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Abstract. We survey a few results concerning groups of regular or birational
transformations of projective varieties, with an emphasis on open questions con-
cerning these groups and their dynamical properties.
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1. Introduction

1.1. Algebraic transformations. Let k be a field and d be a positive integer.
Consider a smooth projective variety Xk of dimension d, defined over the field k.
Attached to Xk are two groups of algebraic transformations: its group of bira-
tional transformations Bir(Xk) and the subgroup of (biregular) automorphisms
Aut(Xk). An element f of Bir(Xk) is defined by its graph Gf ⊂ Xk ×Xk; by def-
inition, Gf is an irreducible algebraic subvariety of dimension d such that the two
projections Gf → Xk have degree one, and in the case of automorphisms, the two
projections are isomorphisms (in particular, they do not contract any algebraic subset
of positive dimension onto a point).

For simplicity, unless otherwise specified, we assume that k = C is the field of
complex numbers. We denote by X the variety, with no reference to its field of
definition, and by X(C) its complex points; thus, X(C) is also a compact, complex
manifold of dimension d (and of real dimension 2d). The group Bir(X) coincides
with the group of bimeromorphic transformations of X(C), and Aut(X) coincides
with the subgroup of holomorphic diffeomorphisms.

A birational transformation f : X 99K X is a pseudo-automorphism if there
exist two Zariski closed subsets Z and Z ′ of codimension ≥ 2 in X such that f
induces an isomorphism from X \ Z to X \ Z ′. Equivalently, f and its inverse
f−1 do not contract any hypersurface (they are “isomorphisms in codimension 1”).
Pseudo-automorphisms constitute an important subgroup Psaut(X) of Bir(X) that
contains Aut(X). As we shall see, automorphisms are quite rare in dimension ≥ 3;
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and Christian Urech for interesting discussions on the topics covered in this survey.
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pseudo-automorphisms appear more frequently, for instance in the study of some
special varieties, such as rational varieties and Calabi-Yau varieties.

1.2. Examples.

1.2.1. Projective spaces. Consider the projective space Pd
k of dimension d. Its group

of automorphisms is the group of linear projective transformations PGLd+1(k). Its
group of birational transformations is known as the Cremona group in d variables.
In homogeneous coordinates [x1 : . . . : xd+1], every birational transformation f of Pd

k
can be written as

f [x1 : . . . : xd+1] = [f1 : . . . : fd+1] (1)

where the fi are homogeneous polynomials in the variables xi, of the same degree, and
without common factor of positive degree. In the affine coordinates Xi = xi/xd+1,
it is defined by rational fractions

Fi(X1, . . . , Xd) =
fi(X1, . . . , Xd, 1)

fd+1(X1, . . . , Xd, 1)
. (2)

When d = 1, Bir(P1
k) coincides with the group of automorphisms PGL2(k). When

d ≥ 2, Bir(Pd
k) is much bigger than PGLd+1(k). In dimension 2, it contains all

monomial transformations

(X1, X2) 7→ (Xa
1X

b
2, X

c
1X

b
2) (3)

with ad − bc = ±1, all transformations (X1, X2) 7→ (X1, X2 + h(X1)), for every
h ∈ k(X1), all linear projective transformations, hence all compositions of such
maps. When k = C, the Hénon map

(X1, X2) 7→ (X2, X1 +X2
2 + c) (4)

provides a transformation of the plane with a rich dynamics (its topological entropy
is equal to log(2) for every parameter c, it has infinitely many periodic points, ...).

1.2.2. Abelian varieties. Next, consider an elliptic curve E = C/Λ, where Λ is a
lattice in C. The product A = Ed is a complex torus of dimension d; it is also a
projective variety, hence an example of an abelian variety. The group of birational
transformations of A coincides with its group of automorphisms. It contains the
group A itself, acting by translations, as well as the group GLd(Z), acting by linear
transformations on A (or more precisely on its universal cover Cd, preserving the
lattice Λd, hence also on A after taking the quotient by Λd).

