largest interactions between σw andVsmeso
also correspond to very stable flow regimes (Vercauteren and Klein, 2015) with the smallest mean values of σw and
therefore these have the least weight in the distanceminimisation. Selecting only those periods of larger dynamical
interactions between σw andVsmeso enables a second level clustering which differentiates the dynamical interactions
and not just themean turbulent state. The fitted statistical models resulting from the two-step clustering strategy have
a high degree of reproducibility. Over five repeatedminimisation procedures for the FLOSSII data, the cluster affiliation
function is consistent (or equal) to a degree of 90%.

As an indicator of the stability of the flow, we analyse the distributions of the bulk Richardson number

Rib = (g/Θ0) (T (z2) −T (z1))∆z(V (z2) −V (z1))2
, (11)

in each cluster. Θ0 is the potential temperature averaged over all sensors and over the time of record (1minute),V is
the record-averagedwind speed,T is the record-averaged potential temperature derived from the sonic anemometer
measurements, z1 = 1mand z2 = 10m,∆z is the difference in height between the two levels and g is the gravitational
acceleration. The Rib distributions conditional on the four identified flow regimes are shown in Fig. 2. The bins of
the distributions are normalised with the number of samples in each regime to explain the relative probability. The
clustering strategy is found to separate the Rib distributions into values indicative of weakly stable flows and strongly
stable flows, albeit with large overlaps in the distributions. The distributions of C1, C2 and C3 are locatedwell below
the Rib(crit)=0.25 and the boundary layer state at that times can be distinctly interpreted as weakly stable. The strongly
stable cluster C4 shows a pronounced heavy tail decaying towards Rib=6 (not shown) and is showing a significant spread
around the Rib(crit). When going fromweakly stable cluster towards strongly stable clusters, the distribution of the Rib
tends to diffuse, partly due to low values of the shear velocity that lead to uncertainties. The overlap of distributions
and the diffused distribution of Rib highlights the difficulty of defining a threshold based on Rib for distinguishing
flow regimes. As a note of caution, the distributions in Fig. 2 should be considered only as a qualitative indication
of stability properties, since the temperature from the sonic anemometers are known to experience drift and biases
between sensors exist, leading to uncertainties in the values. Hence we discard presenting a detailed analysis of the Ri
distributions at eachmeasurement height. Still, Fig. 2 shows that the clustering strategy, similarly to what was found in
Vercauteren and Klein (2015), separates periods of qualitatively different stability according to Rib .

The clustering of the time series ofσw usingVsmeso as external factor is shown for an example period in Fig. 3, where
the background colours denote regime affiliation. The middle horizontal panel show the first clustering procedure
with three clusters. The Cluster (C3+C4) with the lowest mean is then considered as one continuous time series and
clustered again to result in C3 and C4. The solution of this second clustering procedure is then denoted by the inserts
panels. The cluster (C3+C4) is not considered for the following analysis and is shown here for explanatory reasons.
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F IGURE 2 Histogram of the bulk Richardson numbers in the clustered flow regimes. Vertical lines representing the
median of the underlying distribution. Going from left to right the values are: Rib(C1)=0.03, Rib(C2)=0.07, Rib(C3)=0.14,
Rib(crit)=0.25, Rib(C4)=0.59. For better illustration of the distribution overlap the x-axis is showing amaximumRib = 2.
The heavy tail of the C4 distribution is reaching up to Rib(C1) = 6 and explaining the shifted value of themedian.

By comparing the modelled time series between the middle panel and the inserts panels one will note, that for the
strongly stable condition (namely comparing C3+C4 vs C3 and C4) the sub-clustered solution is describing themean
better compared to the C3+C4 solution. To resolve themeanwith one level clustering we needed at least seven clusters.
The solution with that amount of clusters started to be unreproducible, meaning the affiliation functions diverged for
different solutions.

In the Fig. 3 the dynamics of σw is poorly captured by themodel in the periods withmoremixing (regimes C1 and
C2). As amore quantitative indication of these differences, we compare the variance of the signal σw explained by the
VARXmodels in each flow regime. While the amount of variance explained in C1 and C2 is very small (3%, 0.8% resp.),
themodel explains a larger amount in flow regimes C3 and C4 (around 10% for both). This difference denotes that the
more stable cases showmore interactions between turbulent and non-turbulent scales of motion.

