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Abstract—Job scheduling in high-performance computing plat-
forms is a hard problem that involves uncertainties on both
the job arrival process and their execution time. Users typically
provide a loose upper bound estimate for job execution times that
are hardly useful. Previous studies attempted to improve these
estimates using regression techniques. Although these attempts
provide reasonable predictions, they require a long period of
training data. Furthermore, aiming for perfect prediction may
be of limited use for scheduling purposes.

In this work, we propose a simpler approach by classifying jobs
as small or large and prioritizing the execution of small jobs over
large ones. Indeed, small jobs are the most impacted by queuing
delays but they typically represent a light load and incur a small
burden on the other jobs. The classifier operates online and learns
by using data collected over the previous weeks, facilitating its
deployment and enabling fast adaptations to changes in workload
characteristics.

We evaluate our approach using four scheduling policies on six
HPC platform workload traces. We show that: (i) incorporating
such classification reduces the average bounded slowdown of
jobs in all scenarios, and (ii) the obtained improvements are
comparable, in most scenarios, to the ideal hypothetical situation
where the scheduler would know the exact running time of jobs
in advance.

I. INTRODUCTION

With the ever-increasing demand for computational re-
sources, HPC platforms keep evolving and getting larger and
more complex [1], which instigates the need for more adaptive
and elaborate scheduling schemes.

One way to deal with such complexity is to develop sophis-
ticated ad-hoc scheduling algorithms that are often too situa-
tional, non-generalizable, and hard to reason about. Another,
more appealing alternative, is to use a generic scheduling
scheme like EASY-backfilling [2] coupled with some index
policy. An index policy is a function that considers one or
more job characteristics (such as arrival time, processing time,
and requested resources), and performs an ordering based on
a function of these characteristics. Two notable examples are
First Come First Served (FCFS) and Shortest Processing time
First (SPF) [3].

One major problem with the aforementioned approach is
that many crucial job characteristics, such as job runtimes, are
unknown a priori. HPC platforms usually require their users to
supply an upper bound to how long a job will execute on the
platform. The scheduler also uses this estimate to define which
job to include in the backfilling queue and, with policies such
as SPF, job ordering in the main execution queue.

Job runtimes estimates are known to be inaccurate at best.
Years of practice and experience have shown that users tend
to overestimate their job execution times by a large margin,
which reduces the effectiveness of backfilling. Considerable
research has been conducted to improve the accuracy of these
estimates.

Several studies have shown that it is possible to use learn-
ing schemes to generate better estimates of job execution
times [4]–[7]. However, predicting job execution times using
historical data present in workload logs is difficult [8]. These
logs usually do not contain important information, such as
application name and parameters, data input information, and
job structure. Moreover, runtime information such as job
placement and machine utilization are available only a pos-
teriori. Finally, existing predictions frequently underestimate
job execution times, causing their premature killing after they
occupied the platform for a considerable time.

In this work, we propose a different approach. Instead
of trying to predict the exact value, we propose a simple
classification of the jobs into two classes: small and large.
The small class contains all the jobs whose actual runtimes
are short, regardless of user-supplied estimates. The large class
encompasses all other jobs. We use an online machine learning
classification algorithm that exploits user-specific information
to learn whether jobs are small or large. We propose a
modified version of the EASY algorithm that considers this
classification by treating small jobs as high priority jobs.

We perform a thorough evaluation with six full workload
traces from HPC platforms and four scheduling policies. We
show that:

• Simple binary classification of jobs as small or large is
sufficient to improve the performance of all evaluated
scheduling policies in all evaluated workload traces;

• The use of a simple safeguard mechanism that kills large
jobs misclassified as small enables scheduling improve-
ments similar to those obtainable with a perfect job size
classifier;

• Our scheme, combining job size classification and safe-
guard mechanism, provides improvements close to that
obtainable using fully clairvoyant schedulers, with perfect
knowledge of actual job execution times.

The remainder of this paper is organized as follows. In
Section II, we present related studies. In Sections III and IV,
we discuss the reasoning and the method used for the classi-



fication. Section V shows the experimental protocol, followed
by the experimental evaluation (Section VI). Finally, in Sec-
tion VII, we present the paper conclusions.

