
HAL Id: hal-02334253
https://hal.science/hal-02334253

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tunable corrugated patterns in an active nematic sheet
Anis Senoussi, Shunnichi Kashida, Raphaël Voituriez, Jean-Christophe Galas,

Ananyo Maitra, André Estévez-Torres

To cite this version:
Anis Senoussi, Shunnichi Kashida, Raphaël Voituriez, Jean-Christophe Galas, Ananyo Maitra, et
al.. Tunable corrugated patterns in an active nematic sheet. Proceedings of the National Academy
of Sciences of the United States of America, 2019, pp.201912223. �10.1073/pnas.1912223116�. �hal-
02334253�

https://hal.science/hal-02334253
https://hal.archives-ouvertes.fr


Tunable corrugated patterns in an active nematic sheet

Anis Senoussi,† Shunnichi Kashida,† Raphael Voituriez,†,‡ Jean-Christophe

Galas,∗,† Ananyo Maitra,∗,† and André Estevez-Torres∗,†
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Abstract2

Active matter locally converts chemical energy into mechanical work and, for this3

reason, it provides new mechanisms of pattern formation. In particular, active nematic4

fluids made of protein motors and filaments are far-from-equilibrium systems that may5

exhibit spontaneous motion, leading to actively-driven spatio-temporally chaotic states6

in two and three dimensions and coherent flows in three dimensions (3D). Although7

these dynamic flows reveal a characteristic length scale resulting from the interplay8

between active forcing and passive restoring forces, the observation of static and large9

scale spatial patterns in active nematic fluids has remained elusive. In this work, we10

demonstrate that a 3D solution of kinesin motors and microtubule filaments sponta-11

neously forms a 2D free-standing nematic active sheet that actively buckles out-of-plane12

into a centimeter-sized periodic corrugated sheet that is stable for several days at low13

activity. Importantly, the nematic orientational field does not display topological de-14

fects in the corrugated state and the wavelength and stability of the corrugations are15

controlled by the motor concentration, in agreement with a hydrodynamic theory. At16

higher activities these patterns are transient and chaotic flows are observed at longer17

times. Our results underline the importance of both passive and active forces in shap-18

ing active matter and demonstrate that a spontaneously-flowing active fluid can be19

sculpted into a static material through an active mechanism.20

Significance: To what extent can we engineer matter that shapes itself? To investigate21

this question we study an aqueous solution containing molecular motors that walk on protein22

filaments. When the filaments are long and attract each other, bundles of filaments are23

parallelly oriented. We show that such a nematic solution in the presence of multimers24

of motors has an unexpected behavior: it forms a fluid film that autonomously wrinkles.25

The observed wrinkles have a well-defined wavelength that decreases with increasing motor26

concentration. The wrinkles are either stable or break into a chaotic flowing state at high27

motor concentration, providing insights into how to engineer static or dynamic materials28

with this class of active matter.29

2



Active matter is composed of subunits that convert free energy into mechanical work.30

It comprises systems composed of objects with very different sizes, from flocks of animals131

and bacterial colonies2 to gels of cytoskeletal proteins.3,4 Active matter has attracted much32

attention, both theoreticallly and experimentally, because it displays phase transitions and33

states that greatly differ from those observed at equilibrium, such as motile ordered states and34

spontaneous coherent or incoherent flow.5–9 Among the active systems that can be studied35

in the laboratory, those composed of the protein filaments and motors that constitute the36

cytoskeleton of the eukaryotic cell are of special interest for three reasons: i) their biological37

importance,10,11 ii) the possibility to make purified systems that can be easily controlled and38

studied,3,4,12 and iii) their potential to make self-organising materials.1339

Depending on the conditions, cytoskeletal active systems display a wide array of dynamic40

behaviors. Isotropic systems contract12,14–16 and buckle17 in three dimensions (3D). Polar41

ones generate density waves18 and large scale vortices19 in 2D, and asters and vortices3 in42