To illustrate how the total heat flux andmomentum flux is distributed among the scales of motion under different
near-surface SBL conditions, the multi-resolution flux decomposition (MRD) cospectra are shown for the heights of 2 m,
20m and 30m in Fig. 4 (for the sensible heat fluxes) and Fig. 5 (for themomentum fluxes) for the four classified flow
regimes C1-C4 (from left to right). The dashed vertical line shows the oneminute average scale as a reference.

We first focus our observation on the lowest row of panels in Fig. 4, corresponding to the 2mmeasurements. The
sensible heat flux cospectra all have a negative peak, intuitively indicating the average scale of fluctuating vortices,
followed by a decrease of the flux magnitude and levelling off of the heat flux for increasing averaging scales. The
variability of the sub-mesoscales in a scale band from oneminute to 30minutes is approximately bounded between -3
and 3Wm−2 with amedian value close to zero for all four regimes. What is further visible is that going fromC1 to C4
(increasing stability and submeso-turbulence interactions), themedian amount of flux transported by the turbulent
scales diminishes, peaking approximately at respectively -8Wm−2 , -6Wm−2 , -4Wm−2 , -1Wm−2 at a scale of one second.
In C4 themagnitude of the turbulent scales start to intersect with the interquartile range of the sub-mesoscale band,
denoting dynamics largely influenced by the sub-mesoscales. We continue investigating the heat flux by going to the
next height.

In the middle row of the Fig. 4 we observe the heat flux cospectra at a height of 15meter. The behaviour of the
cospectra along the four regimes exhibits changes similar to those discussed for the 2 m fluxes, with the following
differences. Going fromC1 to C4 (from left to right) the average amount of flux transported by the turbulent scales
diminishes faster than at the height of two meters. Furthermore the scale of the negative peak is increasing (≈ 4 s).
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F IGURE 3 Example of timeseries and flow regimes. Themiddle horizontal panel is showing a period of 68 nights.
The inserts explaining the solution produced by the second application of the clusteringmethodology.

Compared to height of twometers the variability of the sub-mesoscales is now higher ± 5Wm−2, and reaches even ±
8Wm−2 in C3. In C4 the interquartile range of the sub-mesoscale band is broader than the interquartile range of the
sub-mesoscale band at 2m. This together with the higher diminishing rate of the turbulent scales indicates an increased
influence of the sub-mesoscales relative to the lower height.

In the upper panels row of the Fig. 4 we observe the change of the heat flux cospectra at a height of 30 meter.
Similar to observations from lower levels we note a further increase of the sub-mesoscale variability, reaching values of
more then ± 6Wm−2. In summary the variability of the sub-mesoscales is decreasing by getting closer to the ground.
In C1 the turbulent scales are dominant over all heights, while in C4 the sub-mesoscales variability is dominant. The
relative contribution of the sub-mesoscales to the overall transport increases with increasing regime affiliation number
for all heights.

Themomentum flux cospectra in Fig. 5 obeys a similar pattern across the regimes as the heat flux cospectra in Fig.
4. In C1 the turbulent scales are dominant. But as we approach C4 the sub-mesoscale variability start to be dominant.
The sub-mesoscale variability also decreases with height. Although the heat cospectra and themomentum cospectra
are almost identical in their evolution in parameter space of regime and height we can observe onemajor difference. As
we go columnwise from regime C1 to C4, the sub-mesoscale variability in the heat cospectra (Fig. 4) have a tendency to
increase, where in themomentum cospectra they have a tendency to decrease. Therefore with increasing stability the
ratio of intermittent heat transport tomomentum transport by sub-mesoscales is rising.

3.2 | Anisotropy characteristics in different flow regimes
Having classified flow regimes according to the interactions between sub-mesoscales and turbulent scales and charac-
terised the scales transport properties, we can now turn to the analysis of anisotropy characteristics in the different
flow regimes. In order to calculate the anisotropy tensor (Eq. 4) and its invariants, an averaging scale has to be defined.
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F IGURE 4 MRDheat flux cospectra. Observing from top to bottom, every row of panels is corresponding to height
of 30meters, 15meters and twometer respectively. Observing from left to right, every column of panel is
corresponding to regimes C1-C4 respectively. Where C1 is a weakly stable regime and C4 is a strongly stable regime.
Themajor dashed vertical lines in every panel aremarking the oneminute scale. Each panel contains 17 box plots, each
of them representing the distribution of the wT on a corresponding scale. The boxes are representing the 25th and 75th
percentiles, where the whiskers across the scales are connected with a solid line. The horizontal line in each box shows
themedian.

