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ENDOMORPHISMS AND BIJECTIONS OF THE CHARACTER VARIETY χ(F 2 , SL 2 (C))

We answer a question of Gelander and Souto in the special case of the free group of rank 2. The result may be stated as follows. If F is a free group of rank 2, and G is a proper subgroup of F, the restriction of homomorphisms F → SL 2 (C) to the subgroup G defines a map from the character variety χ(F, SL 2 (C)) to the character variety χ(G, SL 2 (C)); this algebraic map never induces a bijection between these two character varieties.

RÉSUMÉ. Le résultat suivant, qui répond à une question de Gelander et Souto dans un cas particulier, est démontré : si F est le groupe libre de rang 2 et G est un sous-groupe de F, la restriction des homomorphismes F → SL 2 (C) au sous-groupe G fournit une application de la variété des caractères χ(F, SL 2 (C)) vers la variété des caractères χ(G, SL 2 (C)); cette application algébrique n'est bijective que si G coïncide avec F. CONTENTS 1. Representations and character varieties 1 2. Restrictions 2 3. The main theorem 4 4. The proof 4 5. Two open problems 9 References 10 1. REPRESENTATIONS AND CHARACTER VARIETIES Consider the free group of rank 2,

F = a, b | / 0 , (1.1) 
and an algebraic group H. Every representation ρ : F → H is defined by prescribing the images of the generators A = ρ(a) and B = ρ(b) in H. Thus, the variety of representations Rep(F, H) is just the product H × H. The group H acts on this variety by conjugation, and the quotient, in the sense of geometric invariant theory, is called the character variety of (F, H); we shall denote it χ(F, H).

Assume now that H is the special linear group SL 2 (the field of definition will be specified later). Since traces of matrices are polynomial functions in the coefficients of the matrices and are invariant under conjugacy, the three functions x = tr(A), y = tr(B), z = tr(AB)

(1.2)

provide regular functions on the character variety χ(F, SL 2 ). The following result, due to Fricke, is proven in details in [START_REF] William | Trace coordinates on Fricke spaces of some simple hyperbolic surfaces[END_REF].

Fricke's Theorem. The character variety χ(F, SL 2 ) is the affine space of dimension 3; its ring of regular functions are the polynomial functions in the coordinates (x, y, z) = (tr(A), tr(B), tr(AB)).

We did not specify the field because this theorem works for any algebraically closed field. Examples of invariant functions are given by traces of words in the matrices A and B, for instance by the function tr(A 3 B -2 AB) ; in fact, the theorem of Fricke is based on the fact that these traces can be expressed as polynomial functions of x, y, and z with integer coefficients. This follows easily from Cayley-Hamilton theorem. For instance A -tr(A)Id + A -1 = 0, which shows that tr(A -1 B) = xyz. A classical example is given by the trace of the commutator of A and B:

tr(ABA -1 B -1 ) = x 2 + y 2 + z 2 -xyz -2.
(1.

3)

The level sets of this polynomial function are the cubic surfaces

S κ = {(x, y, z) ; x 2 + y 2 + z 2 = xyz + κ}. (1.4)
The surface S 0 is known as the Markoff surface , and S 4 as the Cayley cubic (see [START_REF] Cantat | Painlevé and Schroedinger[END_REF] §2.8 and [START_REF] Cantat | Character varities, dynamics and Painlevé VI[END_REF], §1.5).

RESTRICTIONS

Now, consider a subgroup G of F. It is a free group, and we assume that G has rank two, as F. Fixing a basis (u, v) of G, we have: Since u is a word in a and b, we know from the theorem of Fricke that there is a polynomial function P ∈ Z[X,Y, Z] with the following property. For every pair (A, B) of elements of SL 2 , P(x, y, z) = tr(u(A, B)) where (x, y, z) = (tr(A), tr(B), tr(AB)).

(2.1)

Similarly, there are polynomial functions Q and R such that

Q(x, y, z) = tr(v(A, B)) and R(x, y, z) = tr(u(A, B)v(A, B)). (2.2)
Every representation ρ of F into SL 2 gives a representation of G: the restriction of ρ to G. Thus, we get a map res : χ(F, SL 2 ) → χ(G, SL 2 ). Once these character varieties have been identified to affine spaces of dimension 3 using the coordinates (x, y, z) = (tr(A), tr(B), tr(AB)) and (r, s,t) = (tr(U), tr(V ), tr(UV )), this map res corresponds to the algebraic endomorphism A 3 → A 3 defined by (x, y, z) → (P(x, y, z), Q(x, y, z), R(x, y, z)).