3D. Nematic systems display spatio-temporally chaotic flows both in 2D4,20,21 and in 3D,4,2243

and also coherent flow22 in 3D. This diversity of behaviors is qualitatively understood by a44

hydrodynamic theory.5–9 However, we currently do not fully understand why one behavior45

is observed in a given experimental system and not in another and which experimental46

parameter has to be modified to switch from one state to another. This is due, on the one47

hand, to the difficulty of measuring the phenomenological parameters of the hydrodynamic48

theory and, on the other hand, to the use of two experimental systems, actin/myosin and49

microtubule/kinesin, with very different microscopic properties. In this regard, the recent50

demonstration that global contractions12,15 and chaotic flows in 2D4,21 were present in both51

systems, and the understanding of the nematic to polar transition in microtubule/kinesin52

systems23 has clarified the design of these dynamic behaviors. Yet, the two aforementioned53

difficulties remain, hindering the development of controllable active materials.54

In this work, we report the observation of a novel static patterned state in an active55

nematic fluid, we provide a semi-quantitative interpretation to why this state is observed and56
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we show which experimental parameters need to be tuned to reach either this static state or57

a previously-reported flow state. More precisely, we demonstrate that a microtubule/kinesin58

nematic fluid that is known to flow in 3D4,22 can be rationally engineered to form a thin59

static corrugated sheet in three dimensions, a behavior that has only recently been observed60

in isotropic and cross-linked actin/myosin gels17 that cannot flow. Essentially, the fluid61

contracts anisotropically along its two shortest dimensions to form a thin sheet of gel that62

freely floats in the aqueous solution, mainly due to passive depletion forces. Simultaneously,63

the extensile active stress generated by the motors buckles the sheet along the direction64

perpendicular to its plane, forming a corrugated sheet of filaments with a well-controlled65

wavelength of the order of 100 µm over an area of 10 mm2. We demonstrate that this out-of-66

plane buckling differs both from classical Euler buckling in passive gels24,25 and from the flow-67

generating in-plane buckling that is common in 2D active nematic gels.4,22,26,27 Importantly,68

nematic topological defects are not observed and we provide a theoretical prediction of the69

dependence of the wavelength with the motor concentration and with the thickness of the70

fluid that is in agreement with the experiments. Finally, we show that the transition between71

static corrugations and chaotic flow can be experimentally controlled by two parameters, the72

motor concentration and the attractive interactions between microtubule filaments.73

Results and Discussion74

A 3D active nematic fluid forms a static corrugated sheet75

The active fluid is constituted of a dense suspension of non-growing microtubules bundled76

together by a depletion agent and by clusters of kinesin-1 motors (Figure 1a). We use the77

word fluid, instead of gel, to underline the fact that the system does not present irreversible78

crosslinks, as actin gels do.17 It is supplemented with ATP and an ATP-regeneration system79

that drives the system out of equilibrium by keeping the motor active for at least 4 h.80

Additionally, the microtubule bundles are fluorescent because they bear a small fraction of81
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Figure 1: At low motor concentration a 3D active nematic fluid creates a thin corrugated
sheet of well defined wavelength. a Scheme of the components of the active fluid formed
by non-growing microtubules bundled together by a depletion agent and clusters of kinesin
motors. b Scheme of the channel where the fluid (in yellow) is observed. c Epifluorescence
image of the fluid at initial time. d Confocal images in 3D (top) and cross-section in the xz
plane (bottom) of the fluid after 300 min. e Epi-fluorescence image of the same sample after
one day and over a 9.5 × 1.4 mm2 area, the red dashed rectangle and the red dotted line
respectively indicate the region where the top and bottom images in panel d were recorded.
Scale bars are 500 µm and motor concentration 0.5 nM.

fluorescent tubulin, allowing their observation by fluorescence microscopy. This system is82

similar to previously published active nematic fluids4 but it differs in several important ways:83

the microtubules are longer (8± 6 µm instead of 1 µm, Figure S1), the kinesin used here,2884

K430, is different from the standard K401 (it comes from a different organism and forms85

non-specific clusters), and its typical concentration is two orders of magnitude lower (see SI86