1.2.3. Calabi-Yau varieties. As a third example, fix an integer d ≥ 1, and consider a
smooth hypersurface X in (P1

C)d+1 which is defined in the open set Cd+1 of P1(C)d+1

by a polynomial equation P (x1, . . . , xd+1) = 0 whose degree is equal to 2 with respect
to each coordinate xj . Geometrically, this means that for every index 1 ≤ i ≤ d+ 1,

the projection πi : X → (P1
C)d which forgets the i-th coordinate is a morphism of

degree 2. The involution that permutes the two points in the fibers of πi is a birational
involution σi of X.

When d ≥ 2, these hypersurfaces of degree (2, 2, . . . , 2) in (P1
C)d+1 are examples

of Calabi-Yau varieties: they are simply connected, they support a holomorphic
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d-form that does not vanish, and they do not split as the product of two varieties
of smaller dimension. Thus, the involutions σi are pseudo-automorphisms because
Bir(X) = Psaut(X) for all Calabi-Yau varieties, as one sees by pulling back a non-
vanishing holomorphic d-form.

In dimension ≤ 2, these pseudo-automorphisms are in fact regular automorphisms.
In dimension 1, X is a curve of genus 1, and the involutions determine a dihedral
group, acting by affine transformations of type z 7→ ±z + a on the elliptic curve. In
dimension d = 2, X is a K3 surface, and the involutions determine a large group
of automorphisms of X: if the equation P is generic, then Aut(X) = Bir(X) is
generated by those three involutions, there are no relations between these involutions
(they generate a group isomorphic to the free product Z/2Z?Z/2Z?Z/2Z), and the
composition σ1 ◦ σ2 ◦ σ3 has a rich dynamical behaviour (its topological entropy is
log(9 + 4

√
5)).

For d ≥ 3, the involutions σi are pseudo-automorphisms with indeterminacy
points. For a generic choice of the equation P , the involutions σi generate Psaut(X),
there are no relations between the σi, and Aut(X) is trivial (see [13]).

1.3. Plan. Our goal is to review some important facts concerning the group Aut(X),
the algebraic structure of its subgroups, and the dynamical properties of its elements.
The emphasis is on open problems, in which algebraic geometry, group theory, and
dynamics are simultaneously involved.

This article comprises two main parts. The first one concerns groups of automor-
phisms of smooth complex projective varieties, and their action on the cohomology
of the variety. The second part concerns the dynamics: we focus on automorphisms
with a dynamical behavior of low complexity because their study has been surpris-
ingly neglected, while it offers interesting questions at the interface between dynamics
and algebraic geometry.

We focus on Aut(X) for simplicity. As Section 1.2.3 shows, it would be better
to work with pseudo-automorphisms, or even with birational transformations. In
fact, most of the questions which are described below could be stated for pseudo-
automorphisms of compact kähler manifolds (see Remark 2.1); and some of them
concern birational transformations of projective varieties over an arbitrary field.

Contents

1. Introduction 1
2. Groups of automorphisms 3
3. Dynamics with low complexity 8
References 12

2. Groups of automorphisms

2.1. Automorphisms. Let X be a smooth complex projective variety. Its group
of automorphisms is a complex Lie group (for the topology of uniform convergence),
whose Lie algebra is the finite dimensional algebra of regular vector fields on X.
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But Aut(X) may have infinitely many components, as shown in Section 1.2.2 by the
example of the abelian variety (C/Λ)d, where Λ ⊂ C is a lattice and d ≥ 2.

Consider the action of Aut(X) on the cohomology H∗(X; Z) of X(C); this gives
a linear representation

Aut(X)→ GL(H∗(X; Z)). (5)

The connected component of the identity Aut(X)0 ⊂ Aut(X) acts trivially on the
cohomology, and is therefore contained in the kernel of this representation. If an
element f ∈ Aut(X) acts trivially on the second cohomology group H2(X; Z), it
preserves the cohomology class of a kähler form κ on X (resp. the first Chern class
of an ample line bundle L on X); this means that the volume (resp. degree) of
the graph of f is uniformly bounded on the kernel of the representation (5). Since
subvarieties with a fixed volume (resp. degree) form a bounded family, one can
use Douady spaces (or Hilbert Schemes) to obtain the following fact: the connected
component of the identity in Aut(X)0 ⊂ Aut(X) has finite index in the kernel of the
linear representation Aut(X)→ GL(H2(X; Z)) (see [31, 35] for a proof).