From theMRD results in Fig. 4 it appears that the heat flux cospectra level-off at averaging times ranging between ap-
proximately 5minutes (C1) and 1minute (C4), depending on how strongly stable the flow regime is. In order tominimize
contributions from sub-mesoscalemotions in the anisotropy analysis, we select the shortest averaging timescale of 1
minute as was done in Stiperski and Calaf (2018). Note that this choice implies that the anisotropy analysis will discard
some of the turbulent contributions to anisotropy tensor in the less stable flow regimes.

The distribution of anisotropy states is shown for each cluster C1-C4 and eachmeasurement height in Fig. 6, where
the gray scale shows the density of points. While mixed states of anisotropy, i.e. towards themiddle of the barycentric
map, are themost common in all cases, marked differences appear in the limiting states. Here we follow Stiperski and
Calaf (2018) to define limiting "pure" states of anisotropy as states falling in edges of the barycentric map, where the
limiting lines for each edge were chosen to cover 70 % of the sides of the equilateral triangle as illustrated in Fig. 1.
The isotropic states corresponds to the upper corner of the barycentric map. A height dependance is clearly apparent
here. Isotropic stresses are indeed only found away from the ground, and the higher levels have the highest densities
of isotropic stresses, regardless of flow regime affiliations. This result is not surprising because the presence of the
ground surface enhances the shear distortion effects on the turbulence, and was discussed elsewhere (e.g. Antonia and
Krogstad (2001)). The shear effects in the absence of thermal stratificationwould, however, lead to two-component
stresses. While all stresses appear closer to axisymetric stresses when one approaches the ground surface, clearly the
preference is towards one-component stresses. This preference depends on regime affiliation.

Indeed, the density of stresses in the one-component limiting states becomes higher for increasing regime affiliation
number (Fig. 6) corresponding to increasingly stable conditions (Fig. 2), and increasing influence of sub-mesoscale
motions as discussedabove. Wespecifically quantify thepercentageof stresses falling in each limiting state of anisotropy
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F IGURE 5 MRDmomentum flux cospectra. Observing from top to bottom, every row of panels is corresponding to
height of 30meters, 15meters and twometer respectively. Observing from left to right, every column of panel is
corresponding to regimes C1-C4 respectively. Where C1 is a weakly stable regime and C4 is a strongly stable regime.
Themajor dashed vertical lines in every panel aremarking the oneminute scale. Each panel contains 17 box plots, each
of them representing the distribution of the uw on a corresponding scale. The boxes are representing the 25th and 75th
percentiles, where the whiskers across the scales are connected with a solid line. The horizontal line in each box shows
themedian.

in Fig. 7, conditionally on regime affiliation and height of measurement. The isotropic edge (black bar in the figure)
is almost absent until the measurement height of 5 m, and then the proportion of isotropic stresses increases with
height for all flow regimes, having almost the same proportion in all regimes (with themaximum at 30m of slightly less
than 10%). The proportions of two-component stresses show an opposite trend, decreasing with height but being also
very similar for all flow regimes. The proportions of one-component stresses also decreases for increasing heights, but
here the regime dependence is strong. In C1 and C2, the proportions of one-component stresses is very small at all
heights, while it is large in C3 and even large in C4, reaching almost 30% of the states near the surface. In these regimes,
the turbulent contribution to the heat flux cospectra is not very large, and the contributions due to sub-mesoscales
are comparable to (C3) ormore important than (C4) the turbulence contributions (Fig. 4). Since the activity of these
sub-mesoscales occurs on scales just above or similar to the largest turbulent scales, the turbulence is probably not in
equilibriumwith the sub-mesoscalemotions in the sense that itmay not have lostmemory its the larger scale anisotropic
forcingmechanism.

In order to faciliate interpretation of the one-component stresses in the physical space, we calculate the non-
dimensional velocity aspect ratio (VAR) for the limiting one-component stresses and for all other cases separately.
This ratio takes the value of one if all three standard deviations approach the same value and is defined byMahrt et al.
(2012a) as:

VAR ≡
√
2σw√

σ2u + σ
2
v

. (12)
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F IGURE 6 Anisotropy as states in the barycentric map for each height and flow regime. The colourbar shows the
density of points in each state of the barycentric map.