Section 1). The active fluid is prepared inside a long and shallow channel of rectangular87

cross-section, with length L = 22 mm, width W = 1.5 mm and height H = 0.13 mm (see SI88

Methods). Initially, the density of microtubule bundles is homogeneous in 3D but they are89

aligned along the long axis of the channel, parallel to x (Figure 1b-c). This nematic order90

arises spontaneously during the filling process of the channel by capillarity, the angle of the91

director of the nematic with the x axis being 2± 16o (Figure S2).92
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In the presence of 0.5 nM of motors, confocal images recorded after 300 min show that93

the active fluid has contracted along z and buckled in the xz plane to form a corrugated sheet94

whose hills and valleys reach the top and bottom walls of the channel and whose grooves are95

strikingly parallel to the y axis (Figure 1d). The thickness of the sheet is `z = 35±5 µm and96

the wavelength of the corrugations is λ = 285±15 µm. This periodic pattern extends along an97

area of at least 9.5× 1.4 mm2, with dislocations corresponding to the junction of two valleys98

or hills. Notably, these dislocations in the periodic undulatory pattern do not correspond to99

defects in the nematic field. The pattern can also be visualized in epifluorescence, where it100

appears in the form of focused and defocused bands (Figure 1e).101

During the formation of the corrugations the fluid buckles along z102

and contracts along z and y103

To elucidate the mechanism of pattern formation we recorded confocal (Movie S1) and104

epifluorescence time-lapse images of a buckling fluid at 0.5 nM motors (Figure 2). Two105

processes are observed: buckling along the z direction and contraction along z and y. These106

processes are quantified by the angle φ between the microtubule bundles and the x axis in107

the xz plane, and by ∆`z and ∆`y, the contracted lengths of the fluid along the z and y108

axes, respectively. Buckling initially proceeds at a rate ωφ = 0.3 min−1 but later slows down109

until reaching a maximal buckling angle φmax = 32.2 ± 0.5o (Figure 2c) and an amplitude110

hmax = 22±3 µm after 100 min. Contraction along z and y is significantly slower with onset111

rates ωz = 6.4 × 10−2 min−1 and ωy = 1.5 × 10−2 min−1, respectively, to reach maximum112

amplitudes ∆`maxz = 40 µm and ∆`maxy = 210 µm (Figure 2d). Note that the relative113

contraction amplitudes ∆`maxz /H = 0.40 and ∆`maxy /W = 0.14 are significantly different,114

indicating that the final contracted state does not correspond to a nematic liquid droplet at115

equilibrium.29116
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Figure 2: Dynamics and mechanism of the formation of a thin corrugated sheet at low motor
concentration. a Time-lapse confocal fluorescence images of the active fluid in the xz plane
(left) and sketch of the observations indicating the measured quantities ∆`z, φ, h, and `z.
Scale bar is 100 µm. b Epifluorescence images of the fluid at t = 0 and 90 min (left) and
sketch indicating the measured quantity ∆`y. Scale bar is 500 µm. Red lines in panels a and
b indicate channel walls. c Average of φ2 along the x direction vs. time in the presence (filled
disks) and in the absence of motors (empty circles). d Offset to the maximum contracted
length along the z (red disks) and y (blue crosses) directions. Black lines in panels c and d
are exponential fits. e Sketch of the mechanism for the active buckling of a thin membrane
through the negative tension Fa proportional to the active stress ζ(c) and the Laplacian of
the height h(x) of the sheet above its fiducial plane. All data correspond to 0.5 nM motors
except empty circles in panel c.

Buckling is active and contraction is passive117

Passive gels of various compositions have been reported to form corrugations through Euler118

buckling when they are submitted either to an external contractile stress or to an extensile119

stress at constant length.24,25 To assess if this could explain our observations, we performed120

experiments that demonstrated, firstly, that buckling is principally an active process and,121
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secondly, that an Euler mechanism is not compatible with the data.122

