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For a wide class of stationary time series, extreme value theory provides limiting distributions for rare events.
The theory describes not only the size of extremes, but also how often they occur. In practice, it is often
observed that extremes cluster in time. Such short-range clustering is also accommodated by extreme value
theory via the so-called extremal index. This review provides an introduction to the extremal index by
working through a number of its intuitive interpretations. Thus, depending on the context, the extremal
index may represent (i) the loss of iid degrees of freedom, (ii) the multiplicity of a compound Poisson point
process, (iii) the inverse mean duration of extreme clusters. More recently, the extremal index has also been
used to quantify (iv) recurrences around unstable fixed points in dynamical systems.

Whether extreme events occur in isolation or in

clusters is an important question for their predic-

tion and mitigation. Extreme value theory can

accommodate clustering via the extremal index

which, heuristically, measures the size of the clus-

ter. Mathematically, clustering is most conve-

niently understood within the framework of point

processes. Without clustering, extreme events

occur in the manner of a Poisson process. With

clustering, extreme events are bunched together

in a compound Poisson process. In order to de-

velop an intuition for the extremal index, we sur-

vey some simple examples from stochastic pro-

cesses, real-world time series and dynamical sys-

tems.

I. INTRODUCTION

Human societies are perpetually exposed to natural
hazards, and an understanding of the statistics of ex-
treme events is vital to predicting and mitigating their
effects51,53. Analogous to the central limit theorem for
the sums of random variables, universal laws likewise ex-
ist for their maxima or minima, and extreme value theory
now finds application in a broad range of areas includ-
ing hydrology41, earth science48, finance46, meteorology
and climate science1,13. For recent reviews of modeling
frameworks for extremes, see31,36.

While extreme events are most often felt in terms of
their impact, for the purposes of this review we will limit
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ourselves to the technically more tractable definition of
an extreme as something rare or large in magnitude (de-
fined more precisely in Sec. II). We have in mind a sta-
tionary or easily detrendable process generating weakly
correlated random variables, which are available in rea-
sonably large numbers. In the 1920s, Fisher and Tip-
pett30 identified the possible limiting distributions for
the rescaled maxima Mn = {X1, . . . , Xn} of a set of n
independently and identically distributed (iid) random
variables Xi. For parametric modeling, these generalised
extreme value (GEV) cumulative distributions are most
conveniently written in the form

Gξ;µ,σ(x) = exp

(

−

[

1 + ξ

(

x− µ

σ

)]−1/ξ
)

, (1)

where µ and σ > 0 are location and scale parameters,
respectively. The shape parameter ξ is determined by
the tail behaviour of the parent distribution F (x) =
P(X ≤ x)38. These GEV distributions are closely re-
lated to generalised Pareto distributions (GPD), which
describe the distribution of exceedances over high thresh-
olds. Taken together, the GEV and GPD form the basis
of extreme value theory. Details may be found in nu-
merous textbooks8,16,19,20,42. Importantly, extreme value
theory covers non-iid series, provided they are stationary
and weakly correlated. For example, for stationary Gaus-
sian series, the Berman condition4,20 provides a particu-
larly simple check for applicability in terms of the auto-
correlation function. It states that if the autocorrelation
rh at time-lag h satisfies rh log h → 0 as h → ∞, then
(i) the distribution of block maxima follows Eq. 1 with
ξ = 0, (ii) extremes do not cluster.
Our focus here is on the clustering of extremes. It is

often observed that the extremes of e.g. temperatures3,
water levels21, wind speeds6 or financial time series47

cluster in time. In other words, they do not occur ran-
domly as would be expected on the basis of a Poisson
process. Extreme value theory can accommodate such
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clustering via the so-called extremal index, while leaving
the shape of the GEV distribution in Eq. 1 unchanged
(this is not to be confused with the ‘extreme value index’,
which in some literature refers to what we here call the
shape parameter). This index, denoted θ ∈ [0, 1], essen-
tially quantifies the inverse of the mean cluster size, and
thus has an appealing physical meaning. When modeling
threshold-exceeding extremes with GPDs, the extremal
index estimates the effective number of iid degrees of free-
dom, since all the exceedances in a cluster are highly
correlated. Nevertheless, the clusters themselves do oc-
cur randomly in the manner of a Poisson process, and
therefore the occurrence of exceedances overall can be
described by a compound Poisson process. In this way,
the extremal index fits naturally within the point process
framework of extremes by quantifying the multiplicity of
the underlying compound Poisson process. This perspec-
tive is particularly insightful when treating recurrences in
chaotic dynamical systems: visits of a trajectory to rare
sets on the attractor will cluster if they occur in the man-
ner of a compound Poisson process. This is indeed the
case if the rare set includes an unstable fixed point. The
extremal index is thus a tool for probing local proper-
ties of the attractor. The aim of this review is to work
through these various statistical and dynamical interpre-
tations.