Thus, the group Aut(X) splits into two basic parts: its neutral component Aut(X)0,
and its discrete image

Aut(X)∗ ⊂ GL(H∗(X; Z)). (6)

The group of connected components Aut(X)/Aut(X)0 is an extension of Aut(X)∗

by a finite group.

Remark 2.1. One may replace H2(X; Z) by the subgroup N1(X) generated by coho-
mology classes of algebraic hypersurfaces of X (or more precisely by the Poincaré dual
of their homology classes). The kernel of the representation Aut(X) 7→ GL(N1(X))
is, again, equal to a finite extension of Aut(X)0. Doing so, it is possible to phrase
some of the following questions for varieties which are defined over fields of arbitrary
characteristic.

One may also replace Aut(X) by Psaut(X). Indeed, since pseudo-automorphisms
are isomorphisms in codimension 1, the group Psaut(X) acts linearly on N1(X)
(and H2(X; Z) when k = C). Thus, all questions concerning the action of Aut(X)
on H2(X; Z) can be stated for the action of Psaut(X) on N1(X) (even when the
characteristic of k is positive).

2.2. The realization problem. Two main problems arise: given a connected alge-
braic group G, does there exist a projective variety X such that Aut(X)0 is isomor-
phic to G as an algebraic group ? Given a subgroup Γ of GLn(Z), for some n ≥ 2,
does there exist a projective variety X and an isomorphism of groups Γ ' Aut(X)∗ ?
There is also a third, less interesting problem, which asks which pairs (G,Γ) may be
simultaneously realized as the connected component and the discrete part of Aut(X),
for some variety X.

The first problem has been solved by Brion in the following strong sense: any
connected algebraic group G over a perfect field is the neutral component of the
automorphism group scheme of some normal projective variety X; if the charac-
teristic of the field is 0, one can moreover assume that X is smooth of dimension
dim(X) = 2 dim(G) (see [4]; see also [45] for Kobayashi hyperbolic manifolds).

In the following paragraphs, we focus on the discrete, countable group Aut(X)∗.
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2.3. Linear groups and their Zariski closure. Not much has been proven yet
concerning the description of the groups Aut(X)∗. To simplify the exposition, we
shall say that a group Γ is abstractly realizable as a group of automorphisms (in
dimension d) if there exist a projective variety X (of dimension d) such that Aut(X)
is isomorphic to Γ (as abstract groups).

Remark 2.2. The group GLn(Z) acts on the abelian variety (C/Λ)n for every lattice
Λ ⊂ C. Blowing-up the origin, one gets a new variety X with Aut(X)0 = {idX}
and with GLn(Z) ' Aut(X) if Λ is generic. Thus, every subgroup Γ of GLn(Z) acts
faithfully on a projective variety of dimension n whose group of automorphisms is
discrete. This does not say that Γ is abstractly realizable.

Remark 2.3. A necessary condition for a countable group Γ to be realizable is that
Γ admits a linear integral representation Γ→ GLm(Z) with finite kernel. This is not a
sufficient condition: when n ≥ 2, there is a finite, cyclic, and central extension of the
symplectic group Sp2n(Z) that does not act faithfully by birational transformations
on any complex projective variety (see [14]).

Instead of looking at the abstract notion of realizability, one may also add some
rigidity in the definition; this may be done as follows. Say that a group Γ ⊂ GLm(Z)
is strongly realizable as a group of automorphisms if there is a smooth complex
projective variety X, and a linear algebraic representation

ϕ : GLm(R)→ GL(H2(X; R)) (7)

which is defined over Z, such that Aut(X)∗ coincides with ϕ(Γ). As in Remark 2.1,
one may replace H2(X; Z) by N1(X) to define a notion of strong realizability by
pseudo-automorphisms, defined over any field k.

Remark 2.4. The cohomology group H2(X; C) splits into the direct sum of the
Dolbeault groups Hp,q(X; C) with p + q = 2. This splitting, the intersection form
and the cone of all Kähler classes are Aut(X)∗-invariant (see [28]). Hence, it would
be too much to require ϕ to be an isomorphism.