In the absence of motors buckling is undetectable in confocal images with the same123

field of view in x as above (660 µm) (Figure 2c and Table S1), although it is weak but124

detectable in images acquired over a wider field of view (Figure S3). In contrast, contraction125

is similar both in passive and active fluids (Figure S3). The passive origin of contraction is126

further supported by the fact that its amplitude is strongly dependent on the concentration127

of depletion agent (Figure S4).128

In passive fluids, depletion forces induce the condensation of microtubules into a dense129

nematic fluid phase, which, in the absence of confinement, would relax to a highly anisotropic130

tactoid droplet.30 In the geometry of our experiments, this results in the formation of a quasi131

2D sheet that elongates along the nematic axis x, thereby leading to Euler buckling in the132

presence of boundaries. Indeed, a membrane with an excess area, which in this case arises133

from the excess length ∆`x = `x − L, where `x is the length of the membrane along x, will134

have a buckled state beyond a critical ∆`cx that depends on H. Note that this mechanism135

could in principle also explain active buckling if ∆`x depends on the activity. However, this136

sort of passive mechanism, reminiscent of the classic Euler buckling, is only possible if the137

membrane had a fixed projected area, i.e. if it were confined in the x direction. On the138

contrary, if active buckling were generated by local extensile forces exerted by the motors,139

it would be independent of whether the fluid is constrained in length or not.140

To test these two hypotheses, we performed experiments where one end of the fluid was141

in contact with an aqueous solution and thus free to change length. In this configuration142

(Figure 3) the active fluid buckled everywhere except on the tip close to the free boundary,143

while the passive one did not buckle at all. We attribute the lack of buckling on the tip of144

the active fluid to a gradient of microtubule concentration across the free boundary arising145

during the preparation of the fluid (see SI Methods). These results suggest that, while the146

excess area mechanism explains passive buckling, it cannot fully account for the buckling147

of active films. We thus conclude, firstly, that passive and active buckling happen through148
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different mechanisms and, secondly, that in active fluids buckling is principally an active149

mechanism while contractions in y and z are mainly passive.150
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Figure 3: An active fluid buckles, in contrast with a passive one, in fluids with one free
boundary. a Scheme of the experiment. The red dashed rectangle indicates the area where
the images were recorded. Epifluorescence images of an active (b) and a passive (c) fluid
at initial and final time. The black, dashed rectangles show the zones where the intensity
profiles in d and e were extracted.

A hydrodynamic theory that predicts the wavenumber of the cor-151

rugations152

The behavior of active fluids, including those composed of microtubules and kinesins,4,22,31,32153

has been successfully described with the hydrodynamic theory of liquid crystals supplemented154

with a stress term resulting from activity. We now demonstrate that this framework applied155

to a thin film that can buckle in the third dimension can provide an explanation and theoret-156

ical estimates of the wavenumber q∗ = 2π/λ and of the formation rate ω∗ of the corrugated157

pattern (see Figure 2e and SI Section 2).158

To do so, we consider the periodic undulation of the thin sheet made of microtubules and159

motors in the xz plane, supposing that passive forces have already collapsed the 3D fluid160
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into a thin 2D sheet. The nematic active fluid sheet has bending modulus K and its director161

n̂ is on average parallel to the x axis: n̂0 = x̂. The fluctuation of the membrane about a162

fiducial plane parallel to the xy plane (here, taken to be the mid-plane of the channel) is163

denoted by h(x, y). The deflection of the director in the xz plane, δnz, leads to a buckling164

of the membrane in the z direction: δnz ≈ ∂xhẑ. The passive elasticity of the nematic fluid165

∝ (∇n)2 then yields a bending energy ∝ (K/2)(∂2xh)2 for the buckling of the thin sheet in166

the z direction. The standard active force5–9 is −ζ(c)∇· (nn), where ζ(c) > 0 is the strength167

of the extensile activity that is a function of motor concentration c. This leads to a force168

∝ −ζ(c)∂2xhẑ that tends to destabilise the flat membrane and that is similar to an effective169

negative surface tension.33 The interplay between the negative surface tension, arising from170

activity, and the stabilizing bending modulus, due to nematic elasticity, leads to the selection171

of a pattern with wavenumber172

q∗ ∼
√
ζ(c)/K. (1)