It is important to mention that there is no exclusive
definition of clustering, and this review restricts its at-
tention to clustering as measured by the extremal index.
Other notions of clustering are also developed in the liter-
ature. For example, the index of dispersion (also known
as the coefficient of variation or Fano factor) is a diag-
nostic used in point processes14. It measures the ratio of
the variance of the number of points in an interval, to the
mean of the number of points in the same interval. For
a Poisson process, this ratio is one. If the ratio is greater
than one, the point process is said to be “over-dispersed”.
Visually, points appear to come in bursts. Clustering is
also sometimes associated with the Hurst effect32, since
this describes persistence in an underlying time series.
The Hurst effect is typically exhibited by long-range au-
tocorrelated time series. In such cases, authors report
non-exponential waiting times between extremes for both
synthetic and real-world time series7,18,50. Meanwhile,
fractional Poisson processes are also capable of produc-
ing non-exponential waiting times, again interpreted as
a possible mechanism for clustering5.

The review is structured as follows: in Sec. II we de-
fine the regime in which extreme value theory operates;
Secs. III, IV, V builds up an intuition for the extremal
index in its traditional statistical setting. Sec. VI gives a
brief overview of recent developments in dynamical sys-
tems. We conclude in Sec. VII, and describe one of the
simplest estimators of the extremal index, together with
the idea of declustering, in the Appendix.

II. POISSON APPROXIMATION TO EXTREMES

Apart from furnishing an estimate of the size of ex-
treme events, the Poisson approximation makes clear how
these events occur within the framework of a point pro-
cess. The basic idea is that extreme events, by virtue of
the rarity, occur in the manner of a Poisson process.
Consider a set of iid random variables {Xi}

n
i=1, and

let F (x) = P(X > x) be the probability that the random
variableX exceeds a value x. The number of exceedances
nu over a threshold u from n trials with success proba-
bility F (u) is a random variable following a binomial dis-
tribution, Bin(n, F (u)). Therefore, the expected number
of exceedances is nF (u).
To make the passage to extremes, suppose now that

the threshold un is no longer fixed but allowed to increase
with n in order to probe the tail of the distribution F . If
un is chosen such that

lim
n→∞

nF (un) = τ, (2)

for some constant τ , then it is well known that the bi-
nomial distribution converges to a Poisson distribution
with intensity τ . Thus, in the extreme regime, the
number of exceedances is a Poisson random variable.
This in turn gives an approximation to the maximum
Mn = max{X1, . . . , Xn}, since if even the maximum fails
to exceed the threshold, Mn ≤ un, then the number of
exceedances nu = 0. But since nu is a Poisson random
variable,

P(Mn ≤ un) = P(nu = 0) = e−τ . (3)

This approximation can be further refined to recover the
GEV distributions in Eq. (1) via a suitable choice of the
intensity τ = τ(un)

19. Note that the Poisson approxi-
mation applies not only to extremely high exceedances,
but to any kind of rare event. The distinguishing fea-
ture is that recurrences to the rare set (i.e. recurrence of
an extreme event) take place in the manner of a Poisson
process.
To extend this approximation to stationary but non-

iid sequences, a condition on the decay of correlations is
required. In the literature this is usually denoted D(un),
and we refer the reader to textbooks for its technical def-
inition42. In words, it is a mixing condition requiring
that well-separated maxima in different blocks of the se-
quence are asymptotically independent. Provided this
condition is satisfied, the same family of GEV distribu-
tions describe the distribution of maxima as in the iid
case. As before, a sequence of thresholds un satisfying
Eq. (2) picks out the rare extremal events. But in the
presence of correlations, instead of Eq. (3), we now have

P(Mn ≤ un) = e−θτ , (4)

for some θ ∈ [0, 1], which defines the so-called the ex-
tremal index. The aim of this review is to provide some
intuition for this quantity in terms of clustering.



3

We conclude this section with some remarks. First,
by comparison with Eq. (3), we see that for iid random
variables θ = 1. Second, if the details of the sequence Xn

are known, it may be possible to check explicitly whether
θ < 1 via an anticlustering condition. In the literature,
this is often denoted D′(un)

42. Third, it is important to
realize that clustering relies on sufficiently strong short-
range correlations. Thus, clustering does not affect block
maxima, which are assumed to be asymptotically inde-
pendent for extreme value theory to work in the first
place. It does, however, potentially affect a sequence of
exceedances over a threshold: by virtue of short-range
correlations, exceedances may cluster rather than ap-
pear as isolated events. From a modeling point of view,
it is therefore important to check whether clustering is
present in order to avoid biased fits to the generalised
Pareto distribution.