There are only countably many distinct groups Aut(X)∗. This follows from the
fact that, up to isomorphism, there are only countably many pairwise non-isomorphic
extensions of Q which are finitely generated. On the opposite, for every integer n ≥ 4,
there are uncountably many, pairwise non-isomorphic, subgroups of GLn(Z). Thus
a counting argument shows that most subgroups Γ of GLn(Z) are not realizable
as groups of automorphisms. On the other hand, there are only countably many
subgroups of GLn(Z) which are finitely generated.

Question 2.5. Which subgroups of GLn(Z) are abstractly (resp. strongly) realizable
as groups of automorphisms ? Is every finitely generated subgroup Γ ⊂ GLn(Z)
abstractly (resp. strongly) realizable as a group of automorphisms ?

Recently, Lesieutre proved that if k is a field of characteristic 0, or a field which
is not algebraic over its prime field, then there is a smooth, 6-dimensional projective
variety X over k such that Aut(X)0 is trivial and Aut(X)∗ is not finitely generated
(see [34] and [20] for another example). This shows that it is somewhat artificial to
assume that Γ is finitely generated.
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Remark 2.6. The following problem remains open: does there exist a rational
surface S such that Aut(S) is discrete but not finitely generated ? More precisely,
can one find such an example which is a minimal model for the pair (S,Aut(S)),
meaning that if π : S → S′ is a birational morphism and π ◦Aut(S) ◦ π−1 ⊂ Aut(S′)
then π is an isomorphism ?

In Question 2.5, the dimension of X is not specified; indeed, dim(X) must a priori
be large with respect to n. Changing viewpoint, one may fix the dimension, or
fix the type of variety one considers, and try to find constraints on the subgroups
Aut(X)∗ ⊂ GL(H2(X; Z)).

Question 2.7. Fix a dimension d ≥ 2. Define G0(X) as the neutral component
of the Zariski closure of Aut(X)∗ in GL(H2(X; R)). What kind of linear algebraic
groups G0(X) do we obtain in this way, when X runs over all possible Calabi-Yau
varieties of dimension d ?

Again, by Remark 2.1, the group Aut(X) may be replaced by the group Psaut(X) =
Bir(X) and H2(X; R) by N1(X)⊗Z R in this question. For a nice example, see [13].
For complex projective K3 surfaces, the groups G0(X) that one gets are connected
components of SO1,m(R) for some m ≤ 19, or abelian groups Rm of rank m ≤ 18.
This comes from Hodge index theorem.

Question 2.5 is stated for Calabi-Yau manifolds because they form one of the
most interesting classes of examples, but it may be stated for other classes, for
instance for rational varieties. And instead of looking at the action of Aut(X) on
H2(X; R), one may also consider its action on every Dolbeault subgroup Hp,q(X; C)
(see [11, 15, 47]).

2.4. Real algebraic variation. Consider now a smooth real projective variety XR

of dimension d. Assume that X(R) is non-empty, and fix one of the connected
components S ⊂ X(R) (for the euclidean topology); then S is a closed connected
manifold of dimension d. The automorphisms of X which are defined over R form
a subgroup Aut(XR) of Aut(XC). A finite index subgroup Aut(XR;S) of Aut(XR)
fixes S, and we get a restriction morphism

Aut(XR;S)→ Diff∞(S) (8)

where Diff∞(S) is the group of C∞-diffeomorphisms of S. Denoting by Mod(S) the
modular group of S, i.e. the group of connected components of Diff∞(S) (see [25]),
one gets a homomorphism

αS : Aut(XR;S)→ Mod(S). (9)

What can be said on the image of this homomorphism ?
The best is to start with surfaces. First, there are explicit examples of automor-

phisms f of rational and K3 surfaces for which the mapping class αS(f) is interesting
(see [1, 41]). Second, Kollár and Mangolte obtained the following beautiful result.
Fix any smooth real surface XR, which is rational (over R). Then, consider the
subgroup Bir∞(XR) of Bir(XR) defined by the following property: f is in Bir∞(XR)
if and only if f and its inverse f−1 have no real indeterminacy point – all its in-
determinacy points come in complex conjugate pairs. By restriction to X(R), each
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element f of Bir∞(XR) provides a diffeomorphism of X(R), and therefore a map-
ping class αX(R)(f) ∈ Mod(X(R)). Kollár and Mangolte proved in [32] that this
homomorphism Bir∞(XR)→ Mod(X(R)) is surjective.