The pattern arises with a rate ω whose exact expression is provided in SI Section 2. Note173

that in the absence of confinement, we expect the pattern to be unstable.174

The theory thus shows that an out-of-plane buckling instability compatible with our175

observations results from the interplay of active forcing ζ(c) and passive elastic restoring176

forces, K; the same ingredients that in previous microtubule/kinesin active fluid provided177

dramatically different patterns.4,31,32,34,35 Here, the out-of-plane buckling of the active sheet178

precedes any planar pattern formation, in contrast to those experiments. In addition, the179

instability described here does not result in coherent or incoherent flow, of either the active180

or the embedding fluid, in contrast with theories describing 2D or 3D active fluids that do181

not form sheets.26,27,36182

This qualitative interpretation has two advantages. Firstly, it is parsimonious because a183

single feature, activity, explains the 3D out-of-plane buckling observed here and the 2D in-184

plane buckling4,32 and 3D chaotic flows22 observed previously in a similar system. Secondly,185
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it predicts that decreasing depletion forces precludes the formation of the thin sheet and186

thus the emergence of out-of-plane buckling in favor of 3D chaotic flows. In the rest of187

the paper we analyze these two questions in more detail. However, although hydrodynamic188

theories, such as the one just described, provide an informative qualitative description of189

the physics of active fluids, they feature phenomenological parameters, such as ζ(c) and K,190

that are difficult to measure experimentally. To our knowledge, the only quantitative test191

of such theories in the kinesin-microtubule system was recently performed by Martinez-Prat192

and colleagues,32 where they obtained ζ(c) ∼ c2. Using their scaling, our semi-empirical193

prediction reads194

q∗ ∼ c/
√
K. (2)

Increasing the motor concentration linearly increases the wavenum-195

ber of the corrugations and destabilizes the patterns196

To test the prediction q∗ ∼ c we investigated the behavior of the fluid over a range of motor197

concentrations c spanning more than two orders of magnitude (Figure 4 and Movie S2).198

Below 0.5 nM motors, the fluid behaves as described in Figure 2: buckling in the xz plane199

and contractions in the z and y directions. As c increases, between 1 and 2.5 nM motors,200

buckling in the xz plane is initially observed and followed by buckling in the xy plane that201

distorts the corrugated pattern without breaking it. Finally, between 5 and 50 nM motors,202

buckling in the xz plane is still observed at early times but the pattern breaks into a 3D203

active chaotic state similar to the one already reported in this active fluid4,22 (Movies S3204

and S4). However, the velocity of this flow state is significantly lower in our case, possibly205

because the solution is more viscous.206

The transition to the chaotic state happens qualitatively through two processes: the207

accumulated tension on the hills and valleys of the corrugations breaks the microtubule208

bundles and the frozen fluid locally flows (Movie S2, 5 nM channel) or the dislocations209

11



c 
(n

M
)

0.25

0

1

time (min)
2700 30 150

5

x

y

ba

c

c (nM)
10

-1
10

0
10

1
10

2

q
*
(µ
m
-1
)

0

0.02

0.04

0.06

0.08

0.1

0 5 10
0

0.04

0.08

c (nM)
10

-1
10

0
10

1
10

2

ω
*
(m
in
-1
)

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4: Dynamics, shape and stability of the patterns strongly depend on motor concen-
tration. a Time-lapse epifluorescence images of fluids with different motor concentrations c.
Red lines indicate channel walls. Scale bars are 200 µm. b Wavenumber q∗ of the corruga-
tions vs. motor concentration. The inset is the lin-lin representation of the main plot and
the line corresponds to a linear fit to the data in the range c = 0.1− 10 nM with regression
coefficient r2 = 0.9. c Growth rate vs. motor concentration. Error bars indicate the stan-
dard deviation of a triplicate experiment where a single motor/filament mix was distributed
into three different channels.