III. LOSS OF DEGREES OF FREEDOM

In this section we consider the extremal index in terms
of a loss of effective iid degrees of freedom. In the
presence of correlations, extremes may cluster in time
such that extremes inside the cluster cannot reasonably
treated as iid. Clustering therefore results in a loss of
effective iid degrees of freedom, and the extremal index
gives a measure of the fraction of extremes that are ap-
proximately iid.
As a concrete example, consider a series Yi of iid ran-

dom variables drawn from the distribution

FY (y) = exp(−1/2y), y ≥ 0, (5)

and construct from it the series Xi, according to

Xi = max{Yi, Yi+1}. (6)

Evidently, the series Xi is not iid but its marginal distri-
bution can nevertheless by calculated:

FX(x) = P(Xi ≤ x) = P(Yi ≤ x, Yi+1 ≤ x) (7)

= P(Yi ≤ x)P(Yi+1 ≤ x) (8)

= exp(−1/x) (9)

For the sake of comparison, now introduce an iid series
X∗

i with exactly the same marginal distribution as Xi,
i.e. FX∗(x) = exp(−1/x). Representative sequences
of Xi and X∗

i are shown in Fig. 1. The dependent se-
quence Xi clearly shows clustering among large values,
whereas the independent sequence X∗

i of course does not.
We can make this observation explicit by calculating the
extreme value distribution for each sequence. For the
marginal distribution in this example, the typical size of
maxima grows linearly with n. Indeed, by direct calcu-
lation, the properly normalized limiting distribution of
M∗

n = max{X∗
1 , . . . , X

∗
n} is given by

P(M∗

n ≤ nx) = Fn
X∗(nx) (10)

= exp(−1/x), (11)
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FIG. 1. (a) Time series of the clustered process Xi =
max{Yi, Yi+1} (Eq. (6)) and (b) an iid process X∗

i having
the same marginal distribution as Xi.

which is an example of a Fréchet distribution. A similar
calculation for the dependent sequence Xi gives

P(Mn ≤ nx) = P(X1 ≤ nx, . . . ,Xn ≤ nx) (12)

= P(Y1 ≤ nx, Y2 ≤ nx, . . . , Yn ≤ nx, Yn+1 ≤ nx)
(13)

= Fn+1
Y (nx) (14)

→ [exp(−1/x)]1/2, as n → ∞. (15)

The distributions of maxima for the two series are related
via

P(Mn ≤ nx) = [P(M∗

n ≤ nx)]θ (16)

= P(M∗

n ≤ θnx), (17)

with extremal index θ = 1/2. Thus, we have the inter-
pretation that the maxima of the dependent series are
distributed in the same way as those of the independent
series, but with a series length that has been reduced
from n to θn. In this example, half the effective iid de-
grees of freedom have been lost. This is to be expected
from the definition of the process Xi since values are cor-
related in pairs.
Turning now to a real-world example, let us consider a

simplified extreme value analysis of the daily minimum
temperatures from Wooster, Ohio — for a more careful
treatment, see9. Fig. 2 shows the coldest 150 daily tem-
peratures between 1983-1988. The temperature series
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FIG. 2. Detrended coldest 150 days in Wooster, from 1983-
1988. The inset shows a randomly shuffled version of the same
data.
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FIG. 3. Quantile plot for waiting times between exceedances,
comparing empirical and exponential model quantiles for the
original (black) and declustered (red) series.

has been detrended (by subtracting a seasonal sinusoidal
component) and flipped in sign so that minima become
maxima — a conventional choice. For comparison, the
inset shows the randomly shuffled series of the same ex-
ceedances. Clustering is visually apparent in the original
series. Indeed, we find θ = 0.54 for the detrended series,
and θ = 0.89 for the shuffled series. This latter value is
apparently less than one. We discuss this discrepancy as
a finite-size effect in Sec. V.
Since unclustered exceedances arrive in the manner of

a Poisson point process, they are separated by exponen-
tial waiting times. A diagnostic for comparing empirical
data with a model distribution is to plot empirical versus
model quantiles for a given probability in a quantile plot,
see Fig. 3. Random variables drawn from an exponen-
tial distribution would scatter along the diagonal identity
line. The original data (black points), however, deviate
from the diagonal line for both small and large quantiles.
To demonstrate that this is due to clustering, we pass
the data through a declustering algorithm (described in

the Appendix), which identifies clusters of exceedances
and replaces them by a single representative exceedance
for each cluster. In this way, remaining exceedances may
be treated as effectively iid. In Fig. 3, the declustered
data (red points) lie much closer to the diagonal identity
line. Declustering is often employed as a preprocessing
step before fitting exceedances to e.g. GPDs.

IV. COMPOUND POINT PROCESS

We now consider our second interpretation of the ex-
tremal index in terms of compound point processes. A
compound point process can be thought of as a point pro-
cess in which points carry marks. For example, the mark
might be the size of a claim made against an insurance
company, or the size of a group of people arriving at a
restaurant. In the present context, the mark corresponds
to the weight of clusters in a mixture distribution, as we
further develop here.