In Tab. 1 we evaluate the mean value of the VAR in each regime for cases corresponding to the one-component
anisotropy state and compare it to mean value of VAR for the time that are not in the one-component anisotropy state.
As we change the regime fromC1 to C4we observe a decrease of the VAR from 0.10 to 0.07, alongwith an increase
of the standard deviation of VAR. In comparison, the ratio for cases outside the one-component limit is not dropping
below 0.20. Thus the vertical component of the Reynolds stress is smallest for the one-component cases, and reduces
for increasing regime affiliation number. This may partly be due to horizontal submesomotions reaching scales below
the one-minute in themost stable flow regimes.

TABLE 1 Mean and standard deviation of VAR for one-component (top row) and non one-component (bottom row)
anisotropy state along the regimes C1-C4 at height of twometers.

component C1 C2 C3 C4
one 0.10 ± 0.03 0.10 ± 0.03 0.09 ± 0.04 0.07 ± 0.05

non one 0.20 ± 0.05 0.23 ± 0.05 0.23 ± 0.07 0.20 ± 0.10

3.3 | Anisotropy characteristics of counter gradient cases
Interactions betweenwaves or sub-mesoscale motions and turbulence have been shown to lead to counter-gradient
fluxes (Einaudi and Finnigan, 1993). In Fig. 8, we separate the stresses falling in the flow regime C4 into two categories,
namely periods of negative sensible heat flux (on oneminute averaging scale) and periods of positive (counter-gradient)
sensible heat flux as shown in Fig. 8(b). To separate the anisotropic state in Fig. 8(c) and Fig. 8(a) we use the heat flux
w ′T ′ averaging scale of one minute. The peak of the density of anisotropy states for the cases of negative sensible
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F IGURE 7 Occurrences of each anisotropy states for different heights and clusters. Left to right: 1, 2, 5, 10, 15, 20
and 30m above ground. The numbers 1,2,3,4 denote the flow regime affiliations C1-C4. The length of the bar
represents the percentage of stresses within each edge. Isotropic, two-component axisymmetric, one-component. The
pure states are defined as in Fig. 1.

TABLE 2 Percentage of cases of negative (+g for with gradient) and positive (-g for counter gradient) sensible heat
flux (oneminute scale) observed in the one component limiting anisotropy state (right corner of the barycentric map).
For the column ’total’ no affiliation function is involved. The affiliation function to determine regimes C1-C4 is
calculated based on height of twometers and is used to evaluate the table entries for all heights.

C1 C2 C3 C4 total
height [m] +g [%] / -g [%] +g [%] / -g [%] +g [%] / -g [%] +g [%] / -g [%] +g [%] / -g [%]
30 84.56/15.44 86.17/13.83 83.87/16.13 86.67/13.13 85.88/14.12
15 90.34/9.66 90.79/9.21 89.15/10.85 91.53/8.47 90.95/9.05
2 97.24/2.76 93.96/6.04 97.69/2.31 96.20/3.80 96.17/3.82

heat flux (with-gradient) occurs in the middle of the barycentric map. In the counter-gradient cases however, the
peak of the distribution lies within the edge corresponding to the one-component limiting states. Hence, most of the
counter-gradient cases correspond to one-component limiting states. In order to analyse if the reverse is true, i.e. if
one-component limiting states aremainly counter-gradient cases, the percentage of cases with positive and negative
sensible heat flux is listed in Tab. 2 for all one-component limiting states in each flow regime C1-C4. The values show
that only a small proportion of the cases in one-component limiting states correspond to positive sensible heat flux, and
that the percentage is similar for all flow regimes.

From these observations, we speculate that counter gradient cases are potentially associatedwith submesomotions
occurring on scales below 1minute, which explain the one-component signature of the Reynolds stresses in these cases.
Nevertheless, it is not possible to associate one-component turbulence with a specific set of submesomotions which
would cause counter gradient fluxes.

3.4 | Dynamical indicators in the anisotropy dynamics
Wenow turn to the analysis of the dynamics of the states of anisotropy. Wewant to investigate if the rate of isotropi-
sation depends on the initial anisotropy state, and on the background flow regime. Moreover we are interested in
assessing the trajectories of the stresses in the anisotropy invariant coordinates. Based on the timeseries of the
anisotropy invariant coordinates xB and yB , we estimate the persistence and dimension of the dynamics as presented in
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F IGURE 8 Anisotropy dependence on the sign of sensible heat flux (b) in C4 regime on height of twometers. In (a)
and in (c) the color map is showing the density of points.

section 2.5. Figure 9 shows a scatterplot of the persistence indicator θ estimated from the parameter of the distribution
in Eq. 10, the colour showing the value of the indicator. It is obvious that θ values are smaller in the edge corresponding
to one-component stresses, denoting longer-lived states. We recall that values close to θ = 1 imply that the trajectory
immediately leaves the initial anisotropy state, while smaller values denote that the dynamics resides in a neighbour-
hood of the initial state. In themixed states in the centre of the barycentric maps, the indicator values are very close
to 1 denoting that those states are modified almost instantaneously. The longer-lived one-component stresses is in
accordance to what was found in Choi and Lumley (2001) for homogeneous turbulence.