(2.3)

Our goal is to understand whether this map can be a bijection (resp. an isomorphism of algebraic varieties) when G is a strict subgroup of F. This was the question raised by Gelander and Souto, in its simpler form.

To restate this question more precisely, we adopt another equivalent viewpoint. Consider the endomorphism ϕ : F → F that maps a to u(a, b) and b to v(a, b). Its image is G. Given any representation ρ of F, ϕ * ρ = ρ • ϕ is a new representation of F; this determines an algebraic endomorphism

Φ : χ(F, SL 2 ) → χ(F, SL 2 ).
(2.4)

Then, res is a bijection if and only if Φ is a bijection (these two maps are actually the same maps in affine coordinates). Thus, the question may be stated as follows.

Questions.-Given an endomorphism ϕ : F → F of the free group F, under what condition does it induce an automorphism Φ : χ(F, SL 2 ) → χ(F, SL 2 ) of the algebraic variety χ(F, SL 2 ) ? Given an endomorphism ϕ : F → F, and a field k, under what condition does ϕ induce a bijection Φ :

A 3 (k) → A 3 (k) of the set of k points of χ(F, SL 2 ) = A 3 ?
For the second version of the question, it is crucial to indicate over which field one works. If the field is too small, for instance if it is a finite field, there are many endomorphisms ϕ that induce bijections on the set of representations into SL 2 (k). Indeed, consider a finite group H, for example H = SL 2 (k) for some finite field k, and denote by n the number of elements of H. Then, every element h ∈ H satisfies h n = e H . Now, pick positive integers and and consider the endomorphism ϕ of F that maps a to a n+1 and b to b n+1 . Then, ρ(ϕ(a)) = ρ(a) and ρ(ϕ(b)) = ρ(b) for every representation ρ : F → H; thus, ϕ induces an injection (hence a bijection) of the finite set of representations of F into H.

If we assume that k is algebraically closed and of characteristic 0, the two questions are actually equivalent, as the following classical statement shows.

Bijectivity Theorem. Let Φ : A d → A d be a regular endomorphism of an affine space, defined over an algebraically closed field k of characteristic 0. If Φ is an injective transformation of A d (k) then Φ is an automorphism of A d : it is bijective and its inverse is also defined by polynomial formulas.

This theorem fails over the field of real numbers, as x → x + x 3 shows. It also fails in positive characteristic, as the Frobenius morphism shows. For a proof of the Bijectivity Theorem see the book [START_REF] Van Den Essen | Polynomial Automorphisms, and the Jacobian Conjecture[END_REF]. Note also that this result holds in much greater generality, and can therefore be applied to character varieties of higher rank free groups.

THE MAIN THEOREM

Theorem A. Let F be the free group of rank 2, and ϕ : F → F be an endomorphism of F. If the algebraic endomorphism

Φ : χ(F, SL 2 (C)) → χ(F, SL 2 (C))
induced by ϕ is injective, then ϕ : F → F is an automorphism of the free group F. Corollary 3.1. Let F be the free group of rank 2. If G is a proper subgroup of F, the restriction res : ρ → ρ |G does not induce a bijection from the character variety χ(F, SL 2 (C)) to the character variety χ(G, SL 2 (C)).

Proof of the corollary. For res to be a bijection, G should have rank 2 (the dimension of χ(G, SL 2 (C)) is 3rk(G) -3). The previous section shows that res is a bijection if and only if the endomorphism ϕ : F → F determined by any isomorphism between F and G induces a bijection on the character variety of F. Theorem A shows that ϕ must be an isomorphism, hence G = F.

THE PROOF

To prove Theorem A, one first makes use of the Bijectivity Theorem, and deduce that the polynomial endomorphism Φ which is determined by ϕ is a polynomial automorphism of the character variety χ(F, SL 2 (C)). In what follows, S κ is the complex affine surface defined by Equation (1.4) (it may be better to denote it S κ (C)).

Automorphisms of the surfaces S κ .

In what follows, we denote by Aut(W ) the group of automorphisms of the algebraic variety W . (Note that we play with two distint notions of automorphisms and endomorphisms, one for groups, one for algebraic varieties.)