Adopting the language of statistical physics, it is in-
structive to examine extreme exceedances under the
renormalization of an underlying point process11,12. This
consists of two steps: a thinning step that knocks out
points that do not exceed the threshold, and a time
rescaling step that restores the original intensity of the
points. These two steps constitute a single renormaliza-
tion operation. Applying this operation many times is
akin to inspecting the process at long timescales. The
question, first studied by Rényi49, is whether the se-
quence of renormalized point process converges towards
some fixed point. We answer this question in the follow-
ing for iid random variables, before considering a non-
random thinning procedure which gives rise to clustering.

Given that we are particularly interested in the man-
ner of arrivals of exceedances, we will track the evolution
of the probability density of waiting times between ex-
ceedances under renormalization. If we denote this by
f(t), then the waiting time density fp(t) between points
that exceed the threshold with probability p is given by
convolution. Specifically, we convolve over points sep-
arated by any number of intermediate waiting times,
weighted appropriately. An example of a term that ap-
pears in this convolution is shown in Fig. 4, in which two
exceedances are separated by a time which is the sum
of three independent waiting times. Summing over all
weighted possibilities, we have

fp(t) = pf(t1)+pqf(t1+t2)+pq2f(t1+t2+t3)+· · · , (18)

where q = 1−p. Since the right-hand side is made up of a
convolution of waiting times, it is convenient to introduce
the Laplace transform

f̂(s) =

∫ ∞

0

dt e−stf(t), (19)
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FIG. 4. Example term from the convolution sum in Eq. 18.
The exceedances are separated by the sum of three indepen-
dent waiting times, t1+t2+t3. The weight of this contribution
is q2p.

which, applied to Eq. (18), yields

f̂p(s) = p
[

f̂(s) + qf̂2(s) + q2f̂3(s) + · · ·
]

(20)

=
pf̂(s)

1− qf̂(s)
. (21)

As a result of thresholding, only a fraction p of the origi-
nal points are retained. Consequently, the intensity of the
process decreases. The second step of the renormaliza-
tion procedure rescales time, t → t/p, in order to restore
the original intensity of the process. In Laplace space,
this corresponds to the rescaling s → ps. Thus, the com-
bined steps of thresholding and rescaling time leads to

f̂p(s) =
pf̂(ps)

1− qf̂(ps)
, (22)

which defines a fixed point equation for the renormalized
waiting time density. As can be checked by substitution,
this functional equation is satisfied by

f̂p(s) =
1

1 + s/λ
, (23)

where λ is a constant. It can be shown that this fixed
point is attracting, such that upon repeated application
of the renormalization procedure the waiting time density
flows towards the form described in Eq. (23). Inverting
Eq. (23), we arrive at

fp(t) = λe−λt, (24)

which is the familiar exponential waiting time density
for a Poisson point process of intensity λ. Although we
assumed iid random variables at the outset, the above
result is more general: short-range correlations that may
be present in the original point process do not survive
renormalization. A more mathematically rigorous treat-
ment may be found in40,56.

It would appear, then, that the Poisson point process
is the attractor for renormalized high exceedances, and
that there is no clustering among extremes. Indeed, this

0 1

1− α1

α0

α11− α0

FIG. 5. Two states of a Markov chain that determine whether
to delete (0) or retain (1) points. The transition probabilities
α0 and α1 are tuned so that a fraction p of points are retained.

is true for a thinning procedure that knocks out points
at random.
For a thinning procedure that produces clustering, we

follow Isham39 and introduce Markovian thinning. That
is, we retain or delete points according to the state of
a two-state Markov process. Let us label these states
1 (for retain) and 0 (for delete), and define transition
probabilities α1 for remaining in state 1, and 1 − α0 for
remaining in state 0 (see Fig. 5). We can tune these rates
so as to retain a fraction p of points by requiring that

p = α1p+ α0(1− p), (25)

which is essentially a stationarity condition imposed on
the Markov process. Each time a point is visited, the
internal state of the Markov process is updated according
to the transition probabilities satisfying Eq. (25). With
this thinning protocol set up, we can again examine the
evolution of the renormalized waiting time density fp(t).
The full details are given in39, but here we just cite the
main result that the fixed point equation now reads

f̂p(s) =
α1f̂(ps) + (α0 − α1)f̂

2(ps)

1− (1− α0)f̂(ps)
. (26)

This more complicated functional equation requires an
expansion in small p, which corresponds to retaining a
vanishing number of points and is the appropriate limit
for inspecting the renormalized point process. For p → 0
we obtain

lim
p→0

f̂p(s) = α1 + (1− α1)
1

1 + s/(λ(1− α1))
, (27)

which, after inverting, yields

fp(t) = α1δ0,t + (1− α1)
[

λ(1− α1)e
(−λ(1−α1)t)

]

. (28)