Question 2.8. Does there exist a real projective K3 surface X such that (i) X(R) is
connected and of genus g ≥ 2 and (ii) the image of αX(R) : Aut(XR)→ Mod(X(R))
is surjective ?

I suspect that the answer to this question is negative. Indeed, there may exist
a mapping class ψ of the closed, orientable surface of genus 2 with the following
property: given any automorphism f of a real K3 surface XR with an f -invariant
connected component S ⊂ X(R) of genus 2, αS(f) is not conjugate to ψ.

2.5. Dynamical degrees. Consider an automorphism f of a smooth complex pro-
jective variety X. The characteristic polynomial χf (t) of

f∗ : H2(X; Z)→ H2(X; Z) (10)

is an element of Z[t]; it is monic, and its constant term is ±1. Denote by λ1(f) the
largest absolute value of a root of χf (t). The invariance of the Hodge decomposition
and of the Kähler cone implies that λ1(f) is in fact one of the roots of χf (t) and,
as such, is an algebraic integer. This number λ1(f) is called the first dynamical
degree of f (subsequent dynamical degrees are obtained by looking at the action
of f on the groups Hp,p(X; R) with p > 1). Now, fix the dimension d of the variety,
and define the following set of real integers:

S1(d) = {λ1(f); f ∈ Aut(X) for X smooth, projective, of dimension d}. (11)

In dimension 1, S1(1) = {1}, but in dimension d ≥ 2, S1(d) is an infinite countable
set of algebraic integers. In dimension 2, the Hodge index theorem shows that S1(2)\
{1} contains only reciprocal quadratic integers and Salem numbers; and its first
derive set is non empty: for example the golden mean is an increasing limit of
elements of S1(2) (see [19]). A deeper result says that every strictly decreasing
sequence of elements of S1(2) is finite; in particular, given any α ∈ S1(2), there is a
real number ε(α) > 0 such that ]α, α+ε(α)[ does not intersect S1(2) (see [38, 40, 3]).
In particular, many Salem numbers are not contained in S1(2). The only general
constraint known on the elements of S1(3) is due to Lo Bianco: if α ∈ S1(3), there
are at most 6 distinct moduli |αi| for the Galois conjugates αi of α (whatever the
degree of the algebraic integer α, see [37]).

Question 2.9. Is S1(3) dense in [1,+∞[ ? Or, on the contrary, does there exist
ε > 0 such that S1(3)∩]1, 1 + ε] is empty ?

In this question, on may replace S1(3) by the set of dynamical degrees of all bira-
tional transformations of projective threefolds; here, by definition, the first dynamical
degree of a birational transformation f ∈ Bir(X) is defined by the limit

λ1(f) = lim
n→+∞

(
(fn)∗(H) ·Hd−1

)1/n
(12)

where H is some hyperplane section of X, d is the dimension of X, and the integer
(fn)∗(H) · Hd−1 is the intersection product of the total transform (fn)∗(H) with
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d− 1 copies of H. This limit exists and does not depend on H (see [21, 16, 43], and
Section 3.3 below).

3. Dynamics with low complexity

3.1. Entropy. Given a continuous transformation g of a compact metric space M ,
the topological entropy htop(g;M) is a measure of the complexity of the dynamics
of g : M → M . To define it, fix a scale ε > 0 at which you observe the dynam-
ics. Given a period of observation N ∈ Z+, count the maximum number of orbits
(x, g(x), . . . , gN−1(x)) that are pairwise distinct at scale ε, the orbit of x being distin-
guishable from the orbit of y if the distance from gk(x) to gk(y) is larger than ε for at
least one time 0 ≤ k < N . This number of orbits Orb(N ; ε) typically grows exponen-
tially fast with N ; thus, one defines h(g; ε) as the supremum limit of 1

N log(Orb(N ; ε))
and the entropy htop(g;M) of g as the limit of h(g; ε) as ε goes to 0, i.e. as our ob-
servations become arbitrarily accurate.