in the corrugations become motile leading to a shearing of the pattern and its consequent210

destruction (Movie S2, 10 nM channel). Note that, in our experiments, the chaotic state211

was never observed before the buckled state. However, if the characteristic time of active212

transport is much shorter than the time of passive contraction, one would observe only the213

spontaneous flow instability and would not observe the buckling instability (which happens214

in ref. 4). Nevertheless, first observing spontaneous flow instability and then the buckling215

instability is unlikely because the first one would destroy the nematic order that allows216

passive buckling.217

Importantly, the measured wavenumber of the corrugations is in agreement with the218

predicted linear scaling (Figure 4b), in particular in the range 0.5 − 10 nM. A linear fit219
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q∗ = a1 + a2c of the data yields a1 = 5× 10−3 µm−1 and a2 = 1.4× 10−3µm−1nM−1, where220

the constant term a1 results from the weak contribution of Euler buckling in the absence of221

motors. Indeed, activity controls the wavenumber only if the active wavenumber is larger222

that the one selected by passive Euler buckling, a crossover that in our experiments happens223

at c = 0.5 nM.224

The growth rate of the patterns, ω∗, increases slightly with c in the range 0.1− 0.5 nM,225

then drastically between 0.5 and 1 nM, and saturates at higher c (Figure 4c and Fig-226

ure S5), resulting in ω∗ also increasing and then saturating with q∗. For the hydrodynamics-227

dominated approximation, the theory predicts ω∗ ∼ q3 for q∗H � 1 and ω∗ ∼ q6 for228

q∗H � 1, while our experiments correspond to q∗H = 1.3−4. In the range c = 0.1−0.5 nM,229

the data are compatible with the scaling ω∗ ∼ q3, although their precision does not allow to230

rule out other scaling laws (Figure S6).231

Comparing the results of our out-of-plane instability with recent measurements of the in-232

plane buckling instability of a related system,32 we find similar wavenumbers (1−7×10−2 µm233

in our case vs. 0.5 − 3 × 10−2 µm) but significantly slower dynamics (1 − 4 × 10−2 min−1
234

vs. 6− 240 min−1, respectively). In addition, topological defects seem to play no role in the235

emergence of our patterns, in contrast with what happens in 2D active nematic systems.21,34236

We do observe dislocations in the corrugations that rarely move along the y axis, although237

they do so too slowly to play a significant role. In contrast, defects in the nematic field would238

create non-periodic buckled shapes in the z direction37,38 and we never observe this in our239

conditions.240

The thickness of the nematic fluid influences the corrugations241

To test the prediction q∗ ∼ 1/
√
K we varied the thickness and the aspect ratio of the242

confinement of the active fluid at low motor concentration, with the hypotheses K ∼ `z and243

`z ∼ H. Firstly, we measured `z and q∗ for H in the range 70− 540 µm and confirmed that244

the data are in agreement with `z ∼ H and with q∗ ∼ 1/
√
`z, with the exception of this last245
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scaling for the thinnest fluid (Figure 5). Secondly, reducing the aspect ratio of the channel246

section resulted in some portions of the fluid buckling in xz and others in the xy plane at247

W/H = 4.6 (Figure S8) and no preferential direction of buckling at W/H = 1 (Figure S9).248

In addition, in all the cases where both xy and xz buckling was observed, the wavenumbers249

in the two planes were in qualitative agreement with the aforementioned argument that250

essentially yields q∗ ∼ 1/
√
H > q∗xy ∼ 1/

√
W when H < W and q∗ = q∗xy when H = W .251

ba

Figure 5: Increasing the thickness of the fluid reduces the wavenumber. a Final thickness
`z vs. channel height H. b Wavenumber vs. 1/`

1/2
z . Error bars indicate the standard

deviation of a triplicate experiment where a single motor/filament mix was distributed into
three different channels. Solid lines correspond to linear fits. 1 nM motors.