The second term on the right-hand side is the usual ex-
ponential waiting time for a Poisson point process. The
first term represents a Dirac point mass at zero waiting
time. This term corresponds to the clustering of points
which, under renormalization, have become squashed to-
gether. Thus, the Markovian thinning procedure results
in a mixture distribution for the renormalized waiting
time density: clusters of (compounded) points are sepa-
rated by exponential waiting times. The weight of these
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clusters in the mixture distribution is given by α1. If we
adopt the interpretation of Sec. III, then only a fraction
1 − α1 of exceedances are effectively iid, and so heuris-
tically we have that θ = 1 − α1. It can be shown more
generally that when exceedances cluster, a mixture dis-
tribution of the same form as Eq. (28) describes their
intervals29.
In summary, a compound Poisson process can be

thought of as a generalization of a Poisson process. In
particular, points are still separated by exponential wait-
ing times. However, a random variable is now assigned to
each point (independent of the waiting times) which rep-
resents the size of a cluster. Under renormalization, clus-
ters occur instantaneously, giving rise to a Dirac point
mass of zero waiting time (see Eq. (28)). In practice,
clusters typically appear as a localised train of succes-
sive exceedances. Thus, the cluster size — previously
assigned to a point — now represents the length of this
train.

V. INVERSE MEAN CLUSTER SIZE

Our next interpretation of the extremal index relates
clustering to the time spent above a threshold (also
known as the sojourn time). In the case of the process
described by Eq. (6), the fact that exceedances appear
in clusters of size two is directly related to the halving of
the effective iid degrees of freedom, θ = 1/2. Indeed, the
inverse of the extremal index θ−1 is approximately the
mean cluster size or, equivalently, the mean time spent
above threshold. Note that a cluster need not consist of
strictly consecutive exceedances, but to simplify calcula-
tions we will assume this is the case in the following.
For iid random variables, it is possible by chance to

have a consecutive sequence of threshold exceedances.
But the higher the threshold, the more probable it is
that exceedances occur as isolated events. A calculation
of the mean sojourn time confirms this: an exceedance
begins a cluster of size k if the subsequent k − 1 values
exceed the threshold, and the kth value does not. This
event occurs with probability pk−1q. Summing over all
possibilities, the average cluster size is

1

θ
≈ 1 · q + 2 · pq + 3 · p2q + · · · =

1

1− p
, (29)

which tends to one (i.e. no clustering) in the limit of
small p. For clustering to persist in the limit of high
thresholds, exceedances must be strongly correlated. It
can be shown, for example, that clustering does not occur
in a Gaussian sequence with exponential or even power-
law decaying autocorrelations19.
Nevertheless, in practice empirically estimated ex-

tremal indices may indicate clustering for some series
even if it is known theoretically that θ = 1. This is
because arbitrarily high thresholds cannot be applied to
series of finite length. It is instructive to work through

the details of this finite size effect for a Gaussian, expo-
nentially correlated time series, as given by the AR(1)
process

Xn = φXn−1 +
√

1− φ2 Zn, (30)

where |φ| < 1 is the autoregressive parameter and Zn

is standard Gaussian white noise (zero mean, unit stan-

dard deviation). The prefactor
√

1− φ2 in front of the
noise term is purely for standardization and guarantees
that the overall stationary marginal distribution of Xn is
Gaussian with unit standard deviation.
For the purpose of calculating sojourn times, it is con-

venient to work with the transition kernel W (xk+1|xk)
which evolves the distribution of Xk at step k into the
distribution Xk+1 at step k + 1. For the AR(1) process
driven by Gaussian noise, this is given by

W (xk+1|xk) =
1

√

2π(1− φ2)
exp[−(xk+1−φxk)

2/(2(1−φ2))].

(31)
Given the homogeneous Markovian property of the
AR(1) process, a sequence of transitions can be chained
together to evolve an AR(1) trajectory starting at x0 ac-
cording to

W (xk|x0) =

∫

C

dx1 . . . dxk−1 W (xk|xk−1) . . .W (x1|x0),

(32)
where the multidimensional integrals over intermediate
points x1, . . . , xk−1 are subject to path constraints C,
such as the process staying within some interval. If this
interval is denoted by (a, b), then the probability that the
trajectory remains within the interval in the preceding n
steps is

Pk =

∫ b

a

dx1 . . . dxk−1 W (xk|xk−1) . . .W (x1|x0). (33)