Topological entropies are hard to estimate for continuous or smooth maps of man-
ifolds. But the topological entropy of an endomorphism f of a smooth complex pro-
jective variety X is equal to the logarithm of the spectral radius of f∗ : H∗(X; C)→
H∗(X; C) (the action of f on the cohomology). This wonderful result is due to
Gromov and Yomdin (see [30, 29, 46], and [21] for an upper bound when f is a
rational map). For instance, the entropy is invariant under deformation: if F is an
automorphism of a variety X that preserves a fibration π : X → B with smooth pro-
jective fibers and the fibration is locally trivial topologically, then the automorphisms
induced by F on the fibers of π have the same entropy.

Endomorphisms with positive entropy have been studied in detail, with special
focus on endomorphisms of the projective space Pk

C and automorphisms of surfaces.
We refer to [9, 22] for survey papers on the subject. Here, we consider the opposite
edge of the spectrum: instead of looking at automorphisms with chaotic dynamics,
we ask for a description of automorphisms with dynamics of low complexity.

3.2. Invariant fibrations. Now consider an automorphism f of a smooth complex
projective variety X with entropy equal to 0. Then, by the Gromov-Yomdin theo-
rem, the eigenvalues of f∗ ∈ GL(H∗(X; Z)) all have modulus 1, and being algebraic
integers, they must be roots of unity. Changing f in a positive iterate, we may
assume that f∗ is unipotent: all its eigenvalues are equal to 1.

If f∗ is the identity, then some further iterate is contained in Aut(X)0 (see Sec-
tion 2.1). The dynamics of such an automorphism is well understood. Thus, one
may assume that f∗ is non-trivial and unipotent; equivalently, the sequence ‖ (fn)∗ ‖
grows polynomially quickly with n, as nk for some k ≥ 1.

When dim(X) = 2, Gizatullin proved the following: if f∗ is unipotent and 6= Id,
then f preserves a (singular) fibration by curves of genus 1 and the growth of ‖(fn)∗ ‖
is quadratic (see [27, 19, 6]). For instance, if π : X → B is a genus 1 fibration of the
surface X with two sections, then the translations along the fibers that map the first
section to the second one determine an algebraic transformation of X: this is often
an automorphism such that ‖ (fn)∗ ‖ grows quadratically. The following question
asks whether Gizatullin’s classification can be extended to higher dimension.
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Question 3.1. Let X be a smooth complex projective variety of dimension 3. Let f
be an automorphism of X, such that the linear transformation f∗ ∈ GL(H∗(X; C))
is non-trivial and unipotent. Does f permute the fibers of a non-trivial meromorphic
fibration π : X 99K B ?

By “non-trivial meromorphic fibration”, I mean that 0 < dim(B) < dim(X) and
π is a dominant rational map; and f permutes the fibers of π if there is a birational
transformation fB of B such that π ◦ f = fB ◦ π.

When f is an automorphism of a smooth complex projective variety of dimension
3 and f∗ is a non-trivial unipotent matrix, then ‖ (f∗)n ‖ grows like nk with k ∈
{2, 4}(see [37]). But beside this general statement, not much is known.

One of the first examples to look at is the case of Calabi-Yau varieties. So, let f
be an automorphism of a Calabi-Yau variety X of dimension 3, with a non-trivial
unipotent action on the cohomology. Consider a kähler form κ on X, with coho-
mology class [κ] ∈ H2(X; R); then n−k(fn)∗[κ] converges towards an f -invariant nef
class. Is this class related to an f -invariant fibration on X ? This is a version of the
abundance conjecture (see [33]), precisely in a case which is not solved yet, but with
the additional presence of an automorphism.

3.3. Degree growth. If an automorphism satisfies λ1(f) = 1, then an iterate of f∗

is unipotent, and ‖ (fn)∗ ‖ grows polynomially with n. Now, consider a birational
transformation f : X 99K X of a complex projective variety X. Fix a polarization H
of X and define the degree of f with respect to H by the intersection product

degH(f) = f∗(H) ·Hd−1 (13)

where d is the dimension of X and f∗(H) is the total transform of H by f−1.
Changing H into another polarization H ′, the notion of degree is only perturbed by
a bounded multiplicative error: there exists a positive constant c such that

1

c
degH′(f) ≤ degH(f) ≤ cdegH′(f) (14)

for all f ∈ Bir(X) (see [21, 16, 43]). When X = Pd
C and H ⊂ Pd

C is a hyperplane,
then degH(f) is just the degree of the polynomials that define f in homogeneous
coordinates (see Section 1.2.1). Instead of assuming that the entropy of f is zero,
one may now assume that λ1(f) = 1, i.e. that degH(fn) does not grow exponentially
fast with n.