II. RELATED WORK

Researchers have used machine learning using two major
approaches, which are: (i) improving runtime estimates, and
(ii) designing or selecting scheduling policies.

The first approach consists in using machine learning tech-
niques to improve runtime estimates. Feitelson et al. intro-
duced EASY++, a variation of the classical EASY, which
replaces user-provided runtimes estimates by the average
runtime of the two previous jobs from the same user [4].
Despite its simplicity, it allowed for improvement of around
%25 over the classical EASY algorithm. Gaussier et al. used
historical data from different traces and linear regression
to predict runtimes with improved accuracy [5]. They also
showed that prediction could be used more effectively if
coupled with a more aggressive backfilling heuristic (namely
SPF). But prediction based approaches frequently suffer from
the problem of underestimation of running times. Guo et al.
proposed a framework that can be used to detect runtime
underestimates [6], allowing it to adjust job running times.

An interesting phenomenon is that, increasing the inaccu-
racy (e.g., doubling the user-provided estimates) sometimes
improves performance [9]. Such surprising behavior is related
to Graham’s scheduling anomalies and stems from the fact
that index policies generally produce suboptimal scheduling.
The policy used for scheduling had a major impact on the
effectiveness of accurate predictions, with policies that favor
shorter jobs benefiting more. More recent results [5] show
that, in some cases, predictions (which always have some
inaccuracy) outperform their clairvoyant counterparts despite
the latter’s perfect knowledge of runtimes. During our own
studies, we also encountered similar situations (especially
when using workload resampling) but this remained an overall
statistically insignificant effect.

In a recent study [8], the authors explored the effectiveness
and limitations of using machine learning to improve the per-
formance of computing clusters. They show that the workload
is highly variable among periods, with large user churn and
changes in machine utilization levels, and that a few users
generate most workload. Consequently, model performance
can vary strongly on a day-to-day basis. Moreover, more ac-
curate runtimes do not systematically lead to better scheduling
performance, and with the few datasets available today, it is
difficult to assess the model performances. Finally, they argue
that training can take many months (or years) before it reaches
a stable level when using a few features, which would prevent
practical deployments.

Using the second approach, Carastan-Santos and Camargo
used synthetic workloads and simulations to determine non-
linear regression functions that improve the slowdown met-
ric [7], generating functions that resemble the Smallest Area
First (SAF) policy. Zrigui et al. showed that using a linear

combination of job characteristics allowed to build index poli-
cies that can significantly improve systems performance [10].
Yet, the authors show that the continuously changing nature
of the data makes it very hard to learn online optimal weights
for this linear combination and prevents any static policy to be
fully effective. Sant’Ana et al. addressed the evolving nature of
the workload by using machine learning techniques to select,
in real time, the best scheduling policy to apply for the next
day on a given cluster, based on the current cluster state [11].
These attempts generated promising results but require system
administrators to change fundamentally the scheduling policies
in existing clusters.

In this work, we propose a simpler approach, which consists
in classifying jobs into two classes: small and large. The
objective is to allow faster training and adaptations to changes
in the workload characteristics, while avoiding other issues of
runtime predictions, such as underestimations of runtimes.

III. CHARACTERIZATION OF SMALL AND LARGE JOBS

A. Preliminary definitions

We use a data-driven approach, which relies on the char-
acterization and identification of workload patterns from ex-
ecution logs (traces) of HPC platforms. To ensure that our
approach can be generalized and is not specific to a particular
cluster or machine, we systematically studied datasets from
six HPC platforms available from the Parallel Workloads
Archive [12], and whose main characteristics are shown in
Table I.

TABLE I
WORKLOAD LOGS

Name Year # CPUs # Jobs Duration
HPC2N 2002 240 202,871 42 Months
SDSC-BLUE 2003 1,152 243306 32 Months
SDSC-SP2 1998 128 59715 24 Months
CTC-SP2 1997 338 77222 11 Months
KTH-SP2 1996 100 28476 11 Months
MetaCentrum-zegox 2013 576 79546 24 Months

In this work, we adopt the simplest model of a HPC job as
a rectangle, representing the runtime (width) and the number
of requested resources (height). For each job j, we consider
the following characteristics:

• The actual runtime pj , which is known only after job
completion;

• The estimated runtime p̃j , provided by the user at job
submission and which is an upper bound of pj ≤ p̃j ;

• The number of requested processors qj , which is static
and provided by the user at job submission;

• The submission time rj , also known as release date.