Multidimensional integrals of this type are known
as orthant probabilities, and a number of computa-
tional schemes have been developed for their numerical
calculation2,15,17. However, for present purposes it is suf-
ficient to numerically compute Eq. (33) using Mathemat-

ica, since after a handful of steps k very little probability
remains in the interval.
Large or small extremes may be considered by taking

b → ∞ or a → −∞, in which case the sojourns either
exceed level a or fall below level b, respectively. Here, in-
stead, we will consider small intervals (a, b) which distin-
guish extreme events by virtue of their rarity — such rare
sets are of particular interest in dynamical systems, as
discussed in Sec. VI. Thus, the sojourns we will consider
are confined to a small interval (a, b), in which the trajec-
tory typically exits soon after entering, as illustrated in
Fig. 6. Pk decreases with every step since fewer trajecto-
ries remain within the interval. The change in probability
leaving the interval thus gives the sojourn time fk via

fk = Pk−1 − Pk, (34)
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FIG. 6. (Left) Trajectory of an AR(1) process evolving in
time, of which a portion sojourns inside the interval (a, b),
defining a cluster of size 3. (Right) The same trajectory, with
the marginal density of the AR(1) process overlayed.

with initial condition P0 = 1.
Thus, by numerically computing the multidimensional

integral in Eq. (33) and substituting into Eq. (34), we
use the sojourn time probabilities fk to approximate the
extremal index in terms of the mean cluster size via

1

θ
≈

∞
∑

k=1

kfk. (35)

Since the probability of long sojourns decays rapidly with
k, mean sojourn times in small intervals are well esti-
mated by retaining only the first handful of terms in the
above sum.
In Figs. 7 and 8 we show how the theoretical no-

clustering limit is approached when φ and q is changed.
Note that the estimated extremal index depends on the
location x0 of the interval. This is because intervals fur-
ther away from the centre of the distribution (where the
density is highest) must widen in order to enclose the
same integrated area 1−q. A wider interval in turn leads
to a longer sojourn time, and hence more clustering.
The characteristic decay time of the exponential mem-

ory of the AR(1) process decreases with φ (vanishing in
the white noise limit φ → 0). Thus, clustering too should
likewise decrease. This is borne out in Fig. 7, which
shows estimated extremal indices (points) approaching
θ = 1 with decreasing φ, together with theoretically pre-
dicted curves based on Eq. (35). Finally, increasing q
(i.e. decreasing the size of sojourn intervals) also results
in the same trend towards no clustering, as shown in
Fig. 8. In such numerical experiments, time series with
107 points are easily obtainable. But for real-world time
series very high quantiles are often unrealistic, and sig-
nificant finite-size effects may be present. Curves such as
those in Figs. 7 and 8 are therefore useful for discerning
possible clustering in an underlying time series, beyond
that given by finite-size artefacts24.

It is also worth mentioning that, in practice, empirical
values of the extremal index will depend on the temporal
resolution of the time series. Implicitly, we have mea-
sured the size of clusters in units of the cadence of the
(discrete) time series. If an observable is poorly resolved
in time, then clusters may likewise be poorly resolved.
Typically, this will tend to increase the empirical value
of the extremal index.

0.65
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θ

x0

FIG. 7. Estimated extremal index (points), together with
inverse mean cluster size based on Eq. (35) (solid lines), for
an ensemble of 100 AR(1) time series of length 107, with φ =
0.25, 0.5, 0, 75 (top-to-bottom) and q = 0.99.
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1
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FIG. 8. Estimated extremal index (points), together with
inverse mean cluster size based on Eq. (35) (solid lines), for an
ensemble of 100 AR(1) time series of length 107, with φ = 0.5
and q = 0.95, 0.99, 0.995 (bottom-to-top).

VI. EXTREMAL INDEX IN DYNAMICAL SYSTEMS

A. Background

We have emphasized thus far that extreme value the-
ory is underpinned by rare events within the framework
of point processes. Put differently, a random variable
visits a rare set in state space if its arrivals take place
in the manner of a (possibly compound) Poisson process.
Rarity, here, is expressed by the fact that the mean num-
ber of exceedances over a threshold un is fixed to some
intensity τ , i.e. nF (un) → τ .

These ideas fit naturally within dynamical systems sat-
isfying Poincare’s recurrence theorem, since visits by or-
bits to rare sets typically take place after exponential
waiting times with an intensity given by Kac’s lemma35.
Strikingly, extreme value theory is able to provide lo-
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cal dynamical information about these rare sets, such as
their local dimension and ‘stickiness’. The local dimen-
sion, also known as the pointwise dimension57, gives the
dimension at a point on an attractor. It characterizes
the unpredictability of the dynamics at that point based
on the number of expanding directions. The local di-
mension is in fact estimated by the inverse of the scaling
parameter σ of the GEV distribution43.