Question 3.2. Let X be a smooth projective variety of dimension d, together with
a polarization H. Let f be a birational transformation of X with λ1(f) = 1. Does
the sequence degH(fn) grow polynomially ? If not bounded, does this sequence grow
at least linearly ?

In other words, can one construct a birational transformation f , say, of P3
C, such

that the sequence degH(fn) grows like exp(
√
n), or like n2 log(n), or like n1/3 ? This is

already an open problem for polynomial automorphisms of the affine space A3
C. One

may also ask, as in Question 3.1, whether the equality λ1(f) = 1 implies the existence
of a non-trivial invariant fibration. While these questions are fully understood in
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dimension 2 (see [8, 10, 19, 27]) almost nothing is known in higher dimension (see [44],
as well as [18, 36] for interesting examples).

This type of question is, in fact, directly related to the algebraic structure of the
group Bir(X). For instance, one says that an element f of Bir(X) is distorted
if there exists a finite set S ⊂ Bir(X) such that the n-th iterate fn is a product
g1 ◦ · · · ◦ g`(n) of elements gi ∈ S with lim inf(`(n)/n) = 0 (see [5]). Distorted

elements satisfy λ1(f) = 1. In dimension 2, an element f of Bir(P2
C) is distorted if

and only if some positive iterate fN is conjugate to an element of Aut(P2
C). Any

progress on Questions 3.1 and 3.2 would certainly help classify distorted elements in
higher dimension.

3.4. Minimal transformations. A continuous transformation g of a compact met-
ric space M is minimal if each of its orbits are dense; equivalently, the only g-
invariant closed subsets are M and the empty set. For an algebraic example, con-
sider a complex torus A = Ck/Λ, with Λ a cocompact lattice in Ck; then, every
totally irrational translation on A is minimal. For another example, take k = 2 and
Λ = Λ0×Λ0, with Λ0 a lattice in C. Choose a point a in C/Λ0 such that each orbit
of x 7→ x+ a is dense in C/Λ0, and consider the following automorphism of C2/Λ:

f(x, y) = (x+ a, y + x) mod (Λ). (15)

Furstenberg shows in [26] that every orbit of f is dense in the abelian surface C2/Λ. In
fact, Furstenberg proves more: f preserves the Haar measure on the torus and this is
the unique f -invariant probability measure. Thus, there are minimal automorphisms
with no positive iterate in Aut(X)0 (in Furstenberg’s example, the action of f on
the cohomology is non-trivial and unipotent).

A minimal automorphism of a curve is a translation on an elliptic curve. In
dimension 2, one also proves easily that any complex projective surface X with a
minimal automorphism is an abelian surface. It would be great to get a similar
result in higher dimension:

Question 3.3. Let X be a complex projective variety of dimension 3. Suppose that
there is a minimal automorphism f on X. Is X an abelian variety ?

If f is minimal it does not have any periodic orbit. With the Lefschetz formula
and Gromov-Yomdin theorem, one sees that the entropies of minimal automorphisms
of complex projective varieties vanish. Now, if X has dimension 3, the holomorphic
Lefschetz formula says that h1,0(X) > 0 or h3,0(X) > 0. If h1,0(X) > 0, one may
use the Albanese morphism to reduce the complexity of the dynamics of f (see [7]).
If h3,0(X) > 0, there is an f -invariant holomorphic 3-form on X; since f does not
preserve any strict Zariski closed set (by minimality), this form does not vanish.
Thus, the most interesting case is when X is a Calabi-Yau variety of dimension 3
with Euler characteristic equal to 0, and the action of fm on the cohomology is
unipotent for some m > 0 (as in § 3.2).