One can identify the group Out(F) with GL 2 (Z) (see [START_REF] Lyndon | Combinatorial group theory[END_REF], Proposition I.4.5). This group acts on the character variety χ(F, SL 2 ). The function tr([A, B]) is invariant under this action because every automorphism of the group F maps aba -1 b -1 to a conjugate of itself or its inverse (see [START_REF] Lyndon | Combinatorial group theory[END_REF], Proposition I.5.1 for instance). This gives an embedding

GL 2 (Z) → Aut(χ(F, SL 2 )), (4.1) 
i.e. in Aut(A 3 ), that preserves the polynomial function x 2 + y 2 + z 2xyz -2 and its level sets S κ .

El'Huti's Theorem. Let κ be a complex number. The group GL 2 (Z) = Out(F) provides a subgroup of index 4 in the group of all automorphisms of the complex affine surface S κ : every automorphism of S κ is the composition of an element of Out(F) and a linear map (x, y, z) → (ε 1 x, ε 2 y, ε 3 z) where each

ε i = ±1 and ε 1 ε 2 ε 3 = 1.
Let us explain how this result follows from the main theorems of [START_REF] Marat | Cubic surfaces of Markov type[END_REF]. First, note that the image of the homomorphism GL 2 (Z) → Aut(S κ ) contains the finite group of permutations of the coordinates. For instance, the permutation (x, y, z) → (z, y, x) is induced by the automorphism of F mapping a and b to (ab) -1 and b.

To describe more precisely El'Huti's work, we compactify S κ by taking its closure S κ in the projective space P 3 C . In homogeneous variables [x : y : z : w], this surface is defined by the cubic equation

(x 2 + y 2 + z 2 )w = xyz + κw 3 . (4.2)
It intersects the plane at infinity {w = 0} into a triangle {xyz = 0}. If f is an automorphism of S κ , it extends as a birational map f of S κ , typically with indeterminacy points on the triangle at infinity. There are three obvious involutions on S κ . Indeed, if one projects S κ onto the (x, y)-plane one gets a 2-to-1 cover because the equation of S κ has degree 2 with respect to the z-variable; the deck transformation of this cover is the involution

σ z (x, y, z) = (x, y, xy -z). (4.3)
Geometrically, σ z is the following birational transformation of S κ : if [x : y : z : w] is a point of S κ , draw the line joining this point to the point "at infinity" [0 : 0 : 1 : 0] ∈ S κ ;

this line intersects S κ in exactly three points, and the third point of intersection is precisely σ z [x : y : z : w]. Permuting the variables, we obtain three involutions σ x , σ y , σ z and Theorem 1 of [START_REF] Marat | Cubic surfaces of Markov type[END_REF] says that the group generated by those three involutions is a free product Z/2Z Z/2Z Z/2Z. Now, note that the element

1 0 0 -1 ∈ GL 2 (Z) (4.4)
is represented by the automorphism of F mapping the generators a and b to a and b -1 , and its action on traces corresponds to σ z because tr(B -1 ) = tr(B) and tr(AB -1 ) = -tr(AB) + tr(A)tr(B) for elements of SL 2 (see Section 1). Using permutations of coordinates, we see that the image of GL 2 (Z) in Aut(S κ ) contains the three involutions σ x , σ y , and σ z , hence the group σ x , σ y , σ z that they generate. Theorem 2 of [START_REF] Marat | Cubic surfaces of Markov type[END_REF] states that the automorphism group Aut(S κ ) is generated by two groups: the group σ x , σ y , σ z Z/2Z Z/2Z Z/2Z, and the group W (S κ ) of projective transformations of P 3 C preserving the compact surface S κ and its open surface S κ ⊂ S κ . The following lemma concludes the proof of what we called El'Huti's theorem.

Lemma 4.1. The group W (S κ ) is the group generated by (1) the group of permutations of the coordinates (x, y, z), and (2) the changes of sign of pairs of coordinates (such as (x, y, z) → (-x, -y, z)).

Proof. Let f be a linear projective transformation preserving S κ ⊂ S κ . Then, f preserves the triangle S κ \ S κ , of equation {w = 0, xyz = 0}. Composing f by a permutation of the coordinates, we may assume that (i) f induces an affine transformation of the affine space A 3

C and (ii) f fixes the three points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0] at infinity. Thus, f becomes an affine transformation whose linear part is diagonal, i.e. f (x, y, z) = (αx + a, βy + b, γz + c) for some complex numbers α, β, γ, a, b, and c with αβγ = 0. Now, if one writes that S κ is invariant, and look at the quadratic terms xy, yz, and zx, one sees that a = b = c = 0; then, α, β, and γ are all equal to +1 or -1.