Here, instead, we focus on ‘stickiness’, which is the
inverse of the mean sojourn time near a point on an at-
tractor. Stickiness can therefore be estimated by the ex-
tremal index θ. The main result is that generic points on
the attractor do not admit clustering, so that recurrences
to small balls around these points is Poisson. But at (pe-
riodic) unstable fixed points, recurrences cluster and are
compound Poisson. We give a brief overview of this re-
sult in the following. For rigorous proofs, a recent book43

provides a detailed survey.
Consider a deterministic dynamical system T which

evolves an initial condition x0 according to xn+1 =
T (xn) = Tn(x0) (our discussion can be generalized to
flows). Assume that this map has a unique and compact
attractor in phase space. Extreme value theory is applied
to the hitting time statistics of an ǫ-ball Bǫ(ζ) centered
on a point x = ζ on the attractor:

P(Tn(x0) ∈ Bǫ(ζ)). (36)

To make the connection to stationary stochastic series,
we construct the random variables Xn = g(Tn(x0), ζ),
where the observable g takes its global maximum at the
point ζ. The stochasticity in this series comes from the
sampling of the initial condition x0 from the invariant
density of the map. A convenient choice for g is

Xn = − log(dist(Tn(x0), ζ)), (37)

where dist is any metric (e.g. Euclidean) between xn and
ζ. By construction, iterates Tn(x0) that land close to ζ
will be associated with observables Xn with large posi-
tive values. Furthermore, it can be shown that taking the
logarithm of the distance fixes the maxima of Xn to the
Gumbel class10. This result hinges on the asymptotic in-
dependence of maxima. To this end, a mixing condition
very similar to that used in stochastic processes can be
developed for dynamical systems33. Assuming this con-
dition holds, an estimate for the maximum Mn takes the
familiar form (see Sec. II)

P(Tn(x0) ∈ Bǫn(ζ)) = P(Mn ≤ un; ζ) = e−θτ . (38)

In the dynamical systems context, ǫn plays the rôle of
a threshold and is related to un via ǫn = e−un : as the
length n orbit increases, the radius of the ǫ-balls shrink,
thereby maintaining a constant intensity τ of recurrences.
The sequence un will contain information about the lo-
cation and scale parameters of the Gumbel distribution
fitted to Mn

23. In general, these will need to be esti-
mated. It can be shown that the inverse scale parameter
σ−1 of this fit is in fact an estimate of the local Hausdorff

dimension d(ζ)44. This quantity, averaged over all points
ζ on the attractor, provides an alternative estimate of
the attractor dimension26.

Here, we focus our attention on the extremal index
θ appearing in Eq. (38). Freitas-Freitas-Todd34 have
proved that, if ζ is an unstable periodic point with prime
period k, then

θ(ζ) = 1− |Det
[

DT−k|s(ζ)
]

|, (39)

where DT−k|s is the derivative of the kth inverse of T re-
stricted to the contracting subspaces. For all other points
ζ on the attractor, θ(ζ) = 1. Put differently, if the Bǫn(ζ)
is centered on an unstable periodic fixed point, recur-
rences to that ball arrive in the manner of a compound
Poisson process. Otherwise, recurrences are Poisson.
For applications, Eq. (39) implies that ‘sticky’ regions

of the dynamics can be identified by measuring the ex-
tremal index at various points on the attractor and check-
ing for θ < 1. Faranda et al.26 have used this method to
characterize atmospheric flows.

B. Examples

We now illustrate how Eq. (39) can be used to calculate
the extremal index for some simple chaotic maps.

1. Uniformly chaotic maps

The Bernoulli map is given by

xn+1 = f(xn) = axn (mod 1), (40)

where a > 1, and x ∈ [0, 1]. For almost all initial condi-
tions, the map generates uniformly chaotic dynamics. If
we take, say, a = 3, then three unstable fixed points are
located at x = 0, x = 1/2 and x = 1. By Eq. (39), the
extremal index at these points is

θ(0) = θ(1/2) = θ(1) = 1− |Df−1(0)| (41)

= 1−
1

3
=

2

3
. (42)

For all aperiodic points, θ(x) = 1, since clustering can
only occur at unstable fixed points by the Freitas-Freitas-
Todd theorem.

2. Intermittent maps

The Pomeau-Manneville map, a toy model for inter-
mittency in turbulent fluids, is given by

xn+1 = f(xn) =

{

xn + 2α−1xα
n x ∈ [0, 1

2 )
2xn − 1 x ∈ [ 12 , 1]

, (43)

where α > 1, and x ∈ [0, 1]. For stationarity, we require
that α < 2. Two unstable fixed points are located at



9

x = 0 and x = 1. The vicinity of the neutrally stable
fixed point x = 0 is associated with a sticky region of the
‘laminar’ phase. At the neutrally stable fixed point at
x = 0, we have the extremal index

θ(0) = 1− |Df−1(0)| = 1− 1 = 0., (44)

which implies a diverging mean sojourn time, consistent
with the trapping of orbits for anomalous amounts of
time. At the unstable fixed point at x = 1,

θ(1) = 1− |Df−1(1)| = 1−
1

2
=

1

2
. (45)

For all aperiodic points, θ(x) = 1.