Another way to influence K is to change the microtubule concentration µ. Increasing µ252

in the range 0.5− 2 mg/mL decreased q∗ in agreement with the expectation that K should253

increase with µ. In contrast, at µ = 0.25 mg/mL, global contraction, instead of corrugations,254

was observed, possibly because the initial nematic order was reduced (Figure S10).255

Strong attractive interactions between the microtubules are crucial256

to form a corrugated sheet257

To the best of our knowledge, neither stable nor unstable out-of-plane buckling has been re-258

ported in nematic active fluids. We performed control experiments to determine which of the259

factors that differentiate our experiments from previously published 3D microtubule/kinesin260

nematics4,22,39 was responsible for the observed phenomenology: the type of motor or the261

length of the microtubules. We obtained both stable and unstable xz buckling with the262
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kinesin K401 used in previous reports4 (Figure S11). This means that, although the motor263

K430 is not designed to form specific multimers, in contrast with K401, it forms non-specific264

ones. Our efforts to eliminate these non-specific multimers by size exclusion chromatography265

did not change the observed patterns (Figure S12), suggesting that these clusters either form266

rapidly or do so in the working buffer.267

In contrast with the nature of the motor, the length of the microtubules had a strong268

impact on the observed structures. When, instead of 8 µm-long taxol-stabilized microtubules,269

1.5 µm-long GMPCPP-stabilized ones were used, no contraction of the fluid was observed270

along z or y, with or without motors, precluding the formation of a thin sheet that could271

buckle out of plane (Figure S13). In this case, chaotic flow was observed at high activity, in272

agreement with previous reports.4 These observations are consistent with the expected linear273

dependence of the depletion free energy on filament length40 which, in our geometry, makes274

long microtubules condense into a thin sheet. To further test this hypothesis we reduced the275

attractive force between negatively charged 8 µm-long microtubules by either lowering the276

concentration of the depletion agent or the ionic strength of the buffer. In agreement with277

this interpretation, neither fluid contraction, nor buckling in the xz plane, were apparent in278

these conditions, although the fluid remained active (Figures S14 and S15).279

Comparison with other out-of-equilibrium membrane buckling280

The active buckling instability described here needs three ingredients: a thin film, nematic281

order and extensile activity. We thus expect any system displaying these properties, such282

as thin films that may be composed of living liquid crystals41 —which are suspensions of283

living bacteria in an inert nematic solution— to buckle in a similar manner. Monolayers of284

polarized living cells could potentially buckle in the same way, although so far only buckling285

due to growth has been reported.42 Interestingly, a different type of active buckling has286

recently been observed in a contractile isotropic film made of a crosslinked actin gel and287

myosin.17 Despite their differences, for this contractile film to buckle, filaments also need to288
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form bundles, motors have to make aggregates and the observed thickness and wavelength289

were of the same order of magnitude as those reported here.290

Finally, we have described our system as an active fluid and not a gel to stress that291

there are no permanent crosslinks between the microtubule filaments. This is supported by292

the low concentration of motors relative to tubulin (1:1000 w/w at 1 nM motors) and by293

the flows observed by us and others4,20–22,32 at high motor concentration. We believe that294

the apparent contradiction of our observations with rheological measurements that reported295

the presence of an effective cross-linking in pure microtubule solutions43 could be explained,296

either by the presence of microtubule bundles or by the longer timescale probed here (103 s297

compared with 102 in ref. 43). Ultimately, precise rheological measurements of this type of298

active fluids will provide a definite answer.299

Conclusion300

In summary, we demonstrate that in vitro active fluids can be designed to form static or301

transient suspended sheets with periodic corrugated patterns of tunable wavelength. The302

mechanism of pattern formation that we propose combines passive and active processes that303

can be controlled physicochemically. Passive depletion forces, which depend on depletion304

agent concentration, filament length and ionic strength, induce the spontaneous condensation305

of a 3D nematic fluid into a thin 2D nematic sheet, and active stresses buckle the fluid sheet306

out of plane to form corrugations with well-defined wavelength that can be controlled by307

activity.308

In addition, we use an active gel theory to demonstrate that the observed patterns re-309

sult from an out of plane buckling instability induced by active extensile stresses along the310

nematic axis of the fluid sheet, in contrast with in-plane buckling patterns that have been311

observed in pre-stressed nematic fluids of either non-growing F-actin44 and growing micro-312

tubules45 in the absence of motors. Our theory is appealing since it relies on the same essen-313
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tial physics that leads to 2D patterning and 2D and 3D spatio-temporal chaos. However, the314