4.2.

Invariance of S 4 . Reducible representations correspond to the surface S 4 : both A and B preserve a one dimensional subspace of C 2 , so that A and B can be written simultaneously as upper triangular matrices; there commutator ABA -1 B -1 is upper triangular, with 1's on the diagonal, and tr(ABA

-1 B -1 ) = 2.
If ρ is a reducible representation of F, so is ϕ * ρ; thus Φ induces an automorphism of S 4 . Since GL 2 (Z) generates a subgroup of Aut(S 4 ) of finite index, we obtain the following lemma.

Lemma 4.2. The endomorphism Φ is an automorphism of the complex algebraic variety χ(F, SL 2 ) = A 3 that preserves S 4 . It induces an automorphism of S 4 . There is an integer k > 0 and an element ψ of Out(F) such that Φ k = Ψ on S 4 .

Here Ψ denotes the automorphism of χ(F, SL 2 ) which is defined by ψ * .

Remark 4.3. This remark is not needed in the proof, but illustrates the nice geometry of S 4 . One can "uniformize" S 4 by C * × C * , as follows. Given a pair (z 1 , z 2 ) ∈ C * ×C * , consider two upper triangular matrices A and B whose diagonal coefficients are respectively (z 1 , 1/z 1 ) and (z 2 , 1/z 2 ). Then,

(tr(A), tr(B), tr(AB)) = (z 1 + 1/z 1 , z 2 + 1/z 2 , z 1 z 2 + 1/(z 1 z 2 )). (4.5) 
Then,

• the map π :

(z 1 , z 2 ) → (z 1 +1/z 1 , z 2 +1/z 2 , z 1 z 2 +1/(z 1 z 2 )) is invariant under the involution η(z 1 , z 2 ) = (1/z 1 , 1/z 2 ) of C * × C * ; • the image π(C * × C * ) is S 4 ; • the projection π : C * × C * → S 4 realizes S 4 as the quotient (C * × C * )/η;
• the four fixed points (±1, ±1) of η give rise to the four singularities of S 4 .

The group GL 2 (Z) acts by automorphisms on the algebraic group C * × C * ; in coordinates (z 1 , z 2 ), this action is given by monomial transformations

(z 1 , z 2 ) → (z a 1 z b 2 , z c 1 z d 2 )
. From El'Huti's theorem, or by a direct computation, one easily deduces that this copy of GL 2 (Z) in Aut(S 4 ) coincides with the one given by Out(F) and has finite index in Aut(S 4 ). (see §1.2 of [START_REF] Cantat | Character varities, dynamics and Painlevé VI[END_REF] for details) 4.3. Invariance of E 4 . We replace Φ by Φ k and compose it with Ψ -1 ; after such a modification Φ is the identity on S 4 .

Our goal is to show that, under this extra hypothesis, Φ is the identity. For this, note that the equation

E 4 (x, y, z) = x 2 + y 2 + z 2 -xyz -4 (4.6)
of S 4 is transformed by the automorphism Φ : A 3 → A 3 into another (reduced) equation of the same (hyper)surface. Thus, there is a non-zero constant α such that

E 4 • Φ = αE 4 . (4.7) 
Lemma 4.4. The constant α is equal to 1. Hence, E 4 is Φ-invariant, and each of the surfaces S κ is Φ invariant.

Proof. Since E 4 • Φ = αE 4 , the level sets S κ of E 4 are permuted by the automorphism Φ. Among them, exactly two are singular surfaces. The surface S 4 , and the Markov surface S 0 . Indeed, the differential of E 4 is (2x -yz)dx +(2y-zx)dy+(2zxy)dz; if it vanishes, we obtain x 2 = y 2 = z 2 = xyz/2 = κ, and we deduce that κ = 0 or 4. Since S 4 is Φ-invariant, the singular surface S 0 (and its singularity at the origin) must also be Φ-invariant. This implies αE 4 (0, 0, 0) = E 4 (0, 0, 0) and α = 1.