Job runtime distributions change from one system to an-
other, and building a unified runtime distribution model has
proven to be a challenging task [13]. Yet, the density of
estimated runtimes for the six traces shows one or two peaks
at small values, showing that most jobs have small processing
time estimates (Figure 1, upper row). Other peaks also appear
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Figure 1. Distribution of estimated (upper row) and actual (bottom row) execution time of jobs for the six workload traces.

in some traces, with some containing a peak near the maxi-
mum allowed processing time. However, when comparing to
the actual runtimes (Figure 1, bottom row), we can easily see
the well-known mismatch between the estimated and actual
runtimes.

But evaluating the actual runtimes of the six traces, we can
also notice that they share an interesting similarity, with all
distributions having a sharp peak at the small values and a
large tail towards longer execution times. This distribution
indicates that we could divide jobs into two classes: (i) small,
encompassing the jobs at the peaks of the distributions, and
(ii) large, comprising jobs at the tails of the distribution.

B. Job classes and their impact

We first examine the characteristics and impact of small
jobs in HPC platform usage. To perform this examination, we
must first define where the small job class ends, and the large
begins. We applied two clustering algorithms, DBSN [14] and
EM [15], to divide the classes into two groups. Both generated
similar division, shown as a dashed black line in Figure 1.
We also considered a simpler scheme, by using the median
of the actual runtimes, represented by the solid green line on
Figure 1. Although the divisions are not the same, we aimed
for simplicity and considered that the median is sufficient to
separate the initial peak from the rest of the distribution.

We considered a job as small if its runtime was smaller than
the median (divider), and consider the job as large otherwise.
We can further divide the small job class into two subclasses:
(i) non-premature small jobs: short jobs that also had estimated
runtimes smaller than divider, and (ii) premature small jobs:
short jobs that had estimated runtimes larger than divider.

Table II shows the percentage of jobs from each class in the
various platforms we tested. We can see that, there is always

TABLE II
NUMBER OF PREMATURE AND NON PREMATURE JOBS

trace divider(s) Small non premature(%) Small premature(%)
CTC-SP2 1114 17.11 32.89
HPC2N 2287 27.63 22.38
KTH-SP2 847 15.37 34.63
MetaCentrum-zegox 915 3.94 46.07
SDSC-BLUE 229 0.36 49.70
SDSC-SP2 359 12.02 38.01

TABLE III
JOB STATISTICS SHOWING THE IMPACT OF SMALL JOBS OVER LARGE ONES

trace class runtime(%) area(%)

CTC-SP2 large 98.98 98.37
small non premature 0.87 1.34
small premature 0.15 0.29

HPC2N large 99.70 99.35
small non premature 0.22 0.50
small premature 0.07 0.15

KTH-SP2 large 99.56 99.59
small non premature 0.40 0.36
small premature 0.04 0.05

MetaCentrum large 99.58 99.33
small non premature 0.18 0.20
small premature 0.24 0.47

SDSC-BLUE large 98.39 99.32
small non premature 1.34 0.57
small premature 0.27 0.11

SDSC-SP2 large 97.82 98.33
small non premature 1.92 1.45
small premature 0.25 0.22

a significant fraction of premature jobs. Table III shows that
the total summed runtime and area1 of these premature jobs
occupy a negligible portion of the total runtime and area (less
than 0.5%).

Premature small jobs have a wildly over-estimated process-
ing time, causing them to wait longer for execution, which
results in large slowdown values. If one could correctly detect
these premature small jobs, we would obtain a significant
reduction in the overall average slowdown in the platform.
In the next section, we propose a method for performing this
classification.

IV. JOB SIZE CLASSIFICATION

The objective of the job size classifier is to map a set of job
features into a class: small or large. We defined the features to
use for classification based on two observations: (i) the runtime
of a job is highly correlated with the user submission history,
and (ii) users often submit more than one job type [8]. One can

1The area aj of a job j is defined as its runtime multiplied by the number
of resources it requested: aj = pj ∗ qj .



TABLE IV
FEATURES USED FOR JOB CLASSIFICATION.