3.5. Fatou components and real algebraic varieties.
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3.5.1. Fatou components on K3 surfaces. Consider an automorphism f of a K3 sur-
face X. Assume that the topological entropy of f on the complex surface X(C) is
positive: htop(f ; C) = log(λ1(f)) > 0 where λ1(f) is, by the Gromov-Yomdin the-
orem, the largest eigenvalue of f on the cohomology of X(C). In that case, f has
infinitely many periodic points, and those points equidistribute toward an f -invariant
probability measure µf (see [6, 9, 24]). More precisely, denote by Per(f ;N) the set of
isolated periodic points of f or period N . Then, the sequence of probability measures

1

|Per(f ;N)|
∑

z∈Per(f ;N)

δz (16)

converges toward an f -invariant probability measure µf with interesting dynamical
properties (this is the unique measure of maximal entropy of f). The same property
holds if one replaces Per(f ;N) by the set of saddle periodic points of period N ,
i.e. by points x ∈ X(C) such that fN (x) = x and the differential DfNx has two
eigenvalues α and β with

|α| > 1 > |β|; (17)

indeed, the number of isolated periodic points and of saddle periodic points grow at
the same speed, namely like λ1(f)N .

The measure µf is, in general, singular with respect to the Lebesgue measure
on X(C). If µf is absolutely continuous with respect to the Lebesgue measure, then
(X, f) is a Kummer example: this means that X is a quotient of an abelian surface
A and f is induced by a linear automorphism of A (see [12]).

But not much is known about the support of the measure µf . There may a priori
exist a region U ⊂ X(C) which is f -invariant and on which the dynamics of f is far
from being chaotic. More precisely, define the Fatou set Fat(f) as follows: x ∈ X(C)
is in the Fatou set if there is an open neighborhood V of x such that the sequence of
iterates (fm)m∈Z forms a normal family on V, in the sense of Montel. This determines
an f -invariant open subset Fat(f) ⊂ X(C) on which µf vanishes. It is not known
yet whether the Fatou set is always empty for automorphisms of complex projective
K3 surfaces with positive entropy. There are examples of non-empty Fatou sets on
non-projective K3 surfaces and rational surfaces (see [39, 1]).

Question 3.4. Does there exist a complex projective K3 surface X with an auto-
morphism f : X → X such that the topological entropy of f is positive and the Fatou
set of f is not empty ?

While the theory of closed positive currents, the Hodge theory, and the Pesin
theory of smooth dynamical systems may be combined to study the chaotic part
of the dynamics from a stochastic viewpoint (see [2, 6, 9, 17, 23] for instance), not
much is known concerning the topological properties of the dynamics, such as the
existence of non-empty Fatou components or dense orbits. Thus, Question 3.4 is at
the borderline of our knowledge.

3.5.2. Dynamics on real K3 surfaces. Now, add to the hypotheses that X and f
are defined over the field of real numbers R, and X(R) is not empty. Fix a con-
nected component S of X(R), and replace f by some positive iterate so that f now
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preserves S. We obtain two dynamical systems: the complex dynamics given by
f : X(C) → X(C), and the real dynamics given by f : S → S. The topological
entropy of f on S is bounded above by the topological entropy of f on X(C). For
rational surfaces, it may happen that these two numbers are equal (and positive,
see [1]); in that case most periodic points of f are indeed contained in X(R). For
K3 surfaces, there is no example yet with

htop(f ;X(R)) >
1

2
htop(f ;X(C)). (18)

At the opposite edge of the possibilities, there is no known example for which
htop(f ;X(C)) is positive while htop(f ;S) = 0 for some connected component of X(R)
(see [42]).

Question 3.5. Does there exist a real projective K3 surface XR with an automor-
phism f : XR → XR such that λ1(f) > 1, X(R) is not empty, and one of the
following propery occurs

(1) the entropy of f on X(R) is equal to the entropy of f on X(C) ?
(2) the entropy of f on some component S of X(R) vanishes ?
(3) a connected component S of X(R) is contained in the Fatou set of f ?

Of course, a positive answer to the third of these questions would imply a positive
answer to the second question and to Question 3.4. To obtain a positive answer to
the first, it would be sufficient to find a component S ⊂ X(R) which is f invariant
and such that the mapping class αS(f) has a stretching factor equal to λ1(f) on the
fundamental group π1(S) (see [25]); thus, Question 3.5 is also related to Section 2.4.
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