We calculate the estimates of the local dimension of the dynamics based on Eq. 9, for each stress and show the
scatterplot of the estimated dimensions in Fig. 10. Themaximum local dimension is two, since the phase-space is the
plane formed by the eigenvectors, i.e. xB and yB . A local dimension of two indicates that there is no preferred direction
in which the anisotropy state is altered; it can change in any direction on the plane, starting in an initial state. On the
contrary, a smaller local dimension indicates that theway that the anisotropy state is modified occurs in a restricted
part of the plane, that is, with a preferred direction. This is evidently the case close to the one-component edge of
the barycentric map, and along a line connecting the one-component edge to the centre of the map. This denotes
a preferential path away or towards one-component anisotropy. It is interesting to note that this preferential path
does not include or evolve towards two-component axisymmetric states Stiperski and Calaf (2018), but shows that
intermittent bursts of turbulence aremostly of axisymmetric oblates, with amore pronounced third direction.

The combination of persistence and dimension analysis possibly shows that one-component stresses are more
stable topologically, and that the formation or destruction of such topological structures takes a preferential route.

4 | CONCLUSIONS

We classified SBL flow regimes based on interaction properties between the sub-mesoscale wind velocity and the
turbulent velocity fluctuations and analysed the anisotropy properties of the Reynolds stress tensor in each flow
regime. The combination of methods highlighted different properties of the turbulent stresses under the influence
of submesomotions. We showed that the influence of submesomotions on the turbulence gains significance as the
stability increases, and that themore submeso-influenced flow regimes have amarked preference for one-component
axisymmetric stresses. This topological signature is in part resulting from the buoyancy damping effects, but also from
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F IGURE 9 Persistency of the dynamics of the anisotropy state. The colourbar is indicating the value of θ , where low
values correspond to high persistence of the trajectory in the neighbourhood and values close to 1 imply that the
trajectory immediately leaves the sphere.
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the influence of submeso scale forcing of turbulence. Indeed we found that a large proportion of the periods where
the sensible heat flux was against the mean downward gradient, typically corresponding to submeso motions, was
characterised by one-component limiting states of anisotropy. However, only a small fraction of all one-component
limiting cases happen during counter-gradient periods. Close to the surface (below 2m), the effect of shear appeared to
compete with buoyancy damping effect, resulting in a significant proportion of two-component axisymmetric stresses -
a typical signature of shear induced turbulence. Isotropic stresses were found at higher levels in all flow regimes, when
shear effects are no longer felt by the small scale turbulence.

The results show, in linewith thefindings of Stiperski andCalaf (2018), that the one-component turbulence topology
is associated with predominantly horizontal motions and is most common in very stable conditions, that still allow the
development of intermittent turbulent bursts of almost isotropic type. Indeed Stiperski and Calaf (2018) showed that in
very stable conditions, when turbulence at 30min scale was one-component or two-component axisymmetric, close to
isotropic turbulence at smaller scales can still be initiated. This type of turbulence is associated with bursts. The present
results are unable to elucidate the differences between the one-component and two-component turbulence found by
Stiperski and Calaf (2018), but show that the proportion of one-component cases increases for increasing importance
of the sub-mesoscales dynamics.

Additionally we showed that one-component stresses were more persistent in their dynamics, and highlighted
signs of a preferred route towards or away from one-component stresses in the topological state space. This route
interestingly does not involve purely two-component axisymmetric turbulence, but is more of a axisymmetric oblate
type. An interesting future analysis would be to investigate the scale-wise return to isotropy in parallel with our results
on the persistence and dimension of the dynamics.

The results can be used to improve the representation of non-stationary turbulence under the influence of sub-
mesoscale motions. This is pertinent for subgrid-scale turbulent parameterisation, which are currently mainly based on
isotropic eddy diffusivity models. Our results show that anisotropic modelling is required in cases where the variability
of sub-mesoscales is important in relation to the turbulent scales. The signs for a preferred route towards or away
from the one-component stresses despite strong influence of random sub-mesoscale motions provide encouraging
perspectives for representing the return-to-isotropy in futuremodels.
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