Type Feature Description
job features pi user supplied runtime estimate

qi user supplied number of resources
Temporal features h hour of the day

Dweek day of the week
dmonth day of the month
m Month
w Week
Q Quarter

Lag features pi−1
class of the previous job that was submitted by the same
user i and requested equal runtime

pi−2
class of the second to previous previous job that was
submitted by the same user i and requested equal runtime

pi−3
class of the third to previous job that was
submitted by the same user i and requested equal runtime

qi−1
class of the previous job that was submitted
by the same user i and requested equal number of resources

qi−2
class of the second to previous job that was submitted
by the same user i and requested equal number of resources

qi−3
class of the third to previous job that was submitted
by the same user i and requested equal number of resources

di−1
class of the previous job that was submitted
by the same user i on the same day

di−2
class of the second to previous job that was submitted
by the same user i on the same day

di−3
class of the third to previous job that was submitted
by the same user i on the same day

Aggregation features meaniq

percentage of jobs that where submitted by the same
user i and requested equal number of resources and belong
to the class small

meanip
percentage of jobs that where submitted by the same user i
and requested equal runtime and belong to the class small

meanid
percentage of jobs that where submitted by the same
user i on the same day and belong to the class small

consider that two jobs are in the same category when they have
either the same requested processing time, requested number
of resources, or submission date. In particular, the runtime
of any given job is highly correlated with the runtime of the
previous jobs that belong to the same category, as shown in
Figure 2, with jobs closer in time having a higher correlation.
Consequently, the class (small or large) of the previous jobs
that belong to the same user and the same category are an
important factor to predict the class of a submitted job.

Based on these observations, we decided to use the follow-
ing features, shown in Table IV, for classification:

• Lag features: contains the class of the previous three jobs
from the same category submitted by the user.

• Aggregation feature: contains the percentage of jobs
of the same category and submitted by the same user
that belongs to the small class. This feature aggregates
information from older jobs.

• Temporal features: The hour of the day, the day of the
week, the month, the week, and the quarter in which a
job was submitted;

• Job features: The estimated execution time and requested
number of resources of the job.

We used Random Forests [16] to perform the classifications
as they allow to gracefully combine numerical and categorical
features. Random forests work by creating multiple decision
trees on randomly selected data samples, getting a prediction
from each tree, and selecting the best solution by majority
voting. Moreover, random forest

We measure the quality of our classifications using the three
following indicators:

• Accuracy is the ratio of correctly predicted observation
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Figure 2. Average auto-correlation between a job and its predecessors
regarding the number of requested resources q. The x-axis shows the distance
between the job and its predecessor (in number of jobs) and y-axis show the
degree of correlation between them.

over the total number of observations: accuracy =
TN+TS

TN+TS+FN+FS , where:

– TL (True Large): jobs correctly predicted as large
– TS (True Small): jobs correctly predicted as small
– FL (False Large): jobs incorrectly predicted as large
– FS (False Small): jobs incorrectly predicted as small

• Precision is the ratio of correctly predicted small jobs to
the total number of jobs that are predicted to be small:
precision = TS

TS+FS

• Recall is the ratio of correctly predicted small jobs to all
observations in the small class: recall = TS

TS+FN

Table V shows the results of applying Random Forest
with the features presented in Table IV. These are the mean
values obtained over all classifications performed during the
experimental evaluation (Section VI). For all evaluated traces
the value of three indicators was always above 80%

TABLE V
RESULTS OF CLASSIFICATION

trace accuracy precision recall
CTC-SP2 0.85 0.82 0.86
HPC2N 0.90 0.87 0.89
KTH-SP2 0.86 0.79 0.90
SDSC-BLUE 0.80 0.78 0.83
SDSC-SP2 0.87 0.89 0.91
Meta-zegox 0.85 0.83 0.87

The two types of prediction errors are false large (FL) and
false small (FS). False large errors decrease the effectiveness
of our approach since it causes small jobs to wait in the queue
with large jobs, but causes no harmful effects. False small
classifications are a more significant problem since a large job
would be executed earlier, causing delay to true small jobs.
We prevent this situation by killing false small jobs, i.e., jobs
that execute for more than a specified time limit for small jobs.



V. EVALUATION FRAMEWORK

We tried to be as transparent as possible and to make our
work as reproducible as possible [17]. We provide a snapshot
of the workflow we used throughout this work as a link to a
git repository2, which includes a nix [18] file that describes
all the software dependencies and an R notebook that allows
regenerating all the figures.