Remark 4.5. Instead of looking at singularities of the surfaces S κ , we could have considered the subset F of χ(F, SL 2 ) given by irreducible representations with finite image. This set is Φ-invariant, and it is finite. Thus, there exists > 0 such that Φ fixes F pointwise. This implies E 4 • Φ = E 4 ; looking at the different possibilities for the finite images, one can even deduce that = 1 4.4. Conclusion. From Lemma 4.4 we get E 4 • Φ = E 4 . Thus, Φ is an automorphism of the complex affine space χ(F, SL 2 ) that preserves every level set S κ of E 4 .

Fix such a constant κ, and consider the restriction of Φ to S κ . This is an automorphism of S κ and we denote by Φ its extension, as a birational transformation, to the compactification S κ of S κ in P 3 (C). The trace of S κ at infinity is the triangle given by xyz = 0 (see Section 4.1). This triangle does not depend on κ, and one verifies that the action of Φ at infinity does not depend on κ either: indeterminacy points, and exceptional curves are the same for all values of κ (see §2.4 and 2.6 of [START_REF] Cantat | Painlevé and Schroedinger[END_REF]). But for κ = 4, we know that this action is just the identity map. Thus, Φ is in fact an automorphism of S κ for all values of κ. From Section 4.1, we know this automorphism Φ is a composition of a permutation of the coordinates (x, y, z) with a diagonal linear map whose diagonal coefficients are ±1. Since Φ is the identity on S 4 , we deduce that Φ is the identity. Thus, we have shown that there is an automorphism ψ of F and a positive integer k such that Φ k • Ψ -1 is the identity map. In other words, Φ k = Ψ on χ(F, SL 2 ). To conclude, one needs to show that an endomorphism ϕ of F that induces the identity map on χ(F, SL 2 ) is in fact an inner automorphism of the group F. To prove it, fix a faithful representation ρ : F → SL 2 (C); its image is automatically Zariski dense in the complex algebraic group SL 2 (C). For instance, take Since ϕ induces the identity map on χ(F, SL 2 ), ρ and ρ • ϕ are in the same conjugacy class, there is an element c ∈ F such that ρ • ϕ(w) = ρ(cwc -1 ) for every w ∈ F, and ϕ coincides with the conjugation by c because ρ is faithful.

Remark 4.6. It may also be possible to conclude the proof by showing that ϕ preserves the conjugacy classes of aba -1 b -1 and its inverse (because Φ preserves the polynomial function E 4 ). And this property is sufficient to imply that ϕ is an automorphism of F.

TWO OPEN PROBLEMS

Theorem A leaves many natural questions open. One may, for instance, replace the free group of rank 2 by a free group of rank n > 1 (or by fundamental groups of closed surfaces) and the group SL 2 by other algebraic groups. One may also replace the field C by other fields, for instance by Q, R or Q p . Let us now state two open problems that concern χ(F, SL 2 ).

Real coefficients.

The proof makes use of the fact that C is algebraically closed in order to get the equivalence "Φ is a bijection if and only if it is an automorphism". Let us replace C by the field R of real numbers, and simply assume that Φ is a bijection of the real part A 3 (R) of the character variety. The difficulty is that there are algebraic bijections of R which are not isomorphisms, for instance t → t + t 3 .

There are two parts in A 3 (R), corresponding respectively to representations of F in SL 2 (R) and in SU 2 . There common boundary is the surface S 4 (R). These subsets are Φ-invariant; in particular, S 4 (R) is invariant, as a subset or A 3 (R) (this does not imply that its equation E 4 is invariant). I haven't been able to use this invariance to prove that Φ is a bijection of A 3 (R) if and only if ϕ is an automorphism of F. Thus, Theorem A remains an open problem if one replaces the field C by R.

Topological degree.

A better result than Theorem A would be to compute the topological degree of Φ : A 3 (C) → A 3 (C) given by any injective endomorphism ϕ of F, or at least to estimate it from below. Theorem A just says that it cannot be equal to 1.

( 1 )

 1 u and v are elements of F, hence they are words u = u(a, b) and v = v(a, b) in the generators a and b and their inverses;(2) G = u, v , with no relations between u and v.

  z = 2 or even for a generic z ∈ C (see[START_REF] De | Topics in geometric group theory[END_REF], §II.B.25). Then, the fiber of ρ for the quotient map Rep(F, SL 2 (C)) → χ(F, SL 2 (C)) is an orbit for the action of SL 2 (C) by conjugation on Rep(F, SL 2 (C)) SL 2 (C) × SL 2 (C).(4.9)
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