3. Hénon map

The Hénon map is a generic two-dimensional invert-
ible map, originally inspired by three-body Hamiltonian
dynamics. It takes the form

(xn+1, yn+1) = f(xn, yn) = (1− ax2
n + yn, bxn), (46)

where a and b are parameters. The dissipation rate
b ∈ [0, 1] interpolates between one-dimensional logistic
dynamics for b = 0, and Hamiltonian dynamics for b = 1.
With standard parameter choices a = 1.4 and b = 0.3,
the extremal index θ(x∗, y∗) at the unstable fixed point
(x∗, y∗) ≈ (0.631854, 0.189406) is given by

θ(x∗, y∗) = 1− |Df−1|s(x
∗, y∗)| = 1− |λ−| ≈ 0.48, (47)

where λ− ≈ −0.52 is the eigenvalue of the Jacobian ma-
trix Df−1(x∗, y∗), whose absolute value is less than 1,
corresponding to the contracting direction. For aperi-
odic points, θ(x, y) = 1. Fig. 9 illustrates how a scan of
the numerically estimated extremal index across the at-
tractor picks out the unstable fixed point, based on the
clustering of recurrences.

VII. CONCLUSION

The extremal index is one of a number of quantities
that measure the clustering of extremes in stationary
time series. If θ = 1, extremes do not cluster and arrive
in the manner of a Poisson process; if θ < 1, extremes
cluster and arrive in the manner of a compound Poisson
process. In this review we have developed some intuition
for this quantity in terms of the (i) loss of effective de-
grees of freedom, (ii) multiplicity of a compound Poisson
point process, (iii) sojourn time inside a rare set, and
the (iv) stickiness of unstable fixed points in dynamical
systems.
The compound Poisson process that underpins the

extremal index is asymptotic, in the sense of Eq. (2).
In practice, it is not possible to apply arbitrarily high
thresholds to series, and therefore one has to be alert

x
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FIG. 9. The extremal index for different points on the Hénon
attractor. For generic points, θ = 1 (no clustering). But at
the unstable fixed point (0.631854, 0.189406), θ ≈ 0.48. These
theoretical values are well recovered via numerical estimates,
as indicated by the color scale.

to possible convergence issues, as explored in Sec. V for
an AR(1) process. In future, it would be interesting to
reconcile the implication of Berman’s condition with nu-
merical studies on Gaussian long-range dependent time
series18, where non-exponential waiting times between
extremes are observed.

Although the extremal index is widely used as a sta-
tistical parameter in the modeling of extremes, we hope
we have convinced the reader that it is an interesting
quantity in its own right. For example, in the dynami-
cal systems context, extreme value theory give access to
local and global properties of the attractor. In this re-
view, we have considered recurrences between trajecto-
ries and points in phase space45. Instead, by considering
recurrences between pairs of trajectories, it is possible
to infer global dynamical quantities such as the correla-
tion dimension and Lyapunov exponent27. For systems
with a space-time structure, the extremal index is related
to synchronization of the dynamics22. All such dynam-
ical quantities can be extracted by fits to universal ex-
treme value distributions and are therefore readily avail-
able empirically23. This versatility is reflected in a large
number of applications to geophysical flows, where local
dimensions and persistence are associated with typical
atmospheric configurations25,26, and extreme events37 or
dynamical shifts in turbulent boundary layers55 can be
detected.
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FIG. 10. Declustering of exceedances. (Top) Clusters are
identified as distinct if they are separated by more than a
run length rc. (Bottom) Each cluster is reduced to a single
exceedance.

Appendix A: Statistical estimation of the extremal index

and declustering

Here we describe the ‘runs’ method52, one of the sim-
plest ways of estimating the extremal index. It is com-
puted by dividing the number of clusters, nc, by the num-
ber of exceedances nu:

θ̂ =
nc

nu
. (A1)

If all clusters are composed solely of single exceedances,
then this ratio is one, consistent with the absence of clus-
tering. The runs method requires a definition of a cluster,
which introduces a degree of arbitrariness. Pragmati-
cally, a cluster is defined as terminated when the series
has stayed below threshold for at least rc steps. The ex-
tremal index can be recomputed for various choices of
the run length rc to check for robustness19.

Having defined a cluster, it is possible to decluster ex-
ceedances by replacing each cluster with one of its ex-
ceedances, see Fig. 10. In this way, the short-range cor-
related exceedances within a cluster are replaced by a
single effective degree of freedom. It typically does not
matter which exceedance is retained. For example, the
largest or middle exceedance of a cluster is a reasonable
choice.
This declustering procedure has been applied to ex-

ceedances in the Wooster temperature series in Sec. III.
An indication of the procedure’s success is shown in
Fig. 3, since the declustered exceedances are much closer
to exponential model quantiles than the original ex-
ceedances.
There are other estimators of the extremal index which

do not require the specification of a run length29,54. In
the experience of the authors, these tend to be more re-
liable for applications. For a review, see28.
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