We consider HPC platforms as a collection of homogeneous
resources, with jobs arriving at a centralized waiting queue,
following the submission described in the workload logs. We
implemented all simulations using Batsim [19], a simulator
based on SimGrid [20] that allows evaluating the behavior of
scheduling algorithms under different conditions. We evaluate
our method using the 6 traces presented in Table I.

A. Scheduling policies

We considered four scheduling policies:

• FCFS: First Come First Served [2] orders the jobs by
their arrival time rj . FCFS is the most commonly used
scheduling policy.

• WFP: is a scheduling policy adopted by the Argonne Na-
tional Labs [21] and is given by: WFPj = (

waitj
p̃j

)3 ∗ qj .
This policy attempts to strike a balance between the
number requested resources, the estimated runtime and
the waiting time of jobs. It puts emphasis on the number
of requested resources while preventing small jobs from
waiting too long in the queue.

• SPF: Shortest estimated Processing time First [3] orders
the jobs by the estimated processing time (p̃j) given by
the user.

• SAF: Smallest estimated Area First [22] orders jobs by
their estimated area ãj = p̃j ∗ qj .

We chose FCFS and WFP because several existing HPC
systems use them. SAF and SPF are less common, mostly
because they are perceived as too risky since they could
potentially induce job starvation. Starvation occurs when a
job waits for an indefinite or a very long time in the queue.
Yet, some studies [10], [22] show that SAF and SPF provide
better results on performance metrics in almost all cases.
Furthermore, one can prevent starvation by putting a threshold
on the waiting time [23]. When the waiting time of a job
surpasses the threshold, the scheduler transfers the job to the
head of the queue.

We implemented the four aforementioned policies in con-
junction with the EASY [2] backfilling heuristic. When re-
quested, the scheduler selects for execution the next job in the
queue, ordered by the scheduling policy. The first time, the
scheduler reaches a job that cannot start immediately, due to
the immediate lack of resources, it makes a reservation for
that job. Then, it schedules the next jobs in the queue that
can execute to completion without delaying the job with the
reservation.

2https://gitlab.inria.fr/szrigui/job classification/

B. Learning and scheduling algorithm

When a user submits a job for execution, the classifier uses
the job features to assign it to the small or large classes,
represented by queues Qsmall and Q, respectively. In the first
week, since the classifier does not have prior data to learn
the classification task, it classifies all jobs as large and does
not behave differently from a classical policy. After that, we
update the classifier at the beginning of every week, with data
from all previous weeks. The training has three steps. First, we
extract job information from the execution logs (line 1 from
Algorithm 1). Then we determine the divider (line 2) using
the median of the past job true execution times. Finally, we
use the extracted features and job classes to train the classifier
(line 3).

Algorithm 1: Update classifier

1 dataset = extract execution logs()
2 divider = cluster(dataset)
3 TrainRandomForestClassifier(dataset, divider)

The resource manager calls the scheduler whenever a job
finishes its execution, and computational resources become
available. The scheduler then sorts the two queues Q and
Qsmall independently, according to a chosen policy (FCFS,
SAF, SPF, or SQF), and merge them in a single queue
Qtotal, with the jobs belonging to the small class first. Finally,
resource allocation is done using the EASY heuristic, as shown
in Algorithm 2.

Algorithm 2: Scheduling
Input : Queue of large jobs Q

Queue of small jobs Qsmall

Scheduling policy Policy (FCFS|WFP| . . . )
1 Order Q according to Policy
2 Order Qsmall according to Policy
3 Qtotal = concat(Qsmall, Q) # small jobs are always

put in the head of the final queue
4 EASY(Qtotal) # Schedule the jobs in the final queue

using the EASY heuristic

The only extra relevant overhead compared to the EASY
scheduling policies are the job classification into classes small
or large, which takes a few hundred milliseconds, and the
classifier updating, which takes longer. The update includes
finding the median execution time over the workload log
of the previous week and training the classifier using the
pairs features, jobclass. The full execution of this procedure
(Algorithm 1) takes only a few seconds and occurs only at the
end of every week. Moreover, it runs independently from the
scheduler, without blocking it.