buckling instability that we report does not involve filament flows and therefore fundamen-315

tally differs from both contractile instabilities in anisotropic active fluids and spontaneous316

flow transitions in nematic active fluids that have been described theoretically,6,8,26,27,36,46317

and shown to be characterised by hydrodynamic flows and in-plane buckling of the director318

field in the case of 2D systems. Such spontaneous flows have been observed in various active319

matter systems,4,31,32,34,35,41,47–50 which in practice yield either chaotic or large scale coherent320

flows, but so far no static spatial patterns. In contrast, our results show that active matter321

can be shaped into long-lived static 3D patterns that can be tuned by activity, which may322

open the way to the design of 3D biomimetic materials capable of morphogenesis.51,52323

Material and Methods324

Kinesin and microtubule preparation325

The K430 truncated kinesin-1 from Rattus norvegicus, containing a C-terminal SNAP tag,326

was the homodimer version of the kinesin-1 described in ref. 28. K430 was expressed in E.327

coli, purified using a Nickel affinity column thanks to a His-tag, dialyzed and flash frozen.328

K401 was purified as described.53 Tubulin and TRITC-labeled tubulin (Cytoskeleton) were329

dissolved at 10 mg/mL in 1X PEM buffer (80 mM PIPES pH 6.8, 1 mM EGTA, 1 mM330

MgSO4) supplemented with 1 mM GTP, flash-frozen and stored at −80 ◦C. They were331

polymerized in 1X PEM, 1 mM GTP, 10 % (w/v) glycerol and 5 mg/mL tubulin at (including332

2.5 % fluorescent tubulin). Taxol-stabilized microtubules were incubated at 37 ◦C for 15 min333

followed by the addition of 20 µM paclitaxel, and stored at room temperature for few days.334

GMPCPP-stabilized microtubules were polymerized in the presence of 0.5 mg/mL GMPCPP335

(Jena Bioscience) from tubulin at 37 ◦C for 30 min and left at room temperature for 5 hours.336

They were used within the same day. These procedures are described in more detail in SI337

Section 1.338
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Active mix339

The active mix consisted in 1X PEM buffer, 10 mM K-acetate, 10 mM KCl, 5 mM MgCl2, 2340

%(w/v) Pluronic F-127, 5 µg/mL creatine kinase, 20 mM creatine phosphate, 20 µM taxol,341

2 mM ATP, 1 mg/mL BSA, 1 mM trolox, 20 mM D-glucose, 3 mM DTT, 150 µg/mL glucose342

oxidase, 25 µg/mL catalase and 0.5 mg/mL taxol-stabilized microtubules.343

Channel assembly344

Channels were assembled using a microscope glass slide (26 x 75 x 1 mm) and a coverslip345

(22 x 50 x 0.17 mm) separated by strips of Parafilm cut with a Graphtec Cutting Plotter346

CE6000-40. Both microscope glass slides and coverlips were passivated using an acrylamide347

brush.54 The active mix was filled in the flow cell (22 x 1.5 x 0.130 mm) by capillarity and348

sealed with vacuum grease.349

Imaging350

Epifluorescence images were obtained with a Zeiss Observer 7 automated microscope equipped351

with a Hamamatsu C9100-02 camera, a 10X objective, a motorized stage and controlled with352

MicroManager 1.4. Images were recorded automatically every 3 min using an excitation at353

550 nm with a CoolLED pE2. Confocal images were obtained with a Leica TCS SP5 II354

confocal microscope with a 25x water-immersion objective or a X-Light V2 Spinning Disk355

Confocal system mounted on an upright Nikon Eclipse 80i microscope with a 10x objective.356

Images were recorded automatically every 1 to 10 min.357

Image analysis358

Fluorescent images were binarized to obtain ∆`z and ∆`y. To measure φ the binarized359

xz confocal cross-sections were averaged over x, smoothed along x by applying a moving360

average filter with a 30-pixel window, that was then differentiated. φ was the arctangent of361
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this derivative.362

Note added in proof363

During the revision process a similar observation was reported in the arXiv.55364
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