False Small Jobs: Some large jobs can be wrongly clas-
sified as small by the classifier (false small jobs). Although
the resource manager may allow these jobs to execute until
completion, this would delay the execution of true small jobs.

https://gitlab.inria.fr/szrigui/job_classification/


Figure 3. Evolution of the Cumulative Bounded Slowdown for the six platforms, using the base policies (black) and the same policies augmented with job
size classification and idempotence (cyan).

Algorithm 3: Killing False Small jobs

1 Q = {} # queue of large jobs
2 Qsmall = {} # queue of small jobs
3 job counter = 0 # number of submitted jobs
4 while Running do
5 # go through all jobs currently running
6 if jobj .class == “small” & jobj .runtime > divider

then
7 kill(jobj)
8 Qsmall.remove(jobj) Q.add(jobj)
9 end

10 end

We employ the policy of killing these jobs when the
execution time reaches the divider value. We consider that
jobs are idempotent, which means they can be killed and
restarted without changing the final execution outcome. The
scheduler periodically goes through the list of running jobs
(Algorithm 3). If it detects a job classified as small and has
been executing for a period longer than the divider value, it
kills the job and classifies it as large.

If jobs are not idempotent, the resource manager can al-
low them to execute until completion. The difference in the
performance of the two approaches is discussed in detail in
Section VI-D.

C. Evaluation metric

There exist several cost metrics, and each evaluates the
performance of specific aspects of HPC platforms [24]. We

use the bounded slowdown (bsld) metric, which represents
the ratio between the time a job spent in the system and its
running time. The reasoning behind the slowdown metric is
that the response time of a job should be proportional to its
runtime. Indeed, it would not seem fair to delay equally short
and long jobs. Formally, it is defined as:

bsldj = max

(
waitj + pj
max(pj , τ)

, 1

)
The value waitj is the time the job spent in the queue, pj

is the actual execution time, and τ is a constant that prevents
short job times from generating large slowdown values. We
set τ to 60 seconds.
In this work, we use focus on the cumulative bounded slow-
down, which is computed as the sum (resp. mean) of bsld
of all the job from the beginning of the execution until the
current time and is updated every time a job arrives.

VI. EXPERIMENTAL RESULTS

In Section IV, we presented the job size classifier and
showed its accuracy from a pure learning perspective. How-
ever, achieving a high-quality classification is not our final
goal. In the scheduling context, the effectiveness of an ap-
proach is measured by how much it improves end-to-end
performance metrics, such as the average bounded slowdown.

A. Overall impact on scheduling performance

We evaluated the evolution of the cumulative bounded
slowdown when applying the EASY-backfilling with the 4
scheduling policies (FCFS, WFP, SAF, and SPF). Figure 3
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Figure 4. Monthly average bounded slowdown. Each line links the values from the same month when using the base and classification-idempotent schedulers.

shows the results for the scenarios with the job size classifi-
cation and job-killing mechanism (in cyan) and without them
(in black).

Comparing the curves for the four basic scheduling policies,
we note that different SPF and SAF generated the lowest
cumulative slowdown in all platforms. WFP had cumulative
values close to SPF and SAF, while FSCS had the worst values
by a large margin in all cases. These results are consistent with
previous comparisons of scheduling policies [10], [23].

Applying the job size classification reduced the cumulative
slowdown values in all scenarios, with the improvement de-
pending on the trace and scheduling policy. For FCFS, we
observed substantial improvements for all six traces, ranging
between 33% to 79%. For the other policies, we observed
smaller, albeit consistent, improvements in performance, rang-
ing from 3% to 32% for SPF and 10% to 51% for SAF. We
explore these results further in Section VI-E.

The cumulative slowdown increases most of the time
smoothly, with some sharp rises. The slower increments occur

during lightly or moderately loaded periods, in which we see
steady increments in the gap between the scenarios with and
without job size classification. The jumps are the result of
high load periods and seem unavoidable, as they occur with
all policies. But regardless of the policy and the trace used,
our method always results in smaller cumulative slowdowns.

Since FCFS performed poorly compared to other policies,
we decided to exclude it from the subsequent analysis. How-
ever, we note that the observations in the next sections also
apply to FCFS.

B. Individual month improvement

The evolution of the cumulative bounded slowdown over
long periods, although informative, can mask important details
about the behavior of a scheduler at a smaller time scale,
such as individual weeks or months. Ideally, a good scheduler
should provide improvements somewhat equitably distributed
throughout the evaluation period.

We investigate the effects of our approach on individual
months in Figure 4. Each pair of connected points represents
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Figure 5. Impact of using the classification-idempotent scheduler on the average bounded slowdown of small and large jobs, when compared to the base
scheduler.
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Figure 6. Impact of disabling the job-killing mechanism for large jobs misclassified as small.

the average bounded slowdown of a single month from the full
workload execution, for the base and classification-idempotent
cases. We note a reduction in the slowdown in most cases, with
a decrease proportional to the base value. There are a few
months where our approach seems to substantially degrade
performance, such as in MetaCentrum-zegox/WFP. These are
artifacts that emerge from splitting the results into one month
periods, where workloads “spills” from one month to the other
during periods of very high load. Overall, the results show that
improvements are fairly distributed between months, even for
the clusters that had large jumps in the cumulative slowdown,
such as MetaCentrum-zegox and HPC2N.

C. Impact of prioritizing small jobs over large jobs

Our algorithm reduces the overall bounded slowdown by
prioritizing small jobs. One crucial question is: what is the
impact of favoring small jobs over the jobs classified as large?

We compute the average bounded slowdown for the jobs
from each of the two classes (Figure 5). As expected, the
small jobs had the most substantial reductions in the average
slowdowns. The extent of the reduction is dependent on
the platform and policy and is mostly proportional to the
improvements in the cumulative bounded slowdown, shown
in Figure 3. More importantly, there is only a small increase
in the average slowdown of large jobs.

The use of job size classifier results in extensive improve-
ments for small jobs, with little or no impact on large jobs.
Consequently, we argue that there are no perceivable hidden
costs for large jobs when prioritizing small jobs.

D. Impact of removing the job-killing mechanism

Assigning a large job to the small class can cause an overall
increase in the average bounded slowdown of other jobs since
it occupies resources for an extended period. We prevent this
by killing the job when it reaches the job size divider value.
But we cannot apply it for non-idempotent jobs. A question
that arises is: can we still improve performance if we allow
miss-classified jobs to run until completion?

We compared the cumulative bounded slowdown values
at the end of the full workload trace simulations, for the
six platforms, for three scenarios: (i) base, (ii) classification-
idempotent, where we kill false small jobs, and (iii) classifi-
cation, where we use classification without job-killing.

Preventing job-killing reduces the effectiveness of the clas-
sification in almost all scenarios (Figure 6). Scheduling large
jobs ahead of others risk delaying all the jobs that come after in
the waiting queue, especially true small jobs whose slowdown
value can increase very quickly.

We note, however, that classification without job-killing still
managed to improve the total slowdown for most cases, but to
a lesser extent than classification-idempotent. The exceptions
are the combinations where the classification-idempotent only
managed to improve results by a small margin. In these cases,
the classification without job-killing did not improve or caused
very small degradations in performance. We conclude that
removing the safeguard mechanism significantly reduces the
effectiveness of our method without rendering it completely
useless.

E. Comparison with clairvoyant

Finally, we evaluate what would be the improvements
obtained by schedulers that would know in advance the actual
execution time of each job. We compared three strategies that
build the base policies (SPF, SAF, and WFP): (i) runtimes-
clairvoyant, where the scheduling heuristic is provided with
the actual pj , instead of the requested (p̃j , processing times,
(ii) class-clairvoyant, where the scheduler is indicated which
class the jobs belong to (i.e., as if a perfect job class classi-
fication was achieved), and (iii) classification-idempotent, the
method we propose and which only uses estimated execution
times. Although the clairvoyant versions cannot occur in prac-
tice, they provide us with an upper bound on the achievable
improvements.

Using the classification-idempotent results in improvements
comparable to the class-clairvoyant (Figure 7), except for
MetaCentrum-zegox. This result indicates that the job-killing
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Figure 7. Comparison with a perfect job size classifier and with a fully clairvoyant scheduler.

mechanism is effective in counteracting the misclassifications
and that the overhead of job-killing has a small impact on per-
formance. Moreover, it shows that our strategy of combining
classification with job-killing is already very efficient and has
little room for further improvements.

The two clairvoyant strategies, class-clairvoyant and
runtimes-clairvoyant, also had comparable performance, with
slightly better results when using runtimes-clairvoyant. This
result shows that a simple classification in two categories is, in
most cases, sufficient to obtain important improvements in the
bounded slowdown metric. It indicates that trying to accurately
predict job execution time with elaborate regression techniques
will not bring large improvements over the use of a simpler
binary job size classification.

The most notable exception to the conclusions above is the
MetaCentrum-zegox trace, where there are consistent improve-
ments when moving from base to classification-idempotent,
class-clairvoyant, and runtimes-clairvoyant. For this particular
trace, there were several jumps in the cumulative bounded
slowdown (Figure 3), caused by abnormally high loads. In
these situations, a perfect knowledge of execution times ap-
pears to have a larger impact on scheduling performance.

Finally, we look at the cases were class-clairvoyant
provided minor improvement: SDSC-SP2/SPF and KTH-
SP2/SPF. In Figure 7 we can see that even with full knowledge
no significant improvements where made. class-clairvoyant
only improved over base SPF by 10% and 13% for SDSC-
SP2 and KTH-SP2 respectively indicating that, for these two
traces, SPF was already a very good policy.

VII. CONCLUSIONS

Scheduling parallel jobs is a hard problem in general,
especially in online contexts, where important information,
such as job execution time, is imprecise or missing. Predicting
job execution time from the limited information provided by
the platform is challenging and often generates only imprecise
estimates.

TABLE VI
IMPROVEMENT OVER EASY-FCFS ACCORDING TO [4] AND [5].

Classification-Idempotent
EASY++ [4] Gaussier et. al. [5] FCFS-CI SPF-CI

KTH-SP2 36% 44 % 50 % 59%
CTC-SP2 37% 59 % 79 % 85%
SDSC-BLUE 47% 05 % 63 % 74%
SDSC-SP2 29 % 15 % 66 % 75%

In this work, we show that a more straightforward clas-
sification of jobs into small and large classes is sufficient
for improving scheduling performance. A simple safeguard
mechanism that kills large jobs misclassified as small is
important to prevent these jobs from delaying the others.
Since the misclassification is detected very early, when the
job execution time reaches the divider value between classes,
it has a small overhead over the average slowdown metrics.
We obtained improvements in scheduling performance for
all combinations of six workload traces and four scheduling
policies evaluated. Moreover, in most scenarios, we managed
to obtain improvements in scheduling performance similar to
that of clairvoyant schedulers with perfect knowledge of job
execution times.

Furthermore, we can compare the improvements obtained
by our approach with two regression-based approaches:
EASY++ [4] the one proposed by Gaussier et al. [5]. Indeed,
they also used the workload traces from SDSC-BLUE, SDSC-
SP2, KTH-SP2, and CTC-SP2 and they report the improve-
ment over the base EASY-backfilling with FCFS ordering
policy (see Table VI). Although there are a few method-
ological differences between our evaluations, our classifica-
tion approach combined with FCFS reduces the cumulative
bounded slowdown by 50-79%, compared to 29-47% from
EASY++, and 05-59% from Gaussier et al.. Relying on SPF
instead of FCFS allows to decrease the cumulative bounded
slowdown even further but most of the gain is provided by the
classification mechanism.

These results indicate that a classification approach can be
more effective than using regression for improving scheduling



performance. Compared to regression-based techniques, our
approach has two major advantages: (i) a two-class classi-
fication task is easier to learn than regression, requiring less
training data, and (ii) misclassification of large jobs as small is
detected very quickly during execution, opposed to regression,
where underestimates are evident only after the job executed
for the entire estimated period. Consequently, we believe
that using the proposed scheme of job size classification is
more appropriate for deployment in real HPC platforms than
regression-based approaches.

Although distinguishing small jobs from large ones proved
effective, we believe this classification is too rough. As a future
work, we intend to identify other classes of jobs (e.g., long
and thin jobs or series of jobs from a given group and whose
duration is multi-modal) that could benefit from a specific
treatment by the batch scheduler. We also intend to study how
the (lack of) confidence of the classification could be exploited
by the scheduling algorithm, similarly to what is done with
Bayesian bandits in online